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Abstract. Nowadays, the analysis and extraction of relevant informa-
tion in visual data flows is of paramount importance. These images se-
quences can last for hours, which implies that the model must adapt to
all kinds of circumstances so that the performance of the system does
not decay over time. In this paper we propose a methodology for back-
ground modeling and foreground detection, whose main characteristic is
its robustness against stationary noise. Thus, stacked denoising autoen-
coders are applied to generate a set of robust characteristics for each
region or patch of the image, which will be the input of a probabilistic
model to determine if that region is background or foreground. The eval-
uation of a set of heterogeneous sequences results in that, although our
proposal is similar to the classical methods existing in the literature, the
inclusion of noise in these sequences causes drastic performance drops in
the competing methods, while in our case the performance stays or falls
slightly.
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1 Introduction

In today’s society, the fact that it is necessary to automate the exploitation of
visual information that we capture in the most reliable and efficient possible
way is ever more present. In the field of artificial vision, video surveillance is
still a very active field at research level, since not all the open fronts have been
satisfactorily addressed in recent years. One of the main areas to improve resides
in the background modeling, which consists of determining which pixels of the
image correspond to the movement objects in the scene and which ones are part
of the background of the scene.

Foreground detection algorithms must work 24 hours a day, with robustness
against background variations. This variability can be observed in outdoor en-
vironments where the weather can change and generate rain, hail or snow, or in
indoor environments where changes in lighting compromise the reliability of de-
tection. Not only is it necessary for a detection algorithm to behave correctly for
a few hundred frames, but it is necessary to ensure that changes in the external
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conditions of the scene will not cause a drop in performance. These requirements
are difficult to achieve in many of the works already published, in which changes
in the scene could cause that the system stops working properly.

Most of the foreground detection algorithms work at pixel level, that is,
modeling the intensity of each pixel and determining the probability of belong-
ing to one of the two possible classes: foreground or background. Thus, there
are many highly referenced proposals that achieve more than satisfactory re-
sults. The main differences between them reside in the underlying model that
represents the intensity of color of each pixel over time. Wren et al. [11] uses a
Gaussian distribution as a basis for the modeling of each pixel, while the GMM
model [7] uses K distributions to manage multimodal funds. Zivkovic [13] uses
an intermediate strategy, considering as many Gaussians as necessary up to a
maximum value (K). On the other hand, Elgammal et al. [2] make use of ker-
nel distributions, less restrictive than the previous ones statistically but more
complex to update. Other more complex models go through modeling each pixel
through self-organized maps, a type of unsupervised neural network. Both SOBS
[4] and FSOM [3] models are based on the previous algorithm, in addition to
combining the output of each pixel (probability of belonging to the background
or foreground) with the output of their neighbors, which provides robustness to
the model and makes it less sensitive to false positives.

The use of deep learning networks is not alien to this field. In this work we will
use autoencoders, as an unsupervised learning technique, to minimize the impact
of noise backgrounds in the modeling of the scene. Each image will be divided
into patches whose noise will be eliminated by a previously trained autoencoder.
Subsequently, and using the autoencoder information after the coding phase,
a N dimensional Gaussian model will be used to estimate the probability of
belonging to the background of each patch.

Autoencoders are well suited to information representation. Single layer lin-
ear autoencoders are proved to span the same subspace as a Principal Compo-
nents Analysis (PCA) does when they attempt to learn an undercomplete repre-
sentation of the input data, i.e., the number of neurons in the hidden layer is less
than or equal to the input data dimension [1]. Therefore, the features that re-
tain most of the input data variance will be kept. In stacked linear autoencoders,
subsequent layers of the autoencoder will be used to condense that information
gradually to the desired dimension of the reduced representation space. On the
other hand, sparse autoencoders or autoencoders with layers made up of non-
linear units will also obtain relevant features which can be expected to be easier
to interpret and used by a classifier, though they will likely differ from those
provided by the PCA technique, as it is discussed in [9].

The paper is divided in the following sections: Section 2 presents the object
detection methodology based on the analysis of image patches to obtain a fore-
ground mask from an input frame; section 3 reports the experimental results
over several public surveillance sequences and Section 4 concludes the article.
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Fig. 1. Complete autoencoder structure with layers sizes.

2 Methodology

Most previous approaches to background modeling in video sequences model
each pixel of the video frame separately. Our model intends to model small
patches of size N ×N pixels, so that for each incoming video frame an estima-
tion is made in order to know whether each patch belongs to the background
of the scene. The process is divided in two stages: firstly, a condensed represen-
tation of the patch, composed of significant features, is obtained by means of
previously trained Stacked Denoising Autoencoder (SDA) [9]; secondly, a prob-
abilistic model classifies the patch according to their computed set of relevant
features.

2.1 Patch feature extraction

Let X ∈ RH be a patch of size H, where tristimulus pixel color values are
assumed. The patch is processed by a stacked denoising autoencoder:

X̃ = g (f (X)) (1)

f : RH → RL g : RL → RH (2)

where X̃ ∈ RH is the reconstructed version of the input patch X, f is the
encoding part of the autoencoder, g is the decoding part of the autoencoder, and
L is the number of neurons of the innermost layer of the neural architecture, i.e.
the size of the last layer of the encoding part and the first layer of the decoding
part (see Fig. 1). The goal of the autoencoder is to reduce the high dimensional
input of size H to a a low dimensional set of features of size L with L < H.

An autoencoder is usually trained to minimize the reconstruction error E :

E =

R∑
i=1

∥∥∥X− X̃
∥∥∥2 (3)

where R is the number of patches in the training set.
However denoising autoencoders are trained with corrupted input samples X̂

instead of the input samples themselves X.

E =

R∑
i=1

∥∥∥X− g (f (X̂
))∥∥∥2 (4)
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Fig. 2. Method overwiev scheme.

Denoising autoencoders try to learn a robust representation made up of more
general features which prevents from overtraining and diminishes the influence
of scene factors such as illumination and local variation. In an attempt to enforce
the invariance of the autoencoder to the diverse scene conditions, several authors
[10][12] have used a training set that comprises not patches extracted from the
frames corresponding to the video to process but a huge amount of generic
natural image patches that may be corrupted. This approach is followed in our
proposal, where the training set for our single autoencoder is generated from the
Tiny Images dataset [8].

It turns out that stacked denoising autoencoders might find difficulties in
modeling too small patches. Here we propose to overcome this limitation by
augmenting the N × N pixel patch by M pixels in each direction (up, down,
left and right), so that an augmented patch of size (N + 2M) × (N + 2M) is
supplied to the autoencoder, while the estimation about the pertenence to the
background only affects to the central N × N pixel section of the augmented
patch. In this way, the augmented patches overlap with their neighbors, while the
small patches do not. Therefore, the dimension of the samples the autoencoder
processes is H = 3 (N + 2M)

2
.

2.2 Patch classification

As the video sequence progresses, the features which are discovered by the au-
toencoder are extracted, and a probabilistic model is learned for them. (Figure
2) This model aims to capture the main characteristics of the probability distri-
bution of the feature vector v ∈ RL:

v = f (X) (5)

To this end, the mean µj = E [vj ] and the variance σ2
j = E

[
(vj − µj)

2
]

of each component of v are approximated by the Robbins-Monro stochastic
approximation algorithm [5]:

µj,t+1 = (1− α)µj,t + αvj,t (6)
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σ2
j,t+1 = (1− α)σ2

j,t + α (vj,t − µj,t)
2

(7)

where t is the time instant (the frame index) and α is the step size.
Each small patch is declared to belong to the foreground whenever the num-

ber of components of the feature vector which are far from its estimated mean, as
measured with respect to the estimated variance, is higher than a given thresh-
old:

C <

L∑
j=1

I (|vj,t − µj,t| > Kσj,t) (8)

where I stands for the indicator function, C is a tunable parameter which spec-
ifies the number of components which must be far from its estimated mean to
declare that the small patch belongs to the foreground, and K is another tunable
parameter which specifies how many standard deviations an observation must
depart from its estimated mean to be considered to be far away.

3 Experimental Results

3.1 Methods

Five methods have been selected in order to make a performance comparison
with our proposal: WrenGA [11], ZivkovicGMM [13], MaddalenaSOBS [4], El-
gammalKDE [2] and Lopez-RubioFSOM [3].

Four of this methods are available on BGS library [6] 1. The version 1.3.0 of
the BGS library has been implemented by using the C++ language and version
2.4.8 of the OpenCV2 library. On the other hand, Lopez-RubioFSOM is writ-
ten in Matlab, with MEX files written in C++ for the most time-consuming
parts and Matlab scripts for the rest. The employed parameter values are those
indicated as default by the authors.

Finally, our proposed approach has been implemented using Python version
2.7. For neural network implementation we have used TensorFlow3 version 1.5.0
by means of Keras4 version 2.1.3 as high-level API. All evaluation has been made
using MATLAB R2017B.

Our autoencoder implementation has been trained and tested using 100,000
random images from Tiny Images dataset [8]5. Since each image has 32x32 pixels,
we have divided each one to obtain four 16x16 images.

In order to be as fair as possible a random seed has been used to generate
the input Gaussian noise for each noise level. The same videos with the applied
noise are used in all the studied methods. We do not use any additional post
processing in any of the methods.

1 https://github.com/andrewssobral/bgslibrary
2 http://opencv.org/
3 https://www.tensorflow.org/
4 https://keras.io/
5 http://groups.csail.mit.edu/vision/TinyImages/
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Table 1. Considered values for each parameter.

Parameter Values

C {3,6,9,12,15}

K {2,3,4,5,6,7,8}

α {0.001,0.005,0.01,0.05}

Table 2. Final parameter selection for each video an noise level.

Video σ = 0 σ = 0.1 σ = 0.2

canoe C = 3, K = 5, α = 0.001 C = 6, K = 4, α = 0.001 C = 3, K = 5, α = 0.001

boats C = 3, K = 4, α = 0.001 C = 3, K = 4, α = 0.001 C = 3, K = 4, α = 0.001

fountain02 C = 15, K = 6, α = 0.001 C = 12, K = 5, α = 0.001 C = 12, K = 5, α = 0.001

overpass C = 3, K = 6, α = 0.001 C = 3, K = 6, α = 0.001 C = 3, K = 6, α = 0.001

port 0 17fps C = 15, K = 5, α = 0.05 C = 12, K = 5, α = 0.05 C = 12, K = 5, α = 0.05

pedestrians C = 15, K = 7, α = 0.001 C = 15, K = 6, α = 0.001 C = 12, K = 7, α = 0.001

3.2 Sequences

A set of video sequences have been selected from the 2014 dataset of the ChangeDe-
tection.net website6. Four of the selected scenes are from Dynamic Background
category, one from Low Frame Rate category and another one from the Base-
line one. Canoe shows a river with water and forest background where a canoe
goes across (320x240 pixels and 1189 frames). Fountain02 shows a road behind
a fountain that spits water out (432x288 pixels and 1499 frames). Boats shows
a river next to a road. Two boats cross through the river while various vehicles
move on the road (320x240 pixels and 7999 frames). Overpass shows a bridge
traversed by a man with a river, forest and a road behind (320x240 pixels and
3000 frames). Port 0 17fps is a low frame rate video that shows a little dock with
a lot of boats constantly moving, water and clouds as background and some per-
sons and boats crossing from time to time as foreground (640x480 pixels and
3000 frames). Pedestrians is a baseline video where several people walk over a
pavement next to grass with sun and shadows (360x240 pixels and 1099 frames).

3.3 Parameter selection

Our method needs three parameters to be selected (C, K and α). To get a
good combination of parameter values, we have carried out and analyzed each
possible combination from values in table 1 on page 6 for images without noise
(140 combinations). We have used the parameter configuration that achieves

6 http://changedetection.net/
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Fig. 3. Qualitative results for frame 960 from canoe dataset. From left to right: images
with different amount of Gaussian noise with mean 0. First row is original dataset
input image with different amounts of Gaussian noise and ground-truth. Other rows
correspond to foreground segmentation performed for each method and each input
image.

σ = 0 σ = 0.1 σ = 0.2 GT

Sequence

Ours

FSOM

KDE

Wren

Zivkovic

SOBS

best performance for each video without noise. The top 3 combinations have
been tested for videos with Gaussian noise in order to select the combination
which best performs. Table 2 on page 6 shows final parameter selection for each
video and noise level.
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Fig. 4. Comparison between methods for each video with σ = 0, σ = 0.1 and σ = 0.2
Gaussian noises.

3.4 Results

A well-known measure has been selected in order to compare the performance
from a quantitative point of view. In this work we have considered the spatial
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accuracy S. This measure provides values in the interval [0, 1], where higher is
better, and represent the percentage of hits of the system.

The definition of this measure can be described as follows:

S =
TP

TP + FN + FP
(9)

where TP refers to the foreground patches classified correctly(true positives)
whereas FN and FP are the type II (false negatives) and type I (false positive)
errors respectively.

S has been calculated for each binarized frame in Region of Interest (specified
by ChangeDetection.net) generated using each previously mentioned method and
we have obtained the mean for all frames with TP pixels in ground-truth.

Figure 4 on page 8 shows comparison between each method result for videos
with different noises. We can observe our proposed method is able to deal with
low level noise and even improve a bit its performance for some videos (canoe
and boats). It is interesting to point that adding noise to other methods causes
a lot more FP pixels while our method deals with it by increasing FN pixels as
can be observed on figure 3 on page 7.

4 Conclusions

In this work we have proposed a methodology for the background modeling in
video sequences, that uses autoencoders to filter the possible noise in the back-
ground and a multidimensional probabilistic model to determine the probability
of belonging to one of the following two classes, background or foreground. Al-
though our proposal works at region level, the comparative results with other
techniques at pixel level where they take advantage of more information, leave
us in good place for all the experiments carried out. To simulate more heteroge-
neous scenes, we have added Gaussian noise to each sequence, being our method
much more robust than competitors to this increase in variability in the scene.
In fact, the improvement is significant, being the best method on average in
all the scenes analyzed. The greater the background noise, the greater the fall
in performance of the method used. The results indicate that after introduc-
ing slight noise, the fall of our method is 4% on average, while the rest of the
techniques have drops of over 30%. If the noise is magnified our performance
goes down near 30% of its original value, but the performance of the rest falls
70% on average. These data corroborate the idea of robustness of our proposal,
in addition to its usefulness for the processing and analysis of continuous data
during uninterrupted periods of time.
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