


PROGRAMA DE DOCTORADO DE ECONOMÍA Y EMPRESA

FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES

Solving the Waste Collection Problem
from a Multiobjective Perspective:
New Methodologies and Case Studies

Author

Laura Delgado Antequera

TESIS DOCTORAL, MARZO 2018

Supervisors

Dr. Rafael E. Caballero Fernández

Dr. Francisco Ruiz de la Rúa



AUTOR: Laura Delgado Antequera

        http://orcid.org/0000-0003-3937-7422

EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga

Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 
4.0 Internacional:
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
Cualquier parte de esta obra se puede reproducir sin autorización 
pero con el reconocimiento y atribución de los autores.
No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer obras derivadas.

Esta Tesis Doctoral está depositada en el Repositorio Institucional de la Universidad de Málaga 
(RIUMA): riuma.uma.es

http://orcid.org/0000-0003-3937-7422
http://orcid.org/0000-0003-3937-7422
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode


ACKNOWLEDGEMENTS

To my friends and family.

Thank you for being there.





For a better comprehension of the audience I am writing these lines to, let

me express myself in Spanish.

GRACIAS

Parece sencillo dar las gracias, pero tengo tanto que agradecer que lo más difícil

va a ser resumirlo de forma que llegue a todos.

En primer lugar quiero expresar mi eterno agradecimiento a mis directores

de tesis, Dr. Rafael Enrique Caballero Fernández y Dr. Francisco Ruiz de la Rúa

por el contínuo apoyo y haber creído en mí para realizar este proyecto. Gracias

por la paciencia, la motivación y el inmenso conocimiento que me ha guiado a

lo largo de esta grata experiencia como estudiante de doctorado. Gracias por

todas esas conversaciones, casi paternales, que me han hecho crecer profesional y

personalmente en estos últimos años.

Además, me gustaría agradecer a los miembros del tribunal de tesis: Dr.

María Molinos, Dr. Fernando López, Dr. Mónica Hernádez, Dr. Ada Álvarez y

Dr. Jesús Sánchez - Oro, sus comentarios, que han contribuido notablemente en

la mejora de esta investigación y el manuscrito.

También, dar las gracias a mis compañeros del departamento de Economía

Aplicada (Matemáticas) por la acogida, en especial a la Dra. Trinidad Gómez Nuñez

y el Dr. Julián Molina Luque por estar siempre dispuestos a ofrecerme su ayuda

y consejos. Gracias a Nancy Arellano, por nuestras eternas charlas de café y por

enseñarme a escribir en LaTeX. Y finalmente, sin salir de la Universidad, a la Dra.

Fátima Pérez García, por todas nuestras charlas y consejos que han facilitado los

días más difíciles, tengo suerte de tenerte como compañera de despacho.

Le estoy también muy agradecida al Dr. Joaquín Pacheco y Dr. Alfredo

García - Hernández Díaz por el apoyo, la disposición y la paciencia que han

mostrado conmigo desde el principio de este proyecto. Además, mi más sincero

agradecimiento al Dr. Manuel Laguna y a su familia, por acogerme en, lo que

ya se denomina, la ”Boulder Experience”. Además del aprendizaje, sobre todo



en el estudio de las metaheurísticas, mi estancia en Colorado me enriqueció

como persona. Sumando a esta experiencia la suerte de compartirla con grandes

personas e investigadores como Dr. Rafael Martí, Dra. Anna Martínez, Dra. Ana

Dolores López y Dr. Jesús Sánchez - Oro.

Gracias al Ministerio de Innovación y Ciencia por aportar los fondos

para el contrato predoctoral (EEBB-I-16-11282) asociado al proyecto

ECO2013-47129-C4-2-R y a Diputación Provincial de Málaga por la colaboración en

este trabajo.

A mi familia deportiva, gracias por alegrarme la vida con algo tan sano

como el baloncesto y la buena compañía.

Gracias a mis amigos, sin nombrar a nadie. Aquellos con los que he

compartido más de media vida, los de la carrera y erasmus y todos los que os

habéis convertido en imprescindibles en estos últimos años, ya sea de estancia,

de congresos o por casualidad. Quiero daros las gracias simplemente por estar

ahí, que ya es mucho, en lo bueno y en lo malo e incluso en la distancia. Gracias

por cada minuto que me regaláis, no hay nada tan importante para mí.

A toda mi familia, incluyendo los que ya no están con nosotros, y a Lourdes.

Gracias por apoyarme y animarme a luchar por seguir.

Y, para terminar, gracias mamá, papá y ”Carlillos”. No existen palabras

para describir lo afortunada que me siento de ser hija y hermana en esta familia.

Gracias por hacer fácil lo difícil, por animarme en esta lucha continua contra mi

curiosidad y mis ganas de hacerlo todo, gracias por la paciencia, gracias por

la educación, la atención y el cariño, gracias por dejarme caer y ayudarme a

levantarme mil veces,... gracias, gracias y GRACIAS.

Aquello que hace unos años empezó siendo todo un reto para mí hoy es una

realidad. Y sin ninguna duda es gracias a vuestro apoyo y paciencia, por formar

parte de mi vida y compartir conmigo lo mejor de vosotros.

GRACIAS.







CONTENTS

Resumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction 1

2 State of the art 17

2.1 Waste Collection Problem . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Multiobjective Waste Collection Problem . . . . . . . . . . . 22

2.1.2 Decision Support Systems for Multi-objective WCP . . . . . 29

3 Methodology 37

3.1 Description of metaheuristics to be used . . . . . . . . . . . . . . . . 39

3.1.1 GRASP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 Path Relinking . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.3 Hybridizing GRASP and Path Relinking . . . . . . . . . . . 48

3.2 Multiobjective algorithms proposed . . . . . . . . . . . . . . . . . . 54

3.2.1 Multiobjective GRASP: alternating objectives . . . . . . . . . 71

3.2.2 Multiobjective optimization using an achievement

scalarizing function . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.3 Resources to improve the approximation of the Pareto set . 76



CONTENTS

3.2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 84

3.3 Interactive approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4 Application to solve a real problem 115

4.1 Description of the problem . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.3 GUI to solve the real problem . . . . . . . . . . . . . . . . . . . . . . 142

5 Conclusions and future lines of research 151

Bibliography 179







RESUMEN

En este trabajo se presenta una herramienta para analizar el Problema de la

Recogida de Basura (WCP) en Málaga. El primer capítulo (Capítulo 1) desarrolla

una breve introducción sobre el problema a tratar y define algunos conceptos

metodológicos que serán utilizados en el resto del presente documento. A

continuación, en el Capítulo 2, se hace un repaso de los trabajos previos que

abordan el problema de la recogida de basura. Esta revisión incluye un análisis

de las técnicas empleadas para resolver este tipo de problemas con uno y varios

objetivos. En ella se aprecia un uso recurrente de Sistemas de Información

Geográfica (GIS). En el Capítulo 3 se presenta la metodología desarrollada en este

trabajo para abordar este tipo de problemas. Y, finalmente, la aplicación de la

misma para analizar el problema real de Diputación de Málaga se presenta para

concluir el documento.

En general, existe un interés creciente por el estudio de la gestión de residuos

urbanos por parte de las administraciones locales en cualquier parte del mundo.

Un manejo eficiente de la recogida y el transporte de los residuos conlleva una

serie de beneficios tanto en el ámbito económico, como en el social y, también, en

lo relacionado con el medio ambiente. Diferentes tareas se incluyen en la gestión

de residuos. Entre ellas, se encuentra el estudio del tratamiento de los residuos

sólidos, así como el diseño de distintas opciones para reutilizar los residuos

reciclables. El tratamiento de residuos es un hecho que todo hogar y negocio

necesita gestionar, para manejar el depósito de objectos y sustancias usadas de

forma segura y eficiente.
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Diseñar un sistema eficiente para gestionar los residuos no es tarea fácil. Se

han de tener en cuenta diferentes factores que pueden intervenir, de forma más o

menos relevante, en el proceso dependiendo del servicio a realizar. En un área, los

residuos proceden de actividades industriales, viviendas o comercios. Por tanto,

es necesario controlar diversos aspectos como la generación, el almacenamiento,

la recolección, el transporte o transferencia, el procesamiento y el depósito de

los residuos. A su vez, se han de respetar ciertos temas de la salud pública,

económicos, estéticos, de ingeniería y otros en relación al medio ambiente.

En particular, en el marco del desarrollo sostenible, la gestión de residuos a

nivel municipal adquiere cierta relevancia. En este ámbito, los gestores necesitan

diseñar sistemas sostenibles que, a su vez, sean económicamente admisibles,

socialmente aceptables y eficientes a nivel ambiental. Para obtener un sistema

de tales características no existe un método único que asegure la mejor calidad,

por lo que cada elemento del problema debe ser analizado cuidadosamente.

Hay trabajos que analizan distintos sistemas de gestión de residuos, otros

estudian las razones del fracaso de estos sistemas y otros aportan unas pautas a

seguir para diseñar sistemas eficientes. Sin embargo, este estudio se centra en el

diseño del sistema de recogida de basura, distribuida en los distintos municipios

de la provincia de Málaga a los que da servicio Diputación de Málaga.

A nivel económico, la recolección de basura y su transporte constituyen un

alto porcentaje del coste de gestión de residuos. Los últimos estudios revelan que,

en España, los gastos de recogida y tratamiento de los residuos superan el 40%

de los ingresos que provienen de los impuestos o tasas asignadas a cubrir dicho

servicio. Por tanto, el uso de un buen proceso de decisión conllevaría múltiples

beneficios para las administraciones de dicho servicio. Este hecho, entre otros, ha

impulsado el interés y los esfuerzos invertidos en el diseño de tal procedimiento.

Es objeto de este trabajo el desarrollar una metodología que ayude a

encontrar un buen sistema de recogida para el WCP en Málaga. El continuo

crecimiento de la población en este área, provoca un aumento en la cantidad
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de residuos sólidos generados. En consecuencia, resulta interesante conocer las

distintas opciones, y analizar las modificaciones que habría que implementar para

mejorar distintos aspectos de este servicio. Por tanto, se debe aplicar un modelo

de criterios múltiples, que recoja todas las alternativas posibles de forma que los

gestores obtengan una amplia visión de las posibilidades.

Al tratarse de un problema real, se ha analizado la solución que utiliza

actualmente la entidad para la recogida de residuos. Para este problema, a nivel

provincial, los datos y parámetros son aportados por la Diputación provincial

de Málaga. Estos datos contienen la localización de los distintos contenedores,

plantas de transformación y vertederos, la cual se contrasta utilizando un

software de Sistema de Información Geográfica (SIG). Para ello, también es

preciso cargar las distintas capas de carreteras (direcciones, sentido, límite de

velocidad, giros, etc.) que nos sirven como base para construir la matriz de

distancias y tiempos. Además, para el diseño de las rutas, se dispone de

una estimación de la cantidad de residuos sólidos acumulada en cada punto

mensualmente, lo que permite estimar una media de kilogramos de basura

recogidos en cada contenedor visitado.

Habitualmente, resolver problemas reales implica considerar la

optimización de más de un objetivo simultáneamente. Por ejemplo, es común

encontrar trabajos donde el problema de la recogida de basura contempla la

determinación de la periodicidad del servicio en cada punto y establecer las

ventanas de tiempo para su recogida, de forma que pueden ser modelados

como Problemas Periódicos de Rutas con Ventanas de Tiempo (PVRPTW). Sin

embargo, la cantidad de residuos generados nos ha llevado a analizar un sistema

de recogida diario, por lo que la periodicidad no está incluida en este estudio. Las

administraciones locales tienen fijados unos horarios para ejecutar este servicio,

enmarcado en unas ventanas de tiempo. Estas ventanas de tiempo vienen dadas

por la duración de la jornada laboral, por lo que serán incorporadas en el modelo

como una restricción en la duración de las rutas.
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Normalmente, los problemas de recogida de basura (WCP) son abordados

como problemas de optimización. En estos casos, una solución para un problema

de optimización ha de especificar los valores de las variables de decisión, que

a su vez determinan los valores de las funciones objetivo a optimizar. Por lo

general, el conjunto de todas las decisiones posibles está limitado por una serie

de restricciones. La solución será optima si produce el mejor valor de la función

objetivo. Sin embargo, este concepto no se puede extrapolar a problemas con

múltiples criterios, pues resulta poco probable encontrar una solución capaz

de optimizar todos los objetivos simultáneamente, por lo que la resolución de

un problema multiobjetivo no consiste en aportar una única solución, sino en

construir un conjunto de soluciones eficientes, o de Pareto, denominado frontera

de Pareto.

Así, para este problema, es preciso definir una estrategia para obtener dicho

conjunto. Dada las dimensiones y la complejidad del problema, se presentan

una serie de técnicas metaheurísticas que se apoyan en una adaptación para

problemas multiobjetivo de GRASP (Resende and Ribeiro, 2016), en combinación

con Path Relinking y Variable Neighborhood Search (VNS). El algoritmo GRASP

se emplea con el fin de determinar una primera aproximación de la frontera

eficiente.

La fase de construcción de este GRASP combina otras heurísticas de

inserción para obtener una buena aproximación de la solución. A continuación,

la solución obtenida es mejorada con un proceso de búsqueda local que utiliza los

operadores comunes 2 - opt y los intercambios OR, propios de los problemas de

optimización de rutas.

Tres alternativas diferentes se desarrollan en la Sección 3 de este trabajo para

obtener dicha aproximación. Las dos primeras se basan en el trabajo de Martí

et al. (2015). En ellas, se van almacenando las soluciones no dominadas obtenidas

al alternar la construcción de soluciones enfocadas a optimizar uno u otro objetivo

de forma ordenada (GRASP Puro Ordenado Multiobjetivo) o de forma aletoria
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(GRASP Puro Aleatorio Multiobjetivo). La otra aproximación consiste en utilizar

el metaheurístico GRASP definido para minimizar la función de logro definida

por Wierzbicki (Wierzbicki, 1980) para un número de combinaciones de pesos.

A continuación, las aproximaciones de las fronteras son analizadas con la

adaptación de Path Relinking a un problema multiobjetivo, en el que se busca

enlazar dos soluciones no dominadas mediante la transformación de una otra en

otra, tomando como guía uno de los objetivos implicados.

La otra alternativa almacena las soluciones potencialmente eficientes a lo

largo de la primera etapa GRASP. A continuación, para cada una de ellas, se

analiza entre qué dos pares de soluciones no dominadas se encuentra y se aplica la

búsqueda VNS para minimizar la distancia de la solución a un punto de referencia

definido por los mejores valores del par.

Combinando las distintas propuestas, se obtienen hasta 6 métodos distintos.

Los resultados de estas técnicas son evaluados con instancias de la literatura. En

el trabajo se incluyen tablas que muestran el éxito de la aproximación generada

por la idea de Wierzbicki y Path Relinking. Una vez obtenido un conjunto de

soluciones no dominadas, se hace necesario un método que ayude al decisor

a decidir cuál de ellas es la más adecuada en base a sus preferencias. Esto

nos lleva a requerir el desarrollo de una estrategia cuya solución, única, se

adapte a las preferencias de los decisores. Para ello, existen una serie de

metodologías que ayudan al decisor en la obtención de la solución más ajustada a

sus necesidades dentro del conjunto de soluciones posibles. Estas técnicas son

los denominados métodos interactivos, que destacan por su utilidad. Mientras

otras técnicas multiobjetivo incorporan la información al principio o al final del

proceso, en los métodos interactivos se repite un algoritmo iterativo en cada paso

de forma que la información se va agregando a lo largo del proceso de resolución,

guiando así al decisor hacia aquellas soluciones que satisfagan sus intereses. En

este ámbito, se desarrolla un método de la familia de NAUTILUS. Se trata de

métodos que no precisan de trade - offs y se apoyan en algunos comportamientos



vi RESUMEN

psicológicos del ser humano para diseñar el proceso interactivo que guiará la

búsqueda.

Para evitar gastos de cómputo extensos, esta metodología se apoya en

una pre - computación de los elementos de la frontera eficiente. Entonces, el

método empieza en el peor escenario posible y va avanzando, en dirección a

un punto de referencia, de forma que los valores de todos los objetivos mejoran

continuamente. En el método propuesto, R - NAUTILUS, se integran distintas

opciones: el decisor tiene información continua sobre el rango de valores que

puede alcanzar cada objetivo, así como de la evolución del conjunto de soluciones

alcanzables. Además, se muestra una gráfica del histórico de valores que han

tomado las cotas de los valores de las funciones. En cualquier momento, el decisor

puede parar el proceso y retroceder, definir un nuevo punto de referencia o limitar

el valor superior o inferior de las funciones o dibujar la solución eficiente que se

encuentra en la dirección de búsqueda.

Finalmente, el problema multiobjetivo de la recogida de basura en Málaga,

descrito anteriormente, se subdivide en distintos subproblemas según la comarca

y tipo de camión que proporciona el servicio. Además, para abarcar el mayor

rango de opciones posibles, se han definido 4 objetivos: minimizar el coste,

equilibrar las rutas, minimizar la diferencia entre la ruta más larga y más corta, en

duración, y minimizar el número de rutas realizadas. Los datos proporcionados

nos han permitido, con el software NEVA, generar la matriz de tiempos y

distancias de un contenedor a otro, teniendo en cuenta el sistema de redes de

carreteras en la provincia de Málaga.

La metodología anterior ha sido integrada en una interfaz gráfica de usuario

que incorpora inicialmente la visualización de los contenedores en las distintas

regiones y permite, al concluir, analizar el sistema de rutas obtenido en la solución

elegida. Para ello, se ha utilizado lenguaje de programación Java 8, en un entorno

Eclipse y la extensión de ArcGIS SDK Java for Developers.

El desarrollo del trabajo se ha apoyado en 3 pilares fundamentales, como
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son la recogida y análisis de los datos, el estudio de la optimización de problemas

de rutas y el diseño de un método interactivo para agilizar el proceso de decisión.

Además, distintas contribuciones se obtienen de este estudio. Por un lado, se

proponen distintas metologías para generar una frontera eficiente de problemas

de rutas con múltiples objetivos, destacando los resultados de aquella que aplica

la función de logro definida por Wierzbicki (Wierzbicki, 1980). Por otro lado,

se presenta un método interactivo, enmarcado en la filosofía de NAUTILUS

(Miettinen et al., 2010) para guiar al decisor a través de una aproximación de

la frontera eficiente, hacia la solución más similar a sus preferencias. Finalmente,

se lleva a cabo la implementación de la metodología propuesta en un entorno

computacional que facilita la toma de decisiones a las entidades implicadas

en el problema real. Para ello se diseña una interfaz gráfica que incorpora la

visualización de los elementos del problema y la interpretación de las soluciones

resultantes. De esta forma, la obtención de una solución que pueda ser llevada

a la práctica con éxito supone el diseño de un nuevo sistema interactivo, junto

con una estrategia metaheurística. Además, el análisis de los resultados en base

a un software conectado a Sistemas de Información Geográfica (GIS), facilita la

comunicación entre el analista y el gerente a lo largo del proceso de toma de

decisiones.





SUMMARY

This work introduces a tool to analyze the Waste Collection Problem (WCP) in

Málaga. In general, Waste Management is a critial issue to be studied by local

administrations all over the world. Multiple factors need to be considered when

dealing with this type of problems, so they have to be taken into consideration to

model an efficient and effective Waste Management System.

The development of the present study is based on 3 essential pilars, such as

the collection and data analysis, the study of multiobjective optimization Vehicle

Routing Problem and the design of an interactive decision making process.

This document is structured in four chapters. First, a general introduction

to the problem and some definitions are included in Chapter 1. Later,

Chapter 2 describes previous works on Waste Management and, in particular,

MultiObjective Waste Collection. Usually, Waste Collection problems are

regarded as optimization problems, so that an optimal solution is to be found.

However, in MultiObjective Problems (MOP) it is unusual to find a unique solution

that optimizes all the objectives at the same time. Then, the aim of these problems,

instead of finding an optimal solution, is to find a set of Pareto solutions or efficient

solutions called Pareto front, Pareto Set or Efficient Set. In our problem, this set will

contain the alternatives of route systems to run the waste collection service.

It is necessary to define an estrategy to solve this MOP. Since Vehicle

Routing Problems (VRPs) are NP - hard, non exact methods are usually applied

to obtain an approximation of the Pareto front, so different heuristics and

metaheuristics are developed to generate a good approach of it. Therefore,

ix
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three different multiobjective GRASP strategies are defined here in order to

obtain a first approximation to the Pareto front and, then, Path Relinking and

Variable Neighborhood Search (VNS) are applied to improve it. Two of these

GRASP estrategies are based on the idea proposed in Martí et al. (2015)

and the third one uses GRASP as a single - objective optimizer to minimize

Wierzbicki’s Achievement Scalarizing Function (Wierzbicki, 1980) for different

weights combinations. The performances of these strategies are compared with

problems from the literature and the best alternative turned to be the latter in

combination with Path Relinking.

Given the approximation of the Pareto front, it is difficult to decide

which one is the most appropriate according to the Decision Maker’s (DM)

preferences. Then, an interactive method is introduced next, in order to guide

the decision making process. This method, called R-NAUTILUS, is based on

NAUTILUS phylosophy and incorporates different features in order to facilitate

the interaction.

Finally, the methodology developed, which is detailed in Chapter 3, is

applied to the MultiObjective Waste Collection Problem in a southern city

of Spain. To ease the process, the design of a Graphical User Interface is

implemented using Java language programming and its package for ArcGIS. It

includes the interactive method process, and it enables the DM to visualize the

selected solution and analyze its different components.

Several contributions derive from this work such as methodologies to

generate a Pareto efficient front, highlighting those results that apply an

Achievement Scalarizing Function proposed by Wierzbicki, an interactive

method which helps the DM in the analysis of the different alternatives available

to manage the service, and the design of a Graphical User Interface that guides

the decision making process towards the selection of the most preferred solution

of a real Waste Collection Problem.







CHAPTER 1

INTRODUCTION

The concept of waste management encompasses the process of treating solid wastes

and providing different solutions for recycling items to be reused. It also

contemplates an analysis of how garbage can be used as a valuable resource.

Waste management is something that each and every household and business

owner in the world needs, to control the disposal of the products and substances

that have been used, in a safe and efficient manner.

Designing an efficient system for waste management is not an easy task.

It must take into consideration different factors that may become more or less

relevant depending on the type of service provided. In particular, solid waste

might be generated from industrial, residential and commercial activities in a

given area. Its management covers several aspects that control the generation,

storage, collection, transport or transfer, processing and disposal of solid waste

materials in a way that best addresses the range of public health, conservation,

economics, aesthetic, engineering and other environmental considerations.

Municipal solid waste management in the framework of sustainable

development requires especial attention. In this situation, managers need to

create sustainable systems that are economically affordable, socially acceptable,

and environmentally effective. A unique method that provides the best

solution for the municipal solid waste management does not generally exist,

so each characteristic of the method must be carefully evaluated. Some works

analyze different Waste Management Systems, including reasons of failure or

1
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determining the steps to follow in order to manage the waste collection. For

instance, Pires et al. (2011) provide an analysis of the different waste collection

system techniques applied within 15 European countries. This review classifies

system analysis techniques into: (i) System engineering models, including cost

- benefits, forecasting, optimization and integrated systems; and (ii) System

assessment tools, such as management information, Decision Support Systems

(DSS), scenario development, material flow, risk and environmental assessment,

among others. This analysis states future lines of research due to the most

recent legislation declared by the European Commision, which focuses on new

definitions of waste that result in the study of selection of technologies in order

to improve protection of human health and environment by promoting the reuse

and recycling.

A simple summary of what should be achieved when planning a Waste

Management System is given by Viotti et al. (2003):

”Successful planning and management of waste collection is primarly

focused on reducing costs and environmental impacts related to

such waste collection, along with improvement of user satisfaction,

considering aesthetic and sanitary conditions.”

An analysis of the main causes for waste management failure is given in

Guerrero et al. (2013). To support their argument, data from different locations

are considered and different indicators that contemplate legislation, collection

efficiency, sophistication of waste collection or environmental awareness. In

particular, solid waste management is a critical issue of environmental hygiene

and it must be incorporated into the environmental planning applied by local

administrations. Emissions from the collection and transportation of solid

materials, and the advanced treatments required, need longer distances, which

implies an increment on the energy used to take materials to and from a facility.

This implies that emissions of vehicles can cancel out the environmental gains

obtained when applying different separation techniques like recycling. This is
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one of the facts that justify the design of efficient planning tools to control the

transportation resulting from solid waste.

Economically speaking, waste collection and its transportation constitutes

a large fraction of the total cost for the municipal solid waste management

worldwide. Last studies reveal that the expenses required to cover the service

of collecting and treating the solid waste generated in Spain are a 40% higher

than the income from population’s waste management related taxes.

Hence, local administrations could obtain multiple benefits from using a

good decision making procedure that enabled them to improve this and other

services. This fact, among other reasons, has encouraged an increasing interest

and efforts invested to design such a procedure, that will provide a more efficient

performance.

Usually, Waste Collection Problems (WCP) are treated as optimization

problems. In general, a solution to an optimization problem specifies the values

of the decision variables, x, and therefore also the value of its objective function

f (x), that is, the function to be optimized. Usually, the set of all possible decisions

x to be made is limited by a series of constraints. A solution that satisfies all

constraints is said to be feasible and, furthermore, it is considered optimal if it gives

the best objective function value.

In concrete, this work aims to provide a methodology to solve the Waste

Collection Problem (WCP) in the region of Málaga (Spain). The increasing

population in this area, and so the amount of waste generated, make it interesting

to study the conditions that could be modified to improve the service if applying

another waste collection system. Then, multiple criteria have been considered

in order to cover the widest set of possibilities. Data was kindly provided by

Diputación de Málaga, including the number of containers and their location, the

number and type of vehicles available and the routing cost, facilities coordinates

and the amount of waste collected per month and per municipality. Using GIS

permits a visualization of the distribution of the containers into a map. Diputación
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de Málaga covers the service to more than 5,000 containers distributed through the

region. Different issues arise when dealing with a problem of such a dimension.

Therefore, the main objective of this work is to analyze and solve the

real problem of solid waste collection in the southern Spanish region of Málaga

considering multiple objectives simultaneously. This task encompasses multiple

items that can be subdivided into achieving the following specific objectives:

Obj. 1 To analyze the current Waste Collection System in Málaga.

Different techniques have been applied to analyze the dataset provided by

Diputación de Málaga. First, the location of the containers provides a general

vision of their distribution into four different areas, each of which has a

depot associated. This data also contains additional information about the

current waste collection system, such as the number of vehicles available

or the total monthly amount of waste generated by municipality. It has

allowed to perform several estimations to incorporate into the modelization

process, such as the amount of waste expected to be collected at each

location or the number of vehicles required to satisfy the population’s

request. This analysis is included in Section 4.1.

Obj. 2 To define a realistic model for the Waste Collection Problem in Málaga.

This model must include vehicle’s characteristics, employees workload,

employees shifts, road specifications such as speed, forbiden turns, etc.

and, furthermore, satisfy citizen’s needs. Besides, incorporating multiple

objectives permits defining a more realistic model. Since no special

requirements have been set by local administrations, some reasonable

objectives have been considered instead, in order to provide the largest set of

solutions that enables a complete exploration of the options. It is difficult to

formulate a model with these characteristics, so based on the characteristics

the general scheme of a MultiObjective Capacitated Vehicle Routing Problem

(MOCVRP) has been considered as a reference, and other constraints have

been incorporated. The description of this model is included in Section 4.1.
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Obj. 3 To study, design and implement an efficient, effective and fast method to solve the

MultiObjective Waste Collection Problem.

The methodology proposed must take into consideration multiple

objectives at the same time and include labor, social and economical

constraints derived from each particular problem. The dimension of the real

problem, as well as the difficulty of modelling some of its constraints, make

it unfeasible to use an exact method. Then, based on literature results, a new

method should be designed, capable of generating good feasible solutions

of the model at a reduced computational cost. To achieve that goal, a

general methodology has been developed for the MultiObjective Capacitated

Vehicle Routing Problem (MOCVRP). Its description is detailed in Section 3.2.

Additionally, Section 4.2 details the solutions obtained for the real MOWCP.

Obj. 4 To define an appropriate interactive method which helps the waste manager in the

decision making process.

Literature review (Section 2) reveals a large number of Decision Support

Systems (DSS) designed for the Waste Management Problem. In general,

these studies focus on the location of containers and facilities and

incorporate a Geographical Information System (GIS) to display the chosen

solution or to modify it somehow. However, there is a lack of interactive

methods that permits the DM to analyze the solutions available and guide

the exploration to select the most preferred one, after an iterative process.

Then, because of the simplicity in the information exchange, an interactive

non - trade off method, which is inspired on the well known NAUTILUS

family, has been developed in this work. Nevertheless, some modifications

have been included into this method in order to deal with this kind of

problem. Further details on the method developed can be found at Section

3.3.

Obj. 5 To design and implement a decision interface to display the strengths and

weaknesses of the proposed solutions.
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When dealing with real problems, it is important to transmit the results in a

friendly - format. This is why it is common to use GIS in VRP. This kind of

software permits an easier comprehension and a better interaction with the

decision maker. Hence, in order to facilitate the decision making process, a

friendly - environment should be designed integrating GIS and the decision

making procedure. It must allow the DM to analyze, in depth, the options

and be guided into the selection of the solution that best matches his / her

preferences. An example of the application of the Graphical User Interface

(GUI) designed in this work is included in Section 4.3.

In this case, the distribution and the information obtained from the dataset,

allows to split the problem into subproblems, according to the subregion where

the bins are allocated and the type of vehicle assigned to provide the service. Note

that trucks are differenciated by the loading mechanism as well as the maximum

capacity of waste they can store. Hence, because of the distribution of the street

bins and the limitation on the capacity of the trucks, the modelization of this

problem uses the Capacitated Vehicle Routing Problem model. Then, solutions are

defined as a system of routes which are determined by the sequence of bins to

serve.

Toth and Vigo (2014) provide an accurate verbal definition for the single -

objective Vehicle Routing problem (VRP):

"Given a set of transportation requests and a fleet of vehicles, the

objective is to determine a set of vehicle routes to perform all

transportation requests with the given fleet at minimum cost; in

particular, decide which vehicle handles which requests in which

sequence so that all vehicle routes can be feasibly executed."

The given definition considers cost as the unique objective to be optimized.

Nevertheless, many real - life optimization problems can hardly be considered as

properly formulated without taking into account their multiple objective nature
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(Stewart et al., 2008). In particular, multiple factors interfere in the design of a

model that reflects better a real waste collection problem.

Frequently, solving real problems involves considering the optimization of

more than one objectives at the same time. For instance, it is common to find

studies where the waste collection problem includes taking care, also, of the

determination of the periodicity of the service at each point and establishing the

most appropiate time windows to run the service, so that they can be modelled

as Periodic Vehicle Routing Problems with Time Windows (PVRPTW). However, in

our context, due to the amount of waste generated and population satisfaction, a

daily service is studied so that the analysis of periodicity will not be included in

this work. Local administration has a fixed schedule that determines the time

windows, so it can be incorporated into the model as a constraint that limits

route’s duration to a specific length.

Therefore, the presence of multicriteria theory is also palpable when dealing

with waste management, as one can read from 2.1.1. In order to provide a wide

overview of the different options available for the current WCP in Málaga, saving

costs and introducing some improvements on employees’ conditions, as well as

the quality of the service, are some of the aspects included in the modelization of

the WCP in the region of Málaga. The distribution of the containers or bins and

the assigment of vehicles to depot is already implemented by the administrations,

in such a way that it satisfies the service within a specific area. Then, the aim is to

reduce the routing cost, while improving employees’ conditions and estimating

the cost associated to the possibility of running a daily service.

As a parenthetical remark, some previous definitions and classical concepts

on Multicriteria theory are included next. In general lines, multiobjective

programming consists of the study of modelling and solving problems that

integrate more than one objective. Let S be the feasible set for a Multiobjective

Optimization Problem (MOP) where, without loss of generality, we wish to

minimize simultaneously k ≥ 2 objective functions, such as fi : S → R. Then,
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any MOP can be formulated as follows:

min { f1(x), · · · , fk(x)} (1.1)

subject to: x ∈ S (1.2)

When optimizing more than one objective function at the same time, it is

not likely to find a unique optimal solution, since these objectives are usually in

conflict and it is not possible to improve one of their values without impairing, at

least, one of the others. Then, Pareto or efficient solution arises as a generalization

of the concept of optimal solution.

Definition: Given z1 and z2, solutions in the objective space, it is said that z1

dominates z2 if for each component i, z1
i ≤ z2

i and z1
j < z2

j for some j ∈

{1, . . . , k}. Otherwise, if z1 and z2 do not dominate each other, then it is

said that z1 and z2 are (mutually) nondominated. Therefore, a decision vector

x∗ ∈ S is Pareto Optimal if there does not exist another decision vector x ∈ S

such that its image, f (x), dominates f (x∗).

The Pareto front is the image of all the Pareto solutions that belong to the

Pareto Set. These solutions vary from the ideal objective vector to the nadir

objective vector. The ideal objective vector is formed by the best values that each

objective function can achieve in the Pareto Set, i.e. z∗ = (z1, · · · , zk)
T, where

zi = minx∈S fi(x); whereas the worst values achievable for each objective function

in the Pareto Set are the components of the nadir objective vector.

In order to manage a whole set of efficient solutions instead of a single

optimal solution, a decision making process will have to be applied to help the

Decision Maker (DM) to find the solution which best fits his / her preferences.

Different decision making procedures have been defined according to the

generation of the Pareto Set (Miettinen, 2008).

Usually, MOPs are converted into a problem with a single objective function

or a family of such problems, that can be solved using recognized single -
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objective optimizers, by a simple procedure called scalarization. In particular, a

priori methods take into account preferences given in advance and the method

tries to find a Pareto solution as close as possible to them. Value function

method (Keeney and Raiffa, 1993), lexicographic ordering (Fishburn, 1974) or goal

programming (Romero, 1991), are examples of this kind of methods. On the other

hand, the analyst provides a set of Pareto solutions to the DM, who will have to

decide which of them is the most appropiate in a posteriori methods. In this context,

two classical methods can be used: weighting method (Gass and Saaty, 1955;

Zadeh, 1963) and ε - constraint method (Chankong and Haimes, 1983; Haimes

et al., 1971). The weighting method re - formulates the problem into a single

objective problem, defining the objective as a linear combination of the objective

functions, where the scalar coefficients are the weights. These weights can be

assigned following a specific pattern (Chankong and Haimes, 1983; Das and

Dennis, 1997) or determined according to the preference information specified by

the DM (Podinovskii, 1994; Roy and Mousseau, 1996). On the other hand, the ε -

constraint method selects one objective to optimize and the others are introduced

in the model as additional bounded constraints, so that several single objective

problems have to be solved using an appropiate method. In a priori and a posteriori

methods, the DM participates by expressing preference relations before or after

the process.

Also, we can find another group of methods like interactive methods which

allow the DM to update preferences during the process by an iterative algorithm,

that is repeated until (s)he reaches a satisfactory solution. At each iteration, a

solution is obtained and then, the DM specifies or adjusts his / her preferences

information according to the result obtained. These methods will be described in

more detail in Section 3.3.

Different classifications have been proposed to characterize Interactive

methods. For instance, possible classifications are obtained when considering the

information asked to the DM and the internal analysis in the solution process.
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Classification depending on the information required. It is based on the

questions formulated to the DM. To include the DM’s preferences at each

iteration of the decision process, the DM has some alternatives. Some

approaches select the solution after a sequence of comparisons. Some

of these techniques obtain the final solution by a process of pairwise

comparisons or considering several objective vectors. One of the common

approaches of this type is described in (Steuer and Choo, 1983), Tchebycheff

method. Another group of interactive methods are the interactive trade - off

based methods, where the trade-off defines the ratio that the DM is willing

to risk to improve the value of one objective function when some other

gets worse. Sometimes, the DM is provided with objective trade - offs, which

indicate the real ratios when moving from one efficient point to another,

and therefore (s)he needs to evaluate them and decide where to move in

the next iteration. Other methods ask the DM to provide marginal rates

of substitution between two objectives, such that they stay in the same

indifference curve of the DM’s utility function. Estrategies involving trade

- offs are designed to solve convex and continuous problems, because their

calculation implies regular conditions of derivative theory. However, trade

- offs can be approximated using a finite quotient of increments.

The DM is asked to order his/her preferences or provide desired values

in especification levels methods. For instance, in Goal Programming interactive

methods (Romero, 1991), (s)he can define the goals of the problems in terms

of the values and providing the aspiration levels. Another type of methods

are based on the reference point scheme (Wierzbicki, 1982). Now, the DM

starts by establishing a reference point or a vector of desired values. At each

iteration, the DM is provided with the solution that is most similar to the

reference point. This interactive perspective includes the normalization of

the objectives and, to obtain more efficient points, the reference points can

be perturbed at each iteration. More details about these methods can be

found in Section 3.3 and in Miettinen (1999). Alternatively, in classification -
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based methods the DM arranges the functions into classes, indicating what

objectives should be improved, which ones already have an acceptable

value and which ones are allowed to impair. Different methodologies

correspond to this idea of classification, such as STOM (Nakayama, 1995)

or NIMBUS (Miettinen and Mäkelä, 2000). Though maybe not explicitly,

also these methods compute the values for the set of efficient solutions and

so they involve the evaluation of trade - offs. Also, notice that referent point

- based methods and classification - based methods require the definition of

an achievement scalarizing function to obtain the next iteration point. The

previous methods need of a continuous exchange of information between

the analyst and the DM. On the other hand, NAUTILUS method (Miettinen

et al., 2010) was proposed in such a way that it avoids to ask for trade - offs

by starting from the worst possible scenario. This allows every objective

function to improve at each iteration. This method established the standards

for interactive non trade - off methods.

Classification by the internal optimization process It is based on how the

information provided by the DM is used to determine the next iteration.

Then, in terms of this information, we find reduction of the feasible region

methods, line search methods, reduction of the weighting space methods,

methods based on multipliers or reference point or achievement function

methods, as the one introduced in Wierzbicki (1980). Line search methods

are used on linear programming algorithms, whereas the reduction of the

weighting space is applied in the Tchebycheff interactive procedure. After

generating a filtered set of solutions, the DM selects one. Centered on

the weights of this solution, the procedure continues by obtaining another

filtered set and it repeats the previous steps until a satisfactory solution is

found.

When the standards for the model of the MOWCP are defined, i.e. determine

the objectives, incorporate the constraints and analyze the dataset, it is essential



12 CHAPTER 1. INTRODUCTION

to design an appropriate methodology to solve the problem and, at the same time,

to ease the flow of information implementing it into a friendly - environment so

it can be used as a tool to guide the DM to his / her most preferred solution.

Then, to implement the interactive - interface, there is a need of designing an

algorithm able to generate the Pareto set. In this occasion we focus on the design

of a methodology that solves MultiObjective Vehicle Routing Problems (MOVRP)

with limited capacity, so that it can be applied to a wider range of problems.

Nevertheless, in this work it is used to solve the MOWCP, as detailed in Section

4.

The family of Vehicle Routing Problems have been proved to be NP - hard

(Lenstra and Rinnooy Kan, 1981), so the application of an exact method, if it does

exist, might incur into a vast computational effort. This setback is solved using

approximated methods or metaheuristics.

The term heuristics is used to define a technique, method or procedure that

is intelligent enough to provide a solution to a task which does not derive from a

formal analysis but from a wide knowledge on the subject. In particular, this term

is used to define an efficient procedure that tries to provide solutions to a problem,

in terms of the quality of the solution obtained and the required resources.

This concept of heuristic is generalized as metaheuristic, which comprehends

those strategies designed to construct algorithms capable of escaping from local

optima and perform a robust search of the solution space. To escape from

local optima and access unexplored areas, metaheuristics allow moving to a

worse solution or even to an unfeasible solution. Moreover, since these are

approximated algorithms, there is no guarantee of finding the optimal solution,

and so a stopping criterion must be defined.

As well as heuristics, metaheuristics are developped associated with the

particular requirements of a problem, although a general scheme defines each

of these techniques.

They can be classified depending on different characteristics such as: Is it
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based on populations or a single - point?, Is the objective function dynamic or static?, Is

the algorithm inspired in a natural process?, How many neighborhood structures does it

use? or Does it use memory?. For instance, ant colony optimization is a population

based and bio - inpired algorithm. In general, a population based algorithm starts

from an initial set of solutions (population) and, applying different operators, new

populations are generated. Genetic algorithms, memetic algorithms, scatter search or

path relinking are also population based methods. Also, some algorithms study

the incorporation of memory such as Tabu Search (Glover, 1989, 1990), in order

to avoid cyclics, whereas Greedy Random Adaptive Search Procedure (GRASP) is a

memoryless metaheuristic which includes an explorative local search, as it occurs

with Variable Neighborhood Search (Mladenovic and Hansen, 1997) or Guided Local

Search.

Just a short information has been included here, but further information

about metaheuristics and their applications are included in Glover and

Kochenberger (2003) and Gendreau and Potvin (2010), among others multiple

references.

The complexity and computational efforts required to solve single - objective

VRP increase when considering multiple criteria, for which metaheuristics have

also been widely studied to determine a good approximation of the Pareto front.

Then, a competitive metaheuristic needs to be designed in order to obtain

a good approximation of the Pareto front for the MOVRP. Later, when a

set of nondominated solutions is generated, they cannot be ordered unless

some information is provided by a human Decision Maker (DM). Therefore,

an interactive method will help with the information exchange between the

analyst and the DM. Here, one supposes that the DM, in this context, waste

managers, is fully aware of the necessities of the crew, their customers and service

requirements.

Some advantages of using an interactive method include the active

participation of the DM in the process, which enables him / her to control the
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search and encourage his / her confidence on the choice of the final solution.

Another advantage is that the DM does not need to have a global preference

structure, so (s)he can learn along the process and decide from a more realistic

level. It facilites the interaction with the analyst and allows the incorporation, or

modification, of the information obtained at each step. Most decision processes

include two phases based on learn and decide.

In terms of quality and cost, the optimization of the Waste Management

Service can only be achieved by using advanced decision support tools, which

contemplate the different components of this kind of problems. Then, taking

advantage of the natural way of introducing preferences into the process, we

propose a methodology inspired on a well known non trading - off interactive

method that belongs to the family of NAUTILUS (Miettinen, 2008; Miettinen et al.,

2010).

Different properties, which will be discussed in Section 3.3, make

NAUTILUS the ideal method to guide our decision problem.

Finally, this methodology is included in the design of a user - interface,

so the procedure and the information obtained is simplified and displayed to

facilitate the interpretation of the results. Therefore, the incorporation of a visual

tool, to show the performance of the solution selected, is required. In this context,

Geographical Information Systems (GIS) have become a relevant option in VRP

and, in particular, for location strategies in Waste Management as indicated in

Section 2.

The real problem, as here formulated, consists of providing an efficient

design of feasible and optimum routes system to collect the generated solid

waste in the region of Málaga. To obtain the desired solution, we develop a

methodology that combines metaheuristic strategies and interactive methods.

Metaheuristics permit to generate a set of approximated solutions in a short

computational time; whereas interactive methods are included with the aim of

guiding the decision maker to the best solution according to his/her preferences.
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Along the process, the results will be displayed on a friendly environment based

on a Geographical Information System (GIS). This additional tool will ease the

interpretation and the decision making process.

The following chapters contain a more detailed information about this

project. It begins with a wide analysis on waste management previous studies

in Section 2, including single - objective and multi - objective perspectives and

the description of the multiple Decision Support Systems (DSS) that have been

proposed for this type of problem. Then, the methodology developed to be

applied to our real problem is detailed in Section 3, including a description of

the metaheuristics used to generate an approximation of the Pareto front, as

well as the interactive method implemented for the decision making process. To

conclude, the performance of this methodology is analyzed at Section 4 when

applied to the real problem in Málaga.

Thus, the contributions of this work can be summed up into different items.

On the one hand, the design of an efficient algorithm that generates a good

approximation of the Pareto optimal set. In this case, the hybridization of GRASP

and Path Relinking has been used to obtain an approximation of the Pareto

optimal set applying two different schemes: one alternates the optimization of

every objective and maintains the nondominated solutions visited, whereas the

other one optimizes the resulting scalarizing achievement function proposed

in Wierzbicki (1980). However, other metaheuristics can also be implemented

within the same schemes.

Next, the DM is guided through this set using a non trade - off

interactive method based on NAUTILUS phylosophy. The method here proposed

incorporates specifications according to the waste collection problem, such as the

management of a discrete Pareto front. These interactions between the analyst

and the DM require the implementation of an interface displaying the information

of interest for the DM which enables to assess the performance of each solution.

All of these constitute a methodology able to find the most preferred solution for
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the multiobjective large dimension Waste Collection Problem in Málaga.



CHAPTER 2

STATE OF THE ART

The following chapter contains a summary of the multiple approaches proposed

to deal with the Waste Management Problem. To set up the standards, a general

definition of the Waste Collection Problem (WCP) is given in first place, including

a large variety of examples based on the different constraints considered and

methodologies developed when minimizing costs. Then, multiple criteria are

considered in order to obtain more realistic models. As it happens in single -

objective problems, metaheuristics, instead of exact methods, is the most common

strategy applied in order to obtain ”good” approximated solutions when dealing

with this type of problems. Different metaheuristics based on generating some

sort of population, such as genetic algorithms or ant colony system, are implemented

including the corresponding modifications that enable the generation of good

approximations of the Pareto front. To conclude this chapter, an analysis

of Decisions Support Systems (DSS) designed to deal with Waste Management

Problems is presented. It settles the corresponding steps for the implementation

of DSS and highlights the lack of proper interactive multiobjective methods

applied to solve this kind of problems.

All along these relevant works, it is important to highlight the role that the

integration of Geographical Information Systems (GIS) plays in the resolution or

in the decision process.

17



18 CHAPTER 2. STATE OF THE ART

2.1 WASTE COLLECTION PROBLEM

Nowadays, there exists a correlation between the growing population and the

amount of waste generated, so Solid Waste Management (SWM) has become one

of the most interesting themes for public decision makers. The increase in

the generation of waste in modern economy is closely linked to the growth of

production and consumption as well as to natural processes determining the rate

at which the product lifespan goes into decline.

Two big perspectives are observed: regional and municipal. The main

difference between them lies on the fact that regional Solid Waste Management

is resposible for organizing the process from a macro - perspective, i.e. designing

the network and location of facilites such as transformation plants or landfills;

whereas the municipal Solid Waste Management is in charge of the transportation

of the waste generated at each location to its corresponding depot.

More precisely, this work focuses on the Waste Collection Problem (WCP),

which consists of designing a system of vehicle routes to service a set of bins

geographically distributed. Note that some of these bins might be concentrated

on the same location. Every route must start and end at one depot, with the

waste dumped at the treatement plant or landfill and every bin must be visited

before it overflows, with a minimum frequency depending on the season and

type of waste. Finally, hard constraints take into account that the amount of

waste collected cannot exceed the capacity of the vehicle and the duration of each

route must respect driver’s shift length. However, in practice, other operational

constraints arise such as recyclable materials management, dimension of vehicles

to traverse certain streets, locations to be visited within an specific time windows,

route balance, fleet size, lateral restrictions . . . Then, there is a natural subdivision

when studying the WCP: (i) Determination of the frequency to visit each location

and (ii) define the optimum set of routes to service all the corresponding locations

everyday.
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A formal definition (Toth and Vigo, 2014) states that:

”A Waste Collection Vehicle Routing Problem typically consists on a

fleet of vehicles, stops, disposal facilities, a depot and a number of

collection bins or collection points. A vehicle starts and ends at the

same depot. Usually, the waste collection problem has been solved as

an Arc Routing Problem, where the exact location of every customer is

not needed.”

Based on the characteristics defined for each particular problem, Node

Routing or Arc Routing will be appropiate to handle it. Usually, Node Routing

(VRP) is applied when a large number of containers are located in a few

different locations and Arc Routing (ARP) if waste is deposited in small containers

distributed almost continuosly along the street. Due to the point of interest of

this work, we will focus on Node Routing. For further information about the

application of Capacitated Arc Routing (CARP) to solve WCP, see, for instance:

Male and Liebman (1978), Hanafi et al. (1999),Constantino et al. (2015), Corberán

and Laporte (2015) or Cortinhal et al. (2016). For the first time, Marks and

Liebman (1970) highlighted some research lines that related those perspectives

of the Solid Waste Management Problem that could be addressed in the field of

Operational Research. This fact awared the sanitary departments of big cities

like New York or Washington D.C., which started several studies focused on

developing operational research strategies in order to improve their services.

For instance, Beltrami and Bodin (1974) provided a methodology to solve the

waste collection problem in New York City (U.S.A), taking into account the

feasible combinations of days to service the set of containers at a predefined

frequency. Two different approaches were proposed in order to minimize the

overall routing cost, while visiting every container assigned each day. One

of them is based on the idea of cluster first route second, and the other one

optimizes the routes first and apply a giant tour technique afterwards. Since then,

a large number of Waste Collection Problems (WCP) have been solved applying
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Operational Research techniques, highlighting the application of metaheuristics,

and including different realistic perspectives such as studying the frequency of

the service, the type of vehicles, the location of additional containers or landfills,

considering a large problem with multiple depots, etc.

Angelelli and Speranza (2002) deal with hygiene requirements by

incorporating the study of frequency to the WCP. They considered a periodic

node routing approach (PVRP). First, close locations sharing the same service

requirements are grouped into macro - points, to plan the schedule and then a

Tabu Search technique, whose neighborhoods are defined by the shift operator, is

implemented. Also, Baptista et al. (2002) developed a heuristic to maximize the

benefits obtained from a periodical recycling paper collection.

An interesting study (Maniezzo and Roffilli, 2008) defines a methodology

to transform CARP into CVRP. They minimize the overall distance travelled by

a fleet of trucks, subject to time windows and allowing multiple trips. They

also include a penalty function in the process if the demand exceeds truck’s

capacity. The transformation proposed consists of mapping each arc with a

node, whose corresponding demand is the cummulated demand along the arc.

Then, they use a multi - start heuristic combined with Variable Neighborhood Search

to solve the resulting CVRP. The multi - start algorithm constructs an initial

solution from scratch and improves it with Tabu Search technique. Then, different

neighborhoods are explored using the following procedures:

• Shorten: It re - orders the sequence of points to be collected by the route.

• Add: Given a route, and a stop which is not visited by this route, it creates

a new route including this stop.

• Drop: Given a route, it constructs a new route without one of the stops.

• Paste: Concatenate each route of the system in one route to be processed by

shorten.
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• Cut: Consider a route servicing several points, possibly exceeding the

capacity constraint, then it determines the partition of the routes to obtain

feasibility.

• Switch: If a vertex is visited more the than once in a route, it calculates the

cost if all those subroutes having this vertex as endpoint are travelled in the

opposite direction.

• Postop: It applies Paste, Switch, Cut and Shorten operators.

A different approach is given in Bautista et al. (2008), transforming an ARP into a

VRP with a partition of its vertex into clusters [MCARPTC]. Then, it is modeled

as a General Vehicle Routing Problem (GVRP) determining the vertex selection

by solving a Location Routing Problem. The constructive algorithm combines

nearest neighbor and nearest insertion, which is improved with substitutions,

reinsertions and exchange operators. This method is combined with the Ant

Colony Optimization technique to optimize a real WCP. A final analysis of the

results shows a reduction on the night acoustic contamination, total time and cost

to complete the service.

The study of complex waste management systems, in particular sitting

waste management and disposal facilities and optimising waste collection and

its transportation, has been a preferential field of Geographical Information Systems

(GIS) applications (Chalkias and Lasaridi, 2009). Due to technology evolution and

the complexity of spatial information to be handled, GIS modelling is becoming

a strong support tool to manage the information interchanged with the decision

maker in the process of decision making.

A location problem is faced in Ghose et al. (2006) incorporating their

algorithm into the NETWORK package of ArcGIS. Here, three different types

of bins and vehicles need to be located, so they develop a GIS user - interface

implementing the algorithm described in Sharma (1974) to obtain the shortest

path. A large - scale location problem is also solved in Li and He (2009),
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who integrate an intelligent Ant Colony System into GIS to solve a site selection

problem. Multiple simulations are analyzed to test the performance of this

strategy, and the final result is applied to solve a real problem in China.

Recently, Erfani et al. (2017) have proposed another model in order to

improve bins distribution and vehicle routing for the Municipal Solid Waste

Problem. This methodology is divided into three stages: (i) Collect the required

information about the current status of Solid Waste Collection System, road maps,

district population, etc; (ii) Process the data and import the results to spatial

database and (iii) develop a network analysis model, using ESRI ArcGIS network

analysis extension, in order to solve the location - allocation and VRPs and obtain

optimal storage bin locations and tours.

However, GIS not only has been used for location allocation problems but

also in routes optimization. In this context, Tavares et al. (2009) incorporate

fuel consumption to the use of 3D route modelling within ArcGIS Network

Analysis (NA) and Karadimas et al. (2007) add Ant Colony System metaheuristic to

optimize routes and provide the most cost - effective itinerary to follow. Recently,

Nguyen-Trong et al. (2017) have provided a solution to model Vietnam waste

collection system with a succesfull cost reduction. In the process, data is uploaded

into ArcMap and a simple heuristic, inspired on the Clarke and Wright saving

algorithm (Clarke and Wright, 1964) in combination with an agent - based model,

are integrated into a dynamic model.

As we can see, additional packages of the well known GIS softwareArcGIS,

have been used and, sometimes, even improved or modified. Further information

is available on the latest reviews on Waste Collection and Management such as

Belien et al. (2012); Marshall and Farahbakhsh (2013) and Bing et al. (2016).

2.1.1 MULTIOBJECTIVE WASTE COLLECTION PROBLEM

In recent years, an increasing concern about the emissions to the environment

due to the collection and transportation of waste can be appreciated. Then,
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a huge effort is invested on balancing the cost associated to the collection of

recycling material and the vehicle’s emissions during the service. This implies

that efficient planning tools, and so multicriteria models, are needed to control

the transportation resulting from separation and collection of waste.

Hence, to provide a more realistic approach to waste management, different

multicriteria models have been proposed to obtain the best solution, according

to the decision maker’s requirements. Due to the dimension and complexity of

real WCP, metaheuristics have become the main point of interest to find a good

solution approach in the shortest possible time. In this context, Nuortio et al.

(2006) successfully use Guided Variable Neighborhood Thresholding to solve

a large WCP defining frequency and subject to time windows. Previously, a

construction - improvement method was introduced in Tung and Pinnoi (2000)

to improve the existing manual solution in Hanoi (Vietnam). The construction

modifies Salomon’s I1 insertion heuristic (Solomon, 1987) for the VRPTW to

minimize the cost and the number of vehicles currently used. For each unrouted

customer, the best position to be inserted is estimated by minimizing a linear

combination of the objective functions that contemplates the distance and the

delayed time for the next customer. To decide which customer will be included

next, we must identify which is the one that maximizes the saving. This saving

cost is calculated as the difference between the distance to the depot and the cost

previously obtained. Finally, an improvement phase is launched using the inter -

route move 2 -opt∗ (Potvin and Rousseau, 1995), to reduce the number of vehicles

used, and intra - route OR - opt (Or, 1976).

To minimize collection time, distance travelled and man - effort, a strategy

is designed in Chalkias and Lasaridi (2009). It proposes the replacement of an

existing large number of small size bins (120 and 240 L) with a reduced number

of larger bins (1100 L). Hence, a model is developed into an extension of the

GIS ArcGIS 9.2 (Network Analyst) to reallocate the waste bins. It consists of

three steps: (i) Upload the spatial database of the study area; (ii) Use GIS spatial
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analysis functions to reallocate the bins to service and finally (iii) Construct routes

to optimize time, distance, fuel consumption and gas emissions. At the last step,

an alteration of the Djistra’s algorithm is defined to optimize the path, in order

to incorporate real problem restrictions such as oneway roads, prohibited turns,

demand at intersections and along the roads or side - street constraints. The

final output is an optimal solution in terms of distance or time criteria, instead

of dealing with a multiobjective problem.

Different genetic algorithms have been developed to tackle MOWCP. For

instance, Ombuki-berman et al. (2007) optimize the total distance and the number

of vehicles by introducing a genetic algorithm based on Beasley’s approach. Then

each chromosome represents a network and is given by an array of integers,

with no limitations that indicates the beginning or the end of each route. On the

process, the fitness is evaluated via the weighting sum method and, also, using

the Pareto Ranking procedure to select the elements that will generate the next

population. Finally, after applying a crossover based on the best - cost route, the

chromosome is splitted into capacitated clusters that will form the route system.

Another metaheuristic, that belongs to the family of population metaheuristics,

has recently been developed in Xue and Cao (2016). With the aim of minimizing

the total cost, the accident cost, the accident risk and the exposure to the public,

they define a multiobjective Ant Colony Optimization method coupled with min -

max model and Djistra’s algorithm. This methodology also takes advantage of

ESRI ArcGIS tool to draw the resulting route system.

To minimize labor, operation and transport costs, Arribas et al. (2010) divide

the resolution process of a MultiObjective Waste Collection Problem (MOWCP) into

three phases, optimizing one objective at a time. Then, to minimize cost related to

labor, operation and transportation, it first employs the regret function and local

search to construct a cluster of the set of containers to be collected. This cluster

is obtained attending the vehicle maximum capacity and the service schedule.

Then, VRP is solved for each cluster using Tabu Search using ESRI ArcGIS and
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ESRI Network Analysis. In fact, this GIS incorporates the urban road network

characteristics to design the collection routes. Finally, an exact Branch and Bound

algorithm is applied to minimize the number of vehicles, considering that each

cluster should be served by only one vehicle.

An important example is the one given in Kim et al. (2006), because of its

proximity to reality. Here, the Vehicle Routing Problem with Time Windows (VRPTW)

is considered as the basic model. Then, other constraints are taken into account,

like multiple disposal trips and driver's lunch break, with a unique depot. Four

objectives are optimized in order to reduce costs and improve labor conditions:

(i) number of vehicles, (ii) total travelling time, (iii) route compactness and (iv)

workload balance.

• To minimize (i) and (ii), a modification of Solomon's insertion algorithm is

developed. To do so, the model includes two different capacities: one is

given by the maximum capacity a vehicle can handle; and the other one

is related with the especific characteristics of the route, such as the limited

number of stops, lifts and volume or weight a driver can lift per day. This is

implemented into GIS street network data and the shortest path is given by

Djistra's algorithm.

• A capacitated clustering algorithm is designed to maximize (iii) and (iv)

based on the k - means clustering method. They define centroids of

centroids and use them to sort the stops by the distance to each of them,

assigning in the first place the farthest one to its nearest cluster. After

this assignation, the travel time is estimated by solving a Travel Salesman

problem, and a simple improvement algorithm is launched if any overlap

is found. However, due to the multiple constraints, there is no guarantee

of finding a non - overlapping route system. Also, a metric is defined to

quantify route's compactness.

This method is applied to solve a commercial WCP in North America. However,
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the main contribution of this research is the proposal of a new Vehicle Routing

Problem with Time Window (VRPTW) benchmark.

As a consequence of the completeness of this model, the problem proposed

has been taken as a reference to assess the quality of different methods

such as Benjamin and Beasley (2010, 2013). Now, Tabu Search and Variable

Neighborhood Search (VNS) are applied separately and in combination, using the

Tabu Search within the neighbor’s search. They also incorporate a reduction

on the search space by determining a number of nearest - in time - nodes for

each unrouted customer. In Benjamin and Beasley (2013), the metaheuristic

proposed in Benjamin and Beasley (2010) is improved, comparing its solution

with Hemmelmayr et al. (2009) taking into account the crew’s rest period and

time windows for waste collection. They reduce the computational cost by pre -

evaluating facilities insertions in a disposal facility positioning procedure. Also,

Ant Colony Optimization is implemented within a GIS to solve a MOWCP in

Karadimas et al. (2007).

Applying VNS as well, Hemmelmayr et al. (2013) solve a separate WCP

in Austria, with the aim of estimating frequencies and considering intermediate

facilities. They provide a large analysis on WCP modelled Periodic Vehicle Routing

Problem (PVRP). Later, in Hemmelmayr et al. (2014), they improve their own

method by providing a better design of a collection system taking into account

vehicle routing and bin allocation, at the same time, and trying to balance the

trade - off between the service frequency over a planning period and the number

of bins that can be placed there. This method incorporates, into the VNS, dynamic

programming to insert intermediate facilities and uses an acceptance criteria

similar to the one used for Simulated Annealing. In addition to the route balance

objective considered in this work, other aspects are contemplated in this work

such as multiple waste type case, the number of bins allocated on a specific area

and the capacity or volume of bins or the cost associated to a service. Route

balance objective has also been considered in López-Sánchez et al. (2017) to solve
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a biobjective WCP.

Another definition of route balance is included in a biobjective WCP

in Gómez et al. (2009), whose methodology was improved in Gómez et al.

(2015). Both solve the problem defining a Tabu Search within MultiObjective

Adaptive Memory Procedure (MOAMP) technique (Caballero et al., 2003). MOAMP

is a metaheuristic algorithm designed to solve MultiObjective Combinatorial

Optimization problems which is based on Tabu Search. It emphasizes

neighborhood search over mechanisms for evolving a population of solutions.

This methodology guides the user on what to do but not how to do it. Its

phylosophy is based on two main ideas:

1. Efficient points are ”close” to each other in the solution space. This fact

forces the application of local search around nondominated solutions.

2. Compromise points are ”close” to the ideal point in the objective function

value space. It requires to define a function, g, that measures the distance of

the objective function values of the current point, S, and the ideal objective

function values given by ( f1
min, f2

min). Then, given a weighted factor λ ∈

[0, 1], they optimize the function:

g(S) = max

{
λ · f1(S)− f1

min

f1
max − f1

min , (1− λ) · f2(S)− f2
min

f2
max − f2

min

}
(2.1)

In this work, a real - problem is solved considering two objectives: (i)

to minimize the transportation cost and (ii) to improve the service level by

minimizing the waste accumulated. The methodology is subdivided into three

phases as detailed in Algorithm 1.
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Algorithm 1 Summary of MOAMP adaptation to bi - objective WCP
PHASE 1:

Set ℘ = ∅

S = Quality generator function

S = TabuSearch( f1, S)

S = TabuSearch( f2, S)

Update ℘ with nondominated solutions visited.

PHASE 2:

repeat

Select λ using a uniform distribution, U[0,1]

S = TabuSearch(gλ, S)

Update ℘ with non dominated solutions visited

until ℘ does not change for maxPhase iterations

PHASE 3:

repeat

Explore the neighborhodd of each S ∈ ℘ that has not been explored.

Update ℘ with non dominated solutions visited.

Improve new non dominated solutions.

until ℘ does not change

Thus, an initial approach of the Pareto front, ℘, is obtained at PHASE 1.

First, the best solution to minimize the waste accumulated is obtained with the

Quality generator function. Then, connected Tabu Searches are launched towards

each objective function, while updating the efficient frontier and obtaining the

optimum value for each objective. The procedure continues applying Tabu

Searches on PHASE 2, evaluating the merit of each solution S ∈ ℘ as indicated in

(2.1). These searches last until no improvement has been found for a prefixed

number of iterations, maxPhase. Finally, PHASE 3 focuses the search on the

neighborhood of each solution of the approximated Pareto front set, ℘. Now,

the goal is not to find a particular solution to make a move, but to explore the

neighborhoods seeking new non dominated solutions.



2.1. WASTE COLLECTION PROBLEM 29

Recently, Ferreira et al. (2015) proposes a methodology to solve a MOWCP

considering to minimize total distance, to maximize the amount of waste

collected, to maximize the amount of waste collected by kilometre, to maximize

the number of ecopoints visited, to minimize the number of vehicles and to

maximize the number of priority points collected. To achieve that goal, they

propose a three - modules DSS for a real - world reclycling problem. In the first

module they solve the routing optimization problem, modeling it as the Team

Orienteering Problem with capacity constraints and time windows. This model

is solved using a genetic algorithm. Then, a second module estimates the waste

generated. In the last module, a set of indicators are defined to evaluate the

performance of the solution at each objective. Then, a tool called beSMART (beS,

2017) is used to weight the importance of each performance indicator so that

the most preferable solution is found. Several studies have designed Decision

Support Systems (DSS) as a tool to ease the procedure of finding or selecting the

most adeccuate solution for their particular preferences. These techniques, and

designs, are discussed in the next section (Section 3.3).

2.1.2 DECISION SUPPORT SYSTEMS FOR MULTI-OBJECTIVE WCP

Different aspects related with cost, techology, environmental and health concern,

limited landfill space or political and social aspects must be taken into

consideration when defining a Waste Management System. The increasing

interest of designing these systems efficiently have encouraged the development

of Decision Support Systems (DSS) to help on the decision process. Adenso-Díaz

et al. (2005) define a DSS as a guiding tool for the DM that is capable of

providing the corresponding information, or suggestions, about what would

happen if a series of decision are taken. The integration of GIS into DSS can assist

in the analysis and comparison of different waste management and collection

alternatives.

Some Multi Criteria Decision Making (MCDM) techniques have been
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applied within a DSS to guide the DM to the most preferred solution. A DSS

is developed to provide a solution procedure to a case study from Finland

(Hokkanen and Salminen, 1997). This problem considers different indicators

related with environmental issues, characterized by the imprecision, so the

authors employs the ELECTRE III decision - aid (Roy, 1991) because of its stability

to variations in data and parameters. The objectives are derived from the set of

indicators given by the group of decision makers. The weights assigned to each

criteria were also obtained from different comitees of the municipality with the

possibility of incorporating new criteria.

For the first time, MacDonald (1996) introduce a problem structuring tool

for the planning of solid waste collection, recycling and incineration system to

solve a real recycling problem in Philadelphia (U.S.A). To select the location

of potential facilities and design the route followed by the fleet of trucks, the

proposed method makes use of mathematical programming models to suggest

scenarios, adding a technology screening tool, that contemplates the preferences or

constraints; and a model base, that could be run to suggest a plan for the waste

flow. In this case, GIS enables to specify distance or time variables. Then, in order

to optimize the economic cost, the net energy used, water used and labor needs,

seven steps define the process:

1. Determine the type of facilities that will not be considered.

2. Choose a technology within a given set of alternatives available. Here,

the DSS deletes the policies that will not be considered, so that the set of

techonologies is divided into acceptable and non - acceptable.

3. Characterization of the waste generation area with GIS.

4. Route planning is obtained, what will provide cost information and the

required resources.

5. An scenario is suggested when the DM chooses the criteria of greatest

concern for developing a plan.
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6. Given a set of goals and constraints specified by the DM, a mathematical

programming technique helps on the organization of the recycling and trash

system.

Later, Chang et al. (1997) incorporate statistical and optimization analysis to

a DSS. In order to decide the most appropiate allocation problem of waste stream

for reclycling and incineration, they propose a multi - level interface. At each step,

the DM selects a topic within the areas of interest: incinerator cost, manpower or

equipment of collection team. This results on a map, supported by diagrams and

numbers that sums up the corresponding information, which reveals real world

issues of the selected alternative.

This work is improved in Chang and Wei (1999) with the incorporation of

GIS, which calls an external multiobjective programming model base. Here, three

objectives are taken into consideration: (i) to maximize the population served by

recycling drop - off stations, (ii) to minimize the walking distance from household

to recycling drop - off stations and (iii) to minimize the total driven distance

during the vehicle routing. In the selection process, five scenarios are defined and

five performance indices, such as service ration, utilization rate, average walking

distance, recycling rate and routing ratio, are used to evaluate the scenario. In

this case, a genetic algorithm is implemented as an external tool for the routing

optimization.

Some works consider a set of indicators to evaluate and compare the

different alternatives or scenarios and then apply MultiCriteria Decision Analysis

techniques to guide the DM to the most prefered solution. For example,

Stanisavljevic et al. (2015) define different scenarios using STAN (subSTance flow

ANalysis), proposed in Cencic and Rechberger (2008). Then, different indicators

are considered in order to evaluate these scenarios and compare them, taking

into account different criteria that include to protect humans and environment,

conserve resources and design a sustainable waste management. In this context,

also Chifari et al. (2016) evaluate waste flow using indicators.
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In addition to previous examples, more DSS have been developed as

a tool for the decision making process when considering multiple criteria in

waste management. Due to the changing policies related with the treatment

of the different types of solid waste, the main area of application has been the

allocation of facilities and the analysis of different aspects of the waste recycling

management.

The main contribution of Simonetto and Borenstein (2007) is SCOLDSS, an

operational management DSS that considers the solid waste processing capacity

of sorting units. Four stages define this methodology designed to solve a multi

- depot multi - trips waste management problem: (1) identify the problem and

structure it, (2) develop a formal model to represent the problem, (3) implement

an appropiate method to obtain the solution and (4) validate the method through

different tests. The nature of the problem suggests the incoporation of, some sort

of, simulation process to estimate the solid waste processing capacity at sorting

units. Here, the software ARENA was integrated as a module in the DSS to obtain

an estimation of the waste demand that each sorting unit is able to process at

a certain day of work. SCOLDSS corresponds to the user interface block. In

this case, a friendly environment interface is developed to upload the required

data and run the different models in order to obtain the solid waste collection

operational scenarios, including a map to show the computed vehicle routes.

Note that this is not a formal multi - objective problem, so the interaction with

the DM lies on selecting the date on which the separate collection planning will

be made and the operating waste sorting units. Given the corresponding data, the

simulation determines the amount of waste to be collected at each point. Finally,

the user proceeds by executing the vehicle allocation, generating the optimal

collection routes and, also, reports the results.

A friendly DSS is designed in Santos et al. (2008) for multiple - vehicle

routing problems which are defined as CVRP to solve the WCP in Coimbra

(Portugal). Another DSS is developed by Brebbia et al. (2000), including different



2.1. WASTE COLLECTION PROBLEM 33

factors such as waste generation forecasting, vehicle routing and economical

analysis to assist the users during the planning phase of separate waste collection.

Khan and Samadder (2014) provide a rich review on DSS and available GIS

softwares and give a new idea for the allocation of bins and landfills combining

MultiCriteria Decision Analysis (MCDA) and GIS to minimize the total system

cost. However, many authors support the idea of structuring a DSS on three

linked blocks (Bani et al., 2009): database management, model base management

and user interface. For instance, Haastrup et al. (1998) introduce three different

models to deal with the Model Management System block. First, a model for

the scenario construction that generates a given number (K) of alternatives is

determined by combinations of locations of disposal and treatment facilities

and the asignation of the users to each facility obtained after solving a single -

objective knapsack problem. Then, four models to evaluate the scenarios are also

implemented, including site risk, environmental impact, cost and transportation

risk. And finally, a model for multicriteria analysis is proposed, NAIADE

(Novel Approach to Imprecise Assessment and Decision Environments), to

determine a ranking of the K alternatives. This analysis, based on aggregation

of pairwise comparison, permits to rank the alternatives according to the set of

evaluation criteria or according to decision maker’s preferences and also provides

information of the distances of the positions of the interest groups.

Gallardo et al. (2015) introduce the steps to follow to guide the companies in

the design of an efficient waste collection plannning, depending on the available

data. This method, supported by GIS, was successfully applied to real cases in

Castellón (Spain). It first defines a number of waste fractions and then stablish

an storage level: door - to - door, kerbside, drop - off sites, establishment, green

point. Finally, GIS is used to locate the storage points.

In Xi et al. (2010) three different scenarios are analyzed to deal with the

long - term planning of solid waste management in Beijing, China. A model

is developed to minimize the system cost subject to a set of constraints which
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include: capacity balance, mass balance, waste residue, facilities expansion

and the possitive sign of the decision variables. An interval mathematical

programming is used for the model. Then, applying some transformation, the

exact model is solved in LINGO to obtain the alternatives. Once the different

schemes are obtained, MCDA techniques are applied in order to rank the

alternatives or scenario. Two common multiple - attribute utility methods are

applied: simple weight addition (2.2) and weighted product (2.3).

Uj = ∑
i

wjxij∀j ∈ 1, ..k (2.2)

Uj = ∏
i

x
wj
ij ∀j ∈ 1, ..k (2.3)

where wj is the importance of the i - th attribute and xij the normalized impact

matrix. Also, a third method, TOPSIS is used. This method was introduced in

Hwang and Yoon (1981) based on the relatively straight - forward assumption

that each attribute takes a monotonically increasing utility. Then, preferences are

ordered and selected by the alternatives with the minimum distance from the best

solution and maximum distance to the worst.

A recent work involving multiple stakeholders is Soltani et al. (2017). Here,

different uncertainty assessment methods are implemented to analyze a case

study in Vancouver (BC, Canada). Due to the uncertainty on several aspects of

the process, a fuzzy - AHP is introduced to be applied on the environmental and

economic criteria. It is also combined with game theory, in order to mitigate the

uncertainty derived from group decision making and allow to model interactions

that helps stakeholders to, also, make decisions based on other’s actions.

Hanine et al. (2017) propose another DSS to select the appropiate estrategy

and reduce the impact when selecting the location for landfill or industrial waste

in Casablanca (Morocco). The process applies previous techniques, creating an

efficient combination between the spatial factors: OLAP / GIS and the DM.



2.1. WASTE COLLECTION PROBLEM 35

1. Define the problem using the analytical tools of OLAP / GIS. This step

contributes to generate the set of candidate locations for the landfill

industrial waste (LIW).

2. Incorporating DM opinions determine the location selection criteria.

Then, triangular fuzzy numbers are introduced to stablish the pairwise

comparison into the tradicional AHP method, to avoid uncertainty in the

calculation of attributes’ weight.

3. To classify the different alternatives, TOPSIS is applied, which is considered

one of the most efficient MCDM methods. TOPSIS includes the

normalization of weights and the generation of a final ranking that

considers a relative distance to the best and worst solutions.

Thus, to the best of our knowledge, there is a lack of research activities

about the application of multiobjective interactive techniques to deal with the

solid waste collection problem and, in particular, those that contemplate the

optimization of route planning. Actually, in a previous work (Delgado-Antequera

et al., 2016), an interactive methodology for a biobjective WCP that aims to

optimize the overall distance and route balance is proposed. The approximated

Pareto front is obtained by continuosly applying GRASP and the ε- constrained

approach. In this case, the interactive process considers a reference point and

going through a sequence of decisions, that narrow the decision space step by

step, based on the objective values, until a reduced list of options is achieved and

the most preferred solution is selected. Since then, this methodology has evolved,

and a non trade - off interactive method is included in this work. Multiple

objectives can also be handled with the new methodology. As it will be detailed in

Section 3.3, this method permits a wide exploration of the possibilities provided

by a hybrid metaheuristic. Additionally, this alternative might also be applied

to guide the DM to his / her most preferred solution, in other multiobjective

problems.





CHAPTER 3

METHODOLOGY

The Waste Collection Problem (WCP) has been widely studied from several points

of view. As described in Section 2, multiple algorithms have provided, in

combination with Geographical Information Systems (GIS), solutions to real

problems. However, it is always a challenge to implement an algorithm to handle

multiple objectives at the same time and guiding the decision making process to

the most preferred solution.

In this work, different schemes are developed to obtain a good

approximation of the Pareto front for any MultiObjective Capacitated Vehicle

Routing Problems (MOCVRPs). However, all of these alternatives can be divided

in two big stages. First, an approximation of the Pareto front is generated using a

multi - objective Greedy Randomized Adaptive Search Procedure (GRASP) heuristic

and next improved, either by applying Path Relinking or Variable Neighborhood

Search. This set of nondominated solutions contains the different alternatives to

be considered for the interactive process taking place in the second stage. Note

that, in spite of GRASP and Path Relinking or VNS, any other metaheuristic can be

used to generate this approximation.

The present chapter contains, in Section 3.1, a summary of the applications

of GRASP heuristic and its combination with Path Relinking to solve Vehicle

Routing Problems (VRPs), paying special attention to the resolution of those

problems considering multiple criteria.

Next, based on these descriptions, different approaches are developed to

37
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obtain the best approximation of the Pareto front for the MultiObjective Waste

Collection Problem (MOWCP), which is modelled as a Capacitated Vehicle Routing

Problem (CVRP), so they are suitable for any MultiObjective Capacitated Vehicle

Routing Problem (MOCVRP).

These approaches, applying GRASP heuristic, make use of VNS in the

improvement phase in two different perspectives, both considering a single

objective. In addition to the usual VNS that minimizes one of the objective

functions at a time, a multiobjective version is proposed to minimize the distance

to a reference point. The last algorithm will be denoted as VNSre f . Then, Path

Relinking or VNSre f will be defined to improve a first approach of the Pareto front

obtained with GRASP. The different strategies derived from the combination of

GRASP with Path Relinking or VNSre f are explained in Section 3.2.

In order to test the performance of the algorithms proposed, a random

sample of instances has been taken from the literature. In particular, a total of 25

examples have been considered from Christofides and Eilon (1969), Christofides

et al. (1979) and Uchoa et al. (2017). These instances are usually considered as

a reference to compare the results obtained by an algorithm when minimizing

the total distance of a VRP. For the sake of simplicity, the performance of these

strategies will be analyzed for a bi - objetive problem that contemplates the

optimization of the total distance and the minimization of the longest route to

control the routes balance. Including this second objective is important to solve

our particular MOWCP, so a parenthesis is also included to sum up different

works that have tackle the MOCVRP with route balance.

Finally, at the second stage of this work detailed at Section 3.3, an interactive

strategy is developed and implemented into an interface that permits visual

information exchange between the analysts and the decision maker. Interactive

strategies are designed to guide the DM to select the most preferred solution,

within a set of feasible options. Then, a friendly environment of information

exchange has been designed into a Graphical User Interface (GUI), where GIS
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is used as part of the process in order to display the selected solutions, when

required.

3.1 DESCRIPTION OF METAHEURISTICS TO BE USED

3.1.1 GRASP

Greedy Randomized Adaptive Search Procedure or GRASP, is a well known

heuristic introduced in Feo and Resende (1989). In general lines, GRASP

is a memory-less multi-start metaheuristic proposed to solve combinatorial

optimization problems. The algorithm departs from a seed solution and builds

a feasible solution by inserting one element at a time. A Restricted Candidate List

or RCL is calculated at each step of the construction phase. In particular, RCL is the

set of the candidates to be included in the partial solution ordered by the insertion

cost given by a greedy function. The element to be included into the partial

solution is randomly selected within this list, which is continuosly updated after

each insertion. Solutions generated by GRASP construction are not necessarily

optimal and a local search phase is required to improve them. Thus, the solution’s

neighborhood is deeply investigated during a second phase of local search until a

local optimum is found. A pseudocode of GRASP heuristic is shown in Algorithm

12.
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Algorithm 2 GRASP basics.
function UPDATEREFSET(α)

initialize best solution S∗.

seed = generate a random seed solution.

while Stopping condition is not achieved do

S = GreedyRandomizedConstruction(α,seed);

S = localSearch(S);

if cost (S) is better than cost (S∗) then

S∗ = S;

end if

end while

return S∗

end function

Any GRASP is characterized by two parameters: one related to the stopping

criterion, number of iterations, and another one to the quality of the elements in

the restricted candidate list, α ∈ [0, 1]. This heuristic is considered adaptive

due to cost variations when inserting a not - yet - chosen element. In order

to obtain the Restricted Candidate List (RCL), determine the incremental cost

of introducing element e into the solution under construction, c(e), and cmin

and cmax, the smallest and largest costs, respectively. The length of RCL can

be limited by a fixed cardinality or by the value of a parameter α. In the

latter case, RCL will contain all the "feasible" elements, e, to be inserted in

the solution under construction, where their incremental cost ranges between

c(e) ∈ [cmin, cmin + α(cmax − cmin)]. It can be proved that parameter α controls

the amount of greediness and randomness in the algorithm, considering it pure

greedy when α = 0 and pure random when α = 1 (see Resende and Ribeiro (2016)).

In Prais and Ribeiro (2000) the role of parameter α is studied on four different

combinatorial optimization problems including a matrix decomposition for traffic

assignment in communication satellite, set covering, weighted MAX-SAT and

graph planarization. This analysis is carried out in the following scenarios:
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1. α is randomly chosen from a uniform discrete probabilistic distribution. Its

performance presents a large number of best solutions found, proving the

effectiveness of strategies that vary α parameter and how does it affect to

the RCL.

2. α is randomly chosen from a decreasing non-uniform discrete probabilistic

distribution.

3. α is fixed close to zero. While obtaining a fast algorithm, the least variability

of the results implies finding the best solution in just a few cases.

4. The value of α is periodically modified according to the quality of the

obtained solutions. In an attempt to introduce memory into GRASP, a

set of m values is given for α. At the first iteration, all these values

have the same probability to be selected as the RCL parameter, but these

probabilities are periodically updated based on the quality of the solutions

obtained. These modifications increase the probability associated with

those values that provide higher quality results. Then, the robustness

and solution quality improves when incorporating a learning mechanism

into the GRASP construction, what has been called reactive GRASP. Here,

parameter α is defined to determine the level of randomness used to set up

RCL.

Its simplicity and easy implementation have leaded to successful

applications on multiple combinatorial optimization problems, such as

scheduling problems, quadratic assignment problems, satisfiability problems or

graph planarization, among others.

In particular, some results have been obtained using GRASP on different

variations of the vehicle routing problem. Due to the multiple benefits that

it could bring to the companies in real world problems, the common goal

in the methodologies developed has been the minimization of the total cost.

For instance, Pacheco and Delgado (1999) describe a constructive GRASP for
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the Vehicle Routing Problem (VRP) with heterogeneous fleet. In tis case, if cij

determines the cost of introducing element i into route j, at the position where

the insertion cost is minimum, then bi = cij − cij∗ represents the greedy function

value of element i, where route j∗ would be the best route and route j the second

best route. Then,

RCL =

{
i/

bi

bmax
> 1− α

}
and the one with highest value at the greedy function is selected. When obtaining

a feasible solution, OR local search operator (Or, 1976) is applied. Later, Pacheco

and Delgado (2000) introduce a combination with the heuristic of concentration

(Rosing and ReVelle, 1997). Now, a list saves the elements that characterize the

best solutions found after applying GRASP and then launch another heuristic or

exact method to solve the original problem subject to select those elements in the

list.

Also, Marinakis (2012) provide a method to solve the Capacitated Vehicle

Routing Problem (CVRP) defining a cardinality - based RCL, using different

constructions, including best known heuristics (Clarke and Wright (1964); Gillett

and Miller (1974); Ryan et al. (1993)), at each iteration and incorporating Circle

Restricted local search moves to the Expanding Neighborhood Search (Marinakis

et al., 2005). These moves reduce the search to those edges with ending - nodes

within a radius length larger or equal to the sum of the costs of the two candidates

for deletion edges. Another approach to solve CVRP is given in Layeb et al. (2013).

First, they re - define a density matrix, D, whose values are obtained using the

following formulation:

Dij =
|Q− (qi + qj)|p

dk
ijDi0D0j

(3.1)

where Q is the maximum capacity and qi the demand of customer i; dij is the

distance between customers i and j, D0j and Di0 represent the density value

between customers i and the depot and so does D0j, since the customer with

index 0 represents the depot. The values for p and k are integers between 1

and 4. Hence, larger values of p introduce first customers with lower demand,
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whereas large values of k implies that the angular distance of the next customer

to be introduced is small. Then, they construct a giant tour subject to the order

given by the density matrix, i.e. the following customer to be introduced in the

route will be the one with highest density. This giant tour is splitted based on

the capacity constraint and each route is reordered using the nearest neighbor

heuristic. In this study, Simulated Annealing metaheuristic is applied for the local

search phase including a set of operators such as inter - route and intra - route

swap and 2 - opt move.

In the last decades, an attempt to make logistic models closer to reality have

leaded to an increasing number of researches that incorporate multiple objectives

into the Vehicle Routing Problem. However, to the best of our knowledge, only

two publications have been found that use GRASP metaheuristic to solve this

kind of problems. Kontoravdis and Bard (1995) define a GRASP to minimize the

total distance and the number of vehicles at the same time. Taking into account

a hierarchical optimization idea, it uses the construction phase to optimize the

distance and local search is not applied to each solution, but to the best solution

after a fixed number of iterations, trying to reduce the number of routes used. The

construction begins by the selection of seed customers, geographically dispersed

and with a narrow time windows. Then, a penalty function is used to decide

what other customer must become a seed-customer, based on the definition of

opportunity cost. Another bi-objective VRP is tackled with GRASP metaheuristic

in Oyola and Løkketangen (2014). Here, minimizing the difference between the

individual routes length is incorporated, in addition to minimizing the overal

distance, as the second objective function and no weights are assigned to any

of them. It starts by finding the best solution for each objective applying Tabu

Search. Then, based on the ruin and recreate strategy, it uses the common parts

of the two solutions already found as the partial solution and GRASP is applied

to complete it. The evaluation of each insertion customer, at the construction

phase, uses Pareto Rank which was introduced in Mateo and Alberto (2012).

During this procedure, non - dominated solutions are recorded and an additional
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set maintains a number of promising solutions that might become part of the

approximation of the Pareto Set.

3.1.2 PATH RELINKING

In the need of creating a balance between search intensification and search

diversification in combinatorial optimization problems, Path Relinking (Glover,

1997; Glover et al., 2000) was introduced as a natural extension of Scatter Search

(Glover, 1977). In order to incorporate attributes of high quality solutions, it

launches an exploration of trajectories connecting elite solutions. Normally, two

solutions take part in this procedure: initial solution and guiding solution. Then,

one or more paths connecting these solutions in the search space graph can be

explored in the search for better solutions. This fact restricts the number of

possible neighbors to the feasible solutions that are more similar to the guiding

solution, which is one of the main advantages of this procedure. Usually, similarity

is measured in terms of common attributes and during the algorithm, solutions

are evaluated and, to improve efficiency of PR algorithms, some of them are

selected to be improved by a local search algorithm.

In general, several items must be considered before designing a Path

Relinking algorithm (Basseur et al., 2005):

• Distance measure. One of the key points of Path Relinking is to define the

assessment of the distance between two solutions. It might be computed as

the greatest shared substring, or the minimum number of permutations to

join both solutions, or the number of attributes where they differ from each

other.

• Neighborhood structure. It is important to decide the operator that will be

considered to generate the path, with the intention to explore only those

solutions that reduce the distance to the guiding solution. It is common to

use swap or shift operators.



3.1. DESCRIPTION OF METAHEURISTICS TO BE USED 45

• Selection criteria. Two different strategies can be applied here: choose distant

solutions to favor the exploration of the search space or select adjacent

solutions to favor the intensification of the search around good solutions.

Then, it will be necessary to establish a criterion to select the initial and the

guiding solutions.

• Path selection. An easy, but very computationaly expensive, approach would

be to generate all the possible paths and select the best one. Then, some

approaches explore only the best solutions generated or a subset of the

possible paths.

• Improvement solutions. Local search is applied in order to find any

improvement of a new solution generated.

The selection of the initial and guiding solutions determines the character of Path

Relinking. Suppose we have a minimization problem and two solutions: S1 and

S2 such that f (S1) ≤ f (S2), where f (S) denotes the value of solution S in the

objective function f .

This process starts with one of the solutions from the Elite Set, S1, and

gradually transforms it into the other S2 by swapping in elements from S2 \ S1

and swapping out elements from S1 \ S2. The total number of swaps made is

|S2 \ S1| known as the symmetric difference between S1 and S2. The choice of which

swap to make in each stage is greedy, so usually, the most profitable move is

performed. In addition to swapping, switch - moves are also studied.

Path Relinking follows a backward strategy if S1 is chosen as the guiding

solution and S2 initial solution. Otherwise, it is known as forward Path Relinking.

Another strategy is mixed Path Relinking, as detailed in Algorithm 3, where the

connecting path is explored from extremities, i.e. at each iteration, the closest

extremity to the current solution alternates between the initial and the guiding

solution.
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Algorithm 3 Mixed Path Relinking

function MIXED PATH RELINKING(Si, Sg)

S = Si

S∗ = Sg

f ∗ = f (S∗)

while |N(S : Sg)| ≥ 1 do

S = argmin{ f (S
′
) : S

′ ∈ N(S : Sg)}

if f (S) < f ∗ then

S∗ = S

f ∗ = f (S)

end if

S
′
= S

S = Sg

Sg = S
′

end while

Apply local search to improve S∗

return S∗, f (S∗)

end function

It has been shown that exploring subpaths close to the extremities, often

provides solutions that are as good as when exploring the path completely. Then,

Truncated Path Relinking was designed to adapt Path Relinking so that only the

restricted neighborhoods close to the extremities are explored. It can be applied

to either backward, forward or mixed Path Relinking.

Besides, restart strategies empty the reference set, denoted as ε, so that

they establish ε = ∅ if no improvement has been found for a fixed number of

iterations.

When applying Path Relinking to solve Vehicle Routing Problem (VRP), it is

not immediately obvious what is meant by moving along a path from a solution to

the guiding solution, so transformations, in this case, consist of moving nodes from

one route to another or changing their positions within the same route. Ho and
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Gendreau (2006) published an study that uses Path Relinking strategy to address a

VRP. Here, five different strategies are defined to build the reference set, inspired

by Ghamlouche et al. (2004), taking into account that the quality and the level of

diversity of the solutions included in the Reference Set have a major impact on

the quality of the generated solutions. It also adapts five criteria to choose the

initial and guiding solutions. Finally, after running all possible combinations, the

best results correspond to introducing in the reference set those solutions with

a better objective value than those already in the set and the initial and guiding

solutions are the most distant solutions within ε. The second best combination

differs from the previous one in the selection criterion, where the guiding solution

chosen corresponds to the best solution in ε, while the initial solution is the second

best one. However, in case of large instances, another combination works better

as a second alternative. In that case, it choses the initial and guiding solutions

randomly from ε and the reference set is built with the best local minima obtained

during the construction phase.

Moreover, when dealing with multiobjective problems, the philosophy of

Path Relinking does not change, since the optimization process works guided by

only one objective function. Basseur et al. (2005) describe Path Relinking in Pareto

MultiObjective Genetic Algorithms, which is the largest family of metaheuristics

used to solve multicriteria logistic problems. In particular, they design a method

to minimize the makespan of a flow - shop scheduling problem. To increase

the intensity of the search around solutions with similar quality on the different

objectives, the authors propose connecting solutions that are close to each other

in the objective space. Hence, they randomly choose among Pareto solutions

obtained from the Genetic Algorithm. At each iteration, the neighborhood of the

initial solution, generated by the shift operator, is evaluated and non - dominated

solutions are saved. Also, to reduce the computing time, a random aggregation

of the objectives is executed which enables to select only one solution in the set of

elegible solutions. Finally, a Pareto Local Search (PLS) is launched after each Path

Relinking generation. This local search maintains a pool of potentially efficient
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solutions and iteratively improves this set by including non - dominated solutions

found when exploring its neighbourhood.

Taking into consideration these studies, a Path Relinking algorithm is

developed in Section 3.2.3 to improve a given set of nondominated solution for

the MultiObjective Capacitated Vehicle Routing Problem (MOCVRP).

3.1.3 HYBRIDIZING GRASP AND PATH RELINKING

Usually, each search in GRASP uses no information obtained by any other

previous search, so that, as explained in Section 3.1.1, reactive GRASP and

other adaptive memory techniques were proposed to take advantage of previous

iterations and diversify the search space. On the other hand, Path Relinking uses

an Elite or Reference Set ε of size Nε that contains a group of diverse high - quality

solutions found at previous iterations. Then, given two solutions, their symmetric

difference is determined by the set of elements that mark the difference between

both solutions. The cardinality of this set of symmetric differences is used to

obtain diversification in ε. Hence, the main reason for applying Path Relinking

to GRASP heuristic is the incorporation of a long - term memory mechanism

to GRASP. The hybridization of GRASP and Path Relinking was proposed, for

the first time, to solve a 2 - layer straight line crossing minimization problem in

Laguna and Martí (1999). Since then, it has been widely applied to solve different

combinatorial optimization problems, such as job shop scheduling problem (Aiex

et al., 2003), max - min diversity problem (Resende et al., 2010) or Capacitated Arc

Routing Problem (CARP) (Reghioui et al., 2007), among others.

Each solution obtained by GRASP is relinked with one or more solutions

from ε and the resulting solution, S, is considered to be included in the Elite

Set, ε, taking into account the value of the symmetric difference. So, a solution

S, paired with another solution S
′

in ε, will be added to the Elite set if ∆(S, S
′
),

which denotes the symmetric difference, is maximized. For a minimization

problem, when inserting a new solution in ε, this set is updated as indicated by
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the following function (Algorithm 4):

Algorithm 4 Procedure to update the Reference Set.
function UPDATEREFSET(ε, S)

if |ε| < Nε then

if ε = ∅ then

ε = ε ∪ S

else

k = min
{
|∆(S, S

′
)| : S

′ ∈ ε
}

if k > 0 then

ε = ε ∪ {S}

end if

end if

else

f max = max { f (S′) : S′ ∈ ε};

k = min
{
|∆(S, S

′
)| : S

′ ∈ ε
}

if f max > f (S) & k > 0 then

Smin = argmin
{
|∆(S, S

′
)| : S

′ ∈ ε
}

such that f (S
′
) ≥ f (S)

ε = ε ∪ S \
{

Smin}
end if

end if

return ε

end function

Let Nε denote the maximum size allowed for ε. Solutions obtained from

GRASP are introduced in ε while there are elements that differenciate both

solutions, whose cardinal is given by k. When the size of ε is reached, to insert

a new solution, S, into the set, another solution must be removed. To maintain

quality and diversification, the worst value of the objective function evaluated

on the current ε is computed and denoted by f max. Also, one determines

the minimum cardinality of symmetric differences between S and the current
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elements that belong to the elite set, k. Finally, S is added to ε if its value is

better than the worst value, f max, and k is not null. Also, to maintain the size

of the elite set, the solution with the minimum number of dissimilar elements in

ε, Smin, will be removed. Note that if one defines a minimum value that should be

accomplished by k, kmin, the diversity of the Elite Set could increase. This is done

by considering k ≤ kmin where kmin is greater than zero.

Different Path Relinking techniques have been introduced to speed up and

improve the results. For instance, Resende and Werneck (2004) propose the

Evolutionary Path Relinking as a post - optimization or periodical phase for GRASP.

It consists of applying Path Relinking between each pair of solutions in ε. First,

every multistart iteration is followed by an intensification step, in which the

newly generated solution is combined with a solution selected from ε. They

assign probabilities proportional to their symmetric difference with respect to the

last solution obtained. Later, all solutions from ε are combined with each other.

As mentioned in Section 3.1.2, applying Path Relinking to Vehicle Routing

Problem (VRP) is not trivial. To the best of our knowledge, only Sorensen and

Schittekat (2013) describe a distance - based Path Relinking, which allows the

definition of distance between two solutions as the minimal number of moves

needed to transform one solution into another. To compute this calculation, the

operator to be used in the transformation must be specified. Common operators

from literature include swap, relocate or 2 - opt, among others. For instance,

Sorensen and Schittekat (2013) remove a customer from a route and re - insert

it into another position in the same route or a different one. The Reference Set is

constructed by launching a GRASP heuristic whose construction uses the classical

insertion heuristic by Clarke and Wright (1964) and incorporates a Restricted

Candidate List that provides randomness to the construction. Path Relinking is

divided in two phases in this case. First of all, a squared distance matrix is

computed containing the tours of the initial solution in rows and those from the

guiding solution as columns, using the ”distance” definition previously stated.
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Then, identifying this matrix as the cost matrix, the algorithm solves a minimum

- cost assignment problem, which matches each route of the initial solution to

another route of the guiding solution. Finally, a customer should be moved to the

position that occupies in the guiding solution’s relative route, so that the distance

between both solutions decreases. A general pseudo - code is shown in Algorithm

5, where M represents the set of customers to be moved and F those to maintain

fixed.

Algorithm 5 Path - relinking proposed in Sorensen and Schittekat (2013)

function PR(S1, S2)

M = ∅

F = ∅

Calculate the distance between S1 and S2

Find the elements of M and F by solving an minimum cost - assignment problem

set u0 = S1

for i = 1 to n-1 do

Remove customer i from M

Add customer i to F

Create solution ui: move customer i in ui−1 to the solution that it occupies in S2,

relative to the customers in F.

end for

return ε

end function

If we extend the analysis to problems which consider more than one

criteria, the hybridization of GRASP and Path Relinking has briefly been studied.

One can find a rich summary of multiobjective GRASP applications in Martí

et al. (2015), which involve metaheuristics designed to solve the multicriteria

minimum spanning tree problem (Arroyo et al., 2008), the multiobjective

quadratic assignment problem (Li and He, 2009) or path dissimilarity (Martí et al.,

2009), among others. In particular, this work tackles the biobjective orienteering

problem and the biobjective path dissimilarity problem, whose ideas might be
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implemented to solve MultiObjective Vehicle Routing Problem (MOVRP) as well.

In this work, different proposals of multiobjective GRASP and Path Relinking are

given and combined in order to obtain the best approximation of the Pareto Set

for some optimization problems. A general idea might be subdivides the different

proposals into a main scheme that follows three steps: construction, local search and

Path Pelinking. Note that each construction is guided by a greedy function that

measures the cost of inserting an element in a solution under construction, so for

multiobjective GRASP, a set of greedy functions, {g1, g2 . . . gm} must be defined

in terms of the variation of each objective when inserting an element into a partial

solution.

Hence, two different approaches hold for the construction phase: pure and

combined.

• Pure construction. At each construction, a single objective is selected

to be optimized. Then, only one greedy function will be considered at

each construction. It allows the generation of the Restricted Candidates

List (RCL) which will be used, and updated, at each step during the

construction. However, the selection of this objective might correspond to

an ordered fashion, which is called pure - ordered or pure - random, otherwise.

• Combined construction. Now, each construction is optimized guided by

more than one greedy function at a time, so the selection of each candidate

will be determined by a different greedy function gi. Again, two alternatives

arise, given by:

– Sequential - combined. It incorporates one element at a time by

generating the corresponding RCL based on a selected greedy function,

gi. Depending on the selection procedure, it might be subdivided into

pure - sequential or random - sequential.

– Weighted - combined. In order to evaluate the insertion cost of an

element, a greedy function is defined by aggregating all the greedy
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functions considered. If wj represents the weight associated to the j

- th greedy function gj, the aggregated greedy function is formulated

as follows:

g(c) =
k

∑
j=1

wjgj (3.2)

In this case, the given set of weights can change at each construction

step or maintain their values all along the process. Note that if there

were objective functions with conflicting sign, they should be unified

to avoid bias.

It is important to recall that, in multiobjective local search, every solution visited is

a candidate to belong to the nondominated solution set, so it is necesary to check

this relation along the process. Following the same scheme as in the construction

phase, local search can be defined in two main strategies depending on the way

of selecting the objective function. Hence, if the solution was generated by pure

- construction, then pure - local search will attempt to improve the objective

function under consideration after each construction, where the deterioration

of any other objective function is permited if the one to optimize improves.

However, if a combined constructive method has been applied, no deterioration

is allowed. Moreover, sequential - combined local search consists of optimizing a

different objective function when selecting the best solution in the neighborhood.

And, finally, for the weighted - combined local search, the following aggregated

objective function (Eq. (3.1.3)) guides the search:

f (c) =
k

∑
j=1

wj f j (3.3)

As usual, the design of Path Relinking needs to define how to measure the

distance between the initial and guiding solutions and the operator that will take

part in the transformation of one solution into another. Here, swap operator is

considered to evaluate the behaviour of Path Relinking and the distance is given by

the symmetric difference between both solutions. In order to evaluate the possible
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moves, a set maintains candidates to be swapped by evaluating the removing

and insertion costs. The Elite Set is defined by nondominated solutions generated

from GRASP. Path Relinking will be applied to all the possible pair - combinations,

so that the selection of the initial and guiding solutions is not relevant. Again,

three strategies are proposed to perform the Path Relinking: pure, sequential and

weighted.

• Pure - Path Relinking selects the elements to be removed and re - inserted

by evaluating all the possibilities, according to one objective function, and

the best swap is performed. Only one of the objectives is considered at each

application of the Path Relinking to select the intermediate solutions for the

entire path.

• Sequential Path Relinking changes the objective function in an ordered

fashion to evaluate the intermediate solutions found along the process.

• Weighted Path Relinking selects elements to swap according to the value

of the aggregated function used for the construction and local search phase.

These alternatives are combined and tested for different combinatorial

optimization problems and, surprisingly, a different alternative is more suitable

for each group of instances. In particular, due to the possibility of translating

this methodology to solve MOVRP, it is interesting to highlight that, for the

biorienteering problem, the best results are obtained using the weighted variant.

3.2 MULTIOBJECTIVE ALGORITHMS PROPOSED

In order to define models that best represent reality, many authors have

incorporated multiple criteria to the different Vehicle Routing Problems (VRPs).

Literature reveals a considerable number of publications incorporating different

combinations of criteria to VRP, specially to the Vehicle Routing Problem with Time

Windows (VRPTW). For instance, to minimize route’s duration and customer’s
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waiting time (Hong and Park, 1998), which are also used to solve multiobjective

school bus routing problems such as Caballero et al. (2011) and Pacheco and Martí

(2006); to minimize the number of vehicles used and the total distance (Ghoseiri

and Ghannadpour, 2010; Rahoual et al., 2001) or to reduce total operational cost,

labor infrautilization and vehicle maximum capacity (Calvete et al., 2007), among

others.

In general, different metaheuristic approaches have been developed in order

to determine the best approximation of the Pareto efficient set for MultiObjective

Vehicle Routing Problems (MOVRP). In this context, Evolutionary algorithms have

been extensively developed. One of the best known is NSGA-II (Deb et al., 2002)

which is flexible enough to be adapted to any variant of VRP. Also, genetic

algorithms are implemented in combination with local search procedures. In

such situation, we can find Target Aiming Pareto Search (Jozefowiez et al., 2007a),

which is a genetic algorithm that improves solutions applying local search, or

Archive-Based hYbrid Scatter Search (AbYSS) (Nebro et al., 2008), which consists

of a Scatter Search that employs mutations and interchanges defined as genetic

algorithms. Also, on non - linear multiobjective optimization problems, an

hybridization of Scatter Search and Tabu Search, SSPMO, is introduced in Molina

et al. (2007).

The set of algorithms directly designed for MultiObjective Vehicle Routing

Problem (MOVRP) includes a multiobjective adaptation of Ant Colony Optimization

(Baran and Schaerer, 2003) which provides the Pareto front for a VRPTW with

three objectives: number of vehicles, total travelling time and total delivery time.

Another example, MOAMP, is proposed in Caballero et al. (2007) to solve a

location - routing problem using a metaheuristic based on Tabu Search and also

used in the resolution process of a Waste Collection Problem with multiple criteria

in Gómez et al. (2009).

Other objectives contemplate if the income of the driver depends on the

travelled distance, so that including route balance in the problem could make
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it closer to reality. Different approaches of evolutionary algorithms which are

combined with tabu search (Jozefowiez et al., 2007a, 2002) or other additional

diversification strategies (Jozefowiez et al., 2009) have been proposed to provide

solutions to this variant of VRP (see Jozefowiez et al. (2007b) for more details).

Different factors highlight the importance of including the route balance objective

in our research, that is why, as a parenthetical remark, it is convenient to provide

some details about it in the following lines.

ROUTE BALANCING

To introduce fairness in the working journey, different studies try to balance the

set of driven routes. Multiple alternatives have been used to model this objective

and several researches propose strategies to deal with it. Route Balancing was

incorporated to VRP for the first time in Jozefowiez et al. (2002), by defining

the balance as the difference between the largest and shortest route (Eq.(3.5)).

This ” balance” - definition is also considered in Lacomme et al. (2015). They

propose a solution process that starts from a seed solution where each customer

defines a route. Then, these routes are merged by randomly selecting nodes and

inserting them into the most promising position in the shortest route. Finally,

routes are randomly concatenated and an improvement phase is launched. It,

first, tries to remove all the customers from the shortest route and, then, apply

the 2 - opt operator, allowing only those moves that do not deteriorate the balance

value. They use a genetic algorithm combined with Path Relinking to solve this

problem, maintaining two different populations: one that contains promising

nondominated solutions and the other one with the best approximation of the

Pareto set. Here, Path Relinking converts each solution into a giant tour by

concatenating the routes and then, it tries to transform one solution into another

by nodes interchanges. Another approach introduces a memetic algorithm

(Mandal et al., 2015).

In general, within the family of Vehicle Routing Problems (VRPs), different
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approaches have been used to define route ”balance”.

”To define balancing objective, it is necessary to define the workload

for a tour, which can be measured as the number of customers, the

quantity of delivered goods, tour length or required time, among

others.” (Jozefowiez et al., 2009)

Jozefowiez et al. (2007a) designed a local search within a Genetic Algorithm to

solve a biobjective VRP. This methodology, based on Target Aiming Pareto Search,

consists of an iterative process that combines cooperative local search and the use

of a set of appropriate goals. Here, local search is only applied to those solutions

that belong to the potential Pareto set. Moreover, it re - defines the direction of the

search depending on the local search, li, and the goal, gi, fixed for that li. Actually,

the resultant objective function seeks the minimization of the distance to the goal,

similar to Eq.(3.7) where the target (T) is given by gi. Then, a set of nondominated

solution is obtained for each i and the Pareto Set is formed by the union of all

them.

Recently, Halvorsen-Weare and Savelsbergh (2016) provided an analysis

on the results when applying different formulations for the ”balancing” for the

Mixed Capacitated General Routing Problem. To solve the different bicriteria

problems defined by the minimization of the total cost and route balance, this

method incorporates the box - method into a lexicographic method combined with

the well- known ε - constraint to densify the frontier. The definitions considered

include:

min

{
R

∑
i=1

(ri − µ)2

}
, (3.4)

where ri represents the length of the ith route and µ the mean of the routes

length within the current solution.
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min
{

rL − rS
}

, (3.5)

where rL represents the longest route and rS the shortest one.

min

{
R

∑
i=1

(ri − rS)

}
, (3.6)

where ri represents the length of the ith - route and rS the length of the

shortest one.

min

{
R

∑
i=1

(ri − T)

}
, (3.7)

where ri represents the length of the ith - route and T is a given target value

to achieve.

min
{

rL
}

, (3.8)

max
{

rS
}

, (3.9)

Based on the results obtained by a list of recognized instances, for the

biobjective Mixed Capacitated General Routing Problem, a major number of

nondominated solutions are obtained when defining route balance by Eq. (3.5).

Formulation (3.8) is used in Pacheco and Martí (2006) to minimize the

number of vehicles and the travelling time for a school bus routing problem.

Following the philosophy of ε− constraint method, they solve a single objective

problem for each possible value of the number of vehicles. Then, to minimize

the longest travelling time at the bus, different heuristics are defined to construct

an initial solution and it is lately improved with Tabu Search. When a first

approximation of the Pareto front is generated, Path Relinking is applied to

improve each of these results. Another application to the Bus Routing Problem
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is included in López-Sánchez et al. (2014). As the previously mentioned work,

they also try to minimize the number of vehicles at the same time that they

reduce the makespan, which is defined as the maximum time a customer spends

at the vehicle. In this case, the methodology is developed for Open Vehicle

Routing Problems. To generate an initial solution an insertion heuristic is applied,

introducing unrouted customers into the route and position which minimizes the

incurrent cost. Then, an improvement phase is applied to promising solutions.

A new alternative for the balance measurement has recently been defined in

Zhou et al. (2013). It is formulated as the quotient of the difference between the

longest and the shortest route and the mean of the total distance, i.e. the value is

calculated using equation 3.2:

rL − rS

1
R
·∑R

i=1 ri

, (3.10)

where ri represents the length of the ith route, so that if i = L corresponds to the

length of the longest route and the shortest route if i = S, and R is the number of

routes or vehicles. Then, the balance is obtained when minimizing equation (3.2).

The methodology developed to solve this problem, where minimizing the total

distance is also considered, applies Genetic Algorithm defining three operators:

selection, crossover and mutation.

Recently, route balancing, has been incorporated into Waste Management.

Among other objectives, Hemmelmayr et al. (2013, 2014) considers route balance

and provide a complete study on Waste Collection Problem, modelled as a Periodic

Vehicle Routing Problem (PVRP). In this case, they solve bins allocation and routing

design multicriteria problems in different scenario, with the aim of balancing

the trade - off between the frequency of a given service and the number of

bins that can be placed within that area. Their methodologies use Variable

Neighborhood Search to obtain an efficient route design. The initial solution is

obtained by the well - known saving - heuristic, whereas the shaking phase defines

its neighborhoods based on different operators such as change of combination,
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move, cross or change of frequency. The solution obtained is improved with

dynamic programming to insert intermediate facilities. Finally, the stopping

criterion is formulated in the same terms of Simulated Annealing. Besides, other

interesting aspects are contemplated in this work such as multiple waste type

case, the number of bins allocated on a specific area, the capacity or volume of

bins or the cost associated to a service. More recently, López-Sánchez et al. (2017)

proposed a hybrid algorithm, which combines GRASP and Variable Neighborhood

Descend (VND), to minimize the overall distance and to minimize the longest

route. Four different neighborhood structures are proposed, and adjusted for

the balance objective. They also include λ-interchange, exchange operator, relocate

operator or interchange two consecutive nodes.

After this revision of the different approaches considered for routing

balance, this section continues by describing the different schemes developed

in this work in order to obtain a good approximation of the Pareto Set for a

Multiobjective Capacitated Vehicle Routing Problem (MOCVRP). As seen at Section

3.1.1, just a few research works have considered applying this technique to

solve MOCVRP. The approaches proposed in this work consists of two steps.

First, to generate an approximation of the Pareto et using GRASP metaheuristic

and a second step tries to improve it using another metaheuristic. Then, it

is crucial to define the local search strategy to be implemented within the

GRASP metaheuristic, as well as the multiobjective GRASP strategy itself. To

obtain the set of nondominated solutions, GRASP and its combination with

Path Relinking and Variable Neighborhood Search (VNS) are described in two

different multiobjective metaheuristic approaches. This methodology, combined

with the idea introduced in Martí et al. (2015) and the definition of an achievement

function as detailed in Section 3.2.2, will provide different ways of obtaining an

approximation of the Pareto Set which will be discussed in Section 3.2.4.
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CONSTRUCTION PHASE

Given an initial partial solution seed, which consists of a single - customer route

system, a random parameter β ∈ [0, 1] is generated and the non-visited nodes are

inserted in routes one at a time and marked as visited. In this case, to make it

simple, the initial customer has randomly been chosen.

In order to evaluate the insertion cost, we combine two greedy functions:

Extramileage and Regret.

• The first one is based on the classical heuristic introduced in Mole and

Jameson (1976), whose insertion criterion is the evaluation of the extra

distance, also known as Extramileage. Its value is obtained by evaluating

the insertion cost of an unrouted customer k between two consecutive

customers i and j in a particular route. Therefore, if the insertion is feasible,

the extramileage value is given by c(i, k, j) = cik + ckj − cij; otherwise, the

extramileage value is set to infinity.

• On the other hand, the Regret value reflects the variation cost of inserting a

node in the second best route instead of the best one. This is measured as

the difference between the two minimum extramileage values of the node in

both routes. This idea is taken from the economic concept of opportunity cost

and was used for the first time in Christofides et al. (1981) as a second step

of an insertion heuristic. Since then, it has been applied in other effective

constructions, such as Fisher and Jaikumar (1981) and Pisinger and Ropke

(2007).

These insertion costs are evaluated at each position of each route for each

node to be inserted, and the minimum extramileage value is saved for each route,

in order to facilitate the calculation of regret and update this data when a node is

assigned to a route.

Parameter β indicates, at each construction, the number of nodes to be
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inserted maximizing the regret greedy function. Later, the next node to be

inserted will correspond to the one that minimizes the cost given by the

extramileage value. Given a seed solution s, we can summarize the construction

as detailed in Algorithm 6.

Algorithm 6 Construction.
function CONSTRUCTION SCHEME(V, s, β)

for n ∈ V \ {seed nodes} do

CalculateExtramileage(n,s)

CalculateRegret(n,s)

end for

while number of visited nodes < β do

Find the node with the maximum regret value, maxRegretNode

Insert maxRegretNode in the corresponding route, r, and position

Mark maxRegretNode as visited

for n ∈ V \ {visited nodes} do

updateExtramileage(n,s,r)

CalculateRegret(n,s)

end for

end while

while there are non - assigned customers available do

Find the node with minimum extramileage value, minExtramileageNode

Insert minExtramileageNode in the corresponding route, r, and position

Mark minExtramileageNode as visited

for n ∈ V \ {visited nodes} do

updateExtramileage(n,s,r)

end for

end while

return s

end function

In order to save computational time, the function CalculateExtramileage

determines the minimum extramileage cost for each node at each route and saves
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it in an array, so that when we call updateExtramileage with parameter r, only the

extramileage asociated to route r needs to be re - computed. Besides, this scheme

allows to calculate the regret value for each node as the difference between the

two minimum values of the array.

This construction scheme is based on the construction algorithm proposed

in Maniezzo and Roffilli (2008) and it does not depend on the objective

considered, so the same scheme is applied independently of the function to

optimize. However, a few modifications have to be made in order to evaluate

the variation of each objective, so that the extramileage value for a node n in a

route r , is given by the variation cost on the function to be optimized.

LOCAL SEARCH

When a feasible construction has been generated, local search is applied in order

to improve its value for a given objective. A Neighborhood is defined as a set of

mappings that associate each feasible solution S with a set of feasible solutions

N(S) = {S1, S2, . . . Sp} that can be obtained by a simple modification of S. Then,

each Si is obtained from S by an operator called move. Local search consists of the

evaluation of each element of N(S) and executing the corresponding move if any

improvement is found.

Different factors determine the effectiveness of a local search procedure,

such as the neighborhood structure, the search technique, the speed required to

evaluate the cost function of the neighbors and the starting solution itself. Two

search strategies are defined: best-improving (Algorithm 8), where all neighbors

are investigated and the current solution is replaced by the best neighbor, and

first-improving (Algorithm 7), in which the current solution moves to the first

neighbor that improves the objective value.
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Algorithm 7 First improving scheme.
function FIRST IMPROVING SCHEME(S, N(S))

improvement = TRUE

while improvement = TRUE do

improvement = FALSE

for S′ ∈ N(S) do

while improvement = FALSE do

if f (S′) < f (S) then

S = S′

improvement = TRUE

end if

end while

end for

end while

return S

end function
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Algorithm 8 Best improving scheme.
function BEST IMPROVING SCHEME(S, N(S))

improvement = TRUE

while improvement = TRUE do

improvement = FALSE

fbest = ∞

for S′ ∈ N(S) do

while improvement = FALSE do

if f (S′) < fbest then

Sbest = S′

fbest = f (S′)

end if

end while

end for

if fbest < f (S) then

S = Sbest

improvement = TRUE

end if

end while

return S

end function

There are a few techniques that help in the implementation of an efficient

local search. Some examples, as the ones listed below, can be found at Resende

and Ribeiro (2016):

• Commonly, the cost of each neighbor S′ is computed by updating the cost of

the current solution S instead of calculating it from scratch. Usually, this cost

represents the variation on the objective value if the move were executed.

• Another technique consists on generating a candidate list of possible

moves that restrict the size of the neighborhood or maintains additional
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information from previous iterations. Best - improving strategy is better

considered when applying this technique.

• However, if first - improving strategy is stablished, the circular strategy

defines an order in the candidate list generated. Then, if p is the size of

the candidate list, each of these moves is evaluated in ascending order

until the first improvement is found. This idea lies on the fact that, if

previous neighbors have been explored with no improvement found, then,

it would be more interesting to continue moving forward and exploring the

following neighbors in the candidate list instead of the already explored

ones. Let J be the first - improving move found, meaning that for previous

elements, Si with i < J, and the considered operator, the search was not

successful. When performing the J - move, the process continues evaluating

Si with i > J instead of evaluating from i = 1, which only happens when

i − 1 = p. This process goes on until a circle with no improvements

is completed. This strategy is incorporated to well - known algorithms

such as Variable Neighborhood Descend (VND) described at Algorithm 9

(Mladenovic and Hansen, 1997), which starts exploring neighborhoods

whose elements can be quickly evaluated and progressively moves to more

complex evaluations.

• Some metaheuristics, like Iterated Local Search or Tabu Search(Glover, 1989,

1990), use ejection chains (Glover, 1996) to diversify the search towards

unexplored regions in the search space. This strategy incorporates

compound moves that may vary between step and step. This strategy is

computationally expensive, but really effective to introduce perturbation

and diversification.
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Algorithm 9 Variable Neighborhood Descend
function VND(S, {N1(S), · · · , Nk(S)}, f , maxiter)

index = 1

while index ≤ k do

S′ = LocalSearch(S, Nindex(S), f , maxiter)

if f (S′) < f (S) then

S = S′

index = 0

else

index = index + 1

end if

end while

return S

end function

In the literature we can find a general classification of neighborhoods

applied to VRP (Toth and Vigo, 2002) into intra-route neighborhoods (Golden

and Assad, 1988), which operate on a single route at a time, or inter - route

neighborhoods that consider moves between more than one route simultaneously.

Common neighborhoods used to solve combinatorial optimization

problems such as Travel Salesman Problem (TSP) or Vehicle Routing Problem (VRP)

include the well - known λ - opt (Lin, 1965) and Or - exchanges (Or, 1976). In the

first case, λ edges, usually λ = 2 or λ = 3, are removed from the current solution

and replaced by other λ edges; whereas the second strategy uses restricted

neighborhoods characterized by the subset of moves associated with larger λ

values. In general lines, local search is detailed as shown in Algorithm 10.
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Algorithm 10 Local search
function LOCAL SEARCH SCHEME(S, N(S), f , maxiter)

iter = 0

while iter < maxiter do

S∗ = best− improving(S, N(S))

Check relation of dominance of S∗

if S∗ is mutually non - dominated by any other solution in the current Pareto Set

then Update Pareto Set by including S∗

end if

if f (S∗ < f (S) then

S = S∗

iter = 0

elseiter = iter + 1

end if

end while

return S

end function

So, for a given solution, a neighborhood N(S) is explored in order to find

any improvement on the single- objective case or a nondominated solution in the

multi - objective problem.

However, different strategies have been introduced in the last years. Here,

we consider the application of a simple Variable Neighborhood Search (VNS)

(Mladenovic and Hansen, 1997) detailed in Algorithm 11:
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Algorithm 11 Variable Neighborhood Search
function VNS(S, {N1(S), · · · , Nk(S)}, f , maxiter, nmax)

n = 1

while n ≤ nmax do

S′ = shake(S, n)

S′ = VND(S′, {N1(S), · · · , Nk(S)}, f , maxiter)

if f (S′) < f (S) then

S = S′

end if

n = n + 1

end while

return S

end function

To escape from local optima during the search, Variable Neighborhood

search first applies a shaking method that moves a number n of randomly chosen

nodes from their current route to another route for a given a solution S, providing

a new solution. The resulting solution, S′ will have a new value on the objective

function which is allowed to deteriorate the original solution S. Then, a series

of neighborhoods {N1(S), · · · , Nk(S)} are explored in a given sequence so that

if any improvement is found, the first neighborhood on the list is explored

next, otherwise the sequence continues to explore the next neighborhood. This

cyclic local search is known as Variable Neighborhood Descend (Algorithm 9) and

it continues until no improvement is found for a prefixed number of iterations

at the last neighborhood. Usually, the neighborhoods considered are ordered in

terms of their sizes, so that the smallest ones come first.

In what follows the set of neighborhoods generated by the following moves will

be considered in this work:

N1(S) As an example of inter - route operator, it moves, if feasible, a subchain of

k nodes from one route to another.
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N2(S) 2 - opt operator is used to invert the order of a subchain in a given route.

N3(S) These neighbors are determined by moving a subchain of a route to

another position, J, within the same route (see Subramanian et al. (2014)).

For the sake of simplicity, considering that this procedure will be applied to

multiple objectives, these operators are defined as functions with a set of inputs

that return a pre - computation of the cost if the move were executed. Then,

for a given solution, S, N3(S) takes two different routes and the subroutes to

be interchanged and it will compute the values, in terms of distance and time

required, of these routes if the move were executed; whereas N2(S) will return

the corresponding distance or time value if a given subchain reversed its order.

Therefore, the set N(S) = {N1(S), N2(S), N3(S)} will define a Variable

Neighborhood Descend (VND) that will be used in any of the variants of VNS within

this work, which are adjusted to deal with multicriteria problems as detailed in

Section 3.2.3.

Thus, once the standards of the constructive and a local search scheme have

been explained, the GRASP heuristic introduced in this work can be defined as

indicated in Algorithm 12, where construction and local search improvement

phase are applied according to the explanation above.
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Algorithm 12 GRASP procedure.
function GRASP(V, numIter, f )

Set s∗ as the best solution.

for iter ∈ 1, 2, · · · numIters do

Define a value for parameter β and generate the solution seed s.

s = construction(V, s, β)

s = localSearch(s, N(s))

if f (s) < f (s∗) then

s∗ = s

end if

end for

return s∗

end function

This will be the scheme used in the following sections to solve the single -

objective problems found.

3.2.1 MULTIOBJECTIVE GRASP: ALTERNATING OBJECTIVES

A first approach of the Pareto optimal set is inspired by the MultiObjective

GRASP (MOGRASP) introduced in Martí et al. (2015), in particular, from their

proposal of Pure approach of MOGRASP. As detailed at the end of Section 3.1.3,

this method uses a single greedy function to construct each solution for every

objective. However, the constructive algorithm developed in this work considers

two greedy functions, as shown in Algorithm 6 which are: extramileage and

regret. Notice that they only represent a concept of variation, so the computation

of their values change depending on the objective to optimize.

Pure - ordered (Algorithm 13) and pure - random(Algorithm 14) alternatives of

the original description are implemented, in order to generate an approximation

of the Pareto front.
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Algorithm 13 Pure Ordered Multiobjective GRASP.
function PURE - ORDERED MULTIOBJECTIVE GRASP(V, numIter, f = ( f1, f2, · · · fk))

Initialize ℘ = ∅ and the initial function to optimize, fi.

for iter ∈ 1, 2, · · · numIters do

Define a value for parameter β and generate the solution seed s.

s = construction(V, s, β)

if s is nondominated in ℘ then

℘ = ℘ ∪ {s}

update ℘

end if

s = localSearch(s, N(s))

if s is nondominated in ℘ then

℘ = ℘ ∪ {s}

update ℘

end if

if i > k then

Reset the index of function to optimize: i = 1.

otherwise: i = i + 1

end if

end for

return ℘

end function
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Algorithm 14 Pure Random Multiobjective GRASP.
function PURE - ORDERED MULTIOBJECTIVE GRASP(V, f = ( f1, f2, · · · fk))

Initialize ℘ = ∅ .

for i ∈ 1, 2, · · · k do

Determine a random function, i < k to optimize, fi.

Define a value for parameter β and generate the solution seed s.

s = construction(V, s, β)

if s is nondominated in ℘ then

℘ = ℘ ∪ {s}

update ℘

end if

s = localSearch(s, N(s))

if s is nondominated in ℘ then

℘ = ℘ ∪ {s}

update ℘

end if

end for

return ℘

end function

Usually, as explained in Section 3.1.1, GRASP applies an improvement phase

after each construction. In this case, in spite of considering multiple criteria, as

the solution is generated based on a single objective, the local search will try

to improve the same objective, verifying if a visited solution is candidate to be

included into the nondominated solutions set.

These approaches take advantage of the randomness of GRASP to explore

the function space, which allows to obtain a wide set of nondominated solutions,

which may improve as the number of iterations increases. However, it does not

guarantee a full exploration of the objective space, so additional techniques have

to be implemented. This scheme was successfully applied in López-Sánchez et al.

(2017) to solve a bi - objective waste collection problem.



74 CHAPTER 3. METHODOLOGY

3.2.2 MULTIOBJECTIVE OPTIMIZATION USING AN ACHIEVEMENT

SCALARIZING FUNCTION

Considering an achievement scalarizing function (ASF) is one of the most widely

used strategies to deal with multiple criteria problems. In particular, for the

optimization in reference point based interactive methods. Miettinen (2008);

Wierzbicki (1980) and Lewandowski and Wierzbicki (1989) confirm its ability to

produce any (properly) Pareto optimal or weakly Pareto optimal solution. Given

a weighting vector, λ, λi > 0 ∀i, that determines the search direction, a partial

solution x and a reference point R, an ASF consists of an aggregation of terms of

the form λi · ( fi(x)−Ri). It aims to minimize the distance from R (specified by the

Decision Maker (DM)) to the feasible region, if the reference point is unattainable,

or minimizes the distance otherwise. Usually this distance is defined by an

appropriate metric, such as L∞, L2 or L1 in the objective space. A first approach

of this ASF, introduced in Wierzbicki (1977), only ensured the optimal solution

to be weakly efficient. In practive, Wierzbicki's achievement function modifies the

metric L∞ in order to ensure the generation of efficient solutions, so that if x is

the solution under construction, fi(x) the values of this partial solution for every

objective function i ∈ 1, 2 · · · k, and Ri the reference level for each objective, then,

considering the L∞ metric, Wierzbicki's achievement function is formulated as:

max

{
λ1 · ( f1(x)− R1), λ2 · ( f2(x)− R2), · · · , (1−

k−1

∑
i=1

λi) · ( fk(x)− Rk)

}

+ρ ·
k

∑
i=1

fi(x) (3.11)

Not many authors have recently applied this approach to solve vehicle

routing problem. Our goal is to minimize Wierzbicki's achievement function (Eq.

(3.11)) for different values of λ, using the GRASP strategy as defined in Algorithm

12, where the construction and local search are detailed at the begining of this

Section. Also note that the differences, in magnitudes, might cause a bias in the

evaluation, so the values must be normalized. In this case, if the reference point
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is R∗, then the values are normalized into the interval [0,1], so that Wierzbicki’s

ASF is formulated in Eq. (3.12).

max

{
λ1 ·

f1(x)− R1
∗

f max
1 − f min

1
, λ2

f2(x)− R2
∗

f max
2 − f min

2
, · · · , (1−

k−1

∑
i=1

λi) ·
fk(x)− Rk

∗

f max
k − f min

k

}

+ρ · (
k

∑
i=0

fi(x)) (3.12)

Theoretically, considering fmin − θ would define the utopian point as the

reference point, where θ ∈ [0, 1], which avoids generating weakly efficient

solutions. However, in practice, discrete problems do not need to be aware of

it. Hence, in order to obtain the best approximation of the Pareto front, we

estimate the ideal (z∗) and nadir (znad) points by solving each of the single -

objective problems derived from optimizing every objective function. Note that,

in this context, we understand ”nadir” as the worst possible scenario, and it is

determined by the worst values for each function considered within the Pareto Set

or its approximation. Again, to solve these single - objective problems, Algorithm

12 is applied to optimize the corresponding objective. Notice that these points are

required to evaluate the scalarizing achievement function as formulated in (3.12).

Next, for a problem with k objectives, m convex combinations of λ values

are randomly generated in the interval [0, 1], so that ∑k
i=1 λi = 1. λ will define

the achievement scalarizing function (Eq. (3.12)), where f max
i = nadiri and the

best value f min
i = ideali for each i = 1, 2, · · · k. These values are determined by

optimizing each function individualy. Therefore, k single - objective problems

will be solved, using Algorithm 12, in a first place in order to determine f min and

f max.

For each λ combination, GRASP is applied in order to find the best solution

that minimizes the ASF. During the procedure, a set of nondominated solutions

is saved at variable ℘L, which will be used to update the overall approximation

of the Pareto front ℘.
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Hence, this multiobjective algorithm is reduced to solve several single -

objective problems, whose objective function is given by the ASF as detailed in

Algorithm 15:

Algorithm 15 Wierzbicki achievement scalarizing function approach.
function ASF(V, numIter, f = ( f1, f2, · · · fk), m)

Set ℘ = ∅ as the approximation of the Pareto optimal set.

Minimize each function fi

si = GRASP(V, numIter, fi)

Define z∗ = f min and znad = f max.

for L ∈ 1, 2, · · ·m do

Generate a random combination of weights: λ

Use λ, f min and f max to define the ASF.

Set ℘L = ∅.

℘L = GRASP(V, numIter, fi)

Set ℘ = ℘L ∪ {℘} and update ℘.

end for

return ℘

end function

The larger the value of m, the more accurate the approximation is expected

to be. However, the computational cost will increase, so the process is divided

into two stages. In the first trial, a small value of m will compute a first

approximation of the Pareto front ℘ and, next, this approach can be improved

by applying any of the algorithms proposed in Section 3.2.3.

3.2.3 RESOURCES TO IMPROVE THE APPROXIMATION OF THE

PARETO SET

When a first approach of the Pareto front has been obtained applying any of

the methods described in Section 3.2, an additional search for nondominated

solutions is launched in order to improve this approximation. Two alternatives
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have been developed in this work, based on the well known metaheuristics: Path

Relinking and Variable Neighborhood Search (VNS).

MULTIOBJECTIVE PATH RELINKING

A first approach of the Pareto front, ℘, has been generated by MultiObjective

GRASP detailed in the previous section (Section 3.2). The incorporation of a

post - optimization Path Relinking attempts to find new elements of this set by

evaluating a restricted space given by the feasible moves that transform one

solution into another. It has been established in Section 3.1.2 how to proceed

to define a Path Relinking and some references have been provided to apply it

to Vehicle Rouring Problems (VRP). Due to the multiple criteria considered in this

work, the definition of a guiding objective function is required to proceed with

this metaheuristic. Then, it is important to state the elements that characterize

its implementation, such as the neighborhood operators and the definition of

the reference set and the distance measure, as well as the selection criteria to

determine the initial solution, Si, and the guiding solution, SG.

Reference Set The approximation of the Pareto front (℘) is considered as the

reference set. In this case, both of the solutions that take part in the Path

Relinking procedure, belong to this set. The attributes that characterize the

elements of this set are given by the relation of dominance. So that one will

try to transform solution Si into SG for a given direction function, but the

properties of Si might contribute to other function which makes it better in

comparison with SG.

Selecting solutions A direction must be chosen in order to perform a forward Path

Relinking strategy. When a guiding function is defined, fG, for each pair of

solutions from the reference set, the one with the best value on the guiding

function will be SG and so, the other one will be the initial solution. Taking

into account the multiobjective character of the problem, the elements of the

Reference Set are ordered in an increasing fashion by their value in fG. It
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reduces the searching space when applying Path Relinking between each pair

of consecutive solutions while no other nondominated solution has been

found.

Distance measure The distance considered is the symmetric difference. This

measure, denoted by ∆(S, SG) and explained in 3.1.2, consists of

determining the elements that are in SG and not in Si, taking into

consideration their positions. It also indicates the number of moves required

to transform Si into SG.

Neighborhood Operators Two operators are commonly used in Vehicle Routing

Problem: swap and shift. Then, at each step, the neighborhoods generated by

these two operators are evaluated and the best move is performed. Note

that moves to solutions where the value function is worse are permited, in

order to reduce the distance, in terms of the symmetric difference, to the

guiding solution.

Let ℘ = {z1 . . . zp} be the approximation of the Pareto front, ordered by one

of the function’s value. Without loss of generality, suppose f1(zi) < f1(zi+1). First

we identify the initial solution and the guiding solution as: Si = zi+1 and SG =

zi. The symmetric difference is computed next, for each pair of routes between

both solutions. It can be represented by a matrix whose rows are given by routes

that form Si and columns by the routes from SG. Two routes, one from each

solution, with the largest number of elements in common, are selected (Algorithm

16). If this number coincides with the length of any of the routes, it means that

both routes are equal alredy, so the next pair of routes with minimum symmetric

difference is chosen.
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Algorithm 16 Selection of routes at Path Relinking

function ROUTES SELECTION(SG, Si, fG)

Suppose ℘ is ordered by decreasing values of fG.

Define route to transform: RT

Define guiding route: RG

kmin = ∞

for each Route rG ∈ SG do

for each Route ri ∈ Si do

k = min{|∆(ri, rG)|}

if k < kmin then

kmin = k

RG = rG

RT = ri

end if

end for

end for

return RG, RT, kmin

end function

In any case, if both routes have the same length, the exploration of the path

takes place within the neighborhood generated by the shift operator. Otherwise,

the route that belongs to SG determines if nodes must be inserted or removed

from its paired route from Si by the swap operator. These moves between routes is

detailed in Algorithm 17.
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Algorithm 17 Path Relinking between routes.

function PATH RELINKING BY ROUTES(RG, RT, kmin)

if RG.length = RT.length then

Explore the path between RG and RT checking if the neighbors are Pareto

optimal, given ℘

Perform best - improvement using shift - operator

else

if RG.length > RT.length then

Explore the path between RG and RT checking if the neighbors are Pareto

optimal, given the Pareto Set ℘

Perform best - improvement using swap - operator by incorporating nodes

from ∆(RG, RT) to RT

else

Explore the path between RG and RT checking if the neighbors are Pareto

optimal, given the Pareto Set ℘

Perform best - improvement using swap - operator by removing nodes given

by ∆(RG, RT) from RT

end if

end if

Update ℘

return ℘

end function

Then, this Path Relinking is launched using every function to guide the

search, individually. For each pair of solutions from the reference set, ℘, this

function will determine which solution is considered as the guiding solution

(SG). In any case this strategy uses the distance measure described in Sorensen

and Schittekat (2013) to evaluate the progress of the process and two common

operators in VRP to transform a nondominated solution into SG, while the

Reference Set keeps updated with all the nondominated solutions visited.
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MULTIOBJECTIVE VARIABLE NEIGHBORHOOD SEARCH

The concept of Variable Neighborhood Search (VNS) has been extrapolated to solve

multiobjective combinatorial optimization problems (Duarte et al., 2015). Due to

the multiobjective character of the algorithm, it is necessary to check if a visited

solution is nondominated within the current approximation of the Pareto front,

even when it does not generate any improvement on the objective function under

consideration. Note that local search is applied for every objective function, one

at a time.

In the present study, we implement VNS local search, as well as an

additional approach which considers a reference point when dealing with more

than one objective function. In what follows, the former will be denoted VNS

and the latter VNSre f . Nevertheless, when considering multiple criteria, a new

approach of VNS is developed here to find nondominated solutions. Each

solution obtained during the construction of the first approximation and within a

given a fixed ratio, ∆, is checked for its inclusion into the nondominated solutions

set or, otherwise, into the most promising solutions set (PS).

Definition: Given a multiobjective problem with f = { f1, · · · fk}, one can define

the efficient region, Ω, for a given pair of nondominated solutions SA and SB,

as the set of points potentially efficient.

Definition: Given a multiobjective problem and a pair of nondominated

solutions SA and SB defining an efficient region, Ω, we define the ∆ - efficient

region as the set of points x ∈ S such that:

∆− region = {x ∈ S : d(x, ω) < ∆} (3.13)

where d denotes the distance L∞.

Definition: The solutions that belong to the ∆ - efficient region are defined as

promising solutions.
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For the sake of simplicity, an illustrative example with 2 objectives, is detailed in

Figures 3.1 and 3.2 to identify these regions.

Figure 3.1: Identifying the efficient region, Ω

Figure 3.2: Identifying ∆ - efficient region

Consider the set, ℘, of nondominated solutions and PS with the promising

solutions visited. Next, for each pair of solutions, SA and SB in ℘, we define its

ideal as the vector whose components are the best value for every objective, as

detailed in Figure 3.3. This ideal corresponds to the reference point, Re f AB.

Then, VNSre f considers if a solution s in PS belongs to the ∆ - efficient region
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defined by SA and SB. If so, then VNSre f is applied in order to minimize the

distance L∞ between s and the reference point Re f AB. Note that the objective

values are normalized between 0 and 1 in the formulation of distance, in order to

avoid any possible bias due to the magnitudes.

Figure 3.3: Defining the reference point in VNSre f

Figure 3.4: VNSre f

Then, considering two nondominated solutions, SA and SB, the reference

point Re f AB and a promising solution s, the algorithm VNSre f aims to minimize

the distance between s and Re f AB. It can be described as follows (Algorithm 18):
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Algorithm 18 Variable Neighborhood Search with reference point

function VNSre f (SA,SB, {N1(S), · · · , Nk(S)}, d, maxiter, nmax)

n = 1

while n ≤ nmax do

s′ = shake(s, n)

s′ = VNS(s, {N1(S), · · · , Nk(S)}, d, maxiter)

if f (S′) < f (S) then

S = S′

end if

n = n + 1

end while

return S

end function

Thus, two alternatives derive from applying the scheme of VNS as a local

search procedure in order to solve a multiobjective combinatorial optimization

problem. One of them just apply single - objective VNS focusing on one objective

at a time, as detailed in Algorithm 11; while the other defines a reference point

and the local search is run in order to minimize the distance to it. Both of this

approaches maintain a set of nondominated solutions visited on the process.

3.2.4 EXPERIMENTAL RESULTS

Christofides and Eilon (1969), Christofides et al. (1979) and Uchoa et al. (2017)

have contributed with a wide set of instances to test heuristics for the VRP. In

particular, a random selection of 25 of these instances have been used to test

the performance of the mono - objective version of the GRASP metaheuristic

proposed. Different sizes and customer distributions have been included in this

sample set, as observed in Table 3.1, that reflects the characteristics of every

instance considered. Note that n represents the number of nodes considered in

the instance and v the number of vehicles available with a maximum capacity Q.
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Also, the best known value (BKV) is included in this table for the minimum total

distance ( f1).

Name n v Q BKV( f1)

E-n101-k14 101 14 112 1082.65

E-n101-k8 101 8 200 826.14

E-n51-k5 51 5 160 524.94

E-n76-k10 76 10 140 837.36

E-n76-k14 76 14 100 1026.71

E-n76-k7 76 7 220 687.60

E-n76-k8 76 8 180 740.66

M-n200-k16 200 16 200 1294.67

M-n200-k17 200 17 200 1294.89

X-n1001-k43 1001 43 131 72742.00

X-n120-k6 120 6 21 13329.42

X-n143-k7 143 7 1190 15697.06

X-n162-k11 162 11 1174 14138.58

X-n186-k15 186 15 974 24154.29

X-n190-k8 190 8 138 16985.86

X-n233-k16 233 17 631 19239.22

X-n294-k50 294 51 285 47167.00

X-n303-k21 303 21 794 21744.00

X-n384-k52 384 53 564 66081.00

X-n449-k29 449 29 777 55358.00

X-n573-k30 573 30 210 50780.00

X-n655-k131 655 131 5 106780.00

X-n701-k44 701 44 87 82292.00

X-n733-k159 733 160 25 136366.00

X-n895-k37 895 38 1816 54172.00

Table 3.1: Instances sample description.

Note that our goal is to introduce a competitive technique which, applying
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a GRASP metaheuristic, generates a good approximation of the Pareto optimal

set. Combining the previously described algorithms, up to 6 different approaches

have been considered in order to find the best approximation:

1. GRASP Pure Ordered and Path Relinking.

2. GRASP Pure Random and Path Relinking.

3. GRASP Pure Ordered and VNSre f .

4. GRASP Pure Random and VNSre f .

5. GRASP to optimize ASF and Path Relinking.

6. GRASP to optimize ASF and VNSre f .

The performance of all these methods is analyzed in this section, introducing

a second objective, f2, which is defined as the minimization of the longest route.

To the best of our knowledge, there does not exist any set of instances that

contemplates the biobjective perspective with these two criteria. Then, the given

set of instances has been analyzed for the resulting biobjective problem, in order

to test the performance of the methodologies designed and decide which would

be the most convenient to apply in a multiobjective problem with more objectives,

as the one introduced in Section 4. Also, a previous analysis solving the single

- objective problem is studied first to test the quality of the GRASP proposed.

One of the alternatives to evaluate the quality of a heuristic is to compare the

results with the best known value or the optimum of the instance. To measure

the deviation of the obtained value, fh to this reference value, fopt, the following

metric is used (3.14):

gap(%) =
fh − fopt

fopt
· 100 (3.14)

To adjust the parameter α for the construction phase of GRASP, an

experiment has been launched for 1000 iterations. Four scenarios are studied in

this experiment. First α is randomly generated at each construction and the other
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three assign a fixed value for the parameter: α = 0.25, α = 0.5 and α = 0.75.

The resulting gaps, between the solutions obtained and the reference value, are

displayed in Tables 3.2 and 3.3. Note that BKV( f2) represents the ideal value of

a completely balanced solution, though the existence of such a solution is not

guaranteed.

Instance BKV( f1) α Random time(s) α = 0.25 time(s) α = 0.5 time(s) α = 0.75 time(s)

E-n101-k14 1082.65 7.06 0.92 12.52 0.833 9.92 0.833 6.51 0.966

E-n101-k8 826.14 4.84 0.866 7.55 0.91 7.19 0.91 7.44 0.945

E-n51-k5 524.94 5.87 0.239 5.71 0.213 4.22 0.213 4.23 0.221

E-n76-k10 837.36 7.49 0.575 10.3 0.449 10.56 0.449 7.13 0.481

E-n76-k14 1026.71 7.18 0.394 16.18 0.435 10.4 0.435 7.51 0.464

E-n76-k7 687.6 3.97 0.448 7.45 0.489 5.15 0.489 4.52 0.529

E-n76-k8 740.66 4.41 0.431 10.68 0.618 8.75 0.618 7.08 0.523

M-n200-k16 1294.67 17.74 3.956 28.51 4.335 21.65 4.335 21.33 5.522

M-n200-k17 1294.89 12.47 3.929 19.36 4.126 15.63 4.126 11.77 4.42

X-n1001-k43 72742 12.01 313.867 20.34 3199.487 16.72 3199.487 14.15 303.704

X-n120-k6 13329.42 4.01 1.456 11.13 1.527 5.92 1.527 4.41 1.568

X-n143-k7 15697.06 8.35 2.137 14.59 2.212 12.34 2.212 10.35 2.241

X-n162-k11 14138.58 7.58 2.453 12.94 2.601 8.57 2.601 9.64 2.66

X-n186-k15 24154.29 10.66 3.326 14.54 3.595 11.42 3.595 10.66 3.582

X-n190-k8 16985.86 5.55 4.77 11.54 4.565 8.54 4.565 5.48 4.658

X-n233-k16 19239.22 12.25 9.531 18.24 6.5 14.23 6.5 12.89 6.527

X-n294-k50 47167 10.03 11.063 26.76 15.354 18.23 15.354 13.08 57.644

X-n303-k21 21744 11.67 11.096 16.55 18.318 13.22 18.318 13.13 17.091

X-n384-k52 66081 16.24 33.653 24.94 34.324 21.45 34.324 14.72 38.232

X-n449-k29 55358 9.96 32.113 18.61 30.169 13.3 30.169 11.68 31.186

X-n573-k30 50780 6.94 60.145 9.19 67.487 7.34 67.487 7.13 66.873

X-n655-k131 106780 4.27 102.772 11.49 123.489 7.43 123.489 5.62 116.873

X-n701-k44 82292 8.44 715.037 15.14 111.721 11.92 111.721 10.05 109.799

X-n733-k159 136366 9.43 155.103 203.59 177.683 203.59 177.683 203.59 186.715

X-n895-k37 54172 12.96 226.933 15.51 227.069 16.78 227.069 13.8 220.791

Table 3.2: Constructions analysis to optimize f1.
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Instance BKV( f2) α Random time(s) α = 0.25 time(s) α = 0.5 time(s) α = 0.75 time(s)

E-n101-k14 77.33 68.53 0.644 39.91 0.559 39.91 0.524 39.91 0.521

E-n101-k8 103.27 21.31 0.589 20.16 0.545 20.16 0.551 20.16 0.552

E-n51-k5 104.99 10.31 0.143 15.49 0.126 15.49 0.124 15.49 0.122

E-n76-k10 83.74 22.64 0.324 18.48 0.297 18.48 0.282 18.48 0.281

E-n76-k14 73.34 28.45 0.241 29.06 0.26 29.06 0.295 29.06 0.269

E-n76-k7 98.23 13.66 0.285 12.88 0.284 12.88 0.302 12.88 0.295

E-n76-k8 92.58 11.32 0.271 16.36 0.277 16.36 0.296 16.36 0.287

M-n200-k16 80.92 60.95 2.527 61.09 2.579 61.09 2.673 61.09 2.652

M-n200-k17 76.17 97.36 2.525 39.91 2.641 39.91 2.782 39.91 2.668

X-n1001-k43 1691.67 117.11 180.04 57.13 215.604 57.13 203.399 57.13 197.182

X-n120-k6 2221.57 34.12 0.847 24.76 0.918 24.76 0.908 24.76 0.898

X-n143-k7 2242.44 51.16 1.279 27.71 1.398 27.71 1.407 27.71 1.352

X-n162-k11 1285.33 30 1.515 22.36 1.638 22.36 1.695 22.36 1.61

X-n186-k15 1610.29 96.27 2.143 49.69 2.302 49.69 2.383 49.69 2.33

X-n190-k8 2123.23 23.54 2.642 16.05 2.834 16.05 2.876 16.05 2.79

X-n233-k16 1131.72 38.45 3.707 36.95 3.933 36.95 3.989 36.95 3.971

X-n294-k50 924.84 56.48 6.386 61.14 7.241 61.14 7.845 61.14 7.106

X-n303-k21 1035.43 154.33 6.942 39.4 7.734 39.4 7.481 39.4 7.256

X-n384-k52 1246.81 73.87 17.419 70.48 21.947 70.48 20.868 70.48 22.893

X-n449-k29 1908.9 53.15 18.84 53.54 21.327 53.54 21.3 53.54 20.54

X-n573-k30 1692.67 73.35 35.408 65.86 39.02 65.86 41.885 65.86 38.892

X-n655-k131 815.11 98.33 49.885 116 56.077 116 59.508 116 54.941

X-n701-k44 1870.27 93.59 57.589 50.78 68.036 50.78 63.495 50.78 64.84

X-n733-k159 852.29 88.14 75.742 72.92 87.942 72.92 88.284 72.92 89.057

X-n895-k37 1425.58 160.67 130.757 60.78 153.779 60.78 149.087 60.78 147.322

Table 3.3: Constructions analysis to optimize f2.

Results show no evidence of large differences between the GAP values

obtained using random or a pre - defined value of alpha. Then, based on the

running time, we will consider α randomly generated at each construction.

The order of application of the neighborhoods has also been tested,

including a random order for every execution of the Variable Neighborhood Search

(VNS) as proposed in Vidal et al. (2014). The performance of these combinations

has guided us to apply them in a sequence such as it first optimizes each route,
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by inverting the order of a subchain of nodes (N2) or moving them directly to

another position within the same route(N3), and finally it tries to move nodes

from one route to another (N1). In this fashion, VNS allows the improvement of

a route length whenever a new node has been inserted in the current route. The

GAP(%) to BKV( f1) obtained for the sample of instances is summarized in Table

3.4.
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Instance GAP(%) time(s)

E-n101-k14 4.18 1.699

E-n101-k8 2.11 3.295

E-n51-k5 1.84 0.615

E-n76-k10 4.15 0.936

E-n76-k14 4.12 0.762

E-n76-k7 2.8 1.772

E-n76-k8 3.69 1.212

M-n200-k16 11.46 10.13

M-n200-k17 7.88 9.892

X-n1001-k43 9.75 486.749

X-n120-k6 2.7 7.765

X-n143-k7 4.36 12.532

X-n162-k11 4.54 8.485

X-n186-k15 7.11 8.539

X-n190-k8 3.63 26.205

X-n233-k16 9.14 21.181

X-n294-k50 8.27 17.963

X-n303-k21 8.05 28.853

X-n384-k52 12.48 41.707

X-n449-k29 7.76 58.891

X-n573-k30 4.93 182.278

X-n655-k131 3.99 142.773

X-n701-k44 7.56 170.335

X-n733-k159 8.5 231.315

X-n895-k37 9.54 381.425

Table 3.4: Local search to optimize f1.

Note that the computational time comprehends both, the construction and

the local search phase. Since the value of BKV( f2) is not representative, we do

not consider it relevant to include another table. Here, the construction algorithm
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used is the same for the optimization of the Achievement Scalarizing Function given

by Eq.(3.15) setting λ = 1 or directly optimizing the function f1.

max {λ1 · ( f1(x)− R1), (1− λ1) · ( f2(x)− R2)}+ ρ ·
2

∑
i=1

fi(x) (3.15)

Once the best parameters have been discussed, as well as the neighborhood

combination for the VNS algorithm, it is time to contrast the different

algorithms designed to obtain the approximation of the Pareto front for the

biobjective problem. Recall that these algorithms use GRASP and Path Relinking

metaheuristics, including VNS in the local search phase for the single - objective

and biobjective improvements.

Considering the same sample of instances analyzed before, the different

approximations of GRASP, as described in Section 3.2, have been launched

with the best parameters obtained from the single - objective analysis. Finally,

the performance of the algorithms GRASP Pure Ordered, which is denoted M1,

and GRASP Pure Random, as M2, as well as the approximation obtained when

minimizing the ASF, for different combinations of λ and denoted by M3, is

tested. Clearly, the number of nondominated solutions obtained with the last

procedure is larger, because of the nature of the procedure. Those approaches,

inspired by Martí et al. (2015), minimize one objective function at each time, so

the extremities of the Pareto front approximation will be more populated and

finding new nondominated solution will be more difficult, a priori. However, the

variation of parameter λ, in the other approach, allows the algorithm to ”sweep”

the range of efficient front between the ideal and nadir point estimated, which

determine the boundaries of the Pareto or efficient front.

Zitzler (1999) introduced the coverage metric function where given 2

approximation sets A and B, it returns the fraction of solutions in B that are

weakly dominated by solutions in A. Its formulation can be described as follow:

C(A, B) =
| {b ∈ B : ∃a ∈ A, such that � b} |

|B| (3.16)

where a � b denotes that ”a dominates b”.
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This function is used in order to compare the quality of the different

approaches obtained for the Pareto front. Its value indicates that the closer C(A,B)

is to 1, the larger proportion of solutions in B will be dominated by solutions in

A. Then, it could imply a better quality of the approximated front A against B.

Table 3.5 shows a comparison between the different approaches considered

to generate a first approximation of the Pareto front.
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Table 3.5: Coverage metric comparison between Multiobjective GRASP approaches.

This table also contains the number of nondominated solutions found
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by each method. One may conclude, from these values, that applying

the technique derived from minimizing Wierzbicki’s Achievement Scalarizing

Function provides better results than any other, since the coverage values reach

the maximum value at most of these instances when comparing this method

to the other ones. However, when comparing the pure constructions, between

each other, randomness seems to amplify the range of nondominated solutions

obtained in the objective space. In these cases, the coverage function justifies the

variation in the cardinality of the sets of nondominated solutions, obtained with

the different multiobjective approaches.

An attempt to improve this first approximation is done by applying Path

Relinking (denoted as ”PR”) and the other approach consists of using a reference

point (VNSre f ) denoted as ”VNS” local search procedure as detailed at Figure

3.4. The results of these improvement alternatives are displayed in Tables 3.6, 3.7

and 3.8 for each initial constructive GRASP. Notice that index i corresponds to an

improvement of Mi.
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Instance PR1 VNS1 C(PR1, M1) C(VNS1, M1) C(PR1,VNS1) C(VNS1,PR1)

E-n101-k14 12 14 0 0 0 0

E-n101-k8 8 9 0 0 0 0

E-n51-k5 3 3 0 0 0 0

E-n76-k10 7 7 0 0 0 0

E-n76-k14 7 4 0 0 0 0

E-n76-k7 6 6 0 0 0 0

E-n76-k8 7 7 0 0 0 0

M-n200-k16 2 2 0 0 0 0

M-n200-k17 11 8 0 0 0 1

X-n1001-k43 23 22 0 0 0 0

X-n120-k6 20 16 1 0 0 0

X-n143-k7 20 19 0 0 0 0

X-n162-k11 5 5 0 0 0 0

X-n186-k15 17 14 0 0 0 0

X-n190-k8 20 23 0 0 0 0

X-n233-k16 20 17 0 0 0 0

X-n294-k50 11 9 0 0 0 0

X-n303-k21 11 11 0 0 0 0

X-n384-k52 3 3 0 0 0 0

X-n449-k29 8 8 0 0 0 0

X-n573-k30 24 21 0 0 0 0

X-n655-k131 7 6 0 0 0 0

X-n701-k44 16 15 0 0 0 0

X-n733-k159 5 4 0 0 0 0

X-n895-k37 17 17 0 0 0 0

Table 3.6: Results and coverage for the improved biobjective GRASP Pure Ordered with

biobjective Path Relinking and VNSre f .
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Instance PR2 VNS2 C(PR2, M2) C(VNS2, M2) C(PR2,VNS2) C(VNS2,PR2)

E-n101-k14 11 11 0 0 0 0

E-n101-k8 9 8 0 0 0 0

E-n51-k5 1 1 0 0 0 0

E-n76-k10 4 4 0 0 0 0

E-n76-k14 3 2 0 0 0 0

E-n76-k7 5 10 0 0 0 0

E-n76-k8 7 8 0 0 0 0

M-n200-k16 2 2 0 0 0 0

M-n200-k17 4 9 1 0 1 0

X-n1001-k43 29 29 0 0 0 0

X-n120-k6 27 24 0 0 0 0

X-n143-k7 26 23 0 0 0 0

X-n162-k11 8 8 0 0 0 0

X-n186-k15 15 14 0 0 0 0

X-n190-k8 38 34 0 0 0 0

X-n233-k16 15 16 0 0 0 0

X-n294-k50 6 5 0 0 0 0

X-n303-k21 16 15 0 0 0 0

X-n384-k52 2 2 0 0 0 0

X-n449-k29 12 13 0 0 0 0

X-n573-k30 20 17 0 0 0 0

X-n655-k131 6 5 0 0 0 0

X-n701-k44 7 7 0 0 0 0

X-n733-k159 3 3 0 0 0 0

X-n895-k37 14 13 0 0 0 0

Table 3.7: Results and coverage for the improved biobjective GRASP Pure Random with

biobjective Path Relinking and VNSre f .

These results (Tables 3.6 and 3.7) show how none of the improvement

methodologies finds any new nondominated solution, based on the
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approximation of the Pareto front obtained with metaheuristic M1 or M2.

Instance PR3 VNS3 C(PR3, M3) C(VNS3, M3) C(PR3,VNS3) C(VNS3,PR3)

E-n101-k14 5 5 0 0 0 0

E-n101-k8 4 9 0 0 0 0

E-n51-k5 5 4 0 0 0 0

E-n76-k10 3 3 0 0 0 0

E-n76-k14 2 2 0 1 0 0

E-n76-k7 5 4 0 0 0 0

E-n76-k8 3 3 0 0 0 0

M-n200-k16 3 4 0 0 0 0

M-n200-k17 10 9 0 0 0 0

X-n1001-k43 15 12 0 0 0 0

X-n120-k6 11 13 0 0 0 0

X-n143-k7 9 10 0 0 0 0

X-n162-k11 4 5 0 0 0 0

X-n186-k15 10 8 0 0 0 0

X-n190-k8 14 13 0 0 0 0

X-n233-k16 3 5 0 0 0 0

X-n294-k50 8 12 0 0 0 0

X-n303-k21 5 11 0 0 0 0

X-n384-k52 1 4 0 0 0 0

X-n449-k29 6 15 0 0 0 0

X-n573-k30 19 25 0 0 0 0

X-n655-k131 5 4 0 0 0 0

X-n701-k44 10 11 0 0 0 0

X-n733-k159 6 5 0 0 0 0

X-n895-k37 17 7 0 0 0 0

Table 3.8: Results and coverage for the improved Wierzbicki’s algorithm with

biobjective Path Relinking and VNSre f .

It can be observed how Path Relinking varely improve the results obtained
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from all the algorithms used to construct the first approximation. The number

of nondominated solutions usually increases, however, in some cases the

objective values are improved so that previous nondominated solutions become

dominated, so this number degenerates or stays constant. Note that if only

one nondominated solution has been found, the application of a biobjective Path

Relinking does not make any sense.
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Table 3.9: Coverage metrics comparison between some Multiobjective approaches

proposed.
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Finally, Table 3.9 shows the comparison between the different

methodologies. It reflects how VNS3 obtains, in general, better results than

any other approach. This methodology corresponds to a first approximation

obtained with Wierzbicki’s ASF improved with VNSre f .

3.3 INTERACTIVE APPROACH

Interactive methods have been defined as a tool that provides alternatives,

according to the preferences of the Decision Maker (DM), among a set of feasible

solutions. One of the main advantages of using interactive methods is that

DM’s preferences can be gradually incorporated, or modified, along the decision

process. This favors a continuous and iterative interaction between the analyst

and the DM, who becomes an active participant of the solution procedure.

Developping Decision Support Systems (DSS) has gained a major attention

among the Waste Management community in the last decades (see Section 2.1.2).

However, interactive methods bring the opportunity to explore different areas

and appreciate real - limits of the current problem, which also improve the

decision process. These procedures enable the DM to control the searching steps

and, at the end, (s)he will feel more confident with the final decision.

An early approach to interactive methods in Vehicle Routing Problems (VRPs)

was proposed in Wright (1994), named Computer Aided System for Planning Efficient

Routes (CASPER). Later, this method was applied to a snow removal problem

(Wang and Wright, 1994), considering the optimization of travel time routes,

non - service tour and road homogeneity. The interaction consists of modifying

road conditions in terms of the forecast, and then applying Tabu Search in order

to improve the result. A more sofisticated method is introduced in Iakovou

(2001). To optimize the cost and the risk associated to the transportation of

petroleum products, while improving the routing system. It first computes the

basic nondominated solutions, i.e. the optimum for every objective function.
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Just if the DM is not satisfied with any of them, the procedure continues using

compromise programming until the DM reaches the most preferred solution. At

each step, a linear combination of the objective functions is optimized and the DM

compares the new solution with previously obtained nondominated solutions.

This method allows moving backwards. Another example tackles a single -

objective problem to find the minimal total cost by designing a graphical - user

- interface to interact with the DM called Computarized Routing Using Interactive

Seed Entry (CRUISE) (Baker and Carreto, 2003). At the beginning, all customer

locations are displayed. Then, the user selects a single seed customer to indicate

the region of operation of a vehicle. More customers can be sequentially selected

in a given fashion, also provided by the DM, while the computer program checks

that no constraint is being violated. The remaining customers are allocated using

GRASP metaheuristic. Finally, the user can modify parameters, any of the routes

obtained or stop the procedure if (s)he wants to make a manual alteration of

the solution process. This Graphical User Interface (GUI) enables the user to

incorporate local knowledge, such as constraints envolving route structure or

any other hint that might be difficult to program within a heuristic, as well as

to manage the results obtained.

The key factor to be considered when designing an interactive method

lies on how the information is shared with the DM. According to the type

of information asked, the way of incorporating this information and how

a new solution is generated at each iteration, they might be classified into

different groups (Osiadacz, 1986). Among the interactive procedures developed

considering the former criteria, i.e. the type of information asked to the DM, we

find NAUTILUS family (Miettinen et al., 2010) as a non - tradeoff method. An

Achivement Scalarizing Function (ASF) and a vector, defined by the desired values

that the DM would like to achieve for every objective, define Reference Points

methods. Wierzbicki (1982) proposed an interactive approach of the reference -

point scheme, where the objectives values are normalized by the range defined

by the ideal and the nadir points. In order to obtain more efficient solutions, it
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perturbates the reference point and optimize the resulting ASF. In general lines,

given a reference point, it is projected onto the Pareto front by minimizing an ASF

which provides the corresponding solution. At each iteration, the DM is asked

to provide a new reference point, R which will be achievable if ∃x, a feasible

solution such that fi(x) ≤ Ri, where fi are the objective functions ∀i. The usual

line followed in this procedure can be described in five steps:

Step 1 Set it = 1, define a weighting vector w and generate an initial solution (x1,

f 1).

Step 2 If the DM is satisfied with the solution, the procedure STOPS; otherwise,

it = it + 1 and move to Step 3.

Step 3 The DM provides a reference point, Rit.

Step 4 Generate a set of efficient solutions by perturbating the reference point

when optimizing ASF.

Step 5 Show the solutions to the DM and go to Step 2.

As mentioned before, in Wierzbicki’s scheme, weights (λ) have just a

normalizing role. Nevertheless, the convergence of a reference point based

iterative method might be accelerated if preferential weights are used. These

weights can be obtained based on previous iterations or if the DM stablishes a

preferential ranking or a relation of preference. Different interpretations have

been assigned to the weighting vector, w. Ruiz et al. (2009) provide a wide

analysis of the weighting scheme, which establishes the differences between

various reference point based methods. Considering that weights represent the

relative importance of achieving each given reference value, up to nine different

weighted schemes are analyzed in this work to justify their double role in ASFs:

as a normalization factor, but also as the relative importance assigned to each

objective.
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The history (Wierzbicki, 1977, 1979, 1980) and the range of applications of

these methods holds the idea of implementing an interface, or DSS, that simplifies

the information provided during decision making process. First, the DM provides

the reference points and the DSS computes a neutral solution. Then, based on the

preference information obtained from the reference points, the DSS minimizes

an achievement function determined by the position occupied by them within

an approximation of the ranges of objective functions. The DM is allowed to

change the reference point at any time, what permits an exploration of the most

interesting part of the Pareto Set. Different alternatives have been proposed to

guide the DM through the Pareto optimal set, such as the Tchebycheff method

(Steuer and Choo, 1983), a visual method called Pareto Race (Korhonen and

Laakso, 1986), REF - LEX for nonlinear problems (Miettinen and Kirilov, 2005),

the satisficing trade - off method introduced in Nakayama and Sawaragi (1984)

which later on inspired NIMBUS (Miettinen, 1999; Miettinen and Mäkelä, 2000;

Miettinen et al., 2006) or the light beam search (Jaszkiewicz and Slowinski, 1999),

among others.

In general, these Interactive methods, when applied to real computationally

expensive problems, need metaheuristics in order to generate each new solution.

Jaszkiewicz and Branke (2008) analyze some of these approaches focusing on

evolutionary algorithms (EA) and highlighting that these strategies will only

provide an approximation of the Pareto solution, which is not necessary optimal.

Traditional approaches solve every single - optimization problem and show

the resulting set of solutions to the DM, who will decide according to his

/ her satisfaction degree. Additionally, other approaches, known as Semi -

a - posteriori, generate a set of approximated solutions and, making use of

statistical pre - analysis, guarantee a guided control to the most preferred

solution. Also, interactive Multiobjective Metaheuristics consist of introducing

some modifications into the process that allow the DM to interact during the

metaheuristic compilation. This is, for example, the aim of the algorithm

presented in Molina et al. (2009), g - dominance. Given a reference point, they alter
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the concept of Pareto dominance. First, the objective space is divided according

to the location of the solution in relation to the reference point, R. To determine

this subdivision, a flag is associated to any solution generated, s, as formulated in

Eq. 3.17.

FlagR(s) =


1 if si ≤ Ri∀i

1 if si ≥ Ri∀i

0 otherwise

(3.17)

The relation of dominance defined is given by:

Definition: Given two solution s1, s2 and a reference or guiding point g , where

s1, s2, g ∈ Rp, it is said that s1 is g - dominated by s2 if

Flagg(s2) > Flagg(s1)

or

Flagg(s1) = Flagg(s2) and s2
i ≤ s1

i ∀i = 1, · · · p

Algorithm 19 g - Dominance interactive procedure
procedure G - DOMINANCE (R, f , s, it)

Evaluate f (s) = ( f1(s), · · · , f k(s)).

Determine FlagR( f ).

if FlagR( f ) = 0 then

fi(s) = fi(s) + M ∀i = 1, 2, · · · k.

end if

Include preferences providing a reference point or a choosing a reference solution,

sR.

Compute the new reference point, Rit+1, for the next iteration:

Rit+1 = (1− θ) · Rit + θ · sR

Use a clustering procedure to select the approximated Pareto solutions to display.

end procedure



104 CHAPTER 3. METHODOLOGY

where M is a large penalty assigned to those solutions with null flag, so they

become dominated. Following this procedure (briefly detailed in Algorithm 19),

one can obtain an approximation of the Pareto front around the projection of the

reference point, without varying or setting any parameter in the multiobjective

solver. The most interesting characteristic of this approach is that it can be

easily implemented into any metaheuristic strategy, it just needs to re - define

the dominance based on a reference point.

Some techniques like Pareto Iterated Local Search, an interactive approach of

multiobjective Simulated Annealing or reference point methods have been proposed,

combined with other techniques that help managing the preferences or dealing

with the comparisons between nondominated solutions (Barbosa and Barreto,

2001; Phelps and Köksalan, 2003). For instance, Pareto Race (Korhonen and

Wallenius, 1988) is a learning - oriented procedure where the DM can freely move

around in the Pareto optimal set in order to identify the trade - off that best fits

his / her preferences. A visual environment displays the set of available solutions

in the given direction, so that the DM is aware in real - time of the continuous

changes. This idea is improved in Eskelinen et al. (2010), in the interactive method

called Pareto Navigator. To begin with, a discrete representation of the Pareto set is

given to the DM. The best and worst values for each objective are defined either

by the DM or by the ideal and nadir point, respectively. To reduce computational

cost, a first approximation of the Pareto optimal set is obtained and the direction

of search is set. The DM is continuously informed of the objective values, which

are displayed on a bar chart, so (s)he has the opportunity of stopping the process

and provide a new reference point by indicating the desired values or choosing a

solution within the set available.

Some reference point methods require that the preference information is

introduced in terms of a feasible point. However, also modifying the concept of

dominance and using Chebyshev preference relation, López-Jaimes and Coello

(2014) introduce two alternatives to incorporate this information using either
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feasible or unfeasible reference points into an achievement scalarizing function.

The large variety of interactive methods makes it difficult to select one for its

application to a given problem. With the aim of incorporating some psychological

aspects into the interactive process, Miettinen et al. (2010) introduced NAUTILUS.

The reason is derived from the fact that the final decision might become biased

by previous experiences, since the human being does not react equally to gains

or losses. Then, a reference - point with no trade - off method is defined. The

algorithm begins at the worst scenario, which is either the nadir point or given

by the DM, and continuosly approaching the Pareto front in such a way that each

iteration dominates the previous one. Along the process, an interface shows the

progress, where one is able to observe a constant improvement in every objective

function at the same time, so that no trade - off is required. Miettinen and Ruiz

(2016) describe NAUTILUS Framework which encompasses previous works such

as Miettinen et al. (2010, 2015) and Ruiz et al. (2015). In general, the following

steps describe how this procedure works:

Step 1. Compute the ideal, z∗, and nadir, znad, point of the problem. Also, ask the

DM for the number of iterations to be carried out, itn. Then, set the current

iteration h, and the value function boundaries f 1,up and f 1,lo to:

h = 1; z0 = f 1,up = znad; f 1,lo = z∗; it1 = itn

Step 2. The DM is asked to give preference information, which will be used to

determine the weights, λi, of the Achievement Scalarizing Function (ASF). Note

that λi represents the preference information including a normalization, in

order to avoid any possible bias effect due to the different magnitudes of the

objectives.

Step 3. Define q = zh−1, λi = λh
i and xh which is the optimum of the single -

objective problem:

min max {λi · ( fi(x)− qi)}+ ρ ·
k

∑
i=1

fi(x)− qi

znad
i − z∗i

(3.18)
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subject to: x ∈ ℘h (3.19)

Also, determine f h = f (xh).

Step 4. Compute the new iteration point:

zh =
ith − 1

ith · zh−1 +
1

ith · f h

Step 5. Calculate the bounds for the next iteration by applying an ε - constraint

method, so that k different problems, defined as Eq.(3.20), must be solved.

(Pr)


minimize fr(x)

subject to f j(x) ≤ zj, j = 1, . . . , k, j 6= r,

x ∈ ℘h,

(3.20)

Determine, also, the distance from the current point to the Pareto front:

dh = 100 · ‖ zh − znad ‖2
‖ f h − znad ‖2

Step 6. Show the current values to the DM: zh
i , [ f h+1,lo

i , f h+1,up
i ] and dh.

Step 7. Ask if the DM would like to modify the number of iterations and set ith.

Step 8. Ask if the DM would like to go a step backwards, in that case, go to Step

10.

Step 9. If ith = 1, then stop. Otherwise, ith+1 = ith − 1, h = h − 1. If the DM

wants to change the preference information, then go to Step 2; otherwise,

move forward, set f h = f h−1 and go to Step 4.

Step 10. Ask if the DM would like to provide new preference information, starting

from zh−1. If so, move to Step 1. Otherwise, DM can take a shorter step with

the same preference information just setting zh = 0.5 · zh + 0.5 · zh−1 and go

back to Step 4.
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Afterwards, additional features have been incorporated which incur on

different NAUTILUS approaches. For instance, E - NAUTILUS pre - computes

a good approximation of the Pareto front instead of generating new solutions at

each iteration, to avoid large computational costs during the decision process.

Essentially, these differences come from the two modules that link NAUTILUS:

Preference elicitation module and solver module.

Preference elicitation module It consists of the phase where the DM is asked for

information. Two main approaches have been used until now:

• Choosing one reference solution among a given set of achievable

alternatives from zh−1. This set is defined by a fixed number of options

that are selected using clustering techniques, as detailed in Ruiz et al.

(2015).

• The DM defines a direction of improvement, δh. It can be done

by directly providing the corresponding specifications, by pairwise

comparison or by importance based options (Luque et al., 2009), such

as ranking the objectives or assigning different percentages or ratio of

improvement to every objective function. Later, δh is used to define the

weights since it verifies: δh =
1

λh
i

.

Solver module As one may observe, NAUTILUS involves solving many single -

objective optimization problems. For instance, it needs to optimize Eq.(3.18)

several times to generate new Pareto solutions and the problems derived

from it, using ε - constraint method, to determine the bounds from zh,lo.

Hence, an efficient and speedy single - objective solver is required to reduce

computational cost. Again, two are the options:

1. Optimization option consists of optimizing single - objective problems

by incorporating exact solvers within the method.

2. The option called A posteriori, generates a representative set of solutions

from the Pareto Set, or an approximation of it, in a pre - processing step.
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Combining these modules, different NAUTILUS variants can be developed.

Originally, NAUTILUS (Miettinen et al., 2010, 2015) introduces preference

elicitation by asking the DM for a direction of improvement and an optimization

solver is applied in order to direct the search. On the contrary, E - NAUTILUS

(Ruiz et al., 2015) follows three stages: pre - processing, interactive decision

making and post - processing. First, it pre - generates a collection of

nondominated solutions as an approximation of the Pareto Set using evolutionary

algorithms. This gives the opportunity to show more than one alternative in the

objective space, as many as the DM is able to handle, so the DM can choose one of

them for the next iteration. Then, each iteration reduces the range of possibilities

and the interaction finishes, whenever the DM stops and chooses a final solution

or the collection is reduced to one item.

Landing on the MultiObjective Waste Collection Problem, though it could

be generalized to any MultiObjective Vehicle Routing Problem (MOVRP), a new

variant of NAUTILUS is introduced in this work. Given a general description

of NAUTILUS, provided above, it is implemented within an interface in order

to display the required information to guide the decision making process. The

algorithm follows NAUTILUS scheme, but it incorporates additional features

inspired on Pareto Navigator (Eskelinen et al., 2010) which allows a further

exploration of the Pareto front, in those directions where the DM feels the most

promising solutions could be located.

Step 1. This method starts by generating a discrete representation of the Pareto

front (℘), where the ideal and nadir points are defined by the DM as the best

and worst scenario considered.

Step 2. The DM gives a reference point, in terms of values or chosing one of the

given solutions, which will be projected in ℘. This projection determines the

direction of movement.

Step 3. In real time, the method generates solutions that sequentialy improve the

previous ones while slowly moving along the given direction towards the
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approximation of the Pareto front, displaying into a bar chart the objectives

values. Note that the speed and the direction can be adjusted at any time of

the process.

Step 4. Once the objective values of the solution are available, if the DM is satisfied

with the solution found, then it is projected to the actual Pareto front.

Otherwise, (s)he is asked to provide a new direction or change preferences.

The generation of aproximated Pareto solutions involves solving multiple

parametric problems using an ASF, which is determined by a reference point and

a given direction, so that it is important to find a fast optimizer. The methodology

developed in the previous subsections of is now used to optimize Wierzbicki’s ASF.

To deal with a Vehicle Routing Problem other factors must be taken into

consideration when designing the GUI. For instance, in the initial step, the

approximation of the Pareto front, ℘ will have a finite number of solutions. Then,

one can detail the performance of each solution if they are displayed into a map

using GIS. Notice that it can be time consuming to generate all these images if

the size of ℘ is too large, so a map with the final solution is generated within

the GUI. Also, since an approximated method has been applied to generate the

Pareto front, at the last stage, the DM has the possibility to ask for one more

exploration. This will start considering the final solution, S, as the reference point

and, to minimize the ASF in the problem (3.18) for a reduced set of weights, the

algorithm will try to find any nondominated solution which dominates S.

As it happens in E-NAUTILUS, the proposed variant of NAUTILUS which

will be denoted R-NAUTILUS, will have 3 stages: pre - processing, decision

making and post - processing. Let us detail each of them in the following lines.

Pre - processing stage Due to the computational efforts derived from solving a

MOWCP or MOVRP of the given characteristics, a good estimation of the

Pareto front is generated by applying one of the algorithms described in

Section 3.2. The DM is asked if (s)he wants to be awared when there are 2
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or 3 solutions left in the set of reachable solutions.

Decision making stage The method must take into consideration the discrete,

and non necessarily convex, character of the problem to tackle. As the

procedure advances, the range of reachable solutions in ℘h from the current

point zh shrinks. Notice that it may happen that the projection of the

reference point in ℘ does not correspond to any feasible solution, so the

evaluation of each solution in ℘h is computed in order to find the one that

minimizes the Achievement Scalarizing Function (ASF) as described by Eq.

(3.12). This procedure is implemented within a Graphical User Interface

(GUI) that permits, at any time, to inform the DM about the ranges that

every objective may reach in ℘h and the evolution of the reachable solutions

set. Small steps are taken so that the approximation to ℘ looks continuous in

the GUI. At any time, the DM is allowed to stop the process, set some limits

to the value functions ( f up and f lo) or visualize the projection of the current

solution in ℘. Also, the reference point can be modified and restarting the

process from a desired previous iteration point is also permited. Finally, if

the DM chooses to be awared if a reduced number of solutions, as many as

(s)he is able to handle, are left in ℘h then, they can be displayed one by one

allowing a wider analysis of them.

Post processing stage Once the DM has selected the most preferred solution, it

is displayed on a map so that (s)he can evaluate the real performance of the

service. At this point, the DM has two options:

• If the DM is satisfied with the chosen solution, the interaction ends.

• If the DM is curious about a possible improvement of the chosen

solution, (s)he has the opportunity to ask for a last exploration. In

this case, the last solution defines the reference point and, for a set

of λ values, the multiobjective algorithm is launched in order to

find nondominated solutions that improve the values of the current

solution in the ASF (Eq. (3.18)).
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In any of these situations, an approximation method has been used to

generate ℘, so the final solution reached will be nondominated in ℘ but

its Pareto optimality is not assured. This is why it would be convenient

to give the opportunity of a last search, once the DM is satisfied with the

chosen solution. However, due to the discrete character of vehicle routing

problems, it is not possible to guarantee the Pareto optimality of a given

solution by projecting it onto the Pareto optimal front.

Then, one might observe how R -NAUTILUS shares some similarities with E

- NAUTILUS and Pareto Navigator. However, some other points differentiate

these methods. On the one hand, though R -NAUTILUS considers the same

pre - processing stage of E - NAUTILUS, the former method generates the

approximation of the Pareto front using the algorithm developed in this work,

while E - NAUTILUS applies evolutionary algorithms. Another difference

between these methods lies on the number of solutions managed by the DM.

In the case of R - NAUTILUS is set to one, whereas it is chosen by the DM in

E - NAUTILUS. On the other hand, Pareto Navigator pre - computes a diversified

set of approximated Pareto solutions, which is used to guide the search into the

most promising area, unlike R-NAUTILUS which pre - computes the best possible

approximation of the Pareto front. The new approach saves computational effort

during the iterative procedure, since there is no need of generating new solutions.

Thus, including the stages explained above and the particularities of VRP,

R - NAUTILUS procedure could be sumarized as follows:

Step 0. Determine an approximation of the Pareto front, ℘, using any of the

algorithms proposed at Section 3.2. This approximation will contain the ideal,

z∗, and nadir, znad, points of the problem. Where the components of znad

are determined by the worst values obtained for each objective within the

elements of ℘.

Step 1. Ask the DM for the values desired for each objective, that will define
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the reference point, q1. Also, (s)he is asked for a progression speed s1 ∈

{1, 2, 3, 4, 5} and a maximum number of solutions that (s)he is able to handle,

nS, in case (s)he wants to be awared when a few points are left in the reachable

set ℘max. Then, set the curent iteration, h = 1, and estimate f 1,up and f 1,lo, of

every objective function. These values can also be provided by the DM. By

default these parameters are initialized as follows:

z0 = f 1,up = znad; f 1,lo = z∗; it1 = itmax;℘0 = ℘; nS = 1

Step 2. Once the process starts, the DM is able to stop it and update the preference

information qh, display the solution projected in the given direction of

improvement or move backwards to a previous iteration which enables to

analyze the situation and set new parameters.

Step 3. If h = 1 or the DM has changed the reference point to qh, then compute

xh which is the optimal solution of the single - objective problem formulated

in equation (3.18). Otherwise set qh = qh−1 and xh = xh−1. Also, determine

f h = f (xh).

Step 4. Compute the new iteration point:

zh =
itmax − h− 1

itmax − h
· zh−1 +

1
itmax − h

· f h

Step 5. Determine the bounds for the next iteration f h,lo and f h,up. Also, estimate

the progress at the current iteration h as:

dh = 100 · ‖ zh − znad ‖2
‖ f h − znad ‖2

Step 6. Update the subset, ℘h, of reachable solutions from zh. This set will contain

all those feasible solutions x ∈ ℘h−1 that satisfy f h,lo
i ≤ fi(x) ≤ f h,up

i ∀i ∈

{1, 2, · · · k}.

Step 7. When ith = 1, then the process stops, the final solution is given by f h and

the post - processing stage is applied. Later, different scenarios may arise at

this point of the iteration:
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• In case the DM would like to go a step backwards, go to Step 2 using the

new information given.

• If the DM wants to change the preference information, then reset qh+1

and go to Step 3.

• Also, the DM can establish a lower or upper bound for any of the

objectives considered. Is this is the case, the current set of reachable

solutions is updated, so that only the solutions satisfying the bound are

left.

• Otherwise continue the movement towards the Pareto optimal front

setting ith+1 = itmax − (h + 1), h = h + 1, f h = f h−1 and go to Step

5.

To sum up, this chapter is based on the description of the methodology developed

to face a MultiObjective Waste Collection Problem (MOWCP). This proposal aims to

facilitate the decision making for any MultiObjective Capacitated Vehicle Routing

Problem (MOCVRP). Solving multiobjective real problems is a challenge for

the current society. The interactive method defined uses a pre - computed

approximation of the Pareto front, in order to reduce computational costs, so a

competitive algorithm is required. Here, different approaches combining GRASP

and Path Relinking metaheuristics have been compared and the best one will be

used to solve the real problem at Section 4.

Two different schemes have been used here to obtain the first approximation

of the Pareto front. One is based on the structured idea of multiobjective Pure -

ordered and Pure - Random MultiObjective GRASP proposed in Martí et al. (2015)

which consists of generating the approximation by optimizing one objective at a

time. The other one, optimizes Wierzbicki’s achievement scalarizing function, defined

in terms of the objectives considered, for a number of weighting combinations.

To improve these sets of nondominated solutions, also two alternatives are given

here. On the one hand, Path Relinking is adapted to face a MOCVRP, guiding the

search direction to one of the objectives at a time. On the other hand, during the
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first stage, a set of promising solutions is maintained and a MultiObjective variant

of Variable Neighborhood Search is designed, in order to reduce their distance to

the ideal point defined for each pair of nondominated solutions. As we can see

from the results, the combination that makes use of Wierzbicki’s ASF, and specially

combined with VNSre f , provideS the best approximation of the Pareto front.

Finally, based on the family of NAUTILUS methods and Pareto Navigator, a

new interactive method has been designed and incorporated within an interface

to simplify the decision making process. Notice that the main advantage of the

methodologies proposed in this work is its defined structure, what enables its

applicability to any other multiobjective combinatorial optimization problem.

To conclude, Chapter 4 details the implementation and design of a Graphical

User Interface (GUI) to solve the MultiObjective Waste Collection Problem in the

southern spanish region of Málaga. This GUI uses the methodology designed

in this work,including the optimization of the problems and R - NAUTILUS and

adjusting the corresponding parameters of the algorithms to the set of criteria

proposed.



CHAPTER 4

APPLICATION TO SOLVE A REAL

PROBLEM

The present Chapter contains the description of the real Waste Collection

Problem. It takes place in a southern region of Spain, and Diputación de Málaga

manages the service. Here, the reader will find a description of this problem,

followed by the results obtained when applying the methodology developed in

Section 3. This methodology has been implemented within a Graphical User

Inserface (GUI) in order to facilitate the information exchange with the Decision

Maker. The WCP of Málaga has been subdivided into subproblems according

to the closest depot and type of truck used. The GUI, which is described in this

Section, permits the selection of what is the problem to be analyzed and, then,

upload the approximated Pareto Set previously generated to proceed with the

interactive phase that will guide the DM to select the most preferred solution.

Section 4.3 contains figures that represent the process and results for each of

the given subproblems.

4.1 DESCRIPTION OF THE PROBLEM

Located at the southern region of Andalusia (Spain), the province of Málaga hosts

a growing population of more than 1.6 million people, distributed through an

extension of 7,276 km2. In the last years, the population in Málaga has raised in

115
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almost a 25%. Besides, a large number of tourists visit this city every year which,

added to the current number of inhabitants, generate an amount of waste difficult

to handle. Hence, municipal and rural administrations, awared of the situation

and its possible evolution, showed their interest on the study of their current

waste collection system, which is analyzed in this document.

From the very beginning, the company in charge of managing the waste

collection within the region of Málaga, provided the real data related to

their problem, including containers and landfill location in different coordinate

systems, the number of vehicles available at each depot, as well as their current

routing cost and the total amount of waste collected per month by each route. An

estimation of the total amount of waste collected per month enables the analyst

to determine the average quantity of waste accumulated at each point. This value

is translated as the demand and, since all these street bins must be serviced, our

Waste Collection Problem can be modelled as a Capacitated Vehicle Routing Problem

(CVRP) .

In summary, a fleet of 51 vehicles are distributed into four depots, according

to the subdivision in areas of service: Antequera, Axarquía, Guadalhorce and

Ronda. For an overview, a simple map in Figure 4.1 shows how the province is

divided into different areas.
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Figure 4.1: Subdivision of Málaga.

The assignment of vehicles to each of these regions is given a priori, based on

the number and type of containers to be visited. Some particularities of the roads

force the use of a specific type of trucks (Figure 4.2) which can be rear loading

trucks or side loading truck, each of which corresponds to a bin size and has its

own limited capacity.

(a) Side loading truck (b) Rear loading truck

Figure 4.2: Types of trucks

In particular, rear trucks have a limited capacity of 12,200 kg and it will be

16,800 kg for side loading trucks. Therefore, vehicle’s distribution, as shown in

Table 4.1 has been established, by Diputación de Málaga, in order to satisfy the
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demand within the area under consideration.

AREA Rear trucks containers (RT) Side trucks containers (ST)

Axarquia 5 1456 2 251

Ronda 3 616 0 0

Antequera 7 991 3 1130

Guadalhorce 4 646 3 361

Table 4.1: Vehicle distribution within the region of Málaga.

A large number of containers of two different dimensions are strategically

allocated in the region to store the total waste generated by the current

population, which exceeds 500,000 kg per day.

The number of containers placed at each municipality or town is

proportional to the number of inhabitants within an specific ratio in the

corresponding area. Figure 4.3 shows the location of all the street bins or

containers, to be serviced by Diputación de Málaga. At first sight, one may observe

large empty areas, most of them concentrated on the coast. This is due to the fact

that some municipalities hire private companies for the waste management, so

these services are excluded from this study.
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Figure 4.3: Containers distribution.

Currently, Diputación de Málaga provides the waste collection service,

regarding a total of 4,130 street bins; then transfer them to the corresponding

landfill and the final treatment of solid waste generated. Note that the location of

these bins also contemplates the characteristics of the road that should be driven

from the depot to the collecting point, so that the vehicles available can perform

their route.

In real Waste Collection Problems (WCP), containers are located according to

the trucks and the population concentrated within an area. Since rear containers

or bins have a smaller capacity, they are usually placed at the nucleus of the

municipality, in order to allow the corresponding vehicle to perform the service

and satisfy the population requests. This fact arises when the dimensions

required by a side truck to traverse an specific street is larger than the road’s

width can handle.

Note that a small number of side containers is appreciated, and usually
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placed at road crossings or at the suburbs of urban areas, where side trucks have

complete access to manage the waste loading process. In addition to this, the

capacity that a side truck can host is larger, as well as the corresponding bin’s

size. That is why the required number of this type of vehicles and containers is

lower. Based on this, Diputación de Málaga has considered to use, for instance, 4

rear loading vehicles to service 646 containers in Guadalhorce; whereas, Axarquía

utilizes only 2 side trucks to satisfy the demand of 1,456 street bins.

As previously stated, this problem can be interpreted as a Capacitated Vehicle

Routing Problem (CVRP), so a solution is defined as a set of routes followed by

a fleet of trucks with maximum capacity. Besides, an additional time constraint

is added, in order to satisfy worker’s shifts, limited to seven and a half hours.

In order to provide the opportunity to explore a wide set of alternatives, to

analyze in depth the WCP in Málaga, in addition to the usual objective of cost

minimization, some other improvements are incorporated to the current service,

as well as an estimatation of the cost associated to the possibility of running a

daily service.

To attain these requirements, we formulate the problem incorporating

multiple objectives. Then, in terms of the modelization, the following objectives

are formulated:

f1 To minimize total distance. This value is given by the sum of the overall

route distances.

f2 To balance the route system. Different approaches, as explained in Section

3.2.1, have been studied. Here, the optimization of route balancing will be

determined by the minimization of the longest route.

f3 To minimize the difference between the duration of the longest and shortest

routes in terms of time.

f4 To minimize the number of routes.
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Some of the common issues to deal with in Waste Management Problems

(WMPs) are already solved, as local administrations have already set the location

of the bins, the assignation of vehicles to depot and the subdivision in areas to deal

with the multi - depot planning. Also, the distance and time matrix have been

obtained with a GIS called NEVA (Pacheco, 2015). The performance of the current

system can be analyzed from Table 4.2, where f1 denotes the total distance, f2 the

length of the longest route in the system and f4 the number of routes running.

Unfortunately, there are not reliable reference data to compare f3.

Real Problem total distance (km) longest route (km) numRoutes

Guadalhorce_ST 150.252 108.009 2

Guadalhorce_RT 326.402 122.025 3

Ronda_ST 406.086 210.427 2

Antequera_ST 346.853 242.360 3

Antequera_RT 847.304 237.543 5

Axarquia_ST 322.131 322.131 1

Axarquia_RT 1008.001 424.000 3

Table 4.2: Current performance.

These data are not comparable with the result of our proposal, since

Diputación de Málaga considers a periodical service and thus, they do not collect

every container in the same day. Then, two different concepts of ”route” are

used here: from the database, we understand that ”route” corresponds to the

tour performed by a vehicle on a day. However, they use this term to define

a group of tours that cover the service of some specific municipalities, but not

necessarily visiting all the containers everytime. So, it happens that a group of

bins are daily collected while others are being visited periodicaly. The distribution

of these routes can be observed in Table 4.3 and a screenshot of one example of

the data provided is displayed in Figure 4.4.
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Figure 4.4: Guadalhorce routing distribution.

Here n indicates the number of containers serviced by the given route and

the right colum ”length” denotes its distance, in km. From this Figure, one may

appreciate how they enumerate up to 4 routes but subdivided into different tours

every day. In this work, f4 is considered as an additional objective, but it is

introduced in the model as a parameter, so that multiple multiobjective problems,

considering f1, f2 and f3, are solved for a range of values of f4. Then, f4 is

considered as a parameter that provides new opportunities. Besides, regarding

the information on route balance, it may seem that f3 and f4 are equivalent

objectives. However, f4 contemplates the stopping time required to load the bins

along the route, so that the difference between the longest and shortest routes, in

terms of time, will implicitly balance the number of stops for every route as well.

Region loading type number of tours number of routes defined number of vehicles number of containers

Antequera rear 15 5 6 991

Antequera side 11 3 4 1130

Axarquía rear 11 3 5 1456

Axarquía side 2 1 2 251

Guadalhorce rear 8 3 4 646

Guadalhorce side 2 2 3 361

Ronda rear 5 2 3 616

Table 4.3: The use of available vehicles in Diputación de Málaga.

Then, since the study of a daily service is being considered in this work, we
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will refer indistinctly to the number of routes and tours. Regarding the objective

denoted f4, as a starting point for the construction of solutions, we consider less

tours than what is currently used, so that one can analyze if there exists any

feasible solution with a reduced or increasing number of tours used. Later, when

the final solution is found, some adjustments can be performed with these tours

in order to take advantage of the differences between the employees’ shifts and

the tours’ duration. A smart combination of these tours among the number of

vehicles available, subject to time windows determined by shift’s duration, could

bring multiple benefits to the company. This fact is an immediate consequence of

the analysis carried out in this work.

The following section contrasts the results obtained for the MOWCP in

Málaga. To simplify this problem, in addition to the subdivision into areas, we

have split the problem according to the type of truck that collects the bins, i.e. side

loading and rear loading trucks. This was not a difficult task, since the dataset

provided by Diputación de Málaga tags each container according to its type. Then,

a total of seven problems derived from the original, each of which is detailed in

the next lines.

4.2 RESULTS AND DISCUSSION

The MultiObjective Waste Collection Problem (MOWCP) of Diputación de Málaga can

be reduced to solve seven different, and with a smaller dimension, MOWCPs. As

previously mentioned, these problems have been determined in terms of the type

of truck and the area where the street bins are allocated, which are described as

follows:

RONDA

Ronda is an area located at the north - west part of the region of Málaga, in the

middle of a mountain range. More than 51,816 people live in this area that extends



124 CHAPTER 4. APPLICATION TO SOLVE A REAL PROBLEM

over 1,253 km2. It is important to highlight the dominance of the city of Ronda,

which hosts more than the half of this population. However, other municipalities

such as Cortes de la frontera, Benaoján or Montejaque, also belong to this area.

Its complex geography does not allow to design the most efficient route

system. In addition to this, the municipalities of this area are characterized by

the narrowness of their streets and other difficulties arise in some areas due to

the pavement conditions. Therefore, these issues make it not suitable, for the

moment, to use side containers in this area. Hence, this part of the region counts

with rear containers only, so a single WCP is solved in Ronda.

The number of containers assigned to each town or municipality is shown

in Table 4.4 and its distribution can be seen in Figure 4.5.
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RONDA num. Containers number of persons Total Kg/Year

ALGATOCIN 24 866 279,860

ALPANDEIRE 271 147,455

ARRIATE 145 4,075 2,155,276

ATAJATE 5 142 45,889

BENALADID 7 258 83,376

BENALAURIA 20 492 158,996

BENAOJAN 1,531 833,041

BENARRABA 16 544 287,723

CARTAJIMA 250 136,029

CORTES DE LA FRONTERA 120 3,461 1,118,469

FARAJAN 246 133,852

GAUCIN 36 1,647 871,102

GENALGUACIL 12 499 161,259

IGUALEJA 823 447,807

JIMERA DE LIBAR 12 461 148,978

JUBRIQUE 31 712 230,092

JUZCAR 239 130,044

MONTEJAQUE 1,010 549,557

PARAUTA 241 131,132

PUJERRA 314 170,852

RONDA 182 36,665 19,949,992

TOTAL 610 54,747 28,170,781

Table 4.4: Distribution of containers by population in Ronda.
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Figure 4.5: Distribution of rear bins in Ronda

Note that nowadays this area deals with a total of 616 bins to service using

3 routes. We try to improve this service by providing multiple solutions obtained

when solving the MultiObjective Waste Collection Problem using a discrete variation

in the number of routes between 3 and 7, which leaves the Decion Maker (DM) a

wide set of alternatives to select his / her most preferred route system.

ANTEQUERA

Located at the north of the province of Málaga, the subregion of Antequera

also shares boundaries with the Andalusian province of Córdoba. It constitutes

an important needle of the transportation network in Andalucía because of its

extension along the plain of the Guadalhorce river. Mainly dedicated to the

agriculture, this region hosts a population of over 126,000 inhabitants, spread in

24 different municipalities.

Figures 4.6 and 4.7 shows the location of rear and side street bins in the area

of Antequera.
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Figure 4.6: Distribution of rear bins in Antequera

Figure 4.7: Distribution of side bins in Antequera

In this area, 3 vehicles are used to service 1,130 side containers placed on

the roads and other accesible points; whereas 7 are the rear loading vehicles in

charge of collecting the waste generated at 991 different points within this area.

However, the number of routes vary, since the current system covers the service
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with a periodical routing system that counts up to 11 and 15 for the side and rear

collection problems, respectively, as previously mentioned.

Table 4.5 summarizes the number of containers placed at each of its towns.



4.2. RESULTS AND DISCUSSION 129

Municipalities num. Containers number of persons Total Kg/Year

ALAMEDA 100 5,455 2,168,289

ALMARGEN 2,045 864,300

ANTEQUERA 13 41,620 18,157,347

ARCHIDONA 316 8,705 3,464,903

ARDALES 2,588 1,093,793

CAÑETE LA REAL 1,812 765,824

CAMPILLOS 8,677 3,667,251

CARRATRACA 816 344,875

CASABERMEJA 115 3,651 2,132,136

COLMENAR 148 3,583 915,671

CUEVAS BAJAS 1,494 594,666

CUEVAS DE SAN MARCOS 4,029 1,457,050

CUEVAS DEL BECERRO 1,704 720,179

FUENTE PIEDRA 72 2,733 1,086,331

HUMILLADERO 70 3,430 1,439,469

MOLLINA 108 5,185 2,175,991

SIERRA DE YEGUAS 3,488 1,474,170

TEBA 4,044 1,709,158

VALLE DE ABDALAJIS 112 2,712 997,340

VILLANUEVA DE ALGAIDAS 4,471 1,561,940

VVA. DE LA CONCEPCION 76 3,460 2,020,594

VVA. DE TAPIA 1,603 638,052

VVA. DEL ROSARIO 132 3,588 1,428,153

VVA. DEL TRABUCO 231 5,444 2,166,907

TOTAL 1,493 126,337 53,044,388

Table 4.5: Distribution of containers by population in Antequera.
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AXARQUÍA

The eastern zone of the province of Málaga corresponds to the area of Axarquía,

which is extended through the inner and coastal border limit with Granada. More

than 205 thousand people live in the different municipalities of this area. The

number of inhabitants at each town, and the containers placed there, can be

checked at Table 4.6.
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AXARQUIA num. Containers number of persons Total Kg/Year

ALCAUCIN 2,832 1,187,820

ALFARNATE 38 1,240 370,442

ALGARROBO 6,601 3,301,080

ALMACHAR 76 1,915 614,710

ARCHEZ 26 487 154,800

ARENAS 38 1,397 444,058

ARFARNATEJO 29 515 153,853

ARROYO DE BENAMARGOSA 57 1,613 481,873

BENAMARGOSA 57 1,613 517,769

BENAMOCARRA 102 3,084 989,956

BORGE (EL) 52 984 315,862

CANILLAS DE ACEITUNO 92 1,851 588,369

CANILLAS DE ALBAIDA 30 979 311,190

COMARES 1,583 485,720

COMPETA 125 3,885 791,305

CUTAR 35 661 78,613

FRIGILIANA 89 3,395 1,718,345

IZNATE 42 943 302,701

LOS ROMANES 414 123,680

MACHARAVIAYA 34 500 160,499

MOCLINEJO 51 1,283 411,840

NERJA 1 22,918 13,440,410

PERIANA 127 3,542 421,253

RINCON DE LA VICTORIA 41,827 18,258,626

RIOGORDO 99 3,083 921,025

SALARES 11 229 72,791

SAYALONGA 40 1,568 498,413

SEDELLA 23 715 227,274

TORROX 18,514 8,869,920

TOTALAN 23 736 236,254

VELEZ MALAGA 4 76,911 37,177,695

VIÑUELA 138 2,073 658,935

TOTAL 1,439 209,891 94,287,079

Table 4.6: Distribution of containers by population in Axarquia.
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Despite the fact that this might be one of the largest area, most of its

municipalities manage their own waste collection system, so only a few towns

appear in the previous table. Even those municipalities with a large population,

show a small number of containers as can be the case of Rincón de la Victoria,

in the former case. This might be occasioned by some arragements between the

town hall and Diputación de Málaga to collect a larger amount at a reduced number

of points where they have placed side containers, as it occurs in Vélez - Málaga.

The highest point in the province is located in this region, which is part

of a mountainous zone where one can also find streams and reservoirs. These

geographical characteristics determine the location of rear and side street bins,

depending on the properties of the road. In this case, the depot is located in Vélez

Málaga, one of the largest town in the area, in terms of extension. Then, in order

to satisfy the requirements of such an amount of people, two different systems

run the collection service, one for the side bins and the other one for the rear

containers.

From Figure 4.8 one may observe how side containers are located at the

edges of the roads and, usually, on main roads in order to facilitate the loading of

the waste on the side truck.

Figure 4.8: Distribution of side bins in Axarquia

The rest of containers placed within the area (Figure 4.9) are collected using

rear trucks.
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Figure 4.9: Distribution of rear bins in Axarquia

In this occasion, more than 1,400 bins are placed in Axarquía. Then, 5 rear

trucks are available to run a total of 11 tours divided into 3 routes. The service

performed for the side loading containers is split into 2 tours run by 2 vehicles.

However, only one large route is designed to collect these street bins.

GUADALHORCE

The Guadalhorce region is located close to the city centre of Málaga. It is named

after the river that runs over the large valley where it lays out and, taking

advantage of its position, it features a good road network. In particular, it defines

the link between the inner province of Málaga and the coast.

Up to 38,794 inhabitants make Alhaurín de la Torre the largest town in this

region. Smaller municipalities, such as Alhaurín el Grande, Almogía, Álora, Cártama,

Coín, Pizarra and Valle de Abdalajís, are also located in this valley.

An outline of the distribution of containers, in terms of the population of each

municipality, can be found in Table 4.7. It shows the distribution of containers to

be collected and transported to the depot by Diputación de Málaga in Guadalhorce.

In this case, the depot is located at Cártama, which is a strategic point in the area
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because of its road connectivity.

GUADALHORCE num. Containers number of persons Total Kg/Year

ALH. DE LA TORRE 38,067 13,576,387

ALH. EL GRANDE 24,249 8,648,273

ALORA 13,342 4,758,351

ALOZAINA 65 2,206 794,276

BURGO, EL 75 1,947 701,022

CARTAMA 351 24,242 8,645,777

CASARABONELA 70 2,690 1,072,395

COIN 22,536 8,037,341

GUARO 75 2,284 910,539

MONDA 79 2,383 950,006

PIZARRA 65 9,298 3,316,081

TOLOX 2,295 899,220

YUNQUERA 116 3,091 1,112,922

TOTAL 896 148,630 53,422,590

Table 4.7: Distribution of containers by population in Guadalhorce.

In this occasion, the waste management in this sector of the province also

counts with two different types of trucks, each of which requires a specific sort

of container. Figure 4.10 shows the distribution of rear containers along the

municipalities of the valley.
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Figure 4.10: Distribution of rear bins in Guadalhorce

Currently, the service is run with a fleet of 4 rear trucks that perform a total

of 8 different routes to visit all the 646 containers periodicaly.

Furthermore, the location of the set of side bins to be collected by the

administrations is displayed in Figure 4.11. Here, one may observe that most

of these containers are distributed along the roads, instead of being concentrated

in urban areas. However, the conditions of their location in the municipality of

Cártama, make it feasible to set side loading street bins. The main advantage

derived from this distribution is the reduction of resources needed to collect the

street bins, since a smaller number of containers imply to cut off the number of

routes, and so the number of vehicles running the service, what permits a cost

reduction to the administration.
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Figure 4.11: Distribution of side bins in Guadalhorce

To satisfy the population requests, 2 different routes are performed to

complete the service that counts with around 360 containers.

Hence, the main problem has been subdivided into the seven scenarios

detailed above, which could be listed as:

1. Ronda rear loading problem.

2. Antequera rear loading problem.

3. Antequera side loading problem.

4. Axarquía rear loading problem.

5. Axarquía side loading problem.

6. Guadalhorce rear loading problem.

7. Guadalhorce side loading problem.

Each of these problems has been tackled as a CVRP, including a time

constraint in the duration of each tour, which is limited by the shift length to

7h30min. Then, to solve these problems, Wierzbicki’s Achievement Scalarizing

Function is minimized multiple times using GRASP and improved with Path
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Relinking. This algorithm has been proved to be the one that provides the best

approach, within the set of algorithms developed in this work. To generate

an approximation of the Pareto front, as explained in Section 3.2, including the

optimization of the number of routes, the method has been run several times,

each of them incrementing the number of routes used.

Note that, when applying Path Relinking to this particular problem, some

factors must be taken into consideration. On the one hand, if f1 or f3 is the guiding

objective function, Path Relinking studies the possible connections between two

solutions from the approximated Pareto front, zi and zi+1. Each of them are

defined with a tag. Therefore, the guiding solution, SG, will be the one with

the best value of the objective function under consideration and the other one

will be the initial solution in the Path Relinking process. To reach the solution

guiding the search from the initial solution, Si, it is neccessary to transform each

route from Si into its match in SG. This is done by avoiding the evaluation of

the common elements and evaluating the restricted list of moves given by the

symmetric difference set. Finally, at each step, the best - improvement strategy is

considered to select the move to be performed.

On the other hand, if f2 is the guiding objective function, then the initial

solution (Si) and the one that guides the search (SG) are chosen in terms of the

value f2, so that the solution with better value will be chosen as SG. Now, there

is no need to compute the symmetric difference for each pair of routes, but only

between routes from Si and the longest route from SG. When two routes are

paired, the subsequent steps are equal to the previous case.

Visual representations of the approximations of the Pareto fronts obtained

are presented in the following Figures (Figures 4.12,4.13, 4.14, 4.15, 4.16, 4.17,

4.18). Note that the number of routes utilized are represented in different colours

in order to state the different options.
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Figure 4.12: Approximated Pareto front Antequera rear loading.

Figure 4.13: Approximated Pareto front Antequera side loading.

Figure 4.14: Approximated Pareto front Axarquía rear loading.
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Figure 4.15: Approximated Pareto front Axarquía side loading.

Figure 4.16: Approximated Pareto front Guadalhorce rear loading.

Figure 4.17: Approximated Pareto front Guadalhorce side loading.
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Figure 4.18: Approximated Pareto front Ronda

To interpret these graphics, remember that the XY axis, which defines the

bottom surface, is determined by the values corresponding to f1 and f2 in meters,

whereas the Z axis represents the values of f3 in seconds. Each of these graphics

represents the union of the results obtained for each of these values, where

solutions with the same number of routes are plotted using the same color and

thus, the value achieved by objective f4 is defined in terms of colours. For a given

problem, up to 5 different number of routes have been studied.

In general, results show a concentration of nondominated solutions in the

proximities of the area of what would be defined as the ideal point, given by the

algorithm used. In the resolution process, the Pareto front found in Axarquía rear

loading problem (see Figure 4.14), shows a reduced number of nondominated

solutions. Increasing the number of routes reduces the difference between the

duration of the longest and the shortest routes in the collection system, what

improves the value of f3. However, this variation implies an incremental cost

into the total distance, in meters, driven by the employees.

Road conditions make it difficult to achieve an appropriate balance of the

routing system in Ronda, as it can be appreciated from its Pareto front (Figure

4.18). This might correspond to the driving conditions, which enlarge the time

required to move from one point to another in some particular cases. However,

for this problem, good values have been achieved for the other objectives,
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improving the current system in most of the solutions provided.

The Pareto front obtained for Guadalhorce rear loading problem, reveals a

large number of nondominated solutions concentrated within a range of values

for f2. There are some isolated nondominated solutions at the tail of the graph.

The limitation on the duration and the distance matrix might be the main cause

for this spread distribution of efficient solutions.

There are multiple factors that prevent from obtaining a more populated

Pareto front when dealing with real problems. In this case, road conditions,

bins distributions and the number of routes applied could be the main reasons.

However, as detailed in Section 3.2, literature reveals the influence of the

definition considered for the route balance. Two of these formulations have

been considered in this problem: the minimization of the longest route and

the minimization of the difference between the longest and shortest duration of

the routes. The former consists of optimizing a min - max problem, which, in

multiobjective problems, is not easy to handle. However, the last definition, as

deduced in Halvorsen-Weare and Savelsbergh (2016), provides a greater number

of nondominated solutions.

A lack of efficient solutions can be observed in some regions of the Pareto

front (see Figures 4.17 and 4.15) for the side loading problems in Guadalhorce and

Antequera. Here, using a larger set of routes leads to better values on the largest

route. However, the empty areas in the Pareto front are due to the real distance

between some of the bins to collect, which makes it impossible to interchange bins

in the routing sequence to reduce their length.

Nevertheless, to handle this amount of alternatives, a Graphical User

Interface (GUI) has been implemented in order to help the Decision Maker (DM)

in the decision process. To generate the approximation of each Pareto front,

this interface includes the methodology developed in this work, as well as the

interactive method (R-NAUTILUS) that permits an exploration of these solutions

to analyze the different alternatives. An example is detailed in the following
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section (Section 4.3).

4.3 GUI TO SOLVE THE REAL PROBLEM

Once we have obtained the set of nondominated solutions for each MultiObjective

Waste Collection Problem (MOWCP) of Diputación de Málaga, as detailed in a

previous section (Section 4.2), it is convenient to translate this information to the

Decision Maker (DM) using a Graphical User Interface (GUI).

This GUI has been designed, specifically for the MultiObjective Waste

Collection Problem (MOWCP) of Diputación de Málaga. The code is implemented

using language Java 8.1, within Eclipse Oxygen 1.0. In order to display the location

and routing, the use of different extensions of ArcGIS 10 are required. In this case,

the MOWCP of Rear Loading in Ronda has been chosen, as an example, to detail the

performance of this interface. The decission procedure follows 4 different phases:

Phase 1. The application is run and the main window shows how to proceed. Press

the ” START ” button as shown in Figure 4.19.

Figure 4.19: Main window of the GUI designed.
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Phase 2. Then, as shown in Figure 4.20, select the problem to analyze. Clicking

on the name, the DM might observe the distribution of the containers of the

selected problem through the region. Then, press ” Proceed to analysis ” to

start the decision process.

Figure 4.20: GUI is used to select the problem.

Phase 3. At this point, the set of nondominated solutions of the chosen problem is

being loaded, so please wait. Next, R - NAUTILUS as detailed in Section 3.3

is used for selecting the most preferred solution. Some boxes are provided

on the left to define the initial reference point. Also, on the right hand, the

evolution of the achievable region can be observed, as well as the variation

range of each objective function (See Figure 4.21). Notice that, at any time, the

DM might press ” STOP ” to re - define the navigation or to go to a previous

point, as desired.
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Figure 4.21: R - NAUTILUS is implemented within the GUI.

Phase 4. When the most preferred solution is selected, a wider analysis can be

obtained if the routing system is drawn. This is dispayed on the last screen,

after clicking on ”Display final solution”.

Phase 3 lasts until the DM is satisfied with the solution found, being aware

of the limitations on the values that the functions may achieve. Different steps are

followed in this part of the process.

Step 1. First, set the reference point. For each objective, a desired value is defined

by the DM. These values must be introduced into the white boxes on the left

of the screen.
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Figure 4.22: Set the reference point.

Step 2. Then press the ”START” button. At this point, the range of values varies

dinamically, as well as the achievable set of points, while the procedure

advances as one can observe in Figures 4.23, 4.24 and 4.25.

Figure 4.23: First achievable set.
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Figure 4.24: First iteration achievable set.

Figure 4.25: n - th iteration achievable set.

.

Step 3. At any time, the DM can press the ”STOP” button and decide.
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Figure 4.26: Screen shot when ”STOP”.

Different options arise at this moment:

• The DM may ask to see the current most preferable solution. In this case,

(s)he should press the button ”DISPLAY FINAL SOLUTION”, which

leads the process to Stage 4.

• A new reference point can be defined. This option would guide the

process to Step 1.

• The DM might be interested in considering a perspective observed from

any of the previous iterations. In this case, the DM should click on the

area and the procedure would restart from that point.

• Clicking on the ”PROCEED” button, the process continues normally.

Note that, if the DM does not press the ”STOP” button, the process continues

until it reaches the most preferred solution, in the direction established.

The last screen shows a description of the solution selected, including some

details that cannot be noticed from the simple values, such as the distance driven

from the depot to the first container visited, or from the last one to the depot, the

average speed of each route, the time invested to service a number of containers

or the time required to complete each route. The latter value will allow the
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user to design different strategies combining different tours that will be serviced

by a single vehicle, obeying the time constraint. An example of the solution is

shown in Figure 4.27. Here, some of the routes are overlapped, so an individual

performance is detailed in Figures,4.28,4.29,4.30 and 4.31.

Figure 4.27: Solution performance.

(a) Route 0 (b) Route 1

Figure 4.28: Routes solution S.
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(a) Route 2 (b) Route 3

Figure 4.29: Routes solution S.

(a) Route 4 (b) Route 5

Figure 4.30: Routes solution S.

(a) Route 6 (b) Route 7

Figure 4.31: Routes solution S.

This GUI has been designed for this particular problem, but the idea can be

extrapolated to solve any other MultiObjective Capacitated Vehicle Routing Problem

(MOCVRP).





CHAPTER 5

CONCLUSIONS AND FUTURE LINES OF

RESEARCH

Waste collection problems have been a social challenge for many years. The

particular features of each scenario of application make it unfeasible to find

the appropriate methodology that encompasses all of them. In addition to this,

decision making approaches can be considered. For instance, the interest might

lay on how to structure waste management. In this context, some authors have

defined Decision Support Systems (DSS) to define the best management policy in

terms of a given set of attributes. A different perspective arises when multiple

costs are to be optimized, so determining the best solution involves a decision

making process and, likely, the design of an efficient engine to find the most

preferable solution.

This document introduces a methodology to analyze the real MultiObjective

Waste Collection Problem (MOWCP) in Málaga. Dealing with such a problem

requires to solve different issues that determine the main contribution of this

work. Generally speaking, the goal is to provide a useful tool that permits an

easy information exchange between the waste managers and the analyst. This

procedure implies getting over several aspects, corresponding to the objectives of

this research as introduced in Chapter 1:

Obj.1 To analyze the current Waste Collection System in Málaga.

151
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Obj.2 To define a realistic model for the Waste Collection Problem in Málaga.

Obj.3 To study, design and implement an efficient, effective and fast method to

solve the MultiObjective Waste Collection Problem.

Obj.4 To define an appropriate interactive method which helps the waste manager

on the decision making process.

Obj.5 To design and implement a decision interface to display the strengths and

weaknesses of the proposed solutions.

This document began with a brief literature review on Waste Management

(Chapter 2), focused on those works that consider routing and a modelization

based on nodes instead of arcs. It revealed the lack of an efficient multiobjective

method which allows the DM to learn and guide the search of the most preferred

solution during the decision making process.

Hence, a methodology capable of generating a good approximation of the

Pareto Set is introduced in Chapter 3, reaching Objective 3. Vehicle Routing

Problems, and so optimizing the routing collection system in WCP, are hard to

solve using exact methods. Therefore, metaheuristic strategies are developed to

generate the best possible approximation of the Pareto front. Different approaches

are proposed in this work based on GRASP improved with Variable Neighborhood

Search and Path Relinking strategies. Previous researches successfully apply the

hybridization of GRASP and either Path Relinking or VNS to optimize single

- objective problems. Here, an extrapolation to the multicriteria perspective is

applied. To obtain a first approach of the Pareto front, GRASP pure - ordered and

GRASP pure - random approaches pursue the optimization of a different objective

at each construction in an ordered or random fashion, respectively. This idea was

introduced in Martí et al. (2015), improved with Path Relinking. Moreover, another

alternative is proposed in this study. It formulates Wierzbicki’s Achievement

Scalarizing Function (Wierzbicki, 1980) which is optimized for different weight

combinations, providing nondominated solutions. The optimization process
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uses, in both cases, GRASP metaheuristic. During the construction phase of the

GRASP proposed, two different greedy functions are utilized to construct the

whole system of routes at the same time.

The performance of these approaches have been tested with common

instances from the literature. Note that no instances have been found for

a biobjective VRP which contemplates route balance, so the common set of

instances for the single - objective VRP has been used to evaluate the performance

of the algorithms proposed. Then, the sets of nondominated solutions obtained

have been compared with each other. An analysis of the results details that

the approximation of the Pareto fronts obtained using GRASP pure - ordered or

GRASP pure - random approaches are usually dominated by the ones obtained if

Achievement Scalarizing Function (ASF) is applied, leading to the conclusion that

the last method generates the best approximation. Varying the weights allows

a wider exploration of the range of options available in the solution space. To

the best of our knowledge, this technique had not been used within VRP to

generate the Pareto front, although some studies on other fields define an ASF

after determining the weights, so that only one efficient solution will be found.

An improvement methodology is applied next, in order to improve, if

possible, the approximation of the Pareto front (℘) obtained. Now, two

alternatives are included: Path Relinking and Variable Neighborhood Search (VNS).

The former selects a pair of nondominated solutions from ℘ and tries to transform

one into another, with a better value on one of the objectives, by moving nodes

in order to reduce the differences between these solutions. On the other hand, a

multiobjective variation of the metaheuristic VNS is defined, denoted by VNSre f .

In this case, a set of potential efficient solutions is maintained during the previous

phase. Later, for each pair of nondominated solutions in ℘, a reference point

is determined by their best values on each objective and VNS is applied to

minimize the distance between the potential efficient solution to this point.

Results show the effectiveness of both alternatives. On the one hand, due to the
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good performance of the ASF method in the construction phase, the improvement

phase does not contribute with a large number of new nondominated solutions,

if so Path Relinking is able to find them in a shorter fraction of time. On the

other hand, Path Relinking and VNSre f improve the results obtained for the other

constructions. In particular, VNSre f performs better. Based on its own definition,

it pursues to fill the gap looking for a new nondominated solution, if possible,

between two distant nondominated solutions.

Once the approximation of the Pareto Set has been generated, a decision

process is needed to manage the amount of solutions generated. Note that, to

save computational cost, this approximation is generated in advance, so that the

dimensions of the problem do not obstruct the decision making process. In this

context, according to Objective 4, NAUTILUS has been the selected philosophy to

guide the decision making to the most preferred solution. Among other reasons,

this method gives the opportunity to explore the area according to the given

preferences. However, different features have been incorporated to this method

in order to simplify the interaction with the DM. For example, it allows to go

backward and modify the reference point at any time, as the decision maker wills.

In spite of asking for a initial reference point, this method starts from the worst

scenario which can be determined by the nadir point or provided by the DM.

Information about the range of achievable values is continuosly visible, which

awares the DM of his / her possibilities. These are the main reasons why this

interactive procedure is appropriate to face a MOWCP, or any MultiObjective

Capacitated Vehicle Routing Problem. It permits a deep exploration of the

objective space, and not only based on the value of the objectives, but also

incorporating further information about the routes of the chosen solution, such

as the number of containers used, the duration of the route or the time, among

others.

To tackle a real problem, it is important to determine, first of all, what is

the aim of it, in order to define the objectives and set some constraints. In this
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work, Section 4.1 deals with Objective 1, including a descriptive analysis of the real

problem in a region in south Spain to provide a wide overview of the achievable

possibilities. Then, due to the complexity of formulating a mathematical model

of certain characteristics of the problem, it is defined by considering four different

objectives for the real WCP in Málaga. Economical and labor factors are included

into the model when defining the objective functions and the constraints. Then,

cost savings and route balance, as well as the number of routes, determine the

objectives, subject to truck’s capacity and the limitation on the working shifts.

This contributes to Objective 2, which consists of defining the Waste Collection

model in Málaga.

When dealing with real logistic problems, it is interesting to display the

different locations or routing that form solutions for VRP in general, and WCP in

particular. This is the objective achieved (corresponding to Objective 5) in Section

4, where it is described how this methodology is applied to a real MultiObjective

Waste Collection Problem (MOWCP) using Geographical Information Systems

(GIS). In general, GIS like ArcGIS and its extension to Network Analysis, are a

useful tool to draw the solution obtained in terms of the routes followed, as

well as the location of the points to serve, in order to provide a better idea of

the performance of the solution.

The difficulties arised when dealing with problems that need to provide

a service to over 4,000 bins. This fact has led us into the subdivision of the

real problem into 7 smaller problems. The distribution of the containers into

subregions and the type of vehicles in charge of providing the service have been

decisive elements to define these subproblems.

An analysis of each individual problem reveals the strengths and

weaknesses of the current solid waste management. So, in order to provide a wide

vision of the alternatives available to run the service, four different objectives are

considered:

Route’s lengths are included in the dataset provided by Diputación de Málaga



156 CHAPTER 5. CONCLUSIONS AND FUTURE LINES OF RESEARCH

for every problem, one might consider it as a reference point to compare our

solutions. Note that better values of objective f1 would imply saving costs on

the routing system. However, the waste manager must incorporate his / her

preferences into the decision process in order to determine which are the best

options overall.

A Graphical User Interface (GUI) has been implemented in Java 8.1

programming language, using Eclipse Oxygen and some extensions. The

proposed methodology is applied to solve the MOWCP of Diputación de Málaga.

It contains the complete interactive process, from the location of the containers

to the decision making process, including the selection of the problem to be

analyzed and R-NAUTILUS, as well as a final visualization of the selected

solution performance. Here, the DM is provided with an interactive method

that allows an exploration of the alternatives defined by the set of nondominated

solutions previously generated.

Finally, the GUI constitutes a useful tool which translates the numerical

results obtained into visual information. Its management helps the DM in the

decision making process and at the same time, it allows us to analyze the range of

solutions available, which permits the DM to learn about the different options to

handle the Waste Collection System. Therefore, the objectives marked in Section

1 have been accomplished.

To sum up, a general scheme can be deduced from this methodology, which

enables its application into any other MOVRP. As observed, three main stages

define this methodology:

1. Generate a good approximation of the Pareto front for the MultiObjective

problem.

2. Apply an interactive method to deal with the decision making process.

3. Design a GUI which permits an easy interpretation of the results obtained.
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To conclude this document, some proposals on future lines of research are

listed in the following paragraphs.

FUTURE LINES OF RESEARCH

Future lines of research derived from this study might be focused on different

directions.

For instance, the development of new algorithms to improve the

approximation of the Pareto front, either efficiently or computationally. Currently,

genetic algorithms, evolutionary algorithms and other metaheuristics based on

population are gaining popularity within the MultiObjective community. Note

that, besides the difficulties derived from dealing with multiple objectives, one

must consider the complexity due to the large scale of this kind of problems if

applied to real world challenges.

Also, designing an improved Graphical User Interface or implementing this

methodology within the options of a Geographic Information System (GIS) would

be a good opportunity to share this methodology with the scientific community.

Finally, based on improving the Waste Collection System for the real

problem, it would be interesting to incorporate some other challenges, such as:

• Considering the multi - depot problem, where the exchange of trucks

among them is allowed, in order to reduce the fleet size and, therefore, the

environmental cost.

• Introducing more objectives into the model such as periodicity or some

environmental perspectives.

• Contemplating the real trace of the routes, in order to improve the

compactness of the collection system.
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editors, Multiobjective Optimization: Interactive and Evolutionary Approaches,

pages 179–193. Springer Berlin Heidelberg, Berlin, Heidelberg.

Jaszkiewicz, A. and Slowinski, R. (1999). The Light Beam Search approach: an

overview of methodology applications. European Journal of Operational Research,

113(2):300 – 314.



168 BIBLIOGRAPHY

Jozefowiez, N., Semet, F., and Talbi, E. (2007a). Target aiming pareto search and

its application to the vehicle routing problem with route balancing. Journal of

Heuristics, 13(5):455.

Jozefowiez, N., Semet, F., and Talbi, E.-G. (2002). Parallel and Hybrid

Models for Multi-objective Optimization: Application to the Vehicle Routing

Problem. In Guervós, J. J. M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P.,

and Fernández-Villacañas, J.-L., editors, Parallel Problem Solving from Nature

— PPSN VII: 7th International Conference Granada, Spain, September 7–11, 2002

Proceedings, pages 271–280. Springer Berlin Heidelberg, Berlin, Heidelberg.

Jozefowiez, N., Semet, F., and Talbi, E. G. (2007b). Multi - objective Vehicle

Routing Problems. European Journal of Operational Research, 189(2):293–309.

Jozefowiez, N., Semet, F., and Talbi, E.-G. (2009). An evolutionary algorithm

for the Vehicle Routing Problem with route balancing. European Journal of

Operational Research, 195:761–769.

Karadimas, N. V., Papatzelou, K., and Loumos, V. G. (2007). Optimal solid

waste collection routes identified by the Ant Colony System algorithm. Waste

Management & Research, 25(2):139–147.

Keeney, R. and Raiffa, H. (1993). Decisions with Multiple Objectives: Preferences

and Value Trade-Offs. Wiley series in probability and mathematical statistics.

Applied probability and statistics. Cambridge University Press.

Khan, D. and Samadder, S. R. (2014). Municipal solid waste management

using Geographical Information System aided methods: A mini review. Waste

Management and Research, 32(11):1049–1062.

Kim, B.-I., Kim, S., and Sahoo, S. (2006). Waste Collection Vehicle routing problem

with time windows. Computers & Operations Research, 33:3624–3642.

Kontoravdis, G. and Bard, J. (1995). A GRASP for the Vehicle Routing Problem

with Time Windows. ORSA Journal on Computing, 7(1):10–23.



BIBLIOGRAPHY 169

Korhonen, P. and Wallenius, J. (1988). A Pareto race. Naval Research Logistics

(NRL), 35(6):615–623.

Korhonen, P. J. and Laakso, J. (1986). A visual interactive method for solving the

multiple criteria problem. European Journal of Operational Research, 24(2):277 –

287.

Lacomme, P., Prins, C., Prodhon, C., and Ren, L. (2015). A Multi-Start based

Path Relinking ( MSSPR) approach for the vehicle routing problem with route

balancing. Engineering Applications of Artificial Intelligence, 38:237–251.

Laguna, M. and Martí, R. (1999). GRASP and Path Relinking for 2-layer straight

line crossing minimization. INFORMS Journal of computing, 11:44–52.

Layeb, A., Ammi, M., and Chikhi, S. (2013). A GRASP algorithm based on new

randomized heuristic for Vehicle Routing Problem. Journal of Computing and

Information Technology, 21(1):35–46.

Lenstra, J. K. and Rinnooy Kan, A. (1981). Complexity of vehicle routing and

scheduling problems. Networks, 11:221–227.

Lewandowski, A. and Wierzbicki, A. (1989). Aspiration Based Decision Support

Systems: Theory, Software and Applications. Lecture Notes in Economics and

Mathematical Systems. Springer.

Li, X. and He, J. (2009). Intelligent GIS for solving high dimensional site

selection problems using Ant Colony System technology. International Journal

of Geographical Information Science, 23(4):399–416.

Lin, S. (1965). Computer Solutions of the Traveling Salesman Problem. Bell System

Technical Journal, 44(10):2245–2269.

López-Jaimes, A. and Coello, C. A. C. (2014). Including preferences into a

multiobjective evolutionary algorithm to deal with many-objective engineering

optimization problems. Information Sciences, 277(Supplement C):1 – 20.



170 BIBLIOGRAPHY

López-Sánchez, A., Hernández-Díaz, A., Gorázar, F., and Hinojosa, M. (2017). A

multiobjective GRASP - VND algorithm to solve the waste collection problem.

International Transactions in Operational Research, pages 545 – 567.

López-Sánchez, A., Hernández-Díaz, A., Vigo, D., Caballero, R., and Molina, J.

(2014). A multi-start algorithm for a balanced real-world Open Vehicle Routing

Problem. European Journal of Operational Research, 238(1):104 – 113.

Luque, M., Miettinen, K., Eskelinen, P., and Ruiz, F. (2009). Incorporating

preference information in interactive reference point methods for

multiobjective optimization. Omega, 37(2):450 – 462.

MacDonald, M. L. (1996). A multi-attribute spatial decision support system for

solid waste planning. Computers, Environment and Urban Systems, 20(1):1 – 17.

Male, J. and Liebman, J. (1978). Districting and routing for solid waste collection.

Journal of the Environmental Engineering Division- ASCE, 104.

Mandal, S. K., Pacciarelli, D., Løkketangen, A., and Hasle, G. (2015). A memetic

NSGA-II for the bi-objective mixed capacitated general routing problem.

Journal of Heuristics, 21(3):359–390.

Maniezzo, V. and Roffilli, M. (2008). Algorithms for Large Directed Capacitated

Arc Routing Problem Instances. In Cotta, C. and van Hemert, J., editors,

Recent Advances in Evolutionary Computation for Combinatorial Optimization,

pages 259–274. Springer Berlin Heidelberg, Berlin, Heidelberg.

Marinakis, Y. (2012). Multiple Phase Neighborhood Search-GRASP for the

Capacitated Vehicle Routing Problem. Expert Systems with Applications,

39(8):6807 – 6815.

Marinakis, Y., Migdalas, A., and Pardalos, P. M. (2005). Expanding Neighborhood

GRASP for the Traveling Salesman Problem. Computational Optimization and

Applications, 32(3):231–257.



BIBLIOGRAPHY 171

Marks, D. and Liebman, J. (1970). Mathematical Analysis of Solid Waste Collection:

Final Report. Public Health Service publication. U.S. Government Printing

Office.

Marshall, R. E. and Farahbakhsh, K. (2013). Systems approaches to integrated

solid waste management in developing countries. Waste Management, 33(4):988

– 1003.

Martí, R., Campos, V., Resende, M. G., and Duarte, A. (2015). Multiobjective

GRASP with Path Relinking. European Journal of Operational Research, 240:54–71.

Martí, R., Velarde, J. L. G., and Duarte, A. (2009). Heuristics for the bi-objective

path dissimilarity problem. Computers & Operations Research, 36(11):2905 – 2912.

Mateo, P. and Alberto, I. (2012). A mutation operator based on a Pareto anking

for multi-objective evolutionary algorithms. Journal of Heuristics, 18:53–89.

Miettinen, K. (1999). Nonlinear multiobjective optimization. Kluwer Academic

Publishers, Boston.

Miettinen, K. (2008). Introduction to Multiobjective Optimization: Noninteractive

Approaches. In Branke, J., Deb, K., Miettinen, K., and Słowiński, R., editors,
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