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Highlights

• Abiotic stress is the primary cause of crop loss worldwide, reducing average
yields for most major crop plants by more than 50%. This impact is predicted to
increase over time in the face of global environmental changes.

• Understanding how plants sense and respond to these environmental
changes is imperative in order to generate resistant crops.

• The cultivated tomato (Solanum lycopersicum) is a major crop plant and a
model system for fruit development.

• In this project, we are using our previous knowledge in lipid signaling
pathways from Arabidopsis thaliana to enhance tomato tolerance to abiotic
stresses.

• We are focusing on the signaling pathway of phospholipase C (PLC) and
diacylglycerol kinase (DGK), with the novel involvement of SYT, a contact site
tether capable of transporting lipids (Figure 1).

Figure 1: Lipid transport at ER-PM CS. PtdInsP or PtdInsP2

is cleaved to diacylglycerol (DAG) and inositol triphosphate

(InsP3) by a phospholipase C (PLC), which leads to the release

of Ca2+, enhancing the cytosolic Ca2+ concentration. Some DAG

molecules are converted to phosphatidic acid (PA) by a

diacylglycerol kinase (DGK), other molecules are transported to

the ER by SYT1 proteins. Modified from Wikimedia Commons

and Singh et al, 2015.
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Homologs of Arabidopsis thaliana PLCs, DGKs and SYTs in Solanum lycopersicum

Figure 6: Phylogenetic analysis, protein domain and expression pattern comparison between Arabidopsis thaliana and Solanum lycopersicum SYT (a), PLC (b) and DGK (c) protein families. Red color indicates high expression values while blue colors indicates low expression values.

Expression values are relativized to the values from the same specie.

a b c

Determination of the lipid transfer properties of the SMP domains by in vitro assays.

SYT1 is a glycerolipid binding protein and it belongs to the SYT

family, which has other four members. This protein is a plant ortholog

of the mammal extended synaptotagmin (E-Syts) and yeast tricalbin

families. The functional characterization and subcellular localization

of SYT1 show a role of plant ER-PM contact site components in the

cellular adaptation to environmental stresses such as cold or salinity

(Figure 2).
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SYT1 is involved in multiple abiotic and biotic stresses

Figure 2: Summary of the roles of AtSYT1 in biotic and abiotic stresses.

The syt1 loss-of function mutant shows increased sensitivity to several abiotic

stresses such as salt, freezing and mechanical damage; and it shows

differential resistance to fungal and viral infections

The defining feature of SYT proteins is the presence of the SMP domain. SMP domains are typically found in

intracellular proteins that act in membrane contact sites. Structural and biochemical studies of the SMP

domain of E-SYT2 revealed that it forms a 90--long cylinder with a deep hydrophobic groove which contains

glycerophospholipids (Figure 3, 4). Our previous studies have demonstrated that AtSYT1 is a protein that

transfers saturated DAG molecules in vivo. The aim of this task is to identify the lipid molecules transported

by the SMP domains of the four selected Solanum lycopersicum SYT proteins and their PM anchoring

mechanism. The generated knowledge will elucidate the specificity of SMP domains, the chain length or the

saturation/unsaturation degree of the fatty acyl chains of the ligands. These details remain elusive and they

will provide useful information to decipher the role of each SYT protein in tomato.
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Figure 5: Lipid displacement assay in SYT ptoteins.
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Figure 3: Surface representation of the

SMP dimer. Hydrophobic residues (blue)

line the channel. Lipid fatty acid moieties

are in space-filling representation. De

Camilli & Reinisch, 2014.

Figure 4: Crystal structure of the SMP

domains of a E-Syt2 dimer with bound

hydrophobic molecules. Schauder et al,

2014.
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