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Abstract

Three-dimensional (3D) lidar sensors are a key technology for navigation, localization,
mapping and scene understanding in unmanned vehicles and mobile robots. This technology,
which provides dense point clouds, can be especially suitable for novel applications in
unstructured or natural environments, such as search and rescue, planetary exploration,
agriculture, and off-road exploration. This is a challenging research area that involves
disciplines ranging from sensor design to artificial intelligence and machine learning. In
this context, this thesis proposes contributions towards intelligent scene understanding of
unstructured environments from 3D ground-based range measurements. Particularly, the
major contributions include new methodologies for classification of spatial features, object
segmentation and navigability assessment in natural and urban environments, as well as the
design and development of a new rotating multi-beam lidar (MBL).

Classification of spatial features is very relevant because this is largely required as a
fundamental step towards higher level scene understanding problems. The thesis contributions
in this respect aim to improve the effectiveness, both in computational load and accuracy,
of supervised learning classification of spatial shape features (i.e., tubular, planar or scatter
shapes) obtained from principal component analysis (PCA). This is achieved by proposing
an efficient voxel-based neighborhood concept in an original contribution that defines offline
training and online classification procedures as well as five alternative PCA-based feature
vector definitions. Moreover, the feasibility of this approach is evaluated by implementing
four types of supervised learning classifiers found in scene processing methods: a neural
network model, support vector machines, Gaussian processes, and Gaussian mixture models.

Object segmentation is a further step towards scene understanding where sets of 3D points
corresponding to the ground and other scene objects are isolated. The thesis proposes novel
contributions for point cloud segmentation based on geometrically featured voxel maps. In
particular, the proposed methodology involves two steps: first, a ground segmentation method
specially designed for natural environments; second, subsequent isolation of individual
objects. Besides, the ground segmentation method is integrated into a novel navigability
map approach based on occupancy grids which can be suitable for mobile robots in natural
environments.
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The design and development of a new affordable high-resolution 3D lidar sensor is also
proposed in the thesis. New commercial MBLs, such as those developed by Velodyne, are
becoming an affordable and popular type of 3D sensor that offers high data rates within a
limited vertical field of view (FOV). The proposed design consists on a tilting platform which
improves the resolution and vertical FOV of the 16-beam Velodyne VLP-16. Furthermore,
the complex scanning patterns produced by rotating MBL configurations are analyzed both
in hollow sphere simulations and actual scans in representative environments.



Resumen

Los sensores lidar 3D son una tecnología clave para navegación, localización, mapeo y
entendimiento de escenas en vehiculos no tripulados y robots moviles. Esta tecnología,
que provee nubes de puntos densas, puede ser especialmente adecuada para nuevas aplica-
ciones en entornos naturales o desestructurados, tales como búsqueda y rescate, exploración
planetaria, agricultura, o exploración fuera de carretera. Esto es un desafío como área de
investigación que incluye disciplinas que van desde el diseño de sensor a la inteligencia
arificial o el aprendizaje automático (machine learning). En este contexto, esta tesis propone
contribuciones al entendimiento inteligente de escenas en entornos desestructurados basado
en medidas 3D de distancia a nivel del suelo. En concreto, las contribuciones principales in-
cluyen nuevas metodologías para la clasificación de características espaciales, segmentación
de objetos, y evaluación de navegabilidad en entornos naturales y urbanos, y también el
diseño y desarrollo de un nuevo lidar rotatorio multi-haz (MBL).

La clasificación de características espaciales es muy relevante porque es extensamente
requerida como un paso fundamental previo a los problemas de entendimiento de alto nivel de
una escena. Las contribuciones de la tesis en este respecto tratan de mejorar la eficacia, tanto
en carga computacional como en precisión, de clasificación de aprendizaje supervisado de
características de forma espacial (forma tubular, plana o difusa) obtenida mediante el análisis
de componentes principales (PCA). Esto se ha conseguido proponiendo un concepto eficiente
de vecindario basado en voxel en una contribución original que define los procedimientos
de aprendizaje offline y classificación online a la vez que cinco definiciones alternativas de
vectores de características basados en PCA. Además, la viabilidad de este enfoque es evaluado
mediante la implementación de cuatro tipos de clasificadores de aprendizaje supervisado
encontrados en metodos de procesamiento de escenas: red neuronal, máquina de vectores de
soporte, procesos gaussianos, y modelos de mezcla gaussiana.

La segmentación de objetos es un paso más allá hacia el entendimiento de escena,
donde conjuntos de puntos 3D correspondientes al suelo y otros objetos de la escena son
aislados. La tesis propone nuevas contribuciones a la segmentación de nubes de puntos
basados en mapas de voxeles caracterizados geometricamente. En concreto, la metodología
propuesta se compone de dos pasos: primero, una segmentación del suelo especialmente
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diseñado para entornos naturales; y segundo, el posterior aislamiento de objetos individuales.
Además, el método de segmentación del suelo es integrado en una nueva técnica de mapa de
navegabilidad basado en cuadrícula de ocupación el cuál puede ser apropiado para robots
móviles en entornos naturales.

El diseño y desarrollo de un nuevo y asequible sensor lidar 3D de alta resolución también
se ha propuesto en la tesis. Los nuevos MBLs, tales como los desarrollados por Velodyne,
están siendo cada vez más un tipo de sensor 3D asequible y popular que ofrece alto ratio de
datos en un campo de visión vertical (FOV) limitado. El diseño propuesto consiste en una
plataforma giratoria que mejora la resolución y el FOV vertical de un Velodyne VLP-16 de
16 haces. Además, los complejos patrones de escaneo producidos por configuraciones de
MBL que rotan se analizan tanto en simulaciones de esfera hueca como en escáneres reales
en entornos representativos.
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E Edge size of voxels

G Set of voxels that correspond to ground points

Gd Set of voxels disconnected to the lowest voxel in G

Gl Set of voxels connected to the lowest voxel in G

hh,hl High and low thresholds of the vertical collision zone for a vehicle considering the
height of the current XY

M Confusion matrix

Mi j i jth entry in M. Is the number of elements of true class i that have been assigned to
class j by the classifier

N Number of patterns in an input space, such as number of points in a dataset or
neighborhood

NC Number of target classes

n j
g Number of Gaussian components in a model j of GMM

NL Number of components of pi

NV Number of voxel in a spatial 3D grid including all points in D

N95c Rounded integer number of the 95% significant voxels in the middle of the distribution
of c

P Range measurement

p j
i Component j of pi

s() Size of an object, that is the number of its inner 3D points

ti Target class for pi

V Data structure of a GFVM

Xi i-th 3D point in a set

XvYvZv Local frame of the VLP-16

XY Cell in a 2D horizontal grid
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U’,V’,W Objects in te scene segmented with the proposed algorithm

U,V,W Hand-labeled objects





Chapter 1

Introduction

1.1 Background and motivation

Automatic recognition of the environment is a complex process which is used in robots
with autonomous tasks such as navigation or manipulation. In autonomous vehicles the
accurate identification of traversable terrain and obstacles is crucial to the safe navigation.
Furthermore, new challenging applications of autonomous vehicles, such as Search and
Rescue or planetary exploration, take place in natural or unstructured environments. On-
board exteroceptive sensors such as cameras or 3D scanners can produce accurate and high
resolution information about the surrounding scene, but this huge amount of raw data may
be difficult to understand for a decision making process. For this reason, complex sensor
information must be processed so that it can be useful for navigation control. The main
purpose of this thesis is to offer contributions to the challenging scene understanding problem
in unstructured environments based on 3D point clouds. The major contributions include
new solutions for point cloud classification, object segmentation, navigability assessment,
and the development and qualitative analysis of a tilting multi-beam lidar device.

Due to the big amount of data captured from a 3D scene, the large point cloud can be
transformed into a effective representation to reduce the execution time when processing
the features extraction or posterior applications such as object classification or the trajec-
tory planification. There are three main groups of techniques: i) reducing the data in the
point cloud, for instance keeping only the frontal closest area [86] or discarding redundant
information [57], ii) transforming the information into a 3D model such as elevation maps
[92][56] which reconstruct the terrain in two and half dimensions loosing relevant geometric
information from the scene, or voxel maps [17] which avoid that problem, or iii) extracting
a bi-dimensional (2D) model such as height map [29] or occupancy grid [103] [23]. This
thesis project proposes a voxel-based neighborhood computation where points in each non-
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overlapping voxel in a regular grid are proccessed at once to extract relevant 3D features. This
voxel-based solution significantly reduces data processing in comparison with point-based
techniques.

Classification of primitive geometric features is largely used as a fundamental step
towards higher level scene understanding problems [116]. For instance, classifying points
into coarse geometric categories such as vertical or horizontal has been proposed as the first
layer of a hierarchical methodology to process complex urban scenes [32]. Furthermore,
classification of scan points prior to segmentation is useful to process objects with unclear
boundaries, such as ground, vegetation and tree crowns [8]. In this sense, spatial shape
features can describe the shape of objects for later contextual classification [127]. Thus,
classification of spatial shape features based on principal component analysis (PCA) is a
constituent process in recent scene processing methods [125][18][38][49][55]. Therefore,
this thesis focuses on improving the effectiveness, both in computational load and accuracy,
of supervised learning classification of spatial shape features (i.e., tubular, planar or scatter
shapes) obtained from covariance analysis [47].

After processing the raw data from the scene, such as the voxelization and geometric
classification, a segmentation and navigability analysis may be applied. A segmentation
method is required to isolate individual objects in a scene as a prior process to the classifi-
cation or semantic recognition of them. Much effort has been made to solve the problem
of segmenting in 2D images, and more recently the challenge has also been applied to 3D
point clouds, as 3D sensors have become more widely used. In [26] several segmentation
algorithms have been developed for both dense and sparse point clouds, which depends on
the scan device, concluding that algorithms which first extract the ground offer more accurate
results in the subsequent segmentation process. Some works start the process extracting the
ground by fitting it in a flat plane [126] [125] or by using a height threshold [122]. Then the
non-ground points are grouped in objects or segments depending on the distance between
points by using a graph based algorithm such as Normalized Cut or Ncut [101] [122] and the
algorithm of Felzenszwalb and Huttenlocher (FH) [31] over the range image [126] or over
the 3D point cloud [102]. Other methods perform the segmentation based on the similarity
of the normal vector computed at each point taking into account the local neighbor points. In
[89] the normal at each point is computed with the information of the k-Nearest Neighbors
(KNN). To reduce the normal estimation at each point, in [125] the points are first clustered if
they are nearer than a distance threshold, which is called the growing region technique, then
these clusters are grouped based on the similarity of the normal. The main drawback of this
point-based segmentation approaches is the high memory and execution time consumption
since it has to process each point in the point cloud, hence they may be incompatible with
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Real-Time applications. Another set of techniques for 3D segmentation is the group-based
techniques, which aim to solve the time-consumption problem of the point-based techniques
by reducing the scene to a voxel model. Usually the scene is discretized in 3D cubes with
constant size as a 3D grid, but these voxels can also be dynamically positioned around groups
of points [37]. Once the ground has been extracted, the objects are isolated by merging adja-
cent voxels [25]. Other authors do not extract the ground as a previous step, but implement
segmentation based on geometric information as local geometric features (eigenvalues from
the covariance matrix, or PCA) [97] or besides that, also based on height and normal vector
[38] based on voxels or point-wise neighborhood. The main problem of these techniques
is that they assume flat and continuous ground, as in an urban environment. Thus ground
detection is risky in unstructured environments where big slopes or non-flat areas belong to
the ground.

The commercial devices for obtaining dense and accurate 3D data are expensive, heavy
and/or power consuming. Most of the solutions to minimize the cost of a 3D scanner device
consist in rotate a 2D laser rangefinder (LRF) in any axis [59] [63]. Less authors [50] and [72]
use a rotation with an already finished 3D LRF (Velodyne) for mapping applications. The
Velodyne Lidar sensors are being increasingly used in many 3D laser scanner applications.
However, the point clouds generated by multi-beam scanners, as Velodyne, have a sparse and
inhomogeneous density. This mentioned point cloud inhomogeneity substantially affects the
results of typical processing techniques, such as finding good point correspondences for scan
registration [111]. Due to the density rises around the new rotation axis, [121] implements
not only one as usual but two additional rotations, in pitch and roll, to make uniform the
density. This thesis proposes adding a tilting rotation to the Velodyne Puck with the purpose
of increasing density, which is made more homogeneous, as well as the vertical field of view.
In particular, a compact and light design is presented which can be used as a portable sensor.
This design has been implemented as the new Velomotion-16 3D sensor.

This thesis addresses challenges of the robotic scene understanding problem regarding
point cloud classification, segmentation of natural terrain and other scene objects, and
navigability assessment. Besides, the thesis explores the possibilities offered by the addition
of a degree of freedom to multi-beam lidar sensors to obtain affordable rapid full-3D high
resolution scans.

1.2 Contributions

The goal of this thesis is to contribute new methodologies and developments towards intelli-
gent scene understanding of unstructured environments based on 3D lidar sensor information.
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This sensor technology, which provides dense point clouds, can be especially suitable for
novel applications in unstructured or natural environments, such as search and rescue and
off-road exploration. This is a challenging research area that involves disciplines ranging
from sensor design to artificial intelligence and machine learning. Contributions include
new methodologies for classification of spatial features, object segmentation and navigability
assessment in natural and urban environments, as well as the design and development of a
new rotating multi-beam lidar (MBL).

In particular, this PhD dissertation offers the following main contributions:

• A voxel-based neighborhood approach for classification of spatial features with
supervised learning methods. Improving the effectiveness of spatial shape features
classification from 3D lidar data is very relevant because it is largely used as a fun-
damental step towards higher level scene understanding challenges of autonomous
vehicles and terrestrial robots. In this sense, computing neighborhood for points in
dense scans becomes a costly process for both training and classification. The thesis
contributes an effective voxel-based neighborhood computation where points in each
non-overlapping voxel in a regular grid are assigned to the same class by considering
features within a support region defined by the voxel itself. Thus, the classified point
cloud can be represented by the resulting geometrically featured voxel map. Besides,
the thesis proposes a new general framework for implementing and comparing different
supervised learning classifiers. These contributions provide offline training and online
classification procedures as well as five alternative feature vector definitions based
on principal component analysis for scatter, tubular and planar shapes. Moreover,
the feasibility of this approach is evaluated by implementing a neural network (NN)
method, in particular a multi-layer perceptron-based model, as well as three other
supervised learning classifiers found in scene processing methods: support vector
machines (SVM), Gaussian processes (GP), and Gaussian mixture models (GMM).
This voxel-based solution significantly reduces data processing in comparison with
point-based techniques, hence it may be compatible with real-time applications.

• Segmentation and navigability analysis based on geometrically featured voxel
maps (GFVM). Navigability assessment is useful for planning obstacles free trajec-
tories in autonomous navigation tasks in 3D environments. Based on GFVM, the
proposed methodology involves two steps: first, a ground segmentation method spe-
cially designed for natural environments; second, subsequent isolation of individual
objects. Besides, the ground segmentation method is integrated into a novel navigabil-
ity map approach based on occupancy grids which can be suitable for mobile robots
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in natural environments. The unstructured ground is extracted, that is, each voxel is
identified as ground or non-ground considering slopes and rough surfaces found in
unstructured scenes. Then, the scene is split into objects and a second segmentation
in regions inside each object is performed based on the voxel’s geometric class. Fi-
nally, the proposed 2D occupancy grid represents accessible areas by considering the
attributes and the height of each voxel over the ground level in relation to vehicle
dimensions.

• Design and development of a portable and affordable 3D lidar sensor. The Velo-
dyne multi-beam lidars are being increasingly used in many 3D laser scanner applica-
tions. However, the point clouds generated by multi-beam scanners have a sparse and
inhomogeneous density, which is sparser for the less expensive and lighter VLP-16
(Puck) sensor. This limitation is partially coped with in mobile applications by consid-
ering longitudinal motion in successive scans, but remains a problem in stop and go
or static applications. This thesis proposes adding a tilting rotation to the Velodyne
Puck with the purpose of increasing density, which is made more homogeneous, as
well as the vertical field of view. Even if adding an extra degree of freedom has been
common with two-dimensional scanners, this idea has not been exploited with light 3D
multi-beam devices. In particular, a compact and light design is presented which can be
used as a portable sensor. This design has been implemented as the new Velomotion-16
3D sensor.

The scientific production of this thesis is listed below, starting from the most recent ones:

• [66] Sensors. Analysis of 3D Scan Measurement Distribution with Application to a
Multi-Beam Lidar on a Rotating Platform. 2018. (Journal Q1).

• [88] Sensors. Voxel-Based Neighborhood for Spatial Shape Pattern Classification of
Lidar Point Clouds with Supervised Learning. 2017. (Journal Q1).

• [15] HRI’16, IEEE International Conference on Human-Robot Interaction. NavCue:
Context immersive navigation assistance for blind travelers. 2016.

• [87] MED’15, 23rd Mediterranean Conference on Control and Automation. Occupancy
grids generation based on Geometric-Featured Voxel maps. 2015.

• [85] IWANN’15, 13th International Work-Conference on Artificial Neural Networks.
Multi-layer Perceptrons for Voxel-based Classification of Point Clouds from Natural
Environments. 2015. (Core B)
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• [84] ICIT’15, IEEE International Conference on Industrial Technology. 3D Segmen-
tation Method for Natural Environments based on a Geometric-Featured Voxel Map.
2015.

• [86] Master Thesis for Master in Mechatronics, University of Málaga. Local Semantic
Map based on 3D data for navigability. 2014.

• [83] Eurathlon’14, Workshop and Summer School euRathlon Arcas. Local Semantic
Map based on 3D data for navigability. 2014.

• [98] ROBOT’13, First Iberian Robot Conference. CUADRIGA: Robot Móvil para
Búsqueda de Víctimas en Situaciones de Emergencia (Quadriga: A Mobile Robot for
Ground Search and Rescue). 2013.

1.3 Context

This thesis has been conducted within the Robotics and Intelligent Control Systems research
line of the Doctoral Program in Mechatronics Engineering (Programa de Doctorado en
Ingeniería Mecatrónica) of Universidad de Málaga (UMA), established as an official Doctoral
Program by the Spanish Government (RUCT registration number 5600225).

This doctoral thesis has been supported by a doctoral grant (BES-2012-061907) given
by the Spanish Ministry of Economy and Competitiveness (MINECO) associated with the
National Project RAMBLER: Towards Long-Range Exploration Robot Autonomy in Natural
Environments (DPI2011-22443). This project aims to develop and implement a set of new
tools to advance towards the goal of a long-range exploration robot. These tools include
the generation of maps of the environment with different levels of interpretation, such as
cartography, occupation, slopes, admissible trajectories classification, as well as the inclusion
of semantic information for the interpretation of elements different to the ground. It will also
address new and robust 3D simultaneous localization and mapping (SLAM) mechanisms to
allow long time operation under limited supervision in natural environments.

Furthermore, two research stays were also supported by MINECO in the context of
research stay grants for doctoral students. The author spent a three-month stay at the
group IRA2 (Interaction, Réalité Augmentée, Robotique Ambiante), laboratory of IBISC
(Informatique, Biologie Intégrative et Systèmes Complexes) of the University of Évry Val
d’Essonne in France continuing with her thesis project activity under the supervision of Phd.
Mr. Fakhr-Eddine Ababsa. The second research stay, with a duration of four months, was
at the Robotics Institute of Carnegie Mellon University in Pittsburgh (Pennsylvania, United
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States of America) under the supervision of Phd. Mrs. M. Bernardine Dias and Phd. Mr.
Aaron Steinfeld. During that stay the author participated in the project Assistive Robot for
Blind Travelers, which is described below in the list of all research projects related to this
thesis. In the course of both stays, the author produced as outcomes the publications [84] and
[15], respectively, mentioned in Section 1.2.

The author has developed her major research within the Robotics and Mechatronics Lab
of the Systems Engineering and Automation Department (Departamento de Ingeniería de
Sistemas y Automática) of UMA. The research interests of this group include the implemen-
tation of robotics systems for emergency response in catastrophe situations with the goal of
improving the response time and safety of the rescue team. Some main achievements of the
group were the design and implementation of mobile robots that successfully assist in human
rescue (Alacrane: [65], Quadriga: [98]).In addition, the group focused its research on the
development of low cost sensors to capture the 3D environment on real time (Unolaser [63]
and Unomotion [59]) and the accurate recognition of the terrain for autonomous navigation
[56]. Thus, this PhD dissertation is a step forward in natural terrain recognition which could
be applied to robotic autonomous navigation such as search and rescue missions.

Besides, the author has participated in other research projects related to the thesis:

• ATICA: All Terrain Intelligent Compact and Autonomous Vehicle (806/56.3879).
Funded by CDTI and Grupo ITURRI S.A. from 02/07/2012 to 31/12/2014. De-
velopment of an off-road autonomous vehicle for transport applications in outdoor
environments. The vehicle contains onboard sensors (laser, GPS, IMU) and the con-
trol system is based on several processors with Ubuntu and the well-known Robot
Operating System (ROS) platform. My contribution is the integration of the 3D
laser rangefinder information with the navigation system through the generation of an
occupancy grid with labelled obstacles depending on its height.

• Autonomous navigation of a 4x4 mobile robot in natural terrains based on differential
GPS and 3D laser rangefinder (P10-TEP-6101-R). Funded by ’Proyecto de Excelencia
de la Junta de Andalucía’ from 27/03/2013 to 27/03/2017. My contribution was the
development of an algorithm for the Quadriga robot integrated with the motion control
system in Labview [98]. The algorithm aims to locate victims by: i) an autonomous
navigation algorithm of complete coverage in a determined area, integrated with
Google Maps, and ii) tracking the victims telephone Bluetooth signals.

• First-Rob: Multi-Robot system for cooperation with first response human and canine
rescue teams in catastrophe scenarios (DPI2015-65186-R). Funded by MINECO from
01/01/2016 to 31/12/2018. The mission of the project is to develop a comprehensive
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and user-centered mechatronic multi-robot system to cooperate with First Response
teams with the ultimate goals of reducing the risks for workers and improving their
efficiency by collecting and assessing relevant information from the disaster zone under
difficult perceptual conditions prior to the decision of sending rescue workers. This
project extends the Rambler project associated to my doctoral thesis. My contribution
is the development of a novel MBL.

• Assistive Robot for Blind Travelers (National Robotics Initiative, IIS-1317989). Funded
by National Science Foundation at Carnegie Mellon University. During my research
stay in CMU I developed a facial recognition algorithm using ROS and OpenCV (cas-
cade classifier) for the Baxter humanoid robot in order to customize the interaction of
Baxter with each different user. The main contribution is the change of communication
chanel (voice, screen or gestures) of the multimodal user depending on the sensitive
disability of the user (blind, deaf, mute) or his/her preferences. The program involves
the creation and update of a data base with the users (face and preferred communi-
cation channel) in real time during the interaction. In addition, I also developed a
customized greeting with the name of the user and the handshake (user hand location
recognized by vision). Furthermore, I collaborated in the sub-project of NavCue, an
intelligent module for providing rich, multi-sensory, context-based information for
travelers who are blind or low vision. The robot gestures the route (A* path-planning
algorithm) accompanied by spoken directions including sensory landmarks and cues
which provides redundancy and memorable features for more confident navigation.

For the training period of my thesis I have attended the following courses:

• Master on Mechatronics in the University of Málaga (January 2013- July 2014).

• Summer School on Mechatronics, University of Brno (September - October 2013).

• Advanced CUDA training course for Nvidia GPUs, University of Málaga (December
2013 - January 2014).

• Mechatronic Systems - Introductory Course, University of Málaga (June 2014).

• Improving The Efficieny of SFM-SLAM by using depth information, University of
Málaga (June 2014).

• euRathlon/ARCAS Workshop and Summer School on Field Robotics (June 2014).

• Workshop Data Structures for Large-Scale 3D Point Cloud Processing. The 13th
International Conference on Intelligent Autonomous Systems, IAS13 (July 2014).
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1.4 Thesis outline

This thesis is divided into six chapters, one appendix, and bibliographical references. Except
for this chapter and the one related to the conclusions and future work, each chapter starts with
an introduction that states the addressed problem and ends with a summary that highlights
the contributions and/or the results that have been obtained.

Chapter 2, Related work, offers an up-to-date state of the robotic solutions applied to
the topics or tasks involved on this thesis. There is a revision of the most common 3D
representation techniques, classification methods, segmentation, occupancy grids, and lidar
sensors.

Chapter 3, General framework for supervised learning classification of Lidar point
clouds based on voxel-based neighborhood, describes the proposed solution using differ-
ent classifiers and parametrization, and analyze the results and performance obtained in
experiments.

Chapter 4, Segmentation and navigability analysis based on geometrically featured voxel
maps, describes some applications for the classification method for 3D point clouds proposed
in Chapter 3. Segmentation and occupancy grid algorithms are described and tested in natural
scenarios.

Chapter 5, Analysis and construction of a multi-beam lidar with an additional degree
of freedom, describes a new developed low cost 3D LRF and analyzes the complex scan
patterns produced by this sensor configuration.

Chapter 6, Conclusion and future work, highlights the most relevant contributions of this
thesis and proposes future research topics.

Finally, the appendix provides a further analysis of the software architecture of the
software integrated in the ROS platform.





Chapter 2

Related work

2.1 Introduction

3D perception of the environment is crucial for autonomous vehicles. Some authors have
addressed this issue with stereo vision [52] [5] [103] [120] (see Fig. 2.2) or a 2D LRF
which creates 3D point clouds with the movement of the vehicle [18] (see Fig. 2.1) as
affordable approaches. Recent 2D scanners have a multiecho capability which is very useful
for detecting sparse objects as vegetation and still detect the solid object behind that [12].
However, the most common solution is a 3D Lidar [68] although its high cost. Some outdoor
robots are equipped with 3D LRFs in combination with other sensors such as differential
GPS, inertial units [21], both of them [61], or cameras [94] [25] [73] [41] [40]. Widely used
is the RGB-D information which is the combination of the point cloud (or depth info) from a
3D lidar and an RGB image from a camera [119], as a result a colored point cloud is obtained
(see Fig. 2.3).

Fig. 2.1 Mobile laser scanning with a 2D LRF which accumulates consecutives scans while
the vehicle is moving to produce a whole 3D point cloud [18].
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Fig. 2.2 Range image (or depth image) produced in stereo vision as the disparity from images
in two cameras at the same time [120]

This chapter reviews the state-of-the-art of the major aspects of 3D lidar sensing ad-
dressed in the thesis. Section 2.2 analyzes different classifiers and describes the PCA method
for extracting geometric features. Section 2.3 reviews different aspects of 3D point cloud
processing, that include useful representation of 3D information, segmentation, and naviga-
bility assessment for autonomous vehicles. Finally, 2.4 discusses different commercial and
customized 3D lidar systems.

2.2 3D classification methods

3D lidar sensors are a key technology for navigation, localization, mapping and scene
understanding in novel ground vehicle systems such as autonomous cars [54], search and
rescue robots [60], and planetary exploration rovers [99]. One major limitation regarding
the use of lidar technology in these challenging applications is the time and computational
resources required to process the dense point clouds generated by these sensors.
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Fig. 2.3 RGB-D scene produced by combining information from a 3D scanner and a CCD
camera [119]

Classification techniques involving point clouds are used extensively and can be cate-
gorized in many ways [49]. For instance, airborne sensors can use elevation and flatness
characteristics to classify roof surfaces and urban objects [46][124][104] whereas terrestrial
scans are affected by obstructions and varying point density [8]. Furthermore, algorithms
have been proposed to identify particular object types, such as vehicles, buildings or trees
[116][123], or to classify geometric primitives at point level [47]. In this sense, while some
methods segment the cloud before classifying points within the resulting clusters [35][18],
others perform classification directly on scan points [8]. Moreover, different machine learn-
ing descriptors have been considered (e.g., histograms [8][49] and conditional random fields
[51][127]). In particular, many solutions rely on supervised learning classifiers such as SVM
[35][126][73][38], GP [16] [95], or GMM [47][41][77][55].

Many classification techniques are point-wise in that they compute features for every
point in a cloud by using the points within its local neighborhood, the support region. The
KNN algorithm can produce irregular support regions whose volume depends on the varying
sampling density of objects and surfaces from terrestrial scans [8]. For example, KNN has
been used to compare the performance between several classifiers [35] and to classify into
planar or non-planar surfaces [38]. The KNN support volume can be limited by setting a
fix-bound radius [39]. Furthermore, ellipsoidal support regions of adaptive sizes, denoted as
super-voxels, can be built iteratively based on point characteristics [51][79]. Other point-wise
classification techniques adopt regular support regions by searching for all neighbors within a
given radius [47][116][8][95]. In general, point-wise techniques imply a high computational
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load. This is why some authors have proposed oversampling techniques to reduce the amount
of data in the raw point cloud [51][48].

Grid representations and voxels have also been considered to speed up point cloud classi-
fication. In some solutions, grids serve to segment points prior to point-wise classification.
For instance, the method proposed in [39] computes segmentation by projecting non ground
points on a 2D grid and [37] uses voxels for defining groups of points that are later classified
with a Neural Network (NN) supervised learning method. Some authors have proposed com-
puting features for points in a voxel by considering support regions defined by neighboring
voxels. The authors in [49] compute PCA for each voxel with a support region defined by the
26-neighbors. Descriptors are used both for segmentation (i.e., voxel clusters) and for later
classification of the set of points within a cluster. Furthermore, in [18] the feature vector for
each voxel is obtained from a support region that includes a number of surrounding voxels.
In this case, features are not employed for classification but for mapping voxels to a color
space used for segmentation. Neither [49] nor [18] compute features to classify points within
a voxel.

2.2.1 Supervised learning methods for point cloud classification

This section briefly reviews supervised learning methods that have been used in the literature
for point cloud scene classification: SVM, GP, GMM, and NN.

Support Vector Machine

The purpose of SVM learning [22] is to find a hyperplane that separates the dataset into a
discrete predefined set of classes consistent with labeled training patterns. When patterns
are not linearly separable, SVM transforms original data into a new space and uses a kernel
function for classification. SVM has shown good generalization even with a reduced training
dataset, although its performance can be significantly affected by parametrization [67]. Apart
from the definition of the kernel function, SVM uses a box constraint, which is a parameter
that controls the maximum penalty imposed on margin-violating observations and contributes
to prevent overfitting.

SVM has been applied to classify urban point clouds into ground, and planar and non-
planar points on the ground [38]. In this application, every point is evaluated together with
its KNN based on covariance analysis that uses a linear combination of eigenvalues and a
Radial Basis kernel function. Furthermore, the same kernel function with SVM has been
applied to lidar data in intelligent vehicles to detect vegetation [73] and to classify clusters of
points as urban objects [35][126][49].
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Gaussian Processes

GP is a generalization of the Gaussian probability distribution [90] that can be interpreted as
a Bayesian version of the SVM method. Each class is modeled as a GP where a covariance
function (kernel) is trained to estimate its nonparametric underlying distribution. The
problem of learning in GP is exactly the problem of finding suitable parameters (called
hyperparameters) for the covariance and mean functions that best model the training input
dataset. Generally, the GP method requires defining the following: the number of function
evaluations, a covariance function, an inference method, a mean function, a likelihood
function, and the initialization of the hyperparameters.

GP has been applied for real-time ground segmentation by considering the relative height
of lidar points from a land vehicle [16]. Moreover, a combination of GP and SVM with PCA
has been proposed to classify terrain as traversable or non traversable by computing two
features representing texture and slope for every point [95].

Gaussian Mixture Model

A GMM is a probabilistic model that uses a mixture of Gaussian probability distributions
to represent subpopulations within a population [28]. In the case of more than two classes,
a different GMM is inferred for each class. Then, the learning algorithm tunes the weight,
mean, and covariance matrices of a mixture of ng Gaussian components for each GMM. The
training process finds ng for each GMM given a maximum value NG.

Lalonde et al. [47] used GMM with the expectation maximization (EM) algorithm [11]
to classify lidar points in scatter, planar and tubular classes according to saliency features.
GMM has also been applied with color and spatial features for pixel-wise segmentation of
road images [41] and object and background classification in point clouds [77].

Neural Networks

The multi-layer perceptron (MLP) is a type of NN commonly used in supervised learning
[80]. Implementing an MLP requires a definition of the network topology (i.e., the number
of layers and neurons), the transfer function in every layer, the back-propagation learning
algorithm, and the learning constant. .

MLPs has been used to classify urban objects from non-ground points distributed within
point clusters [125] and voxels [37]. Furthermore, the problem of classifying vehicles
represented as point clouds has been addressed with a combination of NN and genetic
algorithms [117].
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2.2.2 Geometric features extraction

The classification of spatial shape relies on geometric features to classify each neighborhood
as: planar surface, tubular structure, or scatter regions [47] . The local spatial distribution of
the points within a neighborhood is obtained by decomposition in the principal components
from the covariance matrix of the points’ Cartesian coordinates. The positive symmetric
covariance matrix for each neighborhood is determined by a set of the N inner 3D points
Xi = (xi,yi,zi)

T with average X = 1
N ∑

N
i=1 Xi , and it is defined in the expression 2.1:

1
N

N

∑
i=1

(Xi−X)(Xi−X)T (2.1)

The matrix is decomposed into its main components and its eigenvalues which are sorted
in ascending order, λ0≥ λ1≥ λ2. Eigenvectors−→e0 ,

−→e1 ,
−→e2 correspond to eigenvalues λ0,λ1,λ2

respectively. For the scatter voxels, it is satisfied thatλ0 ≈ λ1≫ λ2 and no dominant direction
can be found. For the tubular structure case, the main direction, tangent at the curve, is
defined by the eigenvector −→e0 associated to the dominant eigenvalue, that is λ0≫ λ1 ≈ λ2.
Finally, for the planar surfaces, the main direction is aligned with the normal surface, two
eigenvalues are greater than the third one, that is λ0 ≈ λ1≫ λ2 , and −→e0 ,

−→e1 define the plane.
A linear combination of the eigenvalues is used, see expression 2.2, to represent the three
saliency features named scatter-ness, tubular-ness and surface-ness. Fig. 2.4 shows, the three
output features, linear, surface and scatter, that are linear combinations of the eigenvalues.scatter−ness

tubular−ness
plane−ness

=

 λ0

λ0−λ1

λ1−λ2

 (2.2)

Fig. 2.4 Geometric features based on PCA [47]
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In practice, the decision of which class represents a voxel may be performed manually
with thresholds. If λ0−λ1 is higher than a threshold θ1 indicates tubular−ness, and λ1−λ2

higher than a threshold θ2 represents sur f ace−ness; otherwise scatter−ness. Nevertheless,
[86] demonstrates that the manual adjustment of θ1 and θ2 thresholds for the classification
process is not viable or desired because these values can vary depending on the scene, sensor
characteristics, or point density.

An approach to make this process automatically is training a classifier to maximize the
classification successful probability based on training data. In [47], a classifier based on
a GMM was trained using the expectation maximization algorithm [11]. However, this
classifier involves a higher computational cost than real time applications requires.

2.3 3D data processing for scene understanding

This section reviews published works that address different aspects of 3D point cloud pro-
cessing: useful representation of 3D information, segmentation, and navigability assessment
for autonomous vehicles.

2.3.1 3D representation

Due to the big amount of data captured from a 3D environment, the large point cloud can be
transformed into an effective representation to reduce the execution time when processing
object classification or the navigation map for the trajectory plan. There are three main
groups of techniques: i) keeping the point cloud as the principal data structure but reducing
the amount of data, ii) transforming the info into a 3D model, or iii) reducing the info into a
2D model.

Some navigation systems requires only the frontal closest area of the vehicle to decide the
immediate next movement, hence information from the sides, back, and too far or too high
areas (according to the robot height) can be discarded from the scene [86]. Other approach
is keeping the 360º scene information but reducing redundant information, for instance by
applying a spherical subsampling algorithm which produces a point cloud equally dense
in all the directions [57] (see Fig. 2.5). It is a low computational cost approach for data
reduction in spherical scanners which takes into account the scan direction resolutions.

The second group is to generate 3D model such as terrain model. Elevation maps model
the natural terrain by using meshes, such as Delaunay triangulation [34] or irregular triangular
meshes [92]. Nevertheless, these meshes models cannot reconstruct the surfaces in areas
with no input data, and they are also non scalable algorithms. Markov random fields [81] and
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Fig. 2.5 Measure-direction density for (a) a raw scan, and (b) spherical point subsampling
[57].

fuzzy logic [56] can reconstruct the surface with incomplete data. The main disadvantage
of the terrain model is that it is not a complete 3D reconstruction of the scene but 2.5D.
This is because it takes into account the highest point in the vertical, so overhangs [91] as
the crowns of the trees are marked as an elevation over the terrain. Not only the terrain but
the whole 3D scene can be modeled using geometric features. A VM [17] represents the
scene with a resolution that is coarser than the actual size of the objects, which means that
accesible regions may become non-accesible. The normal distribution [18] can be used but
the execution time is too high for a real time processing in a rescue mission. These geometric
feature techniques obtain better results in urban than in natural environments.

Other approaches for extracting semantic information from the scene do not use neither
the 3D point cloud a 3D model but a simpler 2D data structure. A 3D scene can be also
represented by a normal map and/or a height map [29]. A normal map is a color 2D image
where each pixel has the representative color of the normal at this point. A height map
is a grey scale 2D image where each pixel has the intensity proportional to the height,
it means the distance between the capturing device and the object. In [19] an accurate
edge detection has been implemented based on three different data structures: a normal
map, the point cloud organized as a 2D matrix, and the RGB image captured by a camera
at the same time. Furthermore, 3D texture analysis from some objects can be done by
extracting a deviation map [75]. Firstly, a smooth surface is adjusted to the object geometric
structure, then a deviation map can be obtained by computing the difference between the two
surfaces. Therefore, the texture can be analyzed through a representative 2D image. The
main advantage of these methods are that they can use well-known and optimized artificial
vision algorithms for 2D images.
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2.3.2 Segmentation

A segmentation method is required to isolate individual objects in a scene as a prior process
to the classification or semantic recognition of them. Much effort has been made to solve the
problem of segmenting in 2D images, and more recently the challenge has also been applied
to the three-dimensional (3D) point clouds, as 3D sensors have become more widely used.

There are two main approaches for 3D segmentation. The first approach, called point-
based techniques, is based on analyzing each point with features from its local neighborhood.
Some works start the process extracting the ground by fitting it in a flat plane [126] [125] or
by using a height threshold [122][53]. Then the non-ground points are grouped in objects or
segments. These groups can be obtained depending on the distance between points by using a
graph based algorithm such as Ncut [101] [122] and the algorithm of FH [31] over the range
image [126] or over the 3D point cloud [102]. Other methods perform the segmentation
based on the similarity of the normal vector computed at each point taking into account the
local neighbor points. In [89] the normal at each point is computed with the information
of the KNN. [4] combines a planar segmentation and a topological refinement based on
graphs. To reduce the normal estimation at each point, in [125] the points are first clustered
if they are nearer than a distance threshold, which is called the growing region technique,
then these clusters are grouped based on the similarity of the normal. Alternatively, [38] the
authors classify each point in ground, planar, and non-planar points through an SVM whose
inputs are local geometric features at each point, with KNN. These features are: normal
vector, height above the lowest point in the scene, or eigenvalues from the covariance matrix
The planar clusters are segmented in two stages: by using a Gaussian sphere, and then
refining with a distance-based clustering method, that is merging if distances are similar.
The non-planar points are clustered based only on distance. The main drawback of this
segmentation approach is the high memory and execution time consumption since it has to
process each point in the point cloud. Therefore, these methods may be incompatible with
real-time applications.

Another set of techniques for 3D segmentation is the group-based techniques, which aim
to solve the time-consumption problem of the point-based techniques by reducing the scene
to a voxel model. Usually the scene is discretized in 3D cubes or voxels with constant size
as a 3D grid, but these voxels can also be dynamically positioned around groups of points
[37]. In [26] several algorithms have been developed for both dense and sparse point clouds,
which depends on the scan device. The work concludes that algorithms which extract the
ground offer more accurate results in the subsequent segmentation process and navigability
assessment. In sparse point clouds, as acquired from a Velodyne scan, an interpolation
method is performed to propagate the ground to areas without 3D information. On the
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contrary, for dense point clouds, as obtained with a Riegl scan, the ground is detected as
the largest area with adjacent voxels with height mean or a vertical variance less than a
threshold. Once the ground has been extracted, the objects are isolated by merging adjacent
voxels or voxels in a distance lower than a predefined threshold. In [25] the segmentation
is also with adjacent voxels, and the results are contrasted and fused with an RGB data
segmentation process. In addition, the ground is extracted through an elevation map. Other
authors have approached ground segmentation by fitting a flat plane [126] [125] or by using
a threshold, for the height mean [122] or for both the height mean and the vertical variance
[26]. These approaches are useful for urban environments, but they do not consider the 3D
complexity of natural terrain. The main problem of these techniques is that they assume
flat and continuous ground, as in an urban environment. Hence, big slopes or non-flat areas
are not grouped in the ground. A novel idea for the voxel map is introduced in [97] called
geometric-featured voxel maps. In this model the voxels contain geometric information taken
from a prior classification in linear or tubular structures, scattered shapes, horizontal planes,
or vertical planes [17]. The ground is extracted as horizontal surface voxels with no other
kind of voxels below. Horizontal surface voxels higher than a threshold over another identical
kind of voxel in the same position are discarded. This way, slopes can be detected as the
floor depending on the previous geometric classification, but some horizontal surfaces can be
wrongly detected as ground. For instance, horizontal surface from an object may not have
points below because of the shadows in the scene captured. Furthermore, another important
disadvantage to this technique is that classification may not be enough since the surfaces are
classified in vertical and horizontal, hence it requires a very accurate threshold for slopes.
All these methods have been designed for urban environments and thus ground detection is
risky in unstructured environments where big slopes or non-flat areas belong to the ground.
[112] combines both approaches, elevation map and geometric model fitting methods, in
an adaptative ground segmentation method with good results in uneven and sparse regions
which frequently appear in natural scenes. However it is based in a data representation which
is only affordable for 3D point cloud obtained by multibeam sensors, such as Velodyne.

2.3.3 Navigability assessment

Navigability assessment is performed as a previous step for subsequent task of motion
planning. Autonomous mobile robots, such as search and rescue robots (SAR) or long-range
explorer extraterrestrial robots, require an efficient trajectory avoiding obstacles and low
computational cost in order to increase its velocity or to save energy, respectively or to
invest processing resources in more complex and specific goals, such as the recognition
of specific areas. Navigability assessment is addressed by three typical approaches: a
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binary classification problem, traversable or non-traversable terrain, a finer estimation with
a continuous traversability score, or a classification with various classes. [78] reviews this
terrain traversability analysis problem and distinguishes the geometry-based approaches
according to the criteria employed for estimating traversability. The extraction of 3D features
which determine whether the areas from the scene are accessible cannot be solved in a unique
step but with several complex algorithms combined. The information from the scene is usually
obtained through laser scanners [57] and stereo vision [52] as large and complex point clouds.
Processing all this data requires loads of time which may be incompatible with real-time
applications such as SAR autonomous navigation. Therefore, the features extraction of the
3D scene and subsequently the occupancy grid generation require a simplified representation.

Three main approaches have been adopted for the extraction of 3D features. The first
approach reduces the scene into a 2D representation, which can be processed with standard
artificial vision algorithms, or into 2.5D elevation maps. Local and global statistics features
of each object and ground can be obtained based on a range image [126] or a 2D deviation
map [75]. Like 2D representations model only the frontal view of the scene, the elevation
maps [56] model the terrain in a zenithal view, but not the whole scene, which is the main
disadvantage of this approach.

The second approach consists on point-based techniques, where each 3D point is ana-
lyzed based on the features from its local neighborhood. In this case, the definition of the
neighboring points for each point becomes a costly step in 3D object recognition. Every
point is evaluated together with its k-nearest neighbors to extract geometric features and then
is classified as planar or non-planar [38] or in tubular structures, planar surfaces, and scatter
[47]. The main drawback of this approach is the memory and execution time required to
process each point in the point cloud. Therefore, these methods may be incompatible with
real-time applications such as SAR.

Another group of techniques for 3D features extraction is group-based techniques, which
aim to solve the time-consumption problem of the point-based techniques by reducing the
scene to a voxel model. Features are extracted at each neighborhood which means each
voxel instead of the neighborhood at each point as the previous approach. Each voxel can be
defined by its global height in the scene and the ground can be extracted through a height
threshold [12]. Otherwise, voxels may be classified as tubular, scatter, horizontal surfaces or
vertical surfaces , obtaining a geometric-featured voxel map where traversable ground can be
detected [97]. However, these methods are restricted to urban environments where no slopes
on the ground are assumed.

Many autonomous mobile robots generate a discrete model of occupancy or traversability
in order to reduce the scene data for the path planning processing. Most of techniques divide
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(a) Device (b) Components scheme

Fig. 2.6 Customized lidar system based on a 2D LRF with two new rotations [121]

the ground in a 2D grid and evaluate each cell based on the heights of the inner points [45]
or the slope and flatness of those inner points [69].

2.4 Customized 3D lidar sensors

There is a growing interest in portable and affordable 3D lidar systems for new applications
that require accurate and speedy range data acquisition, such as progress tracking in construc-
tion sites [74], precision agriculture [118], medical imaging [20], intelligent surveillance [9],
or textile tailoring [110]. An alternative to high-end terrestrial scanners, like those used for
digital terrain modeling or forest inventory [13], is to obtain dense 3D data by combining
multiple views from less expensive sensors. Arbitrary motion can be produced manually
[110][43] or by aerial [13] and ground vehicles [27], which requires registration processing.
Nevertheless, the most common approach to build compact 3D devices from low-cost sensors
has been to mount a 2D rangefinder onto a one degree-of-freedom (DOF) rotation mechanism
that produces either a tilting or a spinning motion. Many examples of this type of rotating
single-beam lidar (RSBL), mainly from the robotics community, can be found in the literature
(see Table 2.1).

In the last few years, MBL rangefinders, such as those developed by Velodyne (Morgan
Hill, CA, United States), are becoming increasingly popular and affordable. These sensors
can be considered as a hybrid between 2D and 3D scanners, as they consist on a spinning
structure that holds a number of independent laser transceivers to scan planes with different
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Table 2.1 Representative examples of customized lidar systems based on a commercial device
with an extra DOF.

Type Device Major application
Batavia 2002 [6] RSBL Sick Obstacle detection
Wulf 2003 [114] RSBL Sick LMS200 Density analysis
Weingarten 2006 [113] RSBL (2) Sick LMS200 Indoor environment reconstruction
Dias 2006 [24] RSBL Sick LMS200 Device comparison
Sheh 2006 [100] RSBL Hokuyo URG-04LX Sensor configuration analysis
Ueda 2006 [106] RSBL Hokuyo URG-04LX Mapping
Yoshida 2010 [121] RSBL Hokuyo UTM-30LX Mapping
Morales 2011 [63] [64] RSBL Hokuyo UTM-30LX Mapping and environment modeling
Xiao 2013 [115] RSBL Hokuyo UTM-30LX Indoor mobile robot
Neumann 2014 [72] RMBL Velodyne HDL-64E Underground mapping
Alismail 2015 [1] RSBL Hokuyo UTM-30LX-EX Calibration for 3D mapping
An 2015 [3] RSBL Hokuyo URG-30LX Plane extraction from indoor robot
Martinez 2015 [59] RSBL Hokuyo UTM-30LX-EX UGV and UAV environment modeling
Özbay 2015 [76] RSBL Hokuyo UTM-30LX UGV obstacle modeling
Moon 2015 [62] RSBL SICK LMS511-pro Cargo ship modeling
Shaukat 2016 [99] RSBL Hokuyo UTM-30LX RGB-D terrain modelling
Schubert 2016 [96] RSBL Hokuyo UTM-30LX Robot mapping
Leingartner 2016 [50] RMBL Velodyne HDL-64E Mapping
Neumann 2016 [71] RSBL Hokuyo UTM-30LX-EW RMBL and MBL comparison

RMBL and Velodyne VLP-16
Droeschel 2017 [27] RSBL Hokuyo UTM-30LX-EW Robot mapping
Klamt 2017 [44] RMBL Velodyne VLP-16 Robot mapping
Pfrunder 2017[82] RMBL Velodyne VLP-16 Robot mapping

elevation angles within a fixed vertical field of view (FOV). For instance, the VLP-16 (or
Puck) [108] is a compact and lightweight device (less than 1 kg) that scans 16 planes with
an extended range (up to 100 m) and a large data rate (300,000 points/s) at a cost that is
relatively low in comparison with other off-the-shelf sensors with 3D characteristics. These
features have favored the adoption of MBLs in mobile applications, where dynamic point
cloud registration along the vehicle’s path compensates for device limitations in vertical
resolution and FOV [111]. Nevertheless, a MBL has to be rotated in order to produce a
complete spherical FOV [71].

In this context, rotating multi-beam lidars (RMBL) built by adding a DOF to a commercial
MBL may arguably become a common solution to obtain affordable rapid full-3D high
resolution scans in the near future. Some recent examples are summarized in Table 2.1.
For instance, the rotating 2D Hokuyo UTM-30LX-EW (Osaka, Japan) scanner used by the
Momaro robot in the DARPA Robotics Challenge of 2015 [27] has recently been replaced by
a rotating Velodyne VLP-16 [44]. Moreover, Neumann et al. [72] built an RMBL based on a
high-end 15 kg Velodyne HDL-64E to map underground mines from a wheeled robot. In a
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(a) Device (b) UAV sensor mounting

Fig. 2.7 Unomotion, a customized lidar system based on a 2D LRF in horizontal layout with
a complete rotation in roll [59]. This device extends from Unolaser [63] (see Appendix A.3).

later work, these authors have developed a rotating platform based on a Velodyne VLP-16
that also includes a 2D Hokuyo and other sensors [71].

The knowledge of scan density distribution is interesting to exploit the potential capa-
bilities of a particular sensor/DOF combination for a given application [114][71]. To our
knowledge, only a few works have explicitly addressed the analysis of 3D lidar data obtained
by adding a rotation to a commercial rangefinder. Wulf and Wagner [114] analyzed the
scanning patterns resulting from different arrangements of scan directions and rotation axes
for a 180◦ 2D Sick LMS200 (Waldkirch, Germany) scanner. This influential work studied the
non-homogeneous distribution of range measurements of RSBLs by proposing a qualitative
illustration of measured points on both a simulated hollow sphere surrounding the 3D scanner
as well as on actual scans from representative environments. More recently, Alismail and
Browning [1] used a synthetic hollow cuboid with the RSBL at its center for quantitative
assessment of the scanning pattern for calibration purposes. Furthermore, Schubert et al.
[96] aimed at optimizing the alignment of a 2D rangefinder with respect to the additional
DOF. With this purpose, they claim that a cost function can be computed from the density
distribution of points on the hollow sphere. Regarding RMBL, Neumann et al. [71] offered
a comparison between several high-end MBL and customized RMBL devices using both a
qualitative analysis of example scenes and quantitative performance indices that are repre-
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sentative of particular device specifications, like scanning time, data rate, and average point
density on the sphere.





Chapter 3

General framework for supervised
learning classification of lidar point
clouds based on voxel-based
neighborhood

3.1 Introduction

Improving the effectiveness of spatial shape features classification from 3D lidar data is
very relevant because it is largely used as a fundamental step towards higher level scene
understanding challenges of autonomous vehicles and terrestrial robots. In this sense,
computing neighborhood for points in dense scans becomes a costly process for both training
and classification. This thesis addresses this problem by proposing a new general framework
for implementing and comparing different supervised learning classifiers with a simple voxel-
based neighborhood computation where points in each non-overlapping voxel in a regular
grid are assigned to the same class by considering features within a support region defined by
the voxel itself. The contribution provides offline training and online classification procedures
as well as five alternative feature vector definitions based on principal component analysis
for scatter, tubular and planar shapes. Moreover, the feasibility of this approach is evaluated
by implementing a NN, as well as three other supervised learning classifiers found in scene
processing methods: SVM, GP, and GMM (see section 2.2). A comparative performance
analysis is presented using real point clouds from both natural and urban environments and
two different 3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl).
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The rest of the chapter is organized as follows. The next section proposes a general
voxel-based neighborhood approach for supervised learning classification of spatial shape
features. Section 3.3 describes the experimental setup and methodology for performance
analysis offered in Section 3.4, which discusses results for different classifiers and feature
vector definitions. The chapter is closed by the summary.

3.2 General voxel-based neighborhood framework for ge-
ometric pattern classification

This section proposes a voxel-based geometric pattern classification approach which can
be generally used by supervised learning methods. General offline training and online
classification procedures are detailed. Furthermore, data structures are proposed for the
implementation of the point cloud and the input dataset.

3.2.1 Definitions

In general, classifiers produce a score to indicate the degree to which a pattern is a member of
a class. For an input space with N patterns, the input dataset is defined as D = {(pi, ti)|∀i ∈
[1..N]}, where pi = [p1

i , ..., pNL
i ] is the ith input pattern and ti ∈ C represents one of the NC

target classes, with C = {C1, ...,CNC}. The NL components of pi are computed according to
a feature vector definition F . Supervised learning needs a training dataset whose pi have
been previously labeled with their corresponding ti.

In this thesis, the goal is to classify scene points into three classes (i.e., NC = 3):
C = {C1,C2,C3}, where C1, C2, and C3, correspond to scatter, tubular and planar shapes,
respectively. By using voxel-based neighborhood, all points within a voxel are assigned to
the same class. With this aim, the point cloud in Cartesian coordinates is voxelized into a 3D
grid of regular cubic voxels of edge E. Edge size depends on the scale of the spatial shapes
to be detected in the point cloud. Only those voxels containing more points than a threshold
ρ are considered to be significant for classification. Thus, the size N of the input dataset is
the number of significant voxels.

3.2.2 Training and classification procedures

General training and classification procedures particularized for voxel-based neighborhood
are shown in Fig. 3.1. Training is an offline process that has to be done once for a given
classifier, whereas classification is performed online for each new point cloud. The training
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procedure produces a multi-class classifier configuration consisting on a set of NC classifiers
that will be used in the classification procedure. Moreover, the choice of a feature vector
definition and a particular classification method must be the same for the training and
classification procedures.

A data structure V is defined to contain the input dataset D = {(pi, ti)}. When all ti
values in V have been set, either manually or automatically, this is considered a “classified
V ”. An implementation of V is described in Section 3.2.4.

The training procedure (see Fig. 3.1a) uses a point cloud in Cartesian coordinates where
the NC geometric classes must be represented and discernible. After voxelization, the N
significant voxels in the 3D grid are manually labeled with their corresponding class (ti) by
a human supervisor. Then, a classified V data structure is built from the labeled voxels by
computing pi for a particular choice of feature vector definition F (e.g., one of the definitions
proposed in Section 3.2.3). Training is performed for a given classification method with its
particular parameters, where a different configuration is inferred for each class. The output
of the training procedure is the trained classifier configuration.

The goal of the online classification procedure (see Fig. 3.1b) is to classify a new point
cloud. The voxelized point cloud is used to create the V data structure with pi values computed
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Fig. 3.1 Offline training (a) and online classification (b) procedures with voxel-based neigh-
borhood computation. The choices of a feature definition and a classification method are
common for both procedures (shaded in solid blue). The trained classifier configuration
(shaded in dotted red) output in (a) is used in (b).
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with the same feature vector definition as in the training procedure. In the classification step,
the trained classifier configuration given by the training procedure completes the classified V
by appending ti values computed by considering the highest score of the NC classifiers. With
voxel-based neighborhood, the classification for each voxel is inherited by all points within
its limits. Both can be considered as outputs for the method: i) the classified point cloud
could be the output for algorithms that require point-based processing, and ii) the classified
V can also be considered as a GFVM, as proposed in subsequent chapters of this thesis.

3.2.3 Extracting spatial shape features from voxels

The local spatial distribution of all the points within a voxel is obtained as a decomposition in
the principal components of the covariance matrix from point Cartesian coordinates. These
principal components or eigenvalues are sorted in ascending order as λ0 ≥ λ1 ≥ λ2 [47].

A feature vector F consisting on a linear combination of the eigenvalues [47] and NL = 3
is generally considered in the literature [18][73]:

F = [λ0,λ0−λ1,λ1−λ2]. (3.1)

This definition takes into account that scatterness has no dominant direction (λ0 ≈ λ1 ≈ λ2),
tubularness shows alignment in one dominant direction (λ0≫ λ1 ≈ λ2), and planarness has
two dominant directions (λ0 ≈ λ1≫ λ2).

Nevertheless, classifier convergence and performance can be affected by the definition
and scaling of F [105]. Thus, variants of Equation (3.1) based on the normalization and
linear combination of eigenvalues could improve the performance of a particular classifier.
Particularly, five feature vector definitions are considered in this thesis:

• F1 = [λ0,λ1,λ2]: eigenvalues from the covariance matrix.

• F2 = [λ0,λ0− λ1,λ1− λ2]: linear combination of the eigenvalues, as in Equation
(3.1).

• F3 = [λ0,λ1,λ2]: normalized eigenvalues.

• F4 = [λ0,λ0−λ1,λ1−λ2]: normalization of the linear combination.

• F5 = [λ0,λ0−λ1,λ1−λ2]: linear combination of normalized eigenvalues.

In F3, F4, and F5, the overline over a value c denotes normalization of this value in
[0,1] with respect to a 95 % confidence interval. This normalization is computed as follows:
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c =
c−min{ck}

max{ck}−min{ck}
, with c ∈ {ck |k = 1..N95c}. (3.2)

where N95c represents the rounded integer number of the 95 % significant voxels in the middle
of the distribution of c.

The input patterns pi in D are computed by using the selected F definition with the eigen-
values given by the covariance matrix corresponding to the points within the ith significant
voxel.

3.2.4 Data structures

In order to represent D , the classification data structure V for the voxel map must be related
to a list of Cartesian point cloud coordinates C. Particularly, efficient access to the list of
points within each voxel is required both to compute the input patterns pi and to inherit
classification by scan points. With this purpose, this section proposes two data structures that
implement the voxel map V and the voxelized point cloud C. The voxel map V represents
those voxels in a 3D spatial grid with constant size that have a representative number of
points.

The structure V that implements D is defined as a list of N elements, where the ith

element corresponds to a significant voxel and contains:

• Ii ∈ [1..NV ], the scalar index associated to the voxel. Assuming that a spatial 3D grid
with NV voxels includes all scan points, then a unique natural number I ∈ 1..NV can
be associated to each voxel [58]. This index is associated to the voxel and its inner
points in the voxelization process. Since the whole 3D grid is a voxelized bounding
box of the whole 3D scene, not all the voxels contains points, then NV ≥ N and usually
NV ≫ N.

• pi, feature vector values to be used as input pattern. It is computed based on the
position of the inner points.

• ti ∈ [1..NC], a natural number representing the target class. This value is hand labeled
in the training process and is the resulting class in the classification process.

Then, C is defined as a sorted list of all the m scan points from the original point cloud,
where the jth element has the following data:

• (x j,y j,z j), the Cartesian point coordinates.
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• I j ∈ [1..NV ], a scalar index of the voxel that contains the point. This value is not
unique in C, actually, will be massively repeated because it is shared by all the points
belonging to one voxel.

• t j ∈ [1..NC], a natural number representing the target class. This value is inherited from
V .

The computation of these data structures is as follows. First, considering the minimum
bounding box for the point cloud, the space is split in a 3D grid composed by voxels. Then,
all scan points in C are indexed with their corresponding voxel index, which is also used to
sort the list. After that, if there are more than ρ consecutive elements in C with the same
index number, then a new entry for that voxel is created in V . After voxel classification,
points in C with the same voxel index inherit the target class of the corresponding voxel in V .
Points in non-significant voxels will remain unclassified (i.e., with a null value in the target
class field).

3.3 Experimental setup and methodology

This section describes the training and evaluation datasets, the parametrization of classifiers,
and the methodology used for the comparative performance analysis offered in Section 3.4.

3.3.1 Experimental datasets

Classification has been applied to three evaluation point clouds obtained with representative
sensors and illustrative of natural and urban environments:

• Urban. This point cloud of a urban environment is a subset of the Sydney Campus
dataset [26], which was scanned by a Riegl sensor (see Fig. 3.2). This is a complex
scene which involves structured objects, mostly planes, such as buildings and flat
floors.

• Natural_1 and Natural_2. These point clouds are dominated by unstructured objects
such as bushes, trees and rough terrain. Both scenes were scanned on natural areas
close to Universidad de Málaga by a UNOLaser rangefinder. This sensor is based on
pitching a 2D Hokuyo UTM-30LX [64], with a maximum range of 30 m and horizontal
and vertical fields of view of 270◦ and 131◦, respectively. The first scan is from a
complex scene with dense tree crowns (see Fig. 3.3) and the second includes both
bushes and tall trees with visible trunks (see Fig. 3.4).
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As for the training procedure, a different point cloud has been considered:

• Garden. This point cloud contains elements from a semi-structured environment where
the three geometric classes can be discernible for hand labeling: planar floor, tubular
tree trunks, and scattered tree crowns (see Fig. 3.5). This scene was scanned with the
UNOLaser sensor.

Evaluation and training point clouds have been voxelized with E = 0.5m and ρ = 10 (see
Section 3.2.1), which were empirically determined [84]. Table 3.1 summarizes voxelization
and hand labeling of experimental point clouds (evaluation datasets have also been hand
labeled to evaluate classification performance). The table presents the resulting number
of voxels and points included in the corresponding V structures, as well as the percentage
of voxels for each class after hand labeling. In the Urban dataset, most voxels have been
labeled as planar because clear floor and building walls dominate the scene. Conversely, in
the Natural_1 and Natural_1 voxelized point clouds a majority of the voxels are scatter or
tubular due to bushes and trunks and treetops.

3.3.2 Classifiers parametrization

The parametrization of the SVM classifier is the following:

• Function kernel: radial basis function as in [38].

Fig. 3.2 Hand labeled Urban point cloud.
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Fig. 3.3 Hand labeled Natural_1 point cloud.

Fig. 3.4 Hand labeled Natural_2 point cloud.

Fig. 3.5 Hand labeled Garden point cloud.

• Box constraint: infinite.

The parameters used for the GP classifier are:
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Table 3.1 Characteristics of hand labeled voxels of experimental point clouds

Dataset
type

Dataset #Voxels #Points
Voxels percentage

Scatter Tubular Planar

Evaluation
Urban 13713 1473757 27.7 16.3 55.9
Natural_1 1877 618913 72.8 6.2 20.9
Natural_2 1346 267514 58.6 61.6 17.8

Training Garden 974 128836 34.9 4.2 60.9

• Number of function evaluations: 30.

• Covariance function: squared exponential function with automatic relevance determi-
nation.

• Mean function: constant mean function.

• Inference method: expectation propagation algorithm.

• Likelihood function: cumulative Gaussian function.

• Hyperparameters of mean and covariance: 0 and (1,1,1,1) respectively (i.e., all length-
scales and the signal magnitude are initialized to 1 and represented in the log space).

In GMM, the parameters are:

• nscatter
g = ntubular

g = nplanar
g = 10.

• Marginal likelihood maximization: EM algorithm [11].

The proposed NN based classifier uses the following configuration:

• Network topology: multi-layer perceptron with one hidden layer of 100 neurons (this
number was determined using a cascade learning constructive processing in which
neurons are added to the hidden layer, one at time, until there is no further improvement
in network performance).

• Transfer function: logistic transfer functions in hidden and output layers.

• Back-propagation learning algorithm: Levenberg-Marquardt.

• Learning constant: 0.02.
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Besides, the training process of the NN must be stopped at an appropriate iteration to avoid
overfitting. This iteration is found by the early stopping method of training [2], in which the
training dataset is split into an estimation subset (80 % of the training set) and a validation
subset (the remaining 20 %). More details of the configuration and implementation of the
NN classifier can be found in [85].

3.3.3 Methodology

The performance of the classifiers will be compared by using classification statistical mea-
sures for each class. In particular, confusion matrices along with a multi-class extension of
Matthew’s Correlation Coefficient (MCC) have been considered.

.
In a classification problem with NC target classes, a confusion matrix is the square matrix

M (NC×NC) whose i jth entry, Mi j, is the number of elements of true class i that have been
assigned to class j by the classifier [42]. Therefore, an ideal classifier would yield a diagonal
M. In this case, elements are points from significant voxels. Furthermore, in order to achieve
a clear comparison between different datasets, normalized confusion matrices can be defined.
Elements in the are defined as:

Mi j =
Mi j

NC

∑
i=1

Mi j

×100, (3.3)

where the sum of row elements is 100.
The generalization of MCC for the multi-class problem [36] is used as a reference

performance measure on unbalanced datasets [42], which can be defined as follows:

MCC =

NC

∑
i, j,k=1

MiiMk j−M jiMik√√√√NC

∑
i=1

[( NC

∑
j=1

M ji

)( NC

∑
m,n=1;m̸=i

Mnm

)]√√√√NC

∑
i=1

[( NC

∑
j=1

Mi j

)( NC

∑
m,n=1;m̸=i

Mmn

)] . (3.4)

MCC summarizes the confusion matrix into a single value in the [-1,1] range, where 1
represents a perfect classification and -1 extreme misclassification.
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Table 3.2 Performance of classifiers (MCC and M) using feature vector definition F2 for the
evaluation datasets.

Natural_1 Natural_2 Urban

MCC M MCC M MCC M

GMM (F2) 0.4631

74.3 18.7 7.0
55.6 39.3 5.1
14.2 9.2 76.6

 0.5696

72.8 18.1 9.1
18.3 65.4 16.3
15.8 6.6 77.6

 0.4962

81.5 11.7 6.8
31.1 43.4 25.5
11.9 15.0 73.1


GP (F2) 0.0958

0.0 3.7 96.3
0.0 6.1 93.9
0.0 0.2 99.8

 0.0005

0.0 1.3 98.7
0.0 0.0 100
0.0 0.0 100

 0.0486

0.0 4.2 95.8
0.0 2.9 97.1
0.0 0.3 99.7


NN(F2) 0.6461

91.7 1.8 6.5
56.4 37.6 6.0
4.9 2.1 93.0

 0.7927

95.9 2.3 1.8
28.7 68.2 3.1
6.9 1.0 92.1

 0.6557

95.9 0.2 4.0
11.7 22.9 65.4
0.0 0.0 100


SVM(F2) 0.3091

48.6 0.0 51.4
32.7 0.0 67.3
0.8 0.0 99.2

 0.1164

9.4 0.0 90.6
2.2 0.0 97.8
1.3 0.0 98.7

 0.3152

43.2 0.0 56.8
14.7 0.0 85.3
0.1 0.0 99.9



3.4 Performance analysis and comparison

This section discusses experimental results where the voxel-based approach proposed in
Section 3.2 has been applied to the NN classifier and other supervised learning classifiers:
SVM, GP, and GMM. First, all classifiers are compared with a representative feature vector
definition. Then, an experimental analysis is performed to select an appropriate feature vector
definition for each classifier. The section also includes a discussion of computation times as
well as a comparison with a point-wise neighborhood classifier.

3.4.1 Performance evaluation with linear combination of eigenvalues

The evaluation datasets described in Section 3.3.1 have been used to compare the performance
of the four classifiers trained with F2, which is the feature vector definition given by
Lalonde et al. [47]. Table 3.2 presents MCC and M for each classifier in all evaluations
datasets. Regarding MCC, the NN classifier achieves the best results in all datasets. The
GMM classifier obtains the second best performance whereas SVM and GP get poor results.
Especially, SVM never classifies patterns as class C2 (tubular), as indicated by null values in
the second column of M for all datasets. Similarly, GP classifies most points (over 90 %) as
class C3 (planar). These results indicate poor performance of F2 for some classifiers.

3.4.2 Performance evaluation with different feature vector definitions

This section offers an experimental analysis to find a suitable selection of F for each classifier.
With this purpose, all classifiers have been trained with the five feature vector definitions
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described in Section 3.2.3 using the Garden dataset. Table 3.3 summarizes this analysis
by showing the corresponding MCC values. These results indicate that GP and SVM are
strongly affected by the choice of the feature vector while GMM offers good results for all
definitions. In this sense, the NN method achieves better results with the non-normalized
definitions, which can be explained by the nonlinear qualities of the MLP. All in all, the best
scores have been obtained with F2 for NN, F4 for GMM and GP and F5 for SVM. These
definitions have been selected as the most appropriate choice for each classifier.

Comparative results with the corresponding F selections are given in Table 3.4. Regard-
ing MCC, the NN classifier maintains the best results in all datasets. Besides, GP becomes
the second best, clearly improving with respect to Table 3.2 (where it obtained the worst
performance), which denotes the importance of an appropriate selection of F . As for M,
it can be noted that class C2 (tubular) is the most difficult to classify (as indicated by low
values in the diagonal element of the second row). In this difficult class, NN consistently
outperforms all other classifiers, and reaches 68.2% of true positives in the Natural_2 dataset.

Figs. 3.6-3.8 illustrate the application of our NN classifier with the voxel-based neigh-
borhood approach for the three evaluation datasets. These classification results show good
accordance with the ground truth (i.e., hand labeled) values given in Figs. 3.2-3.4.

3.4.3 Computation time

Table 3.5 presents execution times corresponding to a Matlab implementation of the classifiers
running on a Core i7 processor with a clock frequency of 3.7 Ghz and 16 Gb of RAM.
Computation of data structure V is common for all classifiers. Then, total computation time
is obtained by adding the time for V computation to the training process time (in the offline
procedure) or to the classification process time (in the online procedure).

V computation time includes voxelization as well as calculation of covariance matrices
and their associated eigenvalues for every voxel. This value is proportional to the number of
voxels in the data structure, which is greater for the Urban dataset (see Table 3.1).

Table 3.3 Performance of classifiers (MCC) for the training dataset with different definitions
of the feature vector F .

F1 F2 F3 F4 F5

GMM 0.8667 0.8725 0.7856 0.9562 0.7988
GP 0.3414 0.0042 0.5996 0.8224 0.7420
NN 0.8295 0.8384 0.5659 0.4240 0.5633

SVM 0.0723 0.1687 0.4722 0.3275 0.5268
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Table 3.5 shows that GP requires much more computation time, for both training and
classification, than the rest of classifiers. For offline training, the times for the training
process, which offer considerable differences between the four classifiers, are greater than the
time required for V computation. As for online classification, GMM, NN and SVM achieve
classification times that are significantly faster than V computation, so their total computation

Table 3.4 Performance of classifiers (MCC and M) for the evaluation datasets using selected
feature vector definition (F2 for NN, F3 for SVM and F4 for GMM and GP).

Natural_1 Natural_2 Urban

MCC M MCC M MCC M

GMM (F4) 0.5352

94.4 2.8 2.8
81.2 12.7 6.1
13.1 1.1 85.8

 0.5756

93.9 4.1 2.0
66.7 27.4 5.9
8.8 2.8 88.4

 0.6021

97.4 1.3 1.3
32.6 14.1 53.3
2.6 0 97.4


GP (F4) 0.5382

93.9 1.2 4.9
64.2 9.6 26.2
6.9 1.0 92.1

 0.5871

96.3 0.8 2.9
32.0 23.0 45.0
7.4 2.7 89.9

 0.6384

98.8 0.1 1.1
13.6 15.3 71.1
0.5 0 99.5


NN(F2) 0.6461

91.7 1.8 6.5
56.4 37.6 6.0
4.9 2.1 93.0

 0.7927

95.9 2.3 1.8
28.7 68.2 3.1
6.9 1.0 92.1

 0.6557

95.9 0.2 4.0
11.7 22.9 65.4
0.0 0.0 100


SVM (F5) 0.4483

83.6 0.6 15.8
54.7 0.8 44.5
6.4 0.1 93.5

 0.4646

86.9 1.3 11.8
39.6 0.3 60.1
6.8 0.0 93.2

 0.5082

84.3 1.2 14.5
20.7 0.7 78.6
0.3 0.0 99.7



Fig. 3.6 Urban point cloud classified by NN with F2.
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Table 3.5 Computation times for training and classification, in seconds.

Training Classification
Garden Urban Natural_1 Natural_2

V computation 0.154 1.895 0.432 0.263
GMM 0.557 0.018 0.004 0.003
GP 104.673 3.995 4.010 3.795
NN 5.790 0.121 0.035 0.032
SVM 43.652 0.112 0.017 0.018

times are similar and close to that value. Since the best classification performance in Table 3.4
was achieved by NN, it can be concluded that NN accomplishes an outstanding compromise
between performance and computation time.

3.4.4 Comparison with point-wise neighborhood classification

Performance of voxel-based neighborhood has also been compared against point-wise neigh-
borhood. In particular, the experimental datasets have been processed with a point-wise
GMM classifier with F2 (i.e., the configuration used by Lalonde et al. [47]) with a support
region defined by a radius of 0.5 m. Classification performance and computation times are
presented in Tables 3.6 and 3.7, respectively.

Regarding classification performance, Table 3.6 presents MCC and M for point-wise
GMM in all evaluation datasets. Comparing MCC Table 3.6 against the first row of Table
3.4, it can be appreciated that performance results are very similar. Particularly, voxel-based
neighborhood outscores the point-wise method in the Natural_2 and Urban datasets.

Total computation time is the sum of neighborhood computation and training/classification
times, which are given as two separate rows in Table 3.7. In this case, most of the time is

Fig. 3.7 Natural_1 point cloud classified by NN with F2.
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Fig. 3.8 Natural_2 point cloud classified by NN with F2.

Table 3.6 Performance of GMM classifier with point-wise neighborhood using feature vector
definition F2 for the evaluation datasets.

Natural_1 Natural_2 Urban

MCC M MCC M MCC M

Point−wise
GMM 0.5392

79.2 7.6 13.2
47.0 32.8 20.2
6.9 1.9 91.2

 0.5288

80.1 7.1 12.8
16.7 33.3 50.0
8.5 4.1 87.4

 0.5797

79.4 6.6 14.0
23.2 35.3 41.5
3.3 1.2 95.5


Table 3.7 Computation times for point-wise neighborhood training and classification, in
seconds.

Training Classification
Garden Urban Natural_1 Natural_2

Neighborhood computation 63.12 933.73 574.98 166.28
Point-wise GMM 8.89 9.29 1.36 0.63

used for neighborhood computation. The comparison of this table with Table 3.5 shows that
computation times for voxel-based neighborhood are dramatically reduced with respect to
point-wise neighborhood.

In general, these results indicate that voxel-based neighborhood classification achieves a
dramatic improvement in computation time with respect to point-wise neighborhood, while
no relevant differences in performance can be appreciated. Furthermore, voxel-based NN has
accomplished better classification performance with the experimental datasets.
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3.5 Summary

Many point cloud classification problems targeting real-time applications such as autonomous
vehicles and terrestrial robots have received attention in recent years. Among these problems,
improving the effectiveness of spatial shape features classification from 3D lidar data remains
a relevant challenge because it is largely used as a fundamental step towards higher level
scene understanding solutions. In particular, searching for neighboring points in dense scans
introduces a computational overhead for both training and classification.

The originality of this thesis is a new general framework for supervised learning classifiers
to reduce the computational load based on a simple voxel-based neighborhood definition
where points in each non-overlapping voxel of a regular grid are assigned to the same class
by considering features within a support region defined by the voxel itself. The contribution
comprises offline training and online classification procedures as well as five alternative
feature vector definitions based on principal component analysis for scatter, tubular and
planar shapes.

Moreover, the feasibility of this approach has been evaluated by implementing four
types of supervised learning classifiers found in scene processing methods: our NN model,
support vector machines (SVM), Gaussian processes (GP), and Gaussian mixture models
(GMM). An experimental performance analysis has been carried out using real scans from
both natural and urban environments and two different 3D rangefinders: a tilting Hokuyo
and a Riegl. The major conclusion from this analysis is that voxel-based neighborhood
classification greatly improves computation time with respect to point-wise neighborhood,
while no relevant differences in scene classification accuracy have been appreciated. Results
have also shown that the choice of suitable features can have a dramatic effect on the
performance of classification approaches. All in all, classification performance metrics and
processing time measurements have confirmed the benefits of the NN classifier and the
feasibility of the voxel-based neighborhood approach for terrestrial lidar scenes.

One additional advantage of processing each non-overlapping cell by using points from
only that same cell is that this favors parallelization [94]. Developing a parallel version of
the proposed method to improve online classification time with multi-core computers will be
addressed in future work. Furthermore, it will be also interesting to adapt the method for
incremental update of classification results with consecutive scans.

As a result, a GFVM is obtained where each voxel is labelled as one of these geometric
classes: scatter, linear or flat surface. Fig. 3.9 shows a dense point cloud modelled as
a GFVM. The scene shows a natural environment in Malaga captured by the UNOLaser
rangefinder. The geometric classes associated to each voxel can be applied to identify scene
objects such as ground, tree trunks and vegetation, which will be addressed in Chapter 4.
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Fig. 3.9 Geometrically featured voxel map from a natural environment. Red voxels have
been classified as planar, blue as tubular, and green as scatter.

The scientific production of this chapter is listed below:

• [85] IWANN’15, 13th International Work-Conference on Artificial Neural Networks.
Multi-layer Perceptrons for Voxel-based Classification of Point Clouds from Natural
Environments. 2015. (Core B)

• [88] Sensors. Voxel-Based Neighborhood for Spatial Shape Pattern Classification of
Lidar Point Clouds with Supervised Learning. 2017. (Journal Q1)





Chapter 4

Segmentation and navigability
assessment based on geometrically
featured voxel maps

4.1 Introduction

Autonomous navigation for mobile robots in complex 3D environments requires efficient
characterization of the perceived scene structure. This chapter proposes novel contributions
for point cloud segmentation based on the geometrically featured voxel maps presented in
Chapter 3. In particular, the proposed solution involves two steps (see Fig. 4.1): i) a ground
segmentation method specially designed for natural environments which serves as a basis
for subsequent isolation of individual objects, and ii) the generation of a traversability map
based on occupancy grids which can be suitable for mobile robots in natural environments.

As in [26], ground segmentation is considered in the first place, which favors posterior
object segmentation and navigability assessment. Thus, the ground segmentation algorithm is
the cornerstone of the proposed solution for object segmentation and navigability assessment.
Other authors have approached ground segmentation by fitting a flat plane [126] [125] or by

Ground Segmentation

Non ground voxels

Voxel Map

Object and regions 
segmentation

Ground voxels Occupancy Grid

Fig. 4.1 General description of the segmentation and navigability assessment solution



46 Segmentation and navigability assessment based on geometrically featured voxel maps

using a threshold, for the height mean [122][53] or for both the height mean and the vertical
variance [26]. These approaches are useful for urban environments, but they do not consider
the 3D complexity of natural terrain. [112] combines both approaches in an adaptative ground
segmentation method with good results in uneven and sparse regions, however it is based
in a data representation which is only affordable for 3D point cloud obtained by multibeam
sensors, such as Velodyne. This chapter proposes a new 3D ground segmentation algorithm
for dense point clouds specially designed for natural environments where big slopes, non-flat
areas, and isolated areas have been considered. A number of vertically aligned voxels can
be considered as ground points in order to properly define slopes, mounds, or other terrain
irregularities. To identify these ground voxels, the ground segmentation algorithm consists
of a sequence of refining rules. An appropriate sequence for the rules has been determined
from experimental analysis. Furthermore, the influence of voxel size has also been analyzed.
Besides, ground segmentation is used to extend the voxel map representation by adding a
new attribute to the voxels, apart from their geometric class.

After ground segmentation, objects can be individually isolated and geometrically fea-
tured by using the class of their corresponding voxels. To this end, a two-step object
segmentation is proposed. First, the non-ground points are divided into individual objects by
merging adjacent voxels, and, secondly, each resulting object is split into regions with the
same geometric class by merging adjacent voxels with same class.

Besides, this chapter presents a new navigability assessment method for ground vehicles
on natural terrain that is also based on ground segmentation. Navigability assessment can be
roughly classified into three main categories: a binary classification problem, traversable or
non-traversable terrain, a finer estimation with a continuous traversability score, or a classi-
fication with various classes. [78] reviews this terrain traversability analysis problem and
distinguish the geometry-based approaches according to the criteria employed for estimating
traversability. A discrete model of occupancy or traversability has been adopted by other
authors by evaluating only the heights [45] or the slope and flatness of each area [70]. The
solution proposed in this chapter generates a 2D occupancy grid which represents accessible
areas by considering the geometric attributes and the height of each voxel over the ground
level in relation to vehicle dimensions.

All in all, the methods presented in this chapter contribute to the characterization of
3D terrain and complex objects in the environment. The method extends applicability to
point cloud in unstructured environments because of two reasons: i) geometric features are
identified regardless of their orientation and ii) ground segmentation considers sharp slopes,
non-flat areas, and isolated areas. The aim of this study is to provide a novel solution for 3D
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segmentation and navigability assessment that can facilitate tasks such as object recognition
and path planning in natural environments for autonomous mobile robots.

The rest of the chapter is organized as follows. Section 4.2 describes the steps of the
proposed segmentation algorithm and the subsection 4.2.3 explains the experiments and
metrics to evaluate the algorithm and shows the results obtained. Section 4.3 proposes
the occupancy grid generation method and contains a subsection which shows several
experiments performed. Finally, conclusions are presented.

4.2 Segmentation methods for unstructured environments

This section presents segmentation methods that are based on a GFVM voxel structure, as
described in Chapter 3. Particularly, the proposed segmentation method is divided into two
major stages, as seen in the upper path of Fig. 4.1. First, the ground is extracted from the
scene by defining a set of rules specifically considered for unstructured environments. After
that, non ground voxels are used to segment objects, which are subsequently split into regions
with the same geometric classification. Furthermore, these segmentation algorithms are used
to add new attributes to the voxel map.

4.2.1 Ground segmentation

Some works have tested the benefit of using the ground as a separator between objects [26].
Generally, ground segmentation methods assume that the ground as a whole is continuous,
almost flat, or the largest object in the scene. These assumptions are not necessarily true in
natural environments where the ground can have different types of discontinuities due to

Compute
Rough Ground Estimation

Voxel Map

Apply Refining Rules

Ground voxels

A. Remove voxels with vertical discontinuity
B. Remove voxels in isolated areas with vertical discontinuity
C. Add voxels containing a terrain crest
D. Add voxels in a slope
D’. Add voxels in a slope, iterative

Fig. 4.2 Flow diagram of the ground segmentation algorithm.
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sharp slopes, terrain roughness, or the presence of rocks or bushes. Besides, ground surface
may not necessarily imply traversable areas for vehicles, as in urban environments.

This section presents a ground segmentation method specially designed for this kind of
unstructured environments. The proposed algorithm, which identifies the set of voxels G
that correspond to ground points, is illustrated in the flow diagram shown in Fig. 4.2. A
planar XY grid with edge size E is defined on the base of the GFVM defined in Chapter 3.
Thus, each XY cell may support a number of occupied voxels in the corresponding GFVM
at different heights (coordinate Z). Then, the algorithm starts from a rough estimation of G
consisting of the set of the lowest occupied voxels, if any, over the XY grid.

Starting from this rough estimation, several rules are proposed to refine G by adding and
removing voxels from GFMV by considering connectivity between occupied voxels. In this
work, two voxels are considered as adjacent if they touch any of their facets, edges or corners.
Then, two voxels are connected if there is an adjacency path between them. As each rule
modifies G, the order in which the rules are performed is relevant, which will be addressed
in Section 4.2.3. The proposed rules, which are illustrated in Fig. 4.3, are the following:

• A. Remove voxels with vertical discontinuity.

A voxel is removed from G if it is not adjacent to any other voxel in G with different
XY coordinates.

This rule aims to remove voxels which are much further up than their neighbors (see
Fig. 4.3(a)). With this purpose it is assumed that vertical discontinuities indicate
non-ground objects even if sharp slopes can correspond to ground points. This rule
implies that it is possible that not all XY cells support ground voxels.

• B. Remove voxels in isolated areas with vertical discontinuity.

Let us define Gl ∈ G such that Gl contains all the voxels connected to the lowest voxel
in G. Then:

All voxels from a connected set of voxels Gd ∈ G such that Gd ̸= Gl are removed from
G if the closest pair of voxels from Gl and Gd have a height difference greater than E.

This rule, which is illustrated in Fig. 4.3 (b), assumes that the area with the lowest
points corresponds to the ground [38]. Disconnected areas, as floating objects, are
not considered as ground unless they have a similar height. Furthermore, terrain
irregularity is accounted for by considering the actual heights between the closest pair
of voxels instead of the lowest voxel value.

• C. Add voxels containing a terrain crest.
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(a) Rule A (b) Rule B

(c) Rule C (d) Rule D

Fig. 4.3 Illustration of ground segmentation rules by considering GFVM voxels for a single
Y value. Red points correspond to current ground voxels that are not modified; voxels with
black points in (a) and (b) are removed from the set of ground voxels; and voxels with blue
points in (c) and (d) are added to the set of ground voxels.
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A voxel from the GFVM is added to G if its upper neighbor is not occupied and the
average height of its inner points is less than a fixed threshold and its lower neighbor
is in G .

As illustrated by Fig. 4.3(c), protruding ground relief may require more than one voxel
in G over the same XY cell. However, if the upper voxel in GFVM is occupied or its
inner points are high, then the the voxel is not added to the ground, as it may be part of
an object.

• D. Add voxels in a slope.

A voxel from the GFVM is added to G if its lower neighbor and at least one adjacent
voxel with the same height are in G.

Rule D, which is illustrated in Fig. 4.3 (d), finds pairs of adjacent voxels in G with
different XY coordinates and E height difference. This rule assumes these pair of
voxels belongs to a slope in the terrain and the upper voxel of the lowest from the pair
also belongs to the terrain G.

• D’. Add voxels in a slope, iterative.

New voxels added to G with rule D may also belong to a new slope where rule D may
be applied.

This is an iterative alternative to rule D, where subsequent application of the rule can
refine the slope in the terrain G until no new voxel is added.

4.2.2 Object segmentation

Once the ground has been extracted, the scene partition into objects is found by clustering
together adjacent voxels [26]. In addition, each object is also split into regions which are
obtained by merging adjacent voxels with same geometric class. For example, a tree object
would be split into two regions at least: i) a linear region relative to the trunk and branches
and ii) a scattered region relative to the tree crown. Figs. 4.4 and 4.5 show the segmentation
in objects and regions respectively from the same natural scene.

This double segmentation may be helpful in subsequent applications, for instance scene
description and/or recognition. Several statistical features such as width, height, depth,
centroid position and distance from the ground, can be computed from each region to be used
as descriptors or inputs in future object classification algorithms. For instance, an object with
a scattered region at the top and a long linear region below and just over the ground, could be
identified as a tree.
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Fig. 4.4 Scene segmented into objects with no adjacent voxels between them. Different
colors indicate different objects. Ground points are not shown.

4.2.3 Evaluation

Rules application evaluation

This section analyzes the performance of the proposed segmentation algorithms using differ-
ent order or combination of the refining rules. The evaluation method uses three scenes:

• Urban. This dataset is described in chapter 3 and it allows the comparison with other
author’s methodology [26]. It contains 41 large objects including buildings, trees, cars,
bushes, fences and light poles.

• Dense. This dataset is described in chapter 3 where is called Natural_2. It represents a
dense forest with many trees and bushes over the ground.

• Slope. This dataset shows a natural environment in Malaga captured by a low-cost
laser range finder called Unolaser [63] (see Fig. 4.8). It contains a steep slope and just
a tree and a bush.
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Fig. 4.5 Scene with objects segmented into regions with the same geometric class: planar,
linear, scatter. Different colors indicate different segments.

Noisy points from sparse areas will not be taken into account in the evaluation since they
cannot be manually identified as an object. Initially, a voxel size E is 0.5 meters, however
owing to the fact that E affects the accuracy in the segmentation process, this parameter is
tested in Section 4.2.3 .

Through four metrics (G, F, O, N) the evaluation quantifies the agreement between the
manual segmentation and the segmentation resulting from the proposed algorithm. That
is, each hand-labeled object or ground U is compared with the same points in the scene
segmented with the proposed algorithm. The evaluation method considers two metrics for
the ground segmentation (i.e. G, F) and other two metrics for the object segmentation
(i.e. O, N). This set of metrics aims to balance the effects of both oversegmentation and
undersegmentation. Oversegmentation happens when a hand-labeled object U wrongly corre-
sponds to more than one object, {U ′,V ′,W ′, ...}, in the scene segmented with the algorithm
(see Fig. 4.6a). That is, U ′ ∪V ′ ∪W ′ = U where U ′ > V ′ > W ′ (in number of contained
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Table 4.1 Segmentation Results with Different Ground Segmentation Rule Sequences

Rule Sequence
Slope Scene Dense Scene Urban Scene Mean[%]G[%] F[%] O[%] N[%] T [s] G[%] F[%] O[%] N[%] T [s] G[%] F[%] O[%] N[%] T [s]

ABC 50,8 0,0 61,5 0,6 4,0 99,3 4,8 61,2 36,3 6,1 100,0 0,1 94,7 94,7 85,3 43,9
ABCD 66,0 0,0 61,5 0,6 3,5 99,9 25,0 50,6 32,2 4,3 100,0 2,4 93,4 93,4 113,9 42,1
ABCD′ 69,8 1,4 32,4 0,6 2,7 99,9 62,6 45,9 36,4 4,5 100,0 3,6 92,7 92,7 91,6 43,2
ABDC 65,3 0,0 61,5 0,6 2,3 99,7 18,6 61,0 54,4 3,0 100,0 2,2 93,4 93,4 97,2 49,5
ABD′ 69,3 1,4 32,4 0,6 2,7 99,6 51,5 50,3 40,8 1,5 99,6 3,3 92,8 92,8 100,6 44,7

ABD′C 69,8 1,7 26,5 0,6 2,5 99,7 55,6 47,9 38,4 5,8 100,0 3,3 92,8 92,8 100,3 43,9
CAB 50,4 0,0 61,5 0,6 2,6 99,3 4,7 61,0 36,3 6,1 99,9 0,1 94,7 94,7 102,1 43,9

CDAB 69,8 0,0 61,5 0,6 4,3 99,9 28,3 48,6 30,4 4,2 99,9 2,4 93,5 93,5 112,3 41,5
CD′AB 73,0 0,0 61,5 0,6 2,7 99,9 64,8 44,8 35,3 6,8 99,9 3,4 93,0 93,0 113,6 43,0
DCAB 65,4 0,0 61,5 0,6 4,7 99,7 21,3 59,1 52,4 6,0 99,9 2,1 93,5 93,5 101,5 48,9
D′AB 72,6 0,0 61,5 0,6 3,5 99,6 54,4 48,4 38,9 3,8 99,6 3,2 93,0 93,0 98,5 44,2

D′CAB 72,9 0,0 61,5 0,6 2,4 99,7 56,7 47,0 37,5 3,6 99,9 3,2 93,0 93,0 84,8 43,7
/0 54,6 0,0 61,5 0,6 2,2 98,4 5,5 55,7 30,8 4,5 88,5 2,1 80,4 70,5 109,1 34,0

D′ 98,4 2,8 38,2 38,2 1,7 99,6 75,5 36,1 26,8 2,8 99,6 6,3 90,0 90,0 125,5 51,7
D′B 98,4 2,8 38,2 38,2 3,5 99,6 73,0 36,9 27,1 4,1 99,6 3,8 93,1 93,1 112,0 52,8
[26] 85,5 4,6 61,5 0,6 4,3 48,9 4,3 57,3 32,1 4,8 100,0 0,6 94,3 94,3 117,3 42,3

(a) Oversegmentation (b) Undersegmentation

Fig. 4.6 Errors in segmentation. U, V, W are hand-labeled objects while U’, V’ are objects
segmented with the proposed segmentation algorithm. (a) Represents an oversegmentated
escene and (b) the same scene with undersegmentation.

points). Undersegmentation occurs when several hand-labeled objects, {U,V,W, ...}, have
been segmented in only one object U ′ (see Fig. 4.6b). That is, U ∪V ∪W =U ′.

.
The first metric O is computed by iterating for all the hand-labeled objects, sorted in

descending order of size. The size of an object U is the number of its inner points and
it is denoted by s(U). The agreement score for U is computed only with respect U ′ as
s(U ′∩U) ∗ 100/s(U), in percentage, where U ′ is the largest object (in number of points)
in the set of points in the scene segmented with the algorithm which corresponds to U .
So the largest object U ′ is considered the match, U ∼U ′, and all other partitions derived
from oversegmentation, V ′,W ′, are considered errors because @V,W : V ∼ V ′,W ∼W ′.
Furthermore, to quantify the error from undersegmentation, once a set of points in U ′ has
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been matched to any U , then the whole object U ′ cannot be considered in any subsequent
match iterations for the remaining hand-labeled objects. That is, if U ′ ∼U =⇒ U ′ � V .
This way, in oversegmentation of the object U the score will be O(U) ∈ (0,100) while in
undersegmentation: O(U) ∈ (0,100],O(V ) = 0. This metric was proposed in [26] where the
author did not consider the ground as an special object, and the undersegmentation is not
quantified enough.

Moreover, this chapter proposes a novel metric N which considers the undersegmentation
as a bigger penalty. This metric is similar to O but 0% score is assigned if U ′ has more points
outside of U than inside it (see Fig. 4.6b). Then, for U ∪V ∪W = U ′ : U < V ∩W =⇒
N(U) = N(V ) = N(W ) = 0. Hence, N≤O.

The metric G computes the agreement of the ground segmentation by applying the same
score equation as O to the hand-segmented ground.

Furthermore, the false positive points could be measured through the metric F. That is,
the number of points outside the hand-labeled object which have been wrongly segmented in
its matched object, with respect to the total number of points of the hand-labeled object, i.e.
s(U ′ ·U)∗100/s(U). This score measures the undersegmentation, in this case the score will
be a positive number, while in oversegmentation the score is 0. This section applies F only
to the ground segmentation.

Table 4.1 shows the evaluation results with 15 representative combinations of the refining
rules of the ground segmentation. The first column indicates the rule sequence; rule /0
corresponds to the rough ground estimation and no refining rule applied. Then the four
metrics are applied to each of the three evaluated datasets and the execution time of the
ground and object segmentation, in seconds. The last column represents the mean over
the three datasets evaluated with the novel N metric. Besides, the table offes metrics for
the method with the best result proposed in [26] called Cluster-All. For this method, the
parameter neighborhood magnitude is defined as 1, which means two voxels are considered
neighbors only if they are touching, adjacent, as in the proposed algorithm. In addition,
the variance and height thresholds for the ground required by the cluster-all method were
empirically extracted from the hand-labeled Urban scene. The algorithms have been coded
in Matlab and executed on a computer with a i7 processor with a clock frequency of 2.4 GHz
and 8GB in RAM.

In general, the Urban scene presents the best result regarding ground and object segmen-
tation in all rule combinations, but the computational times are large because of the large
number of points. This is a structured environment where the ground is continuous and planar
and the objects are clearly separated. The Dense scene presents very good results in the
ground extraction, but between 30 and 50% of point score in the object segmentation. This
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Fig. 4.7 Dense scene segmented with the method ABDC. Black points are segmented as
ground, and different colors indicate different segmented objects. The largest three trees are
joined by their crowns and some bush.

is because all the vegetation, bushes and tree crowns, are merged with other objects in the
scene (see Fig. 4.7). In fact, it may not present a problem for future navigability assessment
because the second segmentation in regions shows the parts of the object which are solid
obstacles (linear or tubular class) or traversable such as bushes on the ground (scatter class).
Finally, the most difficult scene is the Slope scene where the ground segmentation has scores
between 50 and 73% in most of the methods, except the last three, and this produces poor
object segmentation. In addition, this scene shows the lack of accuracy in both metrics for
object segmentation. Fig. 4.8 shows the Slope scene segmented with the rule sequence
ABCD. The main object is the tree which has been wrongly segmented, from an area of the
ground which is also badly segmented. The O metric provides a score of 61% and the second
metric 0.6% which is more accurate for representing this undersegmentation case.

To sum up, there is no method with the best score in all the scenes. However, the mean
of the proposed metric N in the three scenes shows that the optimal combination of refining
rules is D′B. These correspond to the sequence of adding voxels in a slope (iterative version)
and removing voxels in isolated areas with vertical discontinuity. When the removing rules
(A or B) are applied before the adding rules (C, D or D′), some voxels required for the
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Fig. 4.8 Slope scene wrongly segmented. The bottom image shows the same scene from the
side. Black points are segmented as ground, and different colors indicate different segmented
objects.

interpolation in a slope ground are removed. However, in scenes where the ground is almost
flat and continuous, removing rules applied in the first place provides better computation
time, because the subsequent rules will process less data, and no accuracy penalty is shown.
The segmentation algorithm proposed in this chapter obtains a much better result than other
in the literature especially in natural environments with big slopes.

Voxel Size Evaluation

This section evaluates the proposed segmentation algorithm, with its optimal method D′B,
with different voxel sizes.

A too small size of voxel produces sparser data, the number of empty voxels which
connect surfaces from the same object increases, then objects become over-segmentated.
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Fig. 4.9 Ground and Object point scores, in percent, for the data set Slope and Dense with
different voxel sizes. The ground scores are in the blue scale, in the left vertical axis, and the
object scores are in the green scale, in the right vertical axis. X axis is the size of the voxel
tested, in m3

On the contrary, too big voxels can create adjacency in voxels which really are in different
objects. This could be an advantage in sparse point clouds where two points are separated
but their voxels can offer a direct adjacency, hence the segmentation process will merge these
points in the same object. In dense point clouds, the points are closer and the optimal voxel
size will be the one which is as big as possible to further simplify the point cloud but at the
same time small enough to keep the meaningful features of the scene, as shapes.

Fig. 4.9 shows the ground and object segmentation scores, G,N, for Slope and Dense
scenes. When the voxel size increases, the ground score also increases however the object
score decreases. In conclusion, more accurate segmentation results are obtained with lower
voxel sizes. Furthermore, the performance of the algorithm is analyzed in terms of time and
object score per unit of time. Fig. 4.10 presents the decrease of the execution time as the
voxel size increases, as it would be assumed that the point cloud is becoming simpler in a
smaller number of voxels. However, since the available time is limited in many applications,
it is useful to analyze the performance in terms of the segmentation score per each unit of
the executed time. The rate of score per time is based on the result of the Point Score in
the object segmentation with the novel metric N in percent, per each unit of the execution
time in seconds. The figure shows that the optimal performance is obtained with a voxel size
between 0.45 and 0.5 m3.
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Fig. 4.10 Execution times in seconds and rates of segmentation scores per unit of time with
different voxel sizes. Blue and green lines are the execution times in Slope and Dense scene
respectively, and red and black lines are the score per time rate for these scenes, respectively.
X axis is the size of the voxel used, in m3

4.3 Navigability assessment

A 2D occupancy grid can be obtained based on the extracted attributes, the geometric class
and the segmentation in ground or object, and two parameters ηh and ηl , which are height
thresholds for the obstacles and depend on the vehicle features.

The goal is reducing the dimensions of the 3D grid composed by voxels by projecting
it into a new 2D XY grid composed by cells. The result is a XY plane divided into equal
size square cells which are classified in accessible and non-accessible area. The plane XY
correspond to the 3D grid plant so the size of the cells edge is the same as the voxels edge.
The value for each cell is computed based on the features of the voxels over the current cell.
A flow diagram is depicted in Fig. 4.11.

When no voxel exists on the vertical of a XY cell, then occupancy cell will be empty
because there is no point on it, or unknown data. If there is no voxel upper than the ground
voxel on the current XY cell, then the cell is accessible, assuming all ground voxels are
traversable for the vehicle. Otherwise, the height of the voxels which are non ground over the
current cell, VO voxels, determines the output value for the occupancy cell. The parameters
ηh and ηl correspond to the high and low threshold of the collision zone for the vehicle:
objects higher than the collision zone are not obstacles in the path, objects in that zone are
always obstacle, and objects under that zone can be depending on other features. These
parameters assume the ground’s height is zero. However, since the ground has slopes or



4.3 Navigability assessment 59

Fig. 4.11 Flow diagram of the occupancy grid generation
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roughness, ηh and ηl are transformed into hh and hl which are adapted to the height of the
ground at each cell. A cell with voxels upper than the high threshold hh over its ground voxel
means the obstacle is too high for a collision with the vehicle, hence it is an accessible cell.
On the contrary, if voxels between the high and low threshold hh and hl exist, then an obstacle
exists in the vehicle collision zone, therefore the cell is declared as non-accessible. In the
case of voxels lower than hl , the objects has a height accessible for the vehicle depending on
its strength. Voxels classified as tubular or planar surface, are considered solid objects hence
non-accessible obstacle. However, scatter voxels usually referred to vegetation are accessible
when they are as short as the hl defines. As a result, a binary occupancy grid is generated
which can be included in a robot navigation system for planning trajectories.

4.3.1 Evaluation

This section presents the results of the proposed occupancy grid generation tested in several
point clouds captured with a 3D laser rangefinder in natural environments.

The first step of the proposed method involves transforming the raw data from the laser
rangefinder to a point cloud such as list of Cartesian 3D points. This process is different
depending on the 3D device used. In this analysis, the low-cost laser rangefinder UnoLaser
30M135Y has been used [63]. It is a stop-and-go laser system [30] based on pitching a
commercial 2D rangefinder, Hokuyo UTM-30LX. It has a maximum scanning range of 30
meters, a field of view 270 in horizontal and 131º in vertical. A spherical scan is obtained
where each point in the cloud is defined by two angles ω and α around Z and X axes,
respectively, and a distance R. The Cartesian coordinates [x,y,z]T are computed based on the
spherical coordinates [R,ω,α].

Point clouds used in experiments correspond to environments captured during a realistic
emergency drill in natural environments in Marbella, Spain [14]. In the voxel map generation,
the parameter voxel edge size E has been defined as 0.5 meters achieving a compromise
between computational efficiency, memory management and scene reconstruction accuracy.
The neural network has been previously trained with several hand-labeled scenes which are
different to the scenes used in the method evaluation. Same way the density threshold ρ is 10,
which means voxels are processed only if contains at least 10 points. The vehicle parameters
for the occupancy grid generation are ηh = 1.5 meters and ηl = 0.5 meters.

As expected, the resulting occupancy grids present non-accessible cells as obstacles exist
over the ground. Fig. 4.12 shows the generated occupancy grid based on a natural scene with
trees. The tree crowns are too high for the vehicles parameters, for that reason these cells
are accessible. On the contrary the tree trunks are obstacles for the navigation are labelled
as non-accessible. Other scene has been processed with a slope, see Fig. 4.13. Even with
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(a) Point cloud from a trees scene where ground is marked in red and left objects in blue

(b) Resulting occupancy grid where accessible area is colored in blue and obstacles in pink.

Fig. 4.12 Occupancy grid resulting in a trees scene

the high slope of the ground these cells are considered accessible for the vehicle navigation.
However, the tree and the bush are labelled as obstacles.

4.4 Summary

This thesis has proposed a new method for 3D segmentation and 2D occupancy grid gener-
ation where cells are labelled as accessible or non-accessible, both specially designed for
unstructured environments where the ground is not flat or continuous. The methods are based
in GFVM described in chapter 3. The ground is segmented from the scene where big slopes,
non-flat areas, and isolated areas which may appear in unstructured environments have been
considered. To identify these ground voxels, the ground segmentation algorithm consists
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(a) Point cloud from a slope scene where ground is marked in red and left objects in blue

(b) Plant view from the same point cloud. (c) Resulting occupancy grid where accessible
area is colored in blue and obstacles in pink.

Fig. 4.13 Occupancy grid resulting in a slope scene
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of a sequence of refining rules. An appropriate sequence for the rules has been determined
from experimental analysis. Furthermore, the influence of voxel size has also been analyzed.
Besides, ground segmentation is used to extend the voxel map representation by adding a
new attribute to the voxels, apart from their geometric class.

Once the ground is segmented from the scene, the object segmentation is performed in
two steps: i) adjacent voxels define segmented objects, and ii) each object is splitted into
regions with adjacent voxels and the same geometric class. With this double-segmentation
method the traversable ground can be extracted to facilitate the path planning. In addition,
several geometric and statistical features can be extracted from both objects and regions
in order to classify objects automatically and in the recognition of the scene. Hence, the
proposed object segmentation and characterization method can be useful for further scene
understanding processing problems, such as semantic mapping and scene recognition.

Generation of the occupancy grid is based on the location and the geometric features of
the objects over the ground. Those voxels classified as tubular or planar surfaces, except
the ground, are assumed as solid objects or obstacles, hence they may be semantically
labeled as non-accessible areas. Furthermore, scatter voxels can be an obstacle for a vehicle
depending on its height. Thus, the proposed solution aims to develop a low computational
cost method by reducing the amount of data to process in comparison with point-based
techniques. Furthermore, geometric features are identified regardless of their orientation,
which extends applicability to unstructured environments. As a result, an occupancy grid is
generated which can be included in a robot navigation system for planning trajectories.

This chapter has presented a novel approach to obstacle identification for autonomous
ground vehicles that is applicable to both structured (e.g. indoor, road) and unstructured (e.g.
off-road, grassy terrain) environments. The feasibility of this method has been evaluated with
3D laser scans in urban and natural environments using data acquired from range sensors
widely studied. The proposed algorithm presents better results in comparison with other
methods from the literature in natural environments with rough ground. In addition, an
experiment conclude which size of voxel provides the best result. Apart from a metric
commonly used in the literature, a novel metric has been used is to quantify the accuracy in
the segmentation trough a comparison between each segmented point cloud and a manually
labeled ground truth.

The scientific production of this chapter is listed below:

• [84] ICIT’15, IEEE International Conference on Industrial Technology. 3D Segmen-
tation Method for Natural Environments based on a Geometric-Featured Voxel Map.
2015.
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• [87] MED’15, 23rd Mediterranean Conference on Control and Automation. Occupancy
grids generation based on Geometric-Featured Voxel maps. 2015.



Chapter 5

Analysis and construction of a
multi-beam lidar with an additional
degree of freedom

5.1 Introduction

This chapter addresses RMBL sensors, a type of customized 3D rangefinders built by adding
a rotation mechanism to a commercial MBL. Recent published examples using VLP-16
(Puck) [71][44], the most affordable and lightest MBL by Velodyne, indicate that the RMBL
configuration has the potential to become a common solution to get low-cost, rapid, and
full-3D high resolution scans, as has happened with customized RSML during the last fifteen
years (as shown in Table 2.1).

In particular, novel contributions include a comparison, both qualitative and quantitative,
of general scan patterns produced by an ideal VLP-16-based RMBL with other 3D scan
alternatives (i.e., SMBL and MBL), the design and implementation of a new RMBL consisting
of a portable tilting platform for Velodyne VLP-16 scanners, and a discussion of actual
example scans obtained with the new device.

The rest of the chapter is organized as follows. Section 5.2 defines an ideal RMBL
based on Velodyne MBL specifications. Section 5.3 presents a simulation-based analysis
methodology. Section 5.4 analyzes RMBL scan patterns and offers comparisons with
alternative 3D configurations. Section 5.5 describes a new VLP-16-based tilting platform,
which is used to scan three representative environments that are discussed in Section 5.6.
Finally, Section 5.7 offers the summary.
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5.2 Rotation of a multi-beam lidar sensor

This section reviews the major characteristics of two MBL sensors by Velodyne and presents
the computation of Cartesian point clouds for an RMBL that considers a rotation axis parallel
to one of the MBL frame axes.

5.2.1 Commercial multi-beam lidars

As opposed to single-beam 2D sensors, in multi-beam rangefinders the rotating mirror is
replaced by a spinning structure that holds a number of independent laser transceivers to
scan different elevation angles. The Velodyne VLP-16 and HDL-32 rangefinders, shown in
Fig. 5.1, are representative examples of the most affordable end of commercial multi-beam
sensors [109].

Table 5.1 Manufacturer specifications for the VLP-16 and HDL-32 sensors [10].

VLP-16 HDL-32
Laser/detector pairs 16 32
Range 1m to 100m 1m to 70m
Accuracy ±3cm ± 2cm
Data Distance / Calibrated reflectivities Distance / Calibrated reflectivities
Data Rate 300,000 points/s 700,000 points/s
Vertical FOV 30◦ : [−15◦,+15◦] 41.3◦ : [−30.67◦,+10.67◦]
Vertical Resolution 2.0◦ 1.33◦

Horizontal FOV 360◦ 360◦

Horizontal Resolution 0.1◦ to 0.4◦ (programmable) 0.08◦ to 0.35◦ (programmable)
Size 103mm x 72mm 85.3mm x 149.9mm
Weight 0.83Kg 1.3Kg

(a) Velodyne HDL-32E (b) Velodyne VLP-16

Fig. 5.1 Commercial multi-beam lidars [10].
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Fig. 5.2 Reference frames and data point coordinates: a) Velodyne VLP-16 sensor, b) RMBL
based on a VLP-16. The VLP-16 local frame is represented in blue; the RMBL local frame
is represented in red.

The major specifications of the VLP-16 and HDL-32 MBLs are summarized in Table 5.1.
From an operational standpoint, the major differences between them lie in the number of
laser transceivers and the vertical FOV: The VLP-16 scanner has 16 individual laser/detectors
arranged in a 30◦ FOV, which yields a vertical resolution of 2.0◦, whereas the HDL-32 has
32 transducers within a FOV of 41.3◦ with a vertical resolution of 1.33◦. In contrast with
the VLP-16, whose FOV is symmetrical with respect to the horizontal plane, the FOV of the
HDL-32 has a downward shift. Furthermore, the increased vertical resolution of the HDL-32
has a significant impact in the cost of the sensor, which is substantially more expensive than
the VLP-16.

5.2.2 Multi-beam lidar with an additional rotation (RMBL)

Without loss of generality, the VLP-16 will be considered in this Thesis for the addition of a
rotation mechanism. This sensor is especially suitable to build an RMBL on account of its
more accessible cost, lighter weight, symmetric FOV, and compact size. Nevertheless, the
following definitions could be extended to any MBL.
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The local frame XvYvZv of the VLP-16 is shown in Fig. 5.2(a). This frame has its origin
in the optical center, with the Yv axis in the forward direction and Zv pointing upwards. The
VLP-16 scans points in spherical coordinates (R,ω,α). With this information, Cartesian
coordinates (xv,yv,zv) can be obtained for each measured point:

xv = Rcos(ω)sin(α), (5.1)

yv = Rcos(ω)cos(α), (5.2)

zv = Rsin(ω). (5.3)

The local frame XY Z of the RMBL resulting from the addition of a rotating mechanism
(i.e., spinning or tilting) to the VLP-16 is illustrated in Fig. 5.2(b). When the rotation angle
γ is null, Zv is aligned with Z, and Xv and Yv are parallel to X and Y , respectively. Let
us consider that the rotation axis is parallel to one of the VLP-16 axes; in this case, the
rotation axis is Y . It should be noted that rotation about the Y and X axes would be similar,
as the VLP-16 has a 360◦ horizontal FOV, whereas rotation about Z would be pointless as
this is redundant with the spinning motion of the multi-beam transceivers. Furthermore, in
practice, the rotation axis should be at some small distance d below the VLP-16 for the sake
of compactness and shadow avoidance.

Then, Cartesian coordinates (x,y,z) of data points in the RMBL frame can be computed
as:

x = R(cos(ω)sin(α)cos(γ)+ sin(ω)sin(γ))+d sin(γ), (5.4)

y = Rcos(ω)cos(α), (5.5)

z = R(sin(ω)cos(γ)− cos(ω)sin(α)sin(γ))+d cos(γ). (5.6)

5.3 Analysis methodology

This section proposes a simulation-based methodology to analyze, both qualitatively and
quantitatively, the spatial distribution of laser beams in 3D lidars. First, the simulation of
sensor points on a hollow sphere is defined. Qualitative analysis is done from a visualization
of point patterns projected on the sphere and also on orthogonal planes. For a quantitative
analysis, the distribution of sampling density is considered.
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5.3.1 Numerical simulation

The proposed methodology considers the set of points computed by simulating a scan from a
sensor that is placed at the center of a virtual hollow sphere [114][96]. This structure allows
analyzing the homogeneity and the beam density in all directions around the sensor. By using
a sphere, the analysis depends exclusively on sensor characteristics and is independent of
the orientation and distance of the target surface (e.g., as in planar targets). Moreover, the
azimuth and elevation of the points in the sphere are independent of the sphere radius.

To analyze the general patterns produced by different scan configurations, Section 5.4 will
consider ideal sensors that are independent of particular device considerations. In order to
produce a complete sphere, an ideal RMBL sensor based on a VLP-16 lidar can be simulated
by considering a constant angular velocity of the tilt motion from γ = 0◦ to γ = 180◦,
which produces a complete sphere. Different angular velocities correspond to different scan
resolutions for the additional DOF. For the sake of simplicity, it will also be assumed that the
sphere radius is large enough to make the deviation between the center of the sphere (i.e.,
the RMBL’s origin) and its optical center negligible (i.e., d ≈ 0); thus, all ranges R coincide
with the sphere radius and Equations (5.1)-(5.3) can be applied. Moreover, as points are
intended to represent beam directions, no noise is considered in the simulations. Besides,
for generalization, no shadows or other FOV limitations due to a particular mechanism are
considered.

For a qualitative analysis, it is also interesting to consider how the angular distribution of
points on the sphere would be translated onto planar surfaces in a synthetic environment. In
the proposed analysis, the sensors is placed at a height of 1.5 m over a ground plane that is
parallel to the local XY plane and at 10 m from planes (representing walls) that are parallel
to Y Z and XZ planes. This synthetic configuration is preferred rather than placing the sensor
at the center of a 10 m × 10 m cube [1] because it is more representative of ground-based
lidar applications.

5.3.2 Sampling density

Sampling density for different scanning angles [114][1] can be represented as a 2D histogram
on the sphere. With this aim, the sphere surface is partitioned with a triangular mesh obtained
by recursive icosahedron sphere tessellation [7]. In this work, the sphere surface has been
partitioned into 5120 bins.
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5.4 Analysis of ideal RMBL scanning patterns and com-
parison with other 3D configurations

The methodology defined in Section 5.3 has been applied to an ideal full-sphere VLP-16-
based RMBL, which is compared with alternative 3D lidar configurations.

5.4.1 Qualitative analysis

A visualization of sphere points given by the 3D scanners is offered in Fig. 5.3. These points
are shown in local sensor coordinates for a sphere of radius R = 10 m. Fig. 5.3(a-b) illustrates
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Fig. 5.3 Representation of lidar beams as sphere points: a) VLP-16, b) HDL-32, c) RMBL
with tilting speed of 120◦/s (29 frames), and d) RMBL with tilting speed of 50◦/s (71 frames).
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(a) (b) (c)

Fig. 5.4 Different views of the sphere points given by the RMBL with tilting speed of 120◦/s
(top) and 50◦/s (bottom): XY plane (a), XZ plane (b), and YZ plane (c).

the inhomogeneous beam pattern of the Velodyne sensors as well as their differences in
vertical resolution and FOV. Moreover, Fig. 5.3(c-d) shows points from RMBLs with different
tilt speeds (i.e., different vertical resolutions). Points are distributed over the complete sphere
but patterns due to the combination of the VLP-16 beams and the additional rotation are
visible, especially in the lower resolution case. These patterns can also be appreciated on
the lateral views of the spheres shown in Fig. 5.4. Furthermore, some pattern distortion is
appreciable in the central vertical strip in Fig. 5.4(a-b), which correspond to a ranges of
[−15◦,+15◦] around the extremes of the tilting motion. This can be explained because the
eight VLP-16 transducers with positive ω elevation values when γ = 0◦ are overlapped with
the eight transducers with negative ω when γ = 180◦, and vice versa.

The translation of scan points onto planar surfaces in a synthetic environment is illustrated
in Figure 5.5. The figure shows how the VLP-16 provides scarce information about the
ground. This is improved in the HDL-32, but the maximum height of wall points is reduced.
The RMBL offers denser data and a wider FOV for both ground and walls. Besides, it can be
observed that RMBL point patterns on the target planes depend on the sensor orientation.
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Fig. 5.5 Orthogonal plane points of lidar sensors: a) VLP-16, b) HDL-32, c) RMBL with
tilting speed of 120◦/s (29 frames), and d) RMBL with tilting speed of 50◦/s (71 frames).

Thus, the wall perpendicular to the x axis is scanned with a higher density on the sides (i.e.,
similar to a good peripheral vision), whereas the wall perpendicular to the x axis is sampled
with a higher density in the area that is close to the tilting axis. These differences should be
considered when deciding on the sensor orientation with respect to the target surfaces in a
particular application. Moreover, Figure 5.5(d) shows that a pattern of blind spots remains in
spite of increasing the vertical scan resolution.

5.4.2 Sampling density

Beam density histograms for the RMBL with tilting speeds of 120◦/s and 50◦/s are presented
in Fig. 5.6. For each case, the color scale has been normalized with respect to the maximum
and minimum number of points per bin. The density increases notably in the polar regions
(i.e., around the intersection with the rotation axis), which is a common trait with rotating 2D
scanners [57]. The figure reflects that the slower scan offers more density, but also that the
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(a) (b)

Fig. 5.6 2D histogram of beam density on the sphere: a) RMBL with tilting speed of 120◦/s
(29 frames), and b) RMBL with tilting speed of 50◦/s (71 frames). Color bars indicate
points/bin.

density distributions are similar regardless of tilting speed. However, a slightly darker and
wider equator band in Fig. 5.6(b) would indicate a lower density in relation to the poles for
the slower scan, which can be attributed to greater polar oversampling. The triangles with
the maximum number of beams are in the polar regions, with 365 points for the 120◦/s scan
and 881 for 50◦/s. In the lower resolution scan, the triangles with the minimum number of
points (i.e., 25) lie around the equator band. When the tilt resolution is increased, the bins
with less points (i.e., 95) are in two parallel bands closer to each polar region. These parallel
dead zones are not completely eliminated by increasing tilt resolution, as can be seen in Fig.
5.4. The dead zones can be explained by the elevation gap between the VLP-16 transducers.

The same data is represented in Fig. 5.7 in a classical histogram graph. This figure
indicates that the number of points is quite homogeneous with the exception of two groups
of peaks that correspond to the polar regions. Again, the shapes of the histograms for both
tilting speeds (i.e., elevation resolutions) are very similar. For the 120◦/s speed, the mean
is 10.48 points/deg2 (84.47 points/bin) with a standard deviation of 6.98 points/deg2 (56.24
points/bin); for 50◦/s, the mean value is 25.16 points/deg2 (202.73 points/bin) with a standard
deviation of 16.62 points/deg2 (133.92 points/bin).
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Fig. 5.7 Beam density histogram: a) RMBL with tilting speed of 120◦/s (29 frames), and b)
RMBL with tilting speed of 50◦/s (71 frames). The red solid lines indicate the mean value
and the blue dotted lines are the standard deviation.

5.5 Implementation of a portable tilting mechanism for a
Velodyne VLP-16

The analysis methodology presented in Section 5.3 can be used to assess the scan mea-
surement distribution of a real RMBL device and to establish a comparison with the ideal
full-sphere values obtained in Section 5.4. An implementation of an RMBL consisting on a
tilting multi-beam laser scanner has been developed in this work. This new device, named
Velomotion-16, has been designed as a light portable platform based on the Velodyne VLP-16
scanner (see Figure 5.8).

(a) (b)

Fig. 5.8 Views of the Velomotion-16 RMBL sensor: (a) side; and (b) front.
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Fig. 5.9 Velomotion-16 reference frames and tilting parameters. The VLP-16 local frame is
represented in blue; the Velomotion-16 local frame is represented in red.

5.5.1 Velomotion-16 system description

Several views of the Velomotion-16 sensor design are presented in Figure 5.9. This figure
shows the frames for VLP-16 frame and the Velomotion-16 using the same notation as
in Figure 5.2, including the tilting angle γ and the relative distance between the rotation
mechanism and the optical center, which is d = 6 cm.

The main specifications of the tilting platform are presented in Table 5.2, where some
parameters are inherited from the constituent VLP-16 sensor. In this device, there is a
mechanical limitation regarding the additional DOF, which is in the range [−45◦,0◦]. This
means that the vertical FOV is asymmetrical with respect to the horizontal plane, as it is
[−60◦,15◦] in the forward direction and [−15◦,60◦] backwards.
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Table 5.2 Specifications of Velomotion-16, as used in the case study (VLP-16 device included).
When values are inherited from the VLP-16, this is indicated.

Range 1 m to 100 m (VLP-16) + offset ≤ d
Accuracy ±3 cm (VLP-16)
Data Rate 300,000 points/s (VLP-16)
d 6 cm
Tilting range [−45◦,0◦]
Tilting speed 0.05◦/s to 56.25◦/s (programmable)
Vertical FOV 75◦ : [−60◦,+15◦] (forwards), [−15◦,60◦] (backwards)
Vertical Resolution uneven
Mean vertical resolution 5.2◦·10−3 to 0.59◦ (programmable)
Horizontal FOV 360◦ (VLP-16)
Horizontal Resolution 0.1◦ to 0.4◦ (programmable) (VLP-16)
Size 105 mm width × 95 mm height × 165 mm depth
Weight 1.9 kg (+0.7 kg wires)

The range of Velomotion-16 is inherited from that of the VLP-16, but it is affected by a
positive offset not greater than d. The actual limits of the sensing range depend on (α,ω,γ).
Given that a range measurement P (see Figure 5.2) is:

P =
√

x2 + y2 + z2, (5.7)

then, the actual minimum and maximum range values for P can be computed using Equa-
tions (5.4)with R = 1 m and R = 100 m, respectively.

From a mechanical standpoint, the portable tilting platform consists of two L-shaped
links with a rotational joint. The base link has been designed to accommodate the controller
card and the motor-gear-brake set and includes two switches to restrict the displacement. The
VLP-16 support link has been designed to be lightweight, to achieve a small d value, and to
make the Y and the Yv axes parallel, as in Figure 5.2. A cylindrical coupling piece joins the
output axis from the reduction gear with the VLP-16 support. Furthermore, a spring avoids
the clearance between the base link and the VLP-16 support.

A general overview of the system architecture is shown in Figure 5.10. The tilting motion
is achieved by an electronically communicated (EC) brushless motor with encoder and brake
and an EPOS2 controller, both by Maxon (Sachseln, Switzerland). Two 12 V batteries are
used to provide 12 V power to the system (including the VLP-16) and 24 V to the brake.
Motion control is performed through a trapezoidal profile in which speed, acceleration and
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Fig. 5.10 Velomotion-16 system architecture.

deceleration can be specified by the user to produce a particular scanning resolution. The
fastest scan is achieved by setting the tilting speed to 56.25◦/s, which corresponds to eight
VLP-16 scans. Conversely, high density scans can be obtained by programming slower tilt
speeds, which can be as low as 0.05◦/s.

As illustrated in Figure 5.10, the PC host sends capture commands and receives 3D data
as ROS messages from the VLP-16 via Ethernet. Moreover, the PC sends the goal position
of the motion profile and receives the current angle from the tilting platform through a USB
connection. A ROS driver has been developed to synchronize consecutive VLP-16 scans
with the corresponding tilt angles in order to generate a dense point cloud.

5.5.2 Analysis of the scan measurement distribution for Velomotion-16

The effects on the scan measurement distribution produced by a particular sensor construction
can be identified by applying the proposed analysis methodology. This is illustrated in Figure
5.11 for Velomotion-16, which has a limited tilting range. The results in the figure correspond
to a tilting speed of 50◦/s.

The complete FOV originated by the tilting range, which can be clearly appreciated
in Figure 5.11a, has a downwards orientation in the negative direction of the X axis (i.e.,
backwards). The hollow sphere patterns are similar to those of the ideal sensor with the
exception of the scan lines in the extremes of the tilt range, which are sparser because they
are not overlapped. This sparseness can be appreciated in the forward floor plane points
of Figure 5.11b. Orthogonal plane points also reveal the efficacy of Velomotion-16 to scan
ground points in the backward direction, whereas the forward direction is more appropriate
to capture higher vertical structures.
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Fig. 5.11 Analysis of 3D scan measurement distribution for Velomotion-16 with tilting speed
of 50◦/s (17 frames): (a) hollow sphere points; (b) orthogonal plane points; (c) point density
on the sphere (dark blue means no measurements); and (d) point density as a histogram.
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(a) (b)

(c)

Fig. 5.12 Photos of experimental scenes: a) Building hall (indoor), b) Parking area (ur-
ban), and c) Quarry (terrain). The approximate position and forward scan direction of the
Velomotion-16 sensor is indicated by a red arrow.

The point density histograms in Figure 5.11c,d also indicate unscanned regions as well
as a slighter scan density in the extremes of the tilt range. The mean point density has been
reduced from 25.16 points/deg2 (202.73 points/bin) in the ideal full-sphere to 6.29 points/deg2

(50.68 points/bin) in the Velomotion-16 sensor. Similarly, the standard deviation has changed
from 16.62 points/deg2 (133.92 points/bin) to 7.85 points/deg2 (63.22 points/bin).

5.6 Discussion of example scans

The purpose of this section is to illustrate 3D lidar data from actual scans obtained in three
representative scenes of indoor and outdoor environments: a building hall, an outdoor parking
area in a urban setting, and a quarry with irregular terrain, respectively (see Figure 5.12).
Actual scans have been obtained by Velodyne’s VLP-16 and HDL-32 MBLs as well as for
the Velomotion-16 RMBL with two different tilting speeds (i.e., vertical resolutions): the
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Table 5.3 Sensor performance in example scans.

scan time (s) γ speed (◦/s) Indoor: points Urban: points Terrain: points
Velomotion-16 (slow) 42.05 1.07 11,348,103 6,833,873 6,269,304
Velomotion-16 (fast) 0.80 56.25 201,851 158,351 125,237
VLP-16 0.10 - 27,998 20,141 16,954
HDL-32 0.10 - 68,080 58,875 51,362

fastest scan speed given by the sensor (i.e., 56.25◦/s) and a slow high resolution speed of
1.07◦/s. The sensors have been placed on a tripod at a height of about 1.2 m.

Table 5.3 summarizes sensor performance by presenting the scan time for each case, as
well as the resulting number of points for each scenes. The total number of points given
by the Velomotion-16 is substantially larger in the indoor environment due to out-of-range
measurements in the urban environment. This difference is not so important in the Velodyne
sensors, as their FOV is very limited in the upwards direction. The fast Velomotion-16
requires 0.8 seconds (i.e., eight times the Velodyne scan time) to capture eight VLP-16 scans,
which produces a greater number of points (i.e., 7.21 times and 7.86 times, for the indoor and
urban scenes, respectively) than a single VLP-16 scan as well as a wider FOV. Furthermore,
the fast Velomotion-16 also improves the number of points and the FOV of the HDL-32,
which is a considerably more expensive sensor. By adjusting the Velomotion-16 γ speed to a
slower value, the resulting number of points, and the subsequent data density, can be greatly
improved, as indicated by the numbers given by the slow case in the Table.

The results for these experiments are presented in Figures 5.13-5.15, where the color
grading represents elevation. These illustrations confirm the improvement in data density
and FOV provided by the Velomotion-16 with respect to both Velodyne lidars. The particular
mechanical rotation limits of the Velomotion-16 favor a denser resolution of the floor in the
forward direction and a better measurement of higher objects in the backwards direction.
Interestingly, even the fast Velomotion-16 offers a high point density in the immediate floor
area. In the quarry scene, the forward scan direction provides a detailed scan of the ground
terrain and the excavated wall, especially in the slow scan.

As for the particular scan patterns presented in Figure 5.5, these can also be appreciated
in the floor and vertical walls of these actual scans. In general, these patterns become difficult
to identify when the resolution is increased in the fast Velomotion-16, but the pattern of small
blind spots can be seen on the wall at the center-left part of Figure 5.13(d), the floor at the
bottom-right side of Figure 5.14(d), and the bottom-left diagonal and the top-right area of
Figure 5.15(d).
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(a) (b)

(c) (d)

Fig. 5.13 Scans from an indoor scene: a) VLP-16, b) HDL-32, c) Fast Velomotion-16, and d)
Slow Velomotion-16.

(a) (b)

(c) (d)

Fig. 5.14 Scans from the urban scene: a) VLP-16, b) HDL-32, c) Fast Velomotion-16, and d)
Slow Velomotion-16.
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(a) (b)

(c) (d)

Fig. 5.15 Scans from an outdoor terrain scene: a) VLP-16, b) HDL-32, c) Fast Velomotion-16,
and d) Slow Velomotion-16.

5.7 Summary

This chapter has addressed the analysis and development of a RMBL sensor, a new type of
customized 3D rangefinders built by adding a rotation mechanism to a commercial MBL.
Other recently published examples using VLP-16, the most affordable and lightest MBL
by Velodyne, indicate that the RMBL configuration has the potential to become a common
solution to get low-cost, rapid, and full-3D high resolution scans, as has happened with
customized RSML during the last fifteen years. However, contrary to RSBLs, the additional
DOF in RMBLs causes multiple scan beams to overlap creating complex scanning patterns.

Particularly, this chapter has proposed a simulation-based analysis of 3D scanning pat-
terns, which has been applied to investigate the complex scan measurement distribution
produced by the RMBL configuration. With this major purpose, novel contributions offered
in the chapter include the following: a comparison, both qualitative and quantitative, of
general scan patterns produced by an ideal VLP-16-based RMBL with other 3D scan alterna-
tives (i.e., SMBL and MBL), the design and implementation of a new RMBL consisting of a
portable tilting platform for Velodyne VLP-16 scanners, and a discussion of actual example
scans obtained with the new device.

Qualitative analysis evidences particular sampling patterns provoked by the RMBL
configuration. Most of these patterns are difficult to appreciate when the resolution of the
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additional rotation is increased with slower scans. Nevertheless, rows of characteristic small
blind spots remain visible even with high resolution rotation. Apart from that, similarly
to RSBLs, the measurement density has focal points in the rotation axis, which has to be
considered when placing the sensor for a particular application.

The chapter has also proposed a new tilting RMBL sensor based on the VLP-16. This
is a compact and portable device that weights a total of 2.6Kg. Experimental example
scans obtained by this device have illustrated a practical implementation of the RMBL
configuration. These scans have shown that even a fast tilt (in less than one second) of
the VLP-16 provides an environment description that can be considerably richer (both in
FOV and number of points) than that of the HDL-32. A much higher level of detail can be
appreciated in scans taken in less than a one-minute span. Given the significant difference in
price between the VLP-16 and the HDL-32 (not to mention other high-end 3D lidars), these
results support the feasibility of customized RMBLs in stop-and-go applications demanding
affordable and compact high-resolution point clouds.

In the future, the proposed simulation methodology can be applied to assess the effect
of particular rotating mechanisms with respect to these reference measure distributions.
Furthermore, it will also be interesting to analyze the effect of rotating other MBLs, since
there is an increasingly active MBL market for new compact and cost-effective devices
fostered by automotive applications (e.g., the 32-beam Ultra Puck VLP-32C by Velodyne
[109]).

The scientific production of this chapter is listed below:

• [66] Sensors. Analysis of 3D Scan Measurement Distribution with Application to a
Multi-Beam Lidar on a Rotating Platform. 2018. (Journal Q1).





Chapter 6

Conclusion and future work

6.1 Conclusion

Intelligent scene understanding is a complex process which is used in many applications
like autonomous navigation. Accurate and high resolution 3D information about the scene
can be obtained as a 3D point cloud by sensors such as cameras or 3D scanners. This
large amount of raw data, must be transformed into an effective representation in order to
help posterior processing such as object detection or navigation control. This thesis work
has offered contributions to intelligent scene understanding of unstructured environments
from 3D point clouds, in particular new algorithms for point cloud classification, object
segmentation, navigability assessment, and the development of a tilting MBL.

Classification of spatial shape features based on PCA is a widely used constituent process
in recent scene processing methods [49][55]. In this sense, geometric features can describe
the shape of regions and objects for later contextual classification [127]. Therefore, this thesis
has been focused on improving the effectiveness, both in computational load and accuracy,
of supervised learning classification of spatial shape features (i.e., tubular, planar or scatter
shapes) obtained from covariance analysis [47]. While many authors define categories such
as vertical or horizontal orientation [32], in this work geometric features have been identified
regardless of their orientation, which extends applicability to unstructured environments.

Since computing neighborhood for 3D points is a costly process for classification, this
thesis has also proposed a novel concept of a general framework for implementing and com-
paring different supervised learning classifiers with a voxel-based neighborhood computation.
This way, based on a regular 3D grid, features are computed for each non-overlapping voxel,
and all points in the same voxel are assigned to the same class, resulting in a GFVM. The
feasibility of this approach has been evaluated by implementing a NN method, in particular a
multi-layer perceptron-based model, and three other supervised learning classifiers found in
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scene processing methods (SVM, GP, and GMM) as well as five alternative feature vector
definitions based on principal component analysis for scatter, tubular and planar shapes.
Classification performance metrics and processing time measurements have confirmed the
benefits of the NN classifier and the feasibility of the voxel-based neighborhood approach
for terrestrial lidar scenes, also with respect to point-wise neighborhood. Results have also
shown that the choice of suitable features can have a dramatic effect on the performance of
classification approaches. The method has been successfully applied to real scans from both,
natural and urban environments from two different 3D rangefinders.

This work has also proposed applications based on GFVM towards the characterization
of a 3D scene. In particular a segmentation method and a generation of an occupancy
grid specially designed for natural environments. Both algorithms are based on a ground
segmentation method which also extends the GFVM representation by adding a new attribute
to the voxels, apart from their geometric class. The proposed ground segmentation algorithm
considers slopes, non-flat areas, and isolated areas, which are commonly presented in
unstructured scenes, as flat ground assumptions in methods for urban scenes, like plane fitting
[125] or height thresholds [53], do not apply. To identify ground voxels, the algorithm consists
of a set of refining rules whose optimal sequence has been determined from experimental
analysis. Once the ground is segmented, a double-segmentation method is performed, first
by isolating the objects, and then splitting them into regions with same geometric class. The
proposed algorithm has been tested in urban and natural environments presenting better
results in comparison with other methods from the literature in natural environments. In
addition, an experiment has been executed to conclude which size of voxel provides the
best result. Besides, a novel metric has been introduced to quantify the accuracy in the
segmentation through a comparison between each segmented point cloud and the same one,
manually labeled. Furthermore, the author has proposed a method for 2D occupancy grid
generation which is efficient for local navigation in natural environments. The proposed 2D
occupancy grid represents accessible areas by considering the attributes and the height of
each voxel over the ground level in relation to vehicle dimensions. As a result, an effective
map is obtained where the objects in the scene are classified in geometric classes and finally
labelled as traversable or non-traversable area.

The methodologies proposed in this work may be fully integrated in an mobile robot with
an embedded terrestrial lidar scanning (TLS) or any other technology to capture dense 3D
point clouds (see Section2.1). For semi-autonomous systems, the geometric and semantic
information can help the teleoperator to plan the route, such as in SAR missions where the
operator can not access to the search area. GFVM may contribute in planetary exploration
where the robot aims to capture and map a big amount of information into an optimal data



6.1 Conclusion 87

structure to save memory and bandwidth. In addition, for fully autonomous vehicles, the
occupancy grid becomes an appropriate input for the path planning algorithm. Moreover,
all the descriptors deducted from the 3D scene can be processed by a recognition algorithm
to identify the objects, for instance, in a guiding system for blind people. Registration of
consecutive frames and mapping problems are widely used, also in urban scenes, with the
ICP algorithm which is point-based and hence a costly process, so the GFVM can contribute
to reduce the computational cost. Consequently, an optimized SLAM algorithm may be
produced based on GFVM. Furthermore, these methods may be partially integrated in aerial
vehicles, such as drones, with embedded airbone lidar scanning, to describe forest canopy
or detect fraudulent constructions. Hence, although the initial purpose of this thesis was to
contribute to long range exploration in natural environments for ground mobile robots, the
work is suitable for a wide variety of applications, in fact, the work also fits to urban, indoor,
or aerial scenes.

This thesis has also addressed the design, development and analysis of novel 3D laser
rangefinders based on commercial multi-beam sensors. In particular, the thesis has proposed
a tilting rotation to the Velodyne Puck with the purpose of increasing density, which is made
more homogeneous, as well as the vertical field of view. The point clouds generated by
multi-beam scanners have a sparse and inhomogeneous density which affects the results of
typical processing techniques [111]. This work has presented a compact, affordable and light
design which can be used as a portable sensor. This design has been implemented as the
new Velomotion-16 3D sensor which improves the limitations from multi-beam scanners. In
addition, this work has proposed a methodology to evaluate 3D scanning patterns, which has
been applied to investigate the scan distribution.

Summarizing, this thesis has presented contributions towards intelligent scene understand-
ing of unstructured environments from 3D point clouds. The major contributions include new
methodologies for point cloud geometric classification, object segmentation, navigability
assessment and the development and qualitative analysis of a tilting MBL. Since the 3D
data imply large data structures and hence a high computational cost, the proposed solution
considerably reduces the computational cost with respect to other 3D mapping methods by
reducing the amount of data to process. This thesis has also presented a low cost solution,
based on a new developed affordable 3D scanner that improves the density and homogeneity
of the resulting point cloud. All the proposed solutions has been successfully evaluated with
real scans of urban and natural scenes provided by two different models of laser rangefinder.
These methods can be applied to semi-autonomous robots in natural environments or in a
SAR scene.
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6.2 Future work

The work presented in this thesis could be expanded with the following contributions:

• Integration of the whole method in an autonomous vehicle

Integration of all the proposed methods, starting from the capture of 3D point cloud
with the new laser range device, through the voxelization, geometric classification,
segmentation and occupancy grid generation in order to a step forward toward the path
planning and autonomous navigation. In ROS there are already implemented path
planning algorithms to test with the generated occupancy grids from the environment.
This work is planned to be integrated into the Rambler robot (developed in the same
project which is this thesis associated to).

• Parallel version of the proposed classification method with multi-core computers
or GPU

One additional advantage of processing each non-overlapping cell by using points
from only that same cell is that this favors parallelization [94]. Developing a parallel
version of the proposed method to improve online classification time with multi-core
computers or GPU.

• Incremental update of classification with consecutive scans

Apart from the incremental mapping with consecutive scans, it will be also interesting
to adapt the method for incremental update of classification results instead of processing
again repeated voxels. The update may include the voxelization of new points, the
geometric features extraction, and the classification of those new voxels.

• Object classification in the scene

Since the segmentation step already splits the scene into objects and geometric regions
inside each object, several geometric and statistical features can be extracted from
both objects and regions in order to classify objects automatically. Preliminary work
have been already made obtaining promising results identifying trees, cars, lamp posts,
buildings, pedestrian and bushes.

• Improve the Velomotion-16 from prototype to finished product

The new laser-rangefinder is a prototype which lacks some improvements that could
be implemented producing a finished product. In particular, an user interface for the
configuration, an interface for the ROS environment, mechanical optimization and the
integration of efficient and compact batteries
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Introducción

El reconocimiento automático del entorno es un proceso complejo que se usa en robots
con tareas autónomas tales como la navegación o manipulación. En vehículos autónomos,
la identificación precisa de terreno navegable y obstáculos es crucial para la navegación
segura. Además, nuevos retos de aplicaciones para vehículos autónomos, como la búsqueda
y rescate o la exploración planetaria, tienen lugar en entornos naturales o desestructurados.
Los sensores exteroceptivos que llevan incorporados, como camaras o escáneres 3D, pueden
producir información precisa y de alta resolución sobre el entorno inmediato, pero esta
gran cantidad de datos en bruto puede ser difícil de interpretar para un proceso de toma de
decisiones. Por este motivo, la información compleja de estos sensores debe ser procesada
de tal modo que pueda servir al control de navegación. El principal propósito de esta tesis
es ofrecer contribuciones al desafiante problema de entendimiento de escenas en entornos
desestructurados basadas en nubes de puntos 3D. La mayor contribución incluye nuevas
soluciones para la clasificación de nubes de puntos, segmentación de objetos, estimación de
navegabilidad, y el desarrollo y análisis cualitativo de un dispositivo lidar multi-haz giratorio.

Debido a la gran cantidad de datos capturada de la escena 3D, la enorme nube de
puntos puede ser transformada en una representación más eficiente para reducir el tiempo
de ejecución en el procesamiento de extracción de características o posteriores aplicaciones
como la clasificación de objetos o la planificación de trayectorias. Hay tres grupos principales
de técnicas: i) reducción de datos en la nube de puntos, por ejemplo, mantener sólo los
del área local en el frente [86] o descartar información redundante [57], ii) transformación
de la información en un modelo 3D como mapa de elevación [92][56] que reconstruye
el terreno en dos dimensiones y media perdiendo información geométrica relevante de la
escena, o mapas de vóxeles [17] que evitan este problema, o iii) extracción de un modelo
bi-dimensional (2D) tal como un mapa de alturas [29] o un mapa de ocupación [103] [23].
Esta tesis propone un procesamiento de vecindario basado en vóxel donde los puntos en
cada vóxel no solapado en una cuadrícula uniforme son procesados a la vez para extraer
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características 3D relevantes. Esta solución basada en vóxel reduce significativamente el
procesamiento de datos en comparación con las técnicas basadas en puntos.

La clasificación de características geométricas primitivas es extensamente usada como
paso inicial en problemas de interpretación de alto nivel de escenarios [116]. Por ejemplo,
la clasificación de puntos en categorías geométricas gruesas como vertical y horizontal,
ha sido propuesta como la primera capa de una metodología jerárquica en el proceso de
escenas urbanas complejas [32]. Además, la clasificación de puntos escaneados previa a la
segmentación es útil para procesar objetos con bordes confusos, como el suelo, vegetación y
copas de árboles [8]. En este sentido, las características de forma espacial pueden describir la
forma de objetos para la posterior clasificación contextual [127]. Por tanto, la clasificación de
características de forma espacial basada en análisis de componentes principales es un proceso
elemental en métodos recientes de procesamiento de escenarios [125][18][38][49][55]. Por
todo ello, esta tesis se centra en mejorar la eficiencia, tanto de carga computacional como de
precisión, de la clasificación de aprendizaje supervisado de características de forma espacial
(i.e., forma tubular, plana, o difusa) obtenidas a partir de análisis de covarianza [47].

Tras el procesamiento de datos de la escena en bruto, como la voxelización y la clasifi-
cación geométrica, se pueden aplicar segmentación y análisis de navegabilidad. Un método
de segmentación se usa para aislar objetos individualmente de la escena como un paso previo
a la clasificación o reconocimiento semántico de los mismos. Existen muchos trabajos
dedicados a resolver el problema de la segmentación de imágenes 2D, y más recientemente
el desafío también se ha aplicado a las nubes de puntos 3D, ya que los sensores 3D están
siendo cada vez más usados. En [26], algunos algoritmos de segmentación se han desarrol-
lado para nubes de puntos densas y dispersas, lo cual depende del dispositivo de escaneo,
concluyendo que los algoritmos que primero extraen el suelo ofrecen resultados más precisos
en el siguiente proceso de segmentación. Algunos trabajos empiezan el proceso extrayendo
el suelo ajustándolo a un plano [126] [125] o usando un umbral de altura [122]. Después, los
puntos que no son suelo se agrupan en objetos o segmentos dependiendo de la distancia entre
puntos usando un algoritmo basado en grafo como el Normalized Cut o Ncut [101] [122] y
el algoritmo de Felzenszwalb and Huttenlocher (FH) [31] sobre la imagen de profundidad
[126] o sobre la nube de puntos 3D [102]. Otros métodos realizan la segmentación basada
en la similaridad del vector normal calculado en cada punto teniendo en cuenta los puntos
vecinos. En [89], la normal de cada punto se calcula con la información de los k−Vecinos
más cercanos. Para reducir la estimación de la normal en cada punto, en [125], los puntos son
primero agrupados si están más cerca que un umbral de distancia, esto se llama técnica de
región creciente, y después esos clústers se agrupan en base a la similaridad de la normal. El
mayor inconveniente de estos enfoques de segmentación basados en punto es la gran cantidad
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de memoria y tiempo de ejecución que consumen ya que tienen que procesar cada punto de la
nube, y por tanto puede ser incompatible con aplicaciones de tiempo real. Otro conjunto de
técnicas para segmentación 3D son las técnicas basadas en grupo, las cuales intentan resolver
el problema de consumo de tiempo de las técnicas basadas en punto reduciendo la escena a
un modelo de vóxel. Normalmente la escena se discretiza en cubos 3D con tamaño constante
como una cuadrícula 3D, pero estos vóxels también pueden posicionarse dinámicamente
alrededor de grupos de puntos [37]. Una vez que el suelo se ha extraído, los objetos se aíslan
mediante la fusión de vóxeles adyacentes [25]. Otros autores no extraen el suelo como paso
previo, sino que implementan la segmentación basada en información geométrica como las
características geométricas locales (autovalores de la matriz de covarianza, o PCA) [97] o
además de esto, también basada en la altura y vector normal [38] sobre el vecindario a nivel
de punto o de vóxel. El mayor problema de estas técnicas es que asumen que el suelo es
plano y continuo, como en entornos urbanos. Sin embargo, la detección de suelo es compleja
para entornos desestructurados donde el suelo contiene grandes inclinaciones y áreas no
planas.

Los dispositivos comerciales para obtener datos 3D densos y precisos son caros, pesados
y/o de gran consumo energético. La mayoría de soluciones para minimizar el coste de un
dispositivo escáner 3D consiste en rotar un escáner láser 2D en cualquier eje [59] [63]. Sólo
algunos autores, [50] y [72], añaden una rotación extra a un dispositivo 3D en sí mismo
(Velodyne) para aplicaciones de mapeo. Los sensores lidar Velodyne están siendo cada
vez más usados en muchas aplicaciones de escaneo 3D. Sin embargo, las nubes de puntos
generadas por escáneres multi-haz, como Velodyne, tienen densidad dispersa y heterogénea.
Esta mencionada heterogeneidad en las nubes de puntos afecta sustancialmente al resultado de
las típicas técnicas de procesado, como la búsqueda del mejor punto de correspondencia para
emparejamiento de escáneres [111]. Ya que la densidad aumenta alrededor del nuevo eje de
rotación, [121] implementa no sólo una como normalmente, sino dos rotaciones adicionales,
de cabeceo y balanceo, para hacer la densidad uniforme. Esta tesis propone añadir una
rotación de cabeceo a un Velodyne Puck con el propósito de incrementar la densidad y la
homogeneidad, y también el campo de visión vertical. En particular, se presenta un diseño
ligero y compacto que puede ser usado como sensor portátil. El diseño ha sido implementado
como el nuevo sensor 3D Velomotion-16.

Esta tesis aborda el desafío de robótica del entendimiento de escenario considerando la
clasificación de nube de puntos, segmentación en terreno natural y otros objetos de la escena,
y el análisis de navegabilidad. Además, esta tesis explora las posibilidades ofrecidas por
la agregación de un grado de libertad a un sensor lidar multi-haz para obtener de manera
asequible y rápida escaneos 3D de alta resolución.
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Contribuciones

El objetivo de esta tesis es contribuir con nuevas metodologías y desarrollos al entendimiento
inteligente de escenarios en entornos desestructurados basados en información de sensor
lidar 3D. La tecnologia de este sensor, que produce nubes de puntos densas, puede ser
especialmente apropiada para aplicaciones nuevas en entornos naturales o desestructurados,
tales como la búsqueda y rescate y la exploración fuera de carretera. Esta área de investigación
es un reto que engloba disciplinas desde el diseño de sensor a la inteligencia artificial y
machine learning. Las contribuciones incluyen nuevas metodologías para la clasificación de
características espaciales, segmentación de objetos y cálculo de navegabilidad en entornos
naturales y urbanos, y también el diseño y desarrollo de un nuevo lidar multi-haz giratorio.

En particular, esta disertación ofrece las siguientes contribuciones principales:

• Una técnica de vecindario basada en vóxel para la clasificación de características
espaciales con métodos de aprendizaje supervisado. Mejorar la eficiencia de la
clasificación de características de forma espacial a partir de datos lidar 3D es muy
relevante ya que se utiliza mayoritariamente como paso fundamental previo a los
retos de entendimiento de escena de alto nivel de vehículos autónomos y robots
terrestres. En este sentido, el cálculo del vecindario para puntos en escáneres densos
llega a ser un proceso costoso tanto para el entrenamiento como para la clasificación.
Esta tesis contribuye al cálculo de vecindario basado en vóxel donde los puntos en
cada vóxel no solapado en una cuadrícula uniforme son asignados a la misma clase
considerando características sobre la región de soporte definida por el mismo vóxel. Por
lo tanto, la nube de puntos clasificada puede ser representada por el mapa de vóxeles
caracterizado geométricamente resultante. Además, la tesis propone un nuevo marco de
trabajo general para implementar y comparar diferentes clasificadores de aprendizaje
supervisado. Estas contribuciones incluyen los procedimientos de entrenamiento
offline y clasificación online a la vez que cinco alternativas de vector de caracteristicas
basado en PCA para formas tubular, plana y difusa. Además, la viabilidad de este
enfoque se ha evaluado implementando una red neuronal (NN), en particular un modelo
basado en perceptrón multi-capa, y también otros tres clasificadores de aprendizaje
supervisado encontrados en métodos de procesamiento de escena: máquina de vector
soporte (SVM), procesos Gaussianos (GP), y modelos de mezcla Gaussiana (GMM).
Esta solución basada en vóxel reduce significativamente el procesamiento de datos en
comparación con las técnicas basadas en punto y, por tanto, puede ser compatible con
aplicaciones en tiempo real.
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• Segmentación y análisis de navegabilidad basada en mapas de vóxeles geométri-
camente caracterizados. La estimación de navegabilidad es útil para la planificación
de trayectorias libres de obstáculos en tareas de navegación autónoma en entornos 3D.
Basándose en GFVM, la metodología propuesta se realiza en dos fases: primero, un
método de segmentación del suelo especialmente diseñado para entornos naturales,
segundo, el posterior aislamiento de objetos individuales. Además, el método de
segmentación del suelo está integrado en una nueva técnica de mapa de navegabilidad
basado en una cuadrícula de ocupación que puede ser apropiada para robots móviles
en entornos naturales. El suelo no estructurado se extrae, o sea, cada vóxel se identifica
como suelo o no suelo considerando inclinaciones y superficies rugosas típicas de
escenarios desestructurados. Después, la escena es dividida en objetos y además se
realiza una segunda segmentación en regiones dentro de cada objeto basada en la clase
geométrica del vóxel. Finalmente, el mapa de ocupación 2D propuesto representa
áreas accesibles teniendo en cuenta los atributos y la altura de cada vóxel respecto al
nivel del suelo en relación a las dimensiones del vehículo.

• Diseño y desarrollo de un lidar sensor 3D portátil y asequible. Los lidar multi-haz
Velodyne están siendo cada vez más usados en muchas aplicaciones de escáner láser
3D. Sin embargo, las nubes de puntos que generan los escáneres multi-haz tienen una
densidad dispersa y heterogénea, que además es aún más dispersa para el sensor VLP-
16 (Puck), que es menos caro y más ligero. Esta limitación se suple parcialmente con
aplicaciones móviles considerando el movimiento longitudinal en escáneres sucesivos,
pero se mantiene el problema en aplicaciones estáticas o de tipo para y continúa (stop
and go). Esta tesis propone añadir una rotación de cabeceo al Velodyne Puck con el
objetivo de incrementar la densidad, lo cual la hace más homogénea, a la vez que el
campo de visión vertical. A pesar de que la agregación de un grado de libertad extra es
relativamente común para escáneres 2D, esta idea no ha sido explotada con dispositivos
3D multi-haz ligeros. En concreto, se presenta un diseño compacto y ligero que puede
usarse como sensor portátil. Este diseño se ha implementado en el nuevo sensor 3D
Velomotion-16.

.
La producción científica de esta tesis se lista a continuación, empezando por lo más

reciente:

• [66] Sensors. Analysis of 3D Scan Measurement Distribution with Application to a
Multi-Beam Lidar on a Rotating Platform. 2018. (Journal Q1).
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• [88] Sensors. Voxel-Based Neighborhood for Spatial Shape Pattern Classification of
Lidar Point Clouds with Supervised Learning. 2017. (Journal Q1).

• [15] HRI’16, IEEE International Conference on Human-Robot Interaction. NavCue:
Context immersive navigation assistance for blind travelers. 2016.

• [87] MED’15, 23rd Mediterranean Conference on Control and Automation. Occupancy
grids generation based on Geometric-Featured Voxel maps. 2015.

• [85] IWANN’15, 13th International Work-Conference on Artificial Neural Networks.
Multi-layer Perceptrons for Voxel-based Classification of Point Clouds from Natural
Environments. 2015. (Core B)

• [84] ICIT’15, IEEE International Conference on Industrial Technology. 3D Segmen-
tation Method for Natural Environments based on a Geometric-Featured Voxel Map.
2015.

• [86] Trabajo Fin del Máster en Mecatrónica, Universidad de Málaga. Local Semantic
Map based on 3D data for navigability. 2014.

• [83] Eurathlon’14, Workshop and Summer School euRathlon Arcas. Local Semantic
Map based on 3D data for navigability. 2014.

• [98] ROBOT’13, First Iberian Robot Conference. CUADRIGA: Robot Móvil para
Búsqueda de Víctimas en Situaciones de Emergencia. 2013.

Contexto

Esta tesis ha sido desarrollada en la línea de investigación de Robótica y Sistemas de Control
Inteligentes del Programa de Doctorado en Ingeniería Mecatrónica de la Universidad de
Málaga (UMA), enmarcado en el Programa Oficial de Doctorado del Gobierno Español
(Número de registro RUCT 5600225).

Esta tesis doctoral ha sido financiada por la beca doctoral (BES-2012-061907) otorgada
por el Ministerio de Economía y Competitividad de España (MINECO) asociada al Proyecto
Nacional RAMBLER: Hacia la Autonomía de Robots de Exploración de Largo Alcance en
Entornos Naturales (DPI2011-22443). Este proyecto pretende desarrollar e implementar un
conjunto de nuevas herramientas que contribuyan al objetivo de los robots de exploración de
largo alcance. Estas herramientas incluyen la generación de mapas del entorno con diferentes
niveles de interpretación, tales como cartografía, ocupación, inclinaciones, clasificación de
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trayectorias posibles, y también la inclusión de información semántica para la interpretación
de elementos diferentes al suelo. También se abordan nuevos mecanismos 3D robustos de
localización simultánea y mapeado para permitir operaciones de larga duración bajo limitada
supervisión en entornos naturales.

Además, dos estancias de investigación también se financiaron por MINECO en el
ámbito de las ayudas de estancias de investigación para estudiantes de doctorado. La autora
pasó tres meses de estancia en el grupo IRA2 (Interaction, Réalité Augmentée, Robotique
Ambiante), laboratorio de IBISC (Informatique, Biologie Intégrative et Systèmes Complexes)
de la Universidad de Évry Val d’Essone en Francia continuando con la actividad de su
proyecto de tesis bajo la supervisión del Dr. Fakhr-Eddine Ababsa. La segunda estancia de
investigación, con cuatro meses de duración, fue en el Instituto de Robótica de Carnegie
Mellon University en Pittsburgh (Pennsylvania, Estados Unidos) bajo la supervisión del Dr.
M. Bernardine Dias y Dr. Aaron Steinfeld. Durante esta estancia la autora participó en el
proyecto Assistive Robot for Blind Travelers, que se describe más adelante en la lista de
todos los proyectos relacionados con esta tesis. En el transcurso de estas estancias, la autora
produjo como resultados las publicaciones [84] y [15], respectivamente, mencionados en la
Sección Contribuciones.

La autora ha desarrollado su principal investigación en el Laboratorio de Robótica y
Mecatrónica del Departamento de Ingeniería de Sistemas y Automática de la UMA. Los
intereses de investigación del grupo incluyen la implementación de sistemas robóticos para
intervención de emergencia en situaciones de catástrofe con el objetivo de mejorar el tiempo
de respuesta y la seguridad del equipo de rescate. Algunos de los principales logros del grupo
son el diseño e implementación de robots móviles que han asistido con éxito a equipos de
rescate (Alacrane: [65], Quadriga: [98]). Además, el grupo centra su investigación en el
desarrollo de sensores de bajo coste para capturar entornos 3D en tiempo real (Unolaser [63]
y Unomotion [59]) y el reconocimiento preciso de terreno para navegacióna autónoma [56].
Por ello, esta disertación PhD es un paso adelante en el reconocimiento de terreno natural
que puede aplicarse a la navegación robótica autónoma tal como misiones de búsqueda y
rescate.

Además, la autora ha participado en otros proyectos de investigación relacionados con la
tesis:

• ATICA: Vehículo todoterreno inteligente compacto y autónomo (806/56.3879). Finan-
ciado por CDTI y el Grupo ITURRI S.A. desde 02/07/2012 al 31/12/2014. Desarrollo
de un vehículo autónomo de fuera de camino para las aplicaciones de transporte en en-
tornos exteriores. El vehículo contiene abordo sensores (láser, GPS, IMU) y un sistema
de control basado en varios procesadores con Ubuntu y la plataforma conocida ROS.
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Mi contribución es la integración de la información del escáner láser 3D con el sistema
de navegación mediante la generación de un mapa de ocupación con identificación de
obstáculos dependiendo de su altura.

• Navegación autónoma de un robot móvil 4x4 en terrenos naturales basado en GPS
diferencial y escáner láser 3D (P10-TEP-6101-R). Financiado por Proyecto de Exce-
lencia de la Junta de Andalucía desde 27/03/2013 al 27/03/2017. Mi contribución fue
el desarrollo de un algoritmo para el robot Quadriga integrado con el sistema de control
de movimiento en Labview [98]. El algoritmo pretende localizar víctimas mediante: i)
un algoritmo de navegación autónoma de cobertura completa en un área determinada,
integrado con Google Maps, y ii) seguimiento de señales Bluetooth de teléfono de
víctimas.

• First-Rob: sistema multi-robot para la cooperación de equipos de rescate de primera
intervención humano y canino en escenarios de catástrofe (DPI2015-65186-R). Fi-
nanciado por MINECO desde 01/01/2016 a 31/12/2018. La misión del proyecto es el
desarrollo de un exhaustivo sistema multi-robot mecatrónico centrado en el usuario
para cooperar con equipos de primera intervención con el objetivo final de reducir los
riesgos para los trabajadores y mejorar su eficiencia mediante la recolección y deter-
minación de información relevante en zonas de desastre bajo condiciones de difícil
visibilidad antes de la decisión de enviar trabajadores de rescate. Este proyecto amplía
el proyecto Rambler asociado a la tesis doctoral. Mi contribución es el desarrollo de
un nuevo MBL.

• Robot de asistencia para viajeros ciegos (National Robotics Initiative, IIS-1317989).
Financiado por National Sciencie Foundation en Carnegie Mellon University. Du-
rante mi estancia en CMU desarrollé un algoritmo de reconocimiento facial usando
ROS y OpenCV (clasificador cascade) para el robot humanoide Baxter con objeto
de personalizar la interacción de Baxter con cada usuario. La mayor contribución es
el cambio de canal de comunicación (voz, pantalla o gestos) del usuario multimodal
dependiendo de su minusvalía sensorial (ciego, sordo, mudo) o sus preferencias. El
programa conlleva la creación y actualización de una base de datos con usuarios (cara
y canal de comunicación preferente) en tiempo real durante la interacción. Además
desarrollé un saludo personalizado con el nombre del usuario y el apretón de manos (la
localización de la mano del usuario reconociza mediante visión). También colaboré en
el subproyecto NavCue, un módulo inteligente para proporcionar información basada
en contexto rica y multisensorial para viajeros ciegos o con baja capacidad visual.
El robot gesticula la ruta (algoritmo de planificación de ruta A*) acompañada por
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indicaciones por voz que incluyen puntos de referencia sensoriales y pistas que aportan
características redundantes y memorizables para una navegación más segura.

Durante el período de formación de mi tesis he asistido a los siguientes cursos:

• Máster en Mecatrónica en la Universidad de Málaga (Enero 2013 - Julio 2014).

• Summer School en Mecatrónica, Universidad de Brno (Septiembre - Octubre 2013).

• Curso avanzado de CUDA para GPUs de Nvidia, Universidad de Málaga (Diciembre
2013 - Enero 2014).

• Sistemas Mecatrónicos - Seminario de introducción, Universidad de Málaga (Junio
2014).

• Workshop y Summer School en Robótica de euRathlon/ARCAS (Junio 2014).

• Workshop de Estructuras de Datos para Procesamiento de Nubes de Puntos 3D de Gran
Escala. El 13º Congreso Internacional de Sistemas Autónomos Inteligentes, IAS13
(Julio 2014).

Estructura de la tesis

Esta tesis se divide en seis capítulos, un apéndice y referencias bibliográficas. Excepto
por este capítulo y el relacionado con las conclusiones y trabajos futuros, cada capítulo
empieza con una introducción que expone el problema abordado y termina con un resumen
que enfatiza las contribuciones y/o los resultados que han sido obtenidos.

El capítulo 2, Related work, ofrece un estado actualizado de las soluciones robóticas
aplicadas a los temas o tareas implicados en esta tesis. Hay una revisión de las técnicas más
comunes de representación 3D, métodos de clasificación, segmentación, mapas de ocupación,
y sensores lidar.

El capítulo 3, General framework for supervised learning classification of Lidar point
clouds based on voxel-based neighborhood, describe la solución propuesta usando difer-
entes clasificadores y parametrización, y analiza los resultados y rendimiento obtenidos en
experimentos.

El capítulo 4, Segmentation and navigability analysis based on geometrically featured
voxel maps, describe algunas aplicaciones para el método de clasificación de nubes de puntos
3D propuesto en el capítulo 3. Los algoritmos de segmentación y mapa de ocupación se
describen y se prueban en escenarios naturales.
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El capítulo 5, Analysis and construction of a multi-beam lidar with an additional degree
of freedom, describe un nuevo escáner láser 3D de bajo coste y analiza los complejos patrones
de escáner producidos por la configuración de este sensor.

El capítulo 6, Conclusion and future work, enfatiza las contribuciones más relevantes de
esta tesis y propone temas de investigación futuros.

Finalmente, el apéndice ofrece un análisis más detallado de la arquitectura del software
integrado en la plataforma ROS.

Conclusiones

El entendimiento inteligente de escenas es un proceso complejo que se usa en muchas
aplicaciones como la navegación autónoma. La información 3D precisa y de alta resolución
sobre la escena puede ser obtenida como una nube de puntos 3D desde sensores como
cámaras y escáneres 3D. Esta gran cantidad de datos en bruto, debe ser transformada en una
representación eficiente para ayudar a procesamientos posteriores tales como la detección de
objetos o el control de navegación. Esta tesis ha ofrecido contribuciones al entendimiento
inteligente de escenas en entornos desestructurados basados en nubes de puntos 3D, en
particular nuevos algoritmos para clasificación de nubes de puntos, segmentación de objetos,
estimación de navegabilidad, y el desarrollo de un MBL rotatorio.

La clasificación de características de forma espacial basada en PCA es un componente
básico en métodos recientes de procesamiento de escenas extensamente usados [49][55]. En
este sentido, las características geométricas pueden describir la forma de regiones y objetos
para su posterior clasificación contextual [127]. Por ello, esta tesis se ha centrado en la
mejora de eficiencia, tanto en carga computacional como en precisión, de clasificación de
aprendizaje supervisado de características de forma espacial (i.e. forma tubular, planar o
difusa) obtenidas del análisis de covarianza [47]. Mientras que muchos autores definen
categorías como la orientación vertical u horizontal [32], en este trabajo las características
geométricas han sido identificadas con independencia de su orientación, lo cual amplía su
aplicabilidad a entornos desestructurados.

Ya que el cálculo de vecindario para puntos 3D es un proceso costoso para la clasificación,
esta tesis también ha propuesto un concepto nuevo de un marco general para implementar y
comparar distintos clasificadores de aprendizaje supervisado con un cálculo de vecindario
basado en vóxel. De este modo, en base a una cuadrícula 3D uniforme, las características son
calculadas por cada vóxel no solapado, y todos los puntos en el mismo vóxel son asignados
a la misma clase, resultando un GFVM. La viabilidad de este enfoque ha sido evaluado
mediante la implementación de un método NN, en particular un modelo basado en perceptrón
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multicapa, y otros tres clasificadores de aprendizaje supervisado encontrados en métodos de
procesamiento de escenas (SVM, GP, y GMM) a la vez que cinco definiciones alternativas del
vector de características basado en PCA para formas difusa, tubular y planar. Las métricas
de rendimiento de clasificación y las medidas de tiempo de procesamiento han confimado
los beneficiones del clasificador NN y la viabilidad de la técnica de vecindario basado en
vóxel para escenas de lidar terrestre, también con respecto al vecindario basado en punto.
Los resultados también han mostrado que la elección de las características apropiadas pueden
tener un efecto impresionante en el rendimiento de las técnicas de clasificación. El método
ha sido aplicado con éxito a escáneres reales tanto en entornos urbanos como naturales desde
dos escáneres 3D diferentes.

Esta tesis también ha propuesto aplicaciones basadas en GFVM para la caracterización
de una escena 3D. En particular, un método de segmentación y de generación de mapa
de ocupación, especialmente diseñados para entornos naturales. Ambos algoritmos están
basados en un método de segmentación del suelo que también amplía la representación
de GFVM mediante la agregación de un nuevo atributo a los vóxeles, además de su clase
geométrica. El algoritmo propuesto de segmentación del suelo tiene en cuenta inclinaciones,
áreas no planas y áreas aisladas, las cuales aparecen comunmente en escenas desestructuradas.
Del mismo modo, no corresponden en este caso las asunciones de suelo plano de métodos
para escenas urbanas, como el ajuste de plano [125] o los umbrales de altura [53]. Para
identificar vóxeles de suelo, el algoritmo consiste en un conjunto de reglas de refinamiento
cuya secuencia óptima ha sido determinada mediante análisis experimental. Una vez que el
suelo es segmentado, se ejecuta un método de doble segmentación primero aislando objetos,
y después dividiéndolos en regiones con la misma clase geométrica. El algoritmo propuesto
ha sido probado en entornos natural y urbano presentando mejores resultados en comparación
con otros métodos de la literatura en entornos naturales. Además, un experimento se ha
ejecutado para concluir qué tamaño de vóxel aporta el mejor resultado. Además, una métrica
nueva ha sido introducida para cuantificar la precisión en la segmentación mediante una
comparación entre cada nube de puntos segmentada y la misma manualmente etiquetada.
Además, la autora ha propuesto un método para la generación de un mapa de ocupación
2D que es eficiente para navegación local en entornos naturales. El mapa de ocupación 2D
propuesto representa áreas accesibles considerando los atributos y la altura de cada vóxel
sobre el nivel del suelo en relación con las dimensiones del vehículo. Como resultado,
se obtiene un mapa eficiente donde los objetos en la escenas son clasificados en clases
geométricas y finalmente etiquetados como área navegable o no navegable.

Las metodologías propuestas en este trabajo pueden ser integradas en un robot movil
con un TLS o cualquier otra tecnología de captura de nubes de puntos densas 3D (vea la
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Sección 2.1). Para sistemas semi-autónomos, la información geométrica y semántica puede
ayudar al teleoperador a planear la ruta, como en misiones SAR donde el operador no puede
acceder al área de búsqueda. Los GFVM pueden contribuir a la exploración planetaria donde
el robot trata de capturar y mapear una gran cantidad de información en una estructura
de datos optimizada para ahorrar memoria y ancho de banda. Además, para vehículos
totalmente autónomos, el mapa de ocupación es una entrada adecuada para el algoritmo
de planificación de caminos. Además, todos los descriptores deducidos de la escena 3D
pueden ser procesados por un algoritmo de reconocimiento para identificar los objetos, por
ejemplo, en un sistema de guiado para personas con discapacidad visual. Los problemas
de registro de capturas consecutivas y mapeo se usan extensamente, también en escenarios
urbanos, con el algoritmo ICP que es un proceso basado en puntos y por tanto costoso,
así pues GFVM puede contribuir a reducir el coste computacional. Por ello, un algoritmo
optimizado de SLAM puede producirse en base a GFVM. Además, estos métodos pueden
integrarse parcialmente en vehículos aéreos, como drones, con escáneres lidar empotrados,
para describir la vegetación en los bosques o detectar construcciones fraudulentas. Por lo
tanto, aunque el propósito inicial de esta tesis fue contribuir a la exploración de largo alcance
en entornos naturales para robots móviles terrestres, este trabajo es adecuado para una extensa
variedad de aplicaciones, de hecho, el trabajo también sirve para escenas urbanas, de interior,
o aéreas.

Esta tesis también ha abordado el diseño, desarrollo y análisis de un nuevo escáner láser
3D basado en sensor comercial multi-haz. En concreto, la tesis ha propuesto una rotación
de cabeceo al Velodyne Puck con el propósito de incrementar la densidad, lo cual la hace
más homogénea, a la vez que el campo de visión vertical. Las nubes de puntos generadas
por los escáneres multi-haz tienen una densidad dispersa y heterogénea que afecta a los
resultados de las técnicas de procesamiento típicas [111]. Este trabajo ha presentado un
diseño compacto, asequible y ligero que puede ser usado como sensor portátil. Este diseño
ha sido implementado como el nuevo sensor 3D Velomotion-16 que mejora las limitaciones
de escáneres multi-haz. Además, este trabajo ha propuesto una metodología para evaluar
patrones de escaneo 3D, que ha sido aplicado para investigar la distribución de escaneo.

Resumiendo, esta tesis ha presentado contribuciones hacia el entendimiento inteligente
de escenas en entornos desestructurados basadas en nubes de puntos 3D. Las principales
contribuciones incluyen nuevas metodologías para la clasificación geométrica de nube de
puntos, segmentación de objetos, estimación de navegabilidad y el desarrollo y análisis
cualitativo de un MBL rotatorio. Ya que los datos 3D implican grandes estructuras de datos,
y por tanto un alto coste computacional, la solución propuesta reduce considerablemente
el coste computacional con respecto a otros métodos de mapeo 3D mediante la reducción
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de la cantidad de datos a procesar. Esta tesis también ha presentado una solución de bajo
coste, basada en un nuevo y asequible escáner 3D desarrollado que mejora la densidad
y la homogeneidad de la nube de puntos resultante. Todas las soluciones propuestas han
sido evaluadas satisfactoriamente con escáneres reales en escenarios urbanos y naturales
generados por dos modelos diferentes de escáner láser. Estos métodos pueden ser aplicados
a robots semi-autónomos en entornos naturales o en un escenario SAR.

Trabajos futuros

El trabajo presentado en esta tesis podría ser ampliado con las siguientes contribuciones:

• Integración del método completo en un vehículo autónomo

La integración de todos los métodos propuestos, empezando por la captura de una nube
de puntos 3D con el nuevo dispositivo de distancia láser, pasando por la voxelización,
clasificación geométrica, segmentación y generación de mapa de ocupación para ir un
paso más allá hacia la planificación de caminos y navegación autónoma. ROS ofrece
implementaciones de algoritmos de planificación de caminos que pueden funcionar
sobre el mapa de ocupación generado del entorno. Este trabajo de tesis está planificado
para ser integrado en el robot Rambler (desarrollado en el mismo proyecto al que se
asocia esta tesis).

• Versión paralela del método de clasificación propuesto con ordenador multi proce-
sador o GPU

Una ventaja adicional del procesamiento sobre celdas no solapadas usando puntos que
sólo pertenecen a la misma celda es que favorece la paralelización [94]. Se propone
el desarrollo de una versión paralela del método propuesto para mejorar el tiempo de
clasificación online con ordenadores multi-procesador o GPU.

• Actualización inccremental de clasificación con escáneres consecutivos

Además del mapeado incremental con escáneres consecutivos, también puede ser
interesante adaptar el método para la actualización incremental de los resultados de
clasificación en lugar de procesar otra vez vóxeles repetidos. La actualización puede
incluir la voxelización de nuevos puntos, la extracción de características geométricas y
la clasificación de los nuevos vóxeles.

• Clasificación de objetos en la escena
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Ya que el paso de segmentación ya divide la escena en objetos y regiones geométri-
cas dentro de cada objeto, algunas caracerísticas geométricas y estadísticas pueden
ser extraídas tanto de los objetos como de las regiones para poder clasificar obje-
tos automáticamente. Se han realizado trabajos preliminares obteniendo resultados
prometedores en la identificación de árboles, coches, farolas, edificios, peatones y
arbustos.

• Mejora de Velomotion-16 desde prototipo a producto terminado

El nuevo escáner láser es un prototipo que carece de algunas mejoras que podrían
implementarse produciendo un producto final. En concreto, una interfaz de usuario
para la configuración, una interfaz para el entorno ROS, optimización mecánica y la
integración de baterías eficientes y compactas.
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Appendix A

3D data processing

A.1 Robotic operating system (ROS)

ROS [33] is a framework which involves tools and drivers for programming robots, it is open
source and BSD licensed. The main idea of ROS is the communication between modules
from a robot, in one or more processors, in an easy and flexible way. The programming of
these modules is made in C++ or Python, and ROS can be installed over several operative
systems but only is considered stable in Ubuntu.

The main advantage of ROS is the distributed and modular design. It is based on a
structure divided in processes, called nodes, which relate among themselves. This way, the
processing takes place on the different nodes, which exchange information through messages.
These nodes may be designed individually, even written in different programming languages,
and be used in a flexible way on real time. The communication between the nodes it can be
made by a message passing mechanism, as publisher-subscriber method, or by request of
services from a client, as client-server approach. The basic units from the ROS architecture
are described below:

• Node: it is the smallest structure in a ROS network, it can be considered as an
executable with an specific purpose within a robot control system. Nodes communicate
to each other through message passing. Executing a node requires the command rosrun
whose syntaxis is: rosrun package_name node_name _parameter_name:=value. Notice
the name of each parameter should be preceded by the character _ as prefix. Executing
ROS code requires previously the initialization of the master node with the command
roscore.

• Master node, also called roscore: it is the central server of the architecture, responsible
for keeping a register of all the nodes from the platform, and keeping track of all the
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Fig. A.1 Topic based communication in ROS

messages that can be exchanged by the nodes. Thus, this node let other two different
nodes find each other when they want to share information. This two nodes can be in
different computers and just need to know where is the master node. Once they have
been in contact, they communicate peer-to-peer.

• Message: nodes communicate to each other through message passing. A message is
a data structure which involves different fields depending on the information to send.
Messages are transmitted by two different ways: through topics or through services.

• Topic: it is one of the two options to the message exchange in ROS. Topics are like
paths which messages can be exchanges through. A topic is always associated to
an specific message type. When a node want to publish a message, it indicates the
message type to the master node and register it with a topic name. Secondly, if another
node want to receive that message, it will subscribe to the some topic by indicating it
is ready to the master node. Then the master node will establish the communication
between the two nodes, publisher and subscriber, and the information exchange will
be made in a peer-to-peer transmission (see Fig A.1). Hence, a topic is a name used
for identify an specific message exchange. To check if the communication is success,
there are useful commands such as ’rostopic list -v’ to show all the active publisher
and subscriber nodes, and ’rostopic echo topicname’ to show the data published on a
specified topic.

• Service: it is the second way offered by ROS for the message exchange. The communi-
cation request-response is made using services which are defined by a pair of messages,
one for the request and other for the response, both defined as service_type. This
concept uses the client-server model. As in the Topic based communication, previously
to the peer-to-peer communication, both nodes has to register in the master node, which
is responsible to make them being in contact (see Fig A.2). The main difference with
the topic based communication is that in this way the emitter only publish a message
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Fig. A.2 Service based communication in ROS

when a receiver requests it. On the contrary, in the previous approach the messages
were published continuously, it is a faster protocol, but if there is no subscriber it
involves a waste of resources.

• Nodelet: it is an executable code designed to provide a way to run multiple algorithms
on a single machine, in a single process, without incurring copy costs when passing
messages intraprocess. The communication is optimized to do zero copy pointer
passing between publish and subscribe calls within the same node. In fact, it offers
better performance when the nodes are running in the same machine instead of a
network or distributed system. Executing a nodelet it is the same as a node by using
rosrun, but it does not require any prefix in the parameter_name.

• Launchfile: it is an XML file which is executable. It calls one or more nodes or nodelets
with the specified parameters for being executed in the same or different machines. It is
specially useful in large projects which require several nodes execution , each one with
several parameters. To execute one of them the command is: roslaunch package_name
launchfile_name parameter_name:=value.

In the programming level, ROS is based on a filesystem organized in a hierarchy of
blocks (see Fig. A.3). Packages are the main unit in ROS organization. Each package
provides a different service and involves different nodes which, as previously shown, are
executable processes. ROS is composed by hundreds of software packages for the robotic
system development. The packages with the same subject/device are grouped in a stack.
Furthermore, all the different stacks from the same user or development group are packed in
a repository.
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Fig. A.3 ROS code hierarchy

VERSION PCD format version
FIELDS Field names of points
SIZE Size of each field, in bytes
TYPE Type of each field: I for char, short or int, U for unsigned char/short/int, F for float
COUNT Elements of each field, by default 1, for instance the x field has one element
WIDTH Point Cloud width, in number of points
HEIGHT Point Cloud height, in number of points: 1 if is a unorganized point cloud.
VIEWPOINT View point for the acquisition, in translation (tx ty tz) + quaternion (qw qx qy qz)
POINTS Total number of points.
DATA Codification for the points, ASCII or binary.

Table A.1 PCD header structure

Point Cloud Library in ROS

PCL is a large scale, open project [93] for 2D/3D image and point cloud processing. The
PCL framework contains numerous state-of-the art algorithms including filtering, feature
estimation, surface reconstruction, registration, model fitting and segmentation. These
algorithms can be used, for example, to filter outliers from noisy data, stitch 3D point clouds
together, segment relevant parts of a scene, extract keypoints and compute descriptors to
recognize objects in the world based on their geometric appearance, and create surfaces from
point clouds and visualize them.

PCL is released under the terms of the 3-clause BSD license and is open source software.
It is free for commercial and research use. PCL is cross-platform, and has been successfully
compiled and deployed on Linux, MacOS, Windows, and Android/iOS. In addition, it is fully
integrated with ROS.

PCL uses the PCD file format (Point Cloud Data) in order to describe the n-dimensional
point clouds. This file has a header coded in ASCII (see Tab. A.1) and the points information
can be in ASCII or binary. An example of this format can be seen in Fig. A.4. As it shows, it
is the seventh version of PCD format, each point has fields for the Cartesian coordinates xyz
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Fig. A.4 Example of a PCD file

Fig. A.5 Velodyne HDL-32E [107]

and also a color RGB field, data are 4bytes float type and they are coded in ASCII, and the
size of the cloud is 3x3 points.

A.2 Velodyne HDL-32E

Velodyne HDL-32E [107] is a laser rangefinder, also called LIDAR (Laser Imaging Detection
and Ranging). It consists in a technology to measure the distance from an emitter and an
object or surface in front of it by using a pulsed laser beam. This model provides 32 vertically
aligned lasers 1 in a platform which rotates around a vertical axis in clockwise direction.

1 Other Velodyne models provide 16 or 64 laser emitters.
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Fig. A.6 Velodyne capture shown in DSR viewer

This way the device generate a 3D point cloud of a 360º scene (see Fig. A.5). The device
offers a 41.3º vertical field of view, usable returns up to 70 meters with an accuracy of ±2cm,
and approximately 700 thousand laser shots per second (depending on the revolution speed
which can be configured, more speed less points).

The lasers emitters are divided in two blocks, 16 lasers each one. The first block is the
lower one and it includes the even lasers from 0 to 30 sorted from the lower to the upper one,
and the second block includes the odd lasers from 1 to 31 sorted in the same way. The header
of the device rotates horizontally at the same time it is firing the lasers. During the fire time
the distance from all the lasers are measured by order from 0 to 31, it means from the bottom
to the top alternating both blocks of lasers.

In addition to the power adaptor, the device is connected through a Ethernet cable with a
computer. Velodyne send the data through Ethernet to the broadcast address of a local net
with IP 192.168.3.0. This means, in order to use Velodyne firstly it is necessary to set up the
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Fig. A.7 PCAP file from Velodyne shown by Wireshark

network card of the PC which is connected to. The PC should have any valid IP within the
mentioned network 2. Data are returned like ethernet packets with UDP protocol and saved
in a binary file with PCAP extension. This files and real time captures can be shown with the
program DSR_viewer in Windows XP provided by Velodyne (see Fig. A.6), or Veloview in
Windows 7 in free distribution on internet. Colors represents each one from the 32 lasers,
which means each ring in the image are the measures from the same laser emitter.

Furthermore, PCAP files can be analyzed with a network explorer, for instance Wireshark
(see Fig. A.7) running on Linux operative system.

Transformation from Velodyne RAW data to standard point cloud

To transform data from Velodyne in a Cartesian point cloud, a C program has been imple-
mented. The algorithm opens a captured data file, which uses PCAP extension, and join
Ethernet packages in frames. Each frame involves a point cloud with a 360º scene, then the
information is converted to Cartesian coordenates of each point, and the result is saved as a
text file with the list of the XYZ points.

A PCAP file is composed by a file header with a size of 24 Bytes, and a list of Ethernet
packages where each one is preceded by a PCAP header of 16 Bytes (see Tab. A.2). GPS
data are optional packages, only sent if Velodyne is connected to its GPS device. One PCAP
file can store all the capture data during the execution of the device, hence a longer capturing
process means a bigger output file. There are two kinds of Ethernet packages from Velodyne,

2To change the IP address, in Windows or Linux, you have to go through the menus Network
properties→TCP/IP and change the following values to IP 192.168.3.100, Network mask 255.255.255.0
and Gateway 192.168.3.1.



120 3D data processing

File header 24 Bytes
Ethernet packet 1 header 16 Bytes
Ethernet packet 1 (distance data) 1248 Bytes
Ethernet packet 2 header 16 Bytes
Ethernet packet 2 (GPS data) 554 Bytes
· · ·
Ethernet packet n header 16 Bytes
Ethernet packet n (distance data) 1248 Bytes
Table A.2 PCAP file structure from Velodyne

Fig. A.8 Structure of an Ethernet distance packet from Velodyne

distance data with a size of 1248 Bytes, or GPS positioning, 554 Bytes. In our experiments
the GPS attached to the rangefinder will not be connected, so only distance data packages
will be considered. The distance data packages (see Fig. A.8) involves a header of 42 bytes,
12 laser firings, each one employ 100 bytes, and a timestamp of 6bytes. Each laser firing
includes a rotation position, this is an horizontal angle, and values from the 32 lasers, distance
and intensity. All the fields from the distance data package are transmitted with the less
significative byte in the first place (Little Endian).

The algorithm to convert the PCAP file in a Cartesian point cloud is described in the
algorithm 1. The PCAP file involves several completed revolutions from Velodyne, however
the algorithm will extract only the first frame or 360º scene. Since the size of each field
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of the binary file are known, the file descriptor can be moved to the init of the firing data
and read only this avoiding the headers. This way the buffer for reading the file does not
need more space than 1200 bytes. Every Laser fire has its own horizontal angle, but the
end of a frame could be in the middle of an ethernet package. For this reason, in each fire
a function is called, which detect the end of the frame and hence the end of the algorithm.
This function save the initial horizontal angle (φ ), and detect when the complete revolution
has come comparing the current horizontal angle of each fire. Then, for each one of the 32
lasers, the vertical angle (θ ) is read from the constant input array and the distance field (d)
is composed rearranging the two separated bytes -because they were transmitted as Little
Endian- and converting to the meters unit. At this point the spherical coordinates are known
for the current point, so they can be transformed to Cartesian coordinates according to the
equations A.1.

Algorithm 1 Conversion from PCAP to Cartesian Point Cloud
Require: PCAP file and vertical angles array
Ensure: Cartesian Point Cloud in a text file

1: Open PCAP file
2: loop
3: firingData← Read next Ethernet Package
4: for f ire = 1 to 12 do
5: φ ← Read horizontal angle
6: if Detect end of 360º scene then
7: return
8: end if
9: for laser = 1 to 32 do

10: θ ← Read vertical angle
11: d← Read and rearrange field distance
12: x,y,z← Convert polar coordinates to Cartesian (d,θ ,φ )
13: Print point on output file (x,y,z)
14: end for
15: end for
16: end loop

x = d sinθ cosφ

y = d sinθ sinφ

z = d cosθ

(A.1)
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Velodyne in ROS

Alternatively, the RAW data from Velodyne can be transformed to a list of Cartesian points
by using the library PCL for ROS in Linux. The difference with our program is that ROS
provide fixed size messages from RAW Velodyne data, and it does not make group with the
information from the same frame (a whole 360º revolution). The main advantage of ROS is
the real time processing, because all the algorithms are optimized, even parallelized if the
current computer is multicore.

Once ROS is successfully installed on a Ubuntu system, Velodyne package for ROS has to
be installed too by using the command: sudo apt-get install ros-VERSION-velodyne,
where VERSION has to be replaced by the name of the ROS version, such as groovy or hydro.
To work with Velodyne package in ROS, in addition to change the PC IP (described in
Section A.2), it is necessary to add a route indicating the IP of the input data device, this is
the Veodyne fixed IP, in our case 192.168.18.108. In new versions of the Velodyne HDL-32E
firmware, the device IP can be changed.

• VELODYNE_DRIVER Captures data from the device (or from a previous capture in
a .pcap file) and publishes them in RAW with VelodyneScan.msg message type with
topic /velodyne_packets and frame_id velodyne. Each message contains points from a
whole revolution, one frame.

Rosrun velodyne_driver velodyne_node _model:=32E

It requires run roscore previously. Optionally can publish a previous capture instead of
data from device by using: _pcap:=$(pwd)/path/filename.pcap

Roslaunch velodyne_driver nodelet_manager.launch model:=32E

As the previous node but in a nodelet wrap. Same parameters but without the prefix
‘_’.

Rosrun velodyne_driver vdump file_prefix eth0

Captures RAW data from topic /velodyne_packets and save them in a PCAP file. The
output file is called file_prefix000. Optionally, the net interface can be set, by default
eth0. A single PCAP file may have data from more than one revolution from the
Velodyne device, so it correspond to a video of the capture. 3

• VELODYNE_POINTCLOUD This feature captures RAW data from topic /velodyne
_packets (produced by any of the velodyne_driver commands), transform it and publish
it in a new message as an standard point cloud type: sensor_msgs/PointCloud2.msg

3If the device is on a moving platform, as a robot, the frames can be mapped creating a video of the route.
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in topic /velodyne_points and frame_id=velodyne. Each point is described by its
Cartesian coordinates (x,y,z), the measure intensity, and a ring value. It can be launched
in three different ways: in a node, in a nodelet, and in a launh file which call the nodelet
shown below respectively:

Rosrun velodyne_pointcloud cloud_node _calibration:=/path/32db.yaml

Rosrun nodelet nodelet standalone velodyne_pointcloud/CloudNodelet

calibration:=/path/32db.yaml

Roslaunch velodyne_pointcloud cloud_nodelet.launch calibration:=

/path/32db.yaml

Furthermore the package provides a launch file which calls velodyne_driver followed
by velodyne_pointcloud.

Roslaunch velodyne_pointcloud 32e_points.launch

It also can replay a previous capture by adding :

pcap:=~/velodyne/capture_filename.pcap.

• POINTCLOUD_TO_PCD subscribes the input topic and convert the point cloud from
one message to a pcd file, and save it. One PCD file is saved for each frame o 360º
scan. These output files can be processed with PCL. By default, PCD files are coded in
ASCII and the point cloud data can be loaded in Matlab (and show with verpuntos.m)
by removing manually the PCD header.

rosrun pcl_ros pointcloud_to_pcd input:/velodyne_points prefix:=

�/velodyne/pcd/ Where ′ /velodyne/pcd/′ the directory to store the output PCD
files. By default, output files are saved in /home/<username>/.ros/.

• OCTOMAP is a library for managing point clouds with an octree model. Octomap_
mapping suscribe a pointcloud topic and publish the voxelized information. First step
is the installation on ROS:

Sudo apt-get install ros-VERSION-octomap ros-*VERSION-octomap-

mapping ros-VERSION-octomap-rviz-plugins

*ROS VERSION =groovy, hydro..

Second step is configuring the file octomap_server octomap_mapping.launch:

<param name="frame_id" type="string" value="velodyne" />

<remap from="cloud_in" to="/velodyne_points" />
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Finally launching octomap server:

Roslaunch octomap_server octomap_mapping.launch

• RVIZ. ROS provides a powerful viewer for any kind of ROS message including
point clouds. For instance, after launching 32e_points.launch, wecan run rviz in a
diferent terminal in Ubuntu with: Rosrun rviz rviz -f velodyne 4 The rviz node
subscribes the same topic and frame_id and show the static scene or the sequence
of them. The first time you use rviz, it is necessary to set up it, by doing ’Add
Display→Message type: PointCloud2→ Topic: “/velodyne_points” ’. Followings
execution of rviz node will open the same configuration by default. The colours of
the points correspond to the height of them (see Figure A.9). If octomap is running
we can also represent the occupied voxels by adding Display MarkerArray, topic
/occupied_Cells_vis_array, fixed_frame=velodyne. Colours correspond to the height
of points.

Fig. A.9 Rviz ROS viewer showing a Velodyne point cloud

4Without the parameter -f velodyne in the command the frame_id would be configured inside rviz
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Fig. A.10 Unolaser LRF

A.3 Unolaser

UnoLaser 30M135Y [63] is a low-cost laser rangefinder based on pitching a commercial
2d rangefinder, Hokuyo UTM-30LX (see Fig. A.10). It has a maximum scanning range
of 30 m and a minimum range of 0.1 m. It is powered with a DC power supply of 12 V
with a nominal consumption of 14.4 W with peaks of 33.6 W. A complete 3D scan can be
obtained with a maximum pitch resolution of 0.067367°in 95.75 s and with a minimum pitch
resolution of 4.16129°in 1.55 s. This sensor is suitable for scanning both indoor and outdoor
environments, as Velodyne. This device offers a measurement resolution 1 mm and a Field of
view 270º x 131º. The point cloud captured by Unolaser is in a shorter range than Velodyne,
but it is denser and rings do not appear in the scene. Vertical resolution in Velodyne is not
high enough to capture small details from the objects in the scene (see figure...). On the
contrary, the objects are well defined (see Fig. A.11). Due to the fact that unolaser has only
one laser emitter, scanning a scene is slower than velodyne which has 32 or 64 laser emitters
depends on the model. Furthermore, Velodyne is rotating continuously around a vertical
axis, whereas unolaser has two different movements. The Hokuyo piece make the horizontal
scan with a continuous rotation with a 90º of death angle in the back side. Unolaser adds
the third dimension by adding a not continuous pitch rotation. This way the rotation is not
completed and, what is more important, a big delay is added. A new model of Unolaser is
being designed to improve this drawback. It will be able to turn continuously and make the
scanning process faster.

The output of each scan involves two different files with the name of the timestamp and
‘scan3d_’ as a prefix and extension .dat. The binary file is called in the same way adding the
suffix _raw before the extension. The text file involves many rows as horizontal scans, it
depends on the quantity of vertical scans, velocity of it and the resolution parameters. Each
horizontal scan has several columns. The first one indicates the vertical angle, it can be from
-45º to 86º. The second column is the timestamp, by default each horizontal scan differs from
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Fig. A.11 Point cloud captured by Unolaser

the previous one in 50ms. From the third until the last column are the distances measured in
the horizontal scan (270º). This measure is wrong if the value is 1 or bigger than 30000mm,
which is 30m.

A.4 Velomotion

The ROS architecture implemented for Velomotion described above is shown in Figure A.12
The original files have been created in a ROS package velomotion 5 but some functionali-

ties come from other ROS packages, as the philosophy of modularity of ROS aims.
The created velomotion package contains the following original source files. Some of

them are launch files, which describe the nodes that should be run and parameters that should
be set, in XML format, and hence are interpreted files, non compiled. And the other ones
are source codes of new nodes in C, that of course have been compiled inside the new ROS
package.

• velomotion.launch: calls to other two launch files, positionInTf and VLP_transform
.launch, as a result produces a point cloud generated by Velodyne and it is already
transformed into the inclination of the velomotion engine.

– VLP_transform.launch is in velodyne_pointcloud package of ROS, and it calls to
velodyne_node to obtain the distances and also calls to transform_node to trans-

5For simplicity and comfort for the developper the source files could be compiled inside epos_hardware
package avoiding creating the new package velomotion
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Velomotion.launch 

Veloscan.launch 

[velomotion] republishPC 

PositionInTf.launch 

Example_position.launch 

[sensor_msgs/JointState.msg] /joint_states 

[velomotion] tf_broadcaster 

VLP_transform.launch 

[velodyne_driver] velodyne_node 
 
 
 
 
 
 
   [velodyne_pointcloud] transform_node 

[velodyne_msgs/VelodyneScan.msg]  /velodyne_packets 

[tf2_msgs/TFMessage.msg]  /tf 

[pcl_ros] pointcloud_to_pcd 

[sensor_msgs/PointCloud2.msg]  /velodyne_points 

[sensor_msgs/PointCloud2.msg]  /velodyne_points3 

[epos_hardware] epos_hardware_node 
[controller_manager] controller_spawner 

Fig. A.12 Velomotion communication with ROS.

form those points into Cartesian point cloud taking into account the inclination
of the coordinate centre of the engine.

• positionInTf.launch: generates the coordinates transformation message using Exam-
ple_position.launch and the original node tf_broadcaster.

– example_position.launch is included in epos_hardware package. epos_hardware
_node generates the message /joint_states with the position of the engine. The
node controller_spawner load and start the indicated nodes at the same time.

• tf_broadcaster.c: read the joint_state and generates the position in coordinates trans-
form format in the message /tf.

• veloscan.launch: recieves the consecutives point clouds from velodyne and generate
the accumulated point cloud in a PCD file. Contains the original node republishPC
and pointcloud_to_pcd from a standard package in ROS.
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– pointcloud_to_pcd: receives the point cloud in a message and write it in a PCD
file.

• republishPC.c: it runs the movement to the velomotion engine and accumulate the
point clouds during that movement. It generates the final dense point cloud when the
engine get to its end position, and then it returns to its origin point.

Figure A.12 shows the hierarchy of files and the messages flux between nodes. Launch
files contains calls to other ones besides calls to nodes. Nodes are processes that communi-
cate with each other through streaming topics using a publisher/subscriber communication
where the ROS Master is the core element. That means, even if the figure shows direct
communication between nodes, inside the architecture, the messages are published and
subscribed through the master node - at first. The figure uses the following notation:

• boxes with the name of the launch file wich contains inside calls to other launch or
nodes.

• nodes are identified by its container package, in brackets, and the name of the node in
bold text: [name_of_package] name_of_node

• messages are identified by its container package and message type, in brackets and
italic, and the name of the topic for the communication, in italic and red: [name_of_
package/ message_type] / name_of_topic. And the red arrows represents the direction
publisher -> subscriber nodes respectively.
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