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Notation 

Cement notation of oxide compounds 

C : CaO  A : Al2O3  S : SiO2  F : Fe2O3 

H : H2O  s : SO3  T : TiO2  M : MgO  

 
This leads to the following abbreviations for anhydrous and hydrates phases: 
 
C3S  3CaO.SiO2 alite, tricalcium silicate 
C2S  2CaO.SiO2  belite, dicalcium silicate 
C4AF  4CaO.Al2O3.Fe2O3  ferrite 
C3A  3CaO. Al2O3  tricalcium aluminate 
C12A7 12CaO.7Al2O3 mayenite 
C4A3s 3CaO.3Al2O3.CaSO4 ye’elimite, calcium sulfoaluminate 
CsH2  CaSO4.2H2O gypsum 
Cs CaSO4 anhydrite 
CT CaO.TiO2 perovskite 
CA CaO.Al2O3 calcium aluminate 
C2AS 2CaO.Al2O3.SiO2 gehlenite 
C5S2s 4CaO.2SiO2.CaSO4 ternesite, calcium sulfospurrite 
Cfree CaO free lime 
M MgO periclase 
CH Ca(OH)2  portlandite, calcium hydroxide 
C-S-H  (CaO)x(SiO2)y(H2O)z calcium silicate hydrate gel 
AFt 
(C6As3H32) 

3CaO.Al2O3.3CaSO4.32H2O ettringite, calcium trisulfoaluminate 

AFm 
(C4AsH12) 

3CaO.Al2O3.CaSO4.12H2O calcium monosulfoaluminate 
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C2ASH8 2CaO·Al2O3·SiO2·8H2O stratlingite 
AH3 Al2O3·3H2O gibbsite 
C3ASH4 3CaO·Al2O3·SiO2.4H2O Katoite, silicious hydrogarnet 

Some materials notation 

BAY:  belite-alite-ye’elimite cement 

BYF:  belite-ye’elimite-ferrite cement 

BYT:  belite-ye’elimtie-ternesite cement 

CSA:  calcium sulfoaluminate cement 

FA:  Fly Ash 

HBC:  High Belite Cement 

OPC:  Ordinary Portland Cement 

SCMs:  Supplementary Cementitious Materials 

SP:   Superplasticizer 

Techniques acronyms 

BET:   Brunauer–Emmett–Teller (specific surface area) 

BSE:  Backscattering electron 

EDS:   Energy Dispersive X-ray Spectroscopy 

FE-SEM: Field Emission – Scanning Electron Microscopy 

LXRPD:  Laboratory X-Ray Powder Diffraction 

MAS-NMR: Magic Angle Spinning - Nuclear Magnetic Resonance 

MIP:   Mercury Intrusion Porosimetry 

PSD:  Particle Size Distribution 

RQPA:  Rietveld Quantitative Phase Analysis 

SEM:   Scanning Electron Microscopy 

SXRPD:  Synchrotron X-Ray Powder Diffraction 

TG-DTG:  Thermogravimetric Analysis – Derivative Termogravimetric 

XRF:   X-Ray Fluorescence 
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XRPD:  X-ray Powder Diffraction 

Other acronyms 

ACn:  Amorphous and Crystalline non-quantified 
Dv50:  The median size for a volume particle distribution 

Dv90:  90 percent of the particle distribution lies below that size. 

Eq.:  Equation 

LoI:  Loss of Ignition 

mol%:  Mol percent 

vol%:  Volume percent 

w/c:  Water to cement ratio 

w/s:  Water to solid ratio 

wt%:  Weight percent 
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Abstract 

Climate change mitigation usually involves seeking for the reduction of 

greenhouse gases emissions in general and of carbon dioxide (CO2) in particular. 

Concrete is considered the most manufactured product in the world as it is the 

main component of the construction industry. Cement industry is one of the major 

contributors of greenhouse gases (GHG) emissions, releasing about one ton of 

carbon dioxide (0.97 tons) per ton of ordinary portland cement (OPC) fabricated. 

Thus, it is responsible for up to 10% of the total man-made CO2 emissions, just 

behind the power industries. The development of world economies will cause a 

five-fold increase of the global cement production by 2050 compared to 1990, 

reaching 5 billion tons produced all over the world; in spite of significant 

improvements in efficiency, cement related emissions are expected to increase 

by 260% throughout the 1990 - 2050 period. Consequently, the challenge lies on 

the transformation of the traditional way of producing cement into a sustainable 

business model, and on the reduction of emissions from the cement sector in a 

timely way. 

Due to these environmental issues the cement industry is under increasing 

scrutiny to reduce the energy used in production of Portland cement and mainly 

associated carbon dioxide emissions. In addition, Portland cement is not the ideal 

binder for all construction applications, as it suffers durability problems in 

particularly aggressive environments. For these reasons, there is a growing 

interest in the development, characterization, and implementation of alternatives 

binders to Portland cement which present similar mechanical performances than 

OPC.  
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OPC clinker is mainly composed by four crystalline phases: ~65 wt% alite 

(Ca3SiO5; 3CaO.SiO2; C3S); ~15 wt% belite (Ca2SiO4; 2CaO.SiO2; C2S); ~15 wt% 

ferrite (Ca4Al2Fe2O10; 4CaO.Al2O3.Fe2O3; C4AF) and ~5 wt% tricalcium aluminate 

or celite (Ca3Al2O6; 3CaO.Al2O3; C3A). Its main phase is a high calcite demanding 

phase, thus releases high CO2 contents from the decarbonation of calcite, the 

main calcium source (i.e. 0.58 t CO2/t C3S). Additionally, the formation 

temperature required is around 1450 ºC, needing high calorific fuel. OPC is 

produced by mixing clinker with a setting time regulator, commonly gypsum. 

The hydration of OPC basically consists of two different reactions that happen at 

the same time. These are the silicate reaction and the aluminate reaction. The 

silicate reaction consists of alite dissolution in water, followed by precipitation of 

calcium silicate hydrate (C-S-H) gel/nanocrystalline phase and crystalline calcium 

hydroxide (known as portlandite, CH). The aluminate reaction consists on 

tricalcium aluminate hydration in presence of a calcium sulfate source (usually 

gypsum or hemihydrates), to give ettringite (AFt; C6As3H32). These hydrated 

phases (C-S-H and AFt) are responsible for the development of mechanical 

strengths with time. The increment on mechanical properties after 28 days is due 

to slow hydration of belite which also produces C-S-H gel and portlandite. 

In addition, a new kind of binder, an “alternative eco-friendly cement”, may well 

be an alternative to OPC. The term “alternative eco-friendly cement” refers to a 

man-made mineral material that, when ground to a fine powder, reacts with water 

or CO2 quickly enough to produce a hardened mass which can be used as binder 

in concrete or mortar. This is the case of ye’elimite-rich cements and belite-rich 

cements. 

Ye’elimite (Ca4Al6SO16; 3CaO.3Al2O3.CaSO4; C4A3s) rich cements (calcium 

sulfoaluminate; CSA) are known since Alexander Klein patented an expansive 

cement in 1963, with the objective of reducing the retraction of OPC. The classic 

CSA cements with ye'elimite as main phase (around 40 – 70 wt%) have been 

produced and used under the name of “Third Cement Series” in China since the 
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1970s. These ones are considered as environmentally eco-friendly cements for 

several reasons, including the low amount of limestone required to achieve the 

desired composition (mainly ye’elimite and belite), jointly with a low clinkering 

temperature, about 1200 – 1300 ºC (~ 200 ºC less than OPC). The properties 

and applications of this type of binder are strongly influenced by many factors: i) 

chemical and mineralogical composition of the clinker (mainly due to the 

presence of minor phases such as CA, CA2, C12A7, C4AF, CT, or C2AS); ii) sulfate 

source added (amount and type); iii) water to cement ratio (w/c); or iv) blending 

with other binders, such as supplementary cementitious materials (SCMs) or 

even OPC. The properties can be summarized in rapid setting, high early 

strength, high durability, and self-leveling and/or shrinkage compensation. 

However, due to the high levels of aluminum in these CSA cements (30–40 wt%) 

and the very expensive bauxite needed as raw material, these cements are not 

competitive from an economic point of view. 

Moreover, recent studies and developments are focused on belite-calcium 

sulfoaluminate-ferrite cements (BYF) with belite as main phase and ye'elimite as 

second phase in percentage. These BYF contain up to 17% less aluminum than 

CSA, and consequently more iron sources are used, producing larger amounts of 

C4AF.  These BYF cements usually contain 40 - 50 wt% of β-C2S and 20 - 30 

wt% of C4A3s. Its clinkering temperature is similar than classical CSA, being 

around 1250 - 1300 °C (~200 ºC lower than OPC clinkering temperature). The 

main problem of these belite-rich cements is the space between the extremely 

fast reaction of ye'elimite (during the first 24 hours of hydration), and the slow 

reaction of β-polymorphs of belite, after 28 hydration days. Trying to solve this 

problem, a number of ideas have been developed and partially implemented in 

recent years. 

A possible solution is the activation of BYF clinkers by stabilizing high 

temperature polymorphs of belite, such as α-C2S and α′-C2S. That activation can 

be carried out by the addition of minor elements, such as B2O3, Na2O or P2O5. 

Technically, this concept has been implemented and patented by Lafarge as part 
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of a large-scale project named AETHER™. Thus, active-BYF cements are 

considered, currently, as one of the most promising alternatives to OPC. This is 

supported by both environmental benefits (lower CO2 emissions) and industrial 

interest. However, it is needed to evaluate the cost/beneficial matrix prior to the 

implantation around the world since the raw materials for their production are 

more expensive than those of OPC. 

A different approach, recently investigated, is the so-called belite calcium 

sulfoaluminate-ternesite (BYT) cement, where ternesite (Ca5Si2SO12; 

4CaO.2SiO2.CaSO4; C5S2s) is the main phase, jointly with belite and ye’elimite. 

Ternesite (as sulfospurrite) has been long time considered as hydraulically 

inactive. However, recent studies show that in the presence of reactive 

aluminum-bearing phases (such as C4A3s, C12A7, CA, and CA2) ternesite is highly 

reactive forming C-S-H and ettringite, the main hydration phases of OPC and 

CSA respectively, which are responsible of their properties. However, further 

research is needed to evaluate the long-term performance of them, such as that 

related to strength development, dimensional stability and durability. 

A step forward in the activation of BYF is the production of cements that jointly 

content alite and ye’elimite, known as belite – alite – ye’elimite (BAY) cements. 

Their production releases up to 18% less CO2 than OPC, depending on their 

composition. Alite is the main component of OPC and is responsible for early 

mechanical strengths. For that reason, the reaction of alite and ye´elimite with 

water could yield cements with high mechanical strengths at early curing time, 

while belite should contribute to later ages. However, the production of such 

cement represents an important challenge, due to the differences between the 

formation/decomposition temperatures of the main phases. For the alite formation 

at least ~1350 °C are needed , while ye'elimite decomposes above that 

temperature. Recent research focused on obtaining alite – calcium 

sulfoaluminate cement (known as ACSA), where the main phases are C3S (30 – 

50 wt%), C2S (30 – 40 wt%) and C4A3s (5 – 20 wt%) phases demonstrated the 
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coexistence of both phases. In those investigations the formation temperature of 

the alite was reduced to a range between 1230 - 1300 °C by using mineralizers, 

such as calcium fluoride plus copper oxide, magnesium oxide, titanium oxide or 

zinc oxide; or stabilized the ye'elimite by adding barium or strontium, as a 

suitable approach to prevent the decomposition at high temperatures. Despite of 

those results on ACSA cements mineralogy, it has not been found evidences, 
papers or reports focused on the synthesis of BAY cements, where the alite 

content could mitigate the space between ye'elimite and β-belite.  For this 

reason, further investigation on their synthesis, actual mineralogy, hydration 

mechanisms and properties performance compared to non-active BYF cement is 

needed.  

According to the last statement, this PhD thesis is focused on the design, 

synthesis, processing and characterization of a BAY cement, with and without fly 

ash addition (as supplementary cementitious material); as well as the deep 

understanding of the joint hydration mechanism of alite with ye'elimite. In 

addition, for the sake of comparison, a blended of two commercial cements 

(belite and calcium sulfoaluminate) was prepared, which final mineralogy was 

similar to the synthesized BAY. 

One of the main objectives of this thesis has been to obtain a BAY clinker with 

higher jointly content of alite and ye’elimite from natural raw materials (such as 

kaolin, limestone, gypsum and sand). This study was carried out in two scales. 

Firstly, at  laboratory scale (“small” size), where ~ 7 g of clinker with different 

targeted phase compositions, prepared with 0.9 wt% of fluorite (CaF2), were 

synthesized  The optimized clinkering process consisted on heating at 900 °C 

during 30 min at a heating rate of 5 ºC/min, followed by further heating to 1300 °C 

during 15 min, at the same rate. Later, the clinker was rapidly quenched by 

forced air flow. This initial study showed that dosage presented an important 

influence on the mineralogical composition, where high amounts of Fe2O3 

significantly affected the formation of the ye’elimite (C4A3s), favoring its 

decomposition into mayenite (C12A7). In addition, the quantity of C3S and C4A3s 
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increased by decreasing the amount of iron oxide and increasing the amount of 

SO3 (added as gypsum). Finally, the maximum obtained percentages of alite 

jointly with ye’elimite were 16.0 and 12.1 wt% respectively, presenting an 

alite/ye’elimite ratio of ~1.3. These phases were associated with 60.3 wt% C2S, 

2.3 wt% C12A7, 7.0 wt% C4AF and 2.3 wt% C3A in the clinker.  

Secondly, 2 kg of clinker (“medium” scale, named as “scaled-up clinker”) were 

synthesized. To do that, the thermal conditions and raw meal dosage were 

optimized again. The best results were achieved when an excess of gypsum (up 

to 4.3 wt% SO3 as total content in the dosage) was added and the raw mixture 

was heated at 1300 ºC for 15 min. The scaled-up BAY clinker was characterized 

through LXRPD and SEM-EDS; it showed a final composition of 60.9(2) wt% 

C2S, 6.9(2) wt% C4AF, 0.6(1) wt% Cs, 10.4(1) wt% C4A3s, 13.5(2) wt% C3S, 

2.6(1) wt% Fluorellestadite (C7S3s3F; 6CaO.3SiO2.3CaSO4.CaF2; 

Ca10(SiO4)3(SO4)3F2) and 5.1(1) wt% C12A7. As it can be seen, it also presented 

an alite/ye’elimite ratio of ~ 1.3. Moreover, the morphologic characterization by 

SEM-EDS of the scaled-up BAY clinker revealed that the average particle sizes 

of ye'elimite (with rhombic shaped particles), alite (with prismatic shape particles) 

and belite (with typical spherical shape) were near to 5 μm. As a final step, this 

scaled-up clinker was blended with 12 wt% of anhydrite (its stoichiometric 

amount of calcium sulfate taking into account ye’elimite and calcium aluminate 

contents) to fulfill reaction of ettringite formation. The rest of the characterization 

was performed using this scaled-up cement. 

It is important to highlight that the quantitative phase analysis of BAY clinker and 

its hydration products is an essential part of this thesis. X-ray powder diffraction 

(XRPD) combined with Rietveld methodology allows direct quantification of the 

crystalline phases in the samples. This technique was widely used to understand 

the anhydrous mineralogy of the samples, as well as the hydration mechanism in 

BAY and alite-ye’elimite systems. Thus, this allowed correlating the mineralogy 

with the mechanical properties development.  
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The application of RQPA to characterize clinkers/anhydrous cements/pastes is 

not an easy task due to the presence of appreciable amounts of amorphous 

and/or non-crystalline phases (ACn). Amorphous content, determined indirectly 

by RQPA, is constituted by all amorphous phases without long range periodic 

order, but also misfitting problems of the analyzed crystalline phases (due to its 

own internal disordered) and any crystalline phase non-included in the Rietveld 

control file. Therefore, the quantification of ACn phases is a very important issue 

to understand hydration mechanisms, especially when important hydrated 

products can be part of them.  

The hydration studies have been performed using LXRPD with the internal 

standard methodology to determine the full phase assemblage, including ACn 

contents. This method was applied to stopped-hydration samples; consequently, 

it enables to obtain only ACn contents. The free water (FW) content was 

determined by the comparison of TGA-DTG mass losses up to 600 ºC of 

stopped-hydration samples and the total added water. 

Another important objective of this thesis has been to understand the water-to-

cement (w/c) ratio effect, the superplasticizer content and the addition of fly ash - 

FA as supplementary cementitious material (SCMs) in the hydration mechanism 

and mechanical properties (i.e. compressive strength) of BAY cement pastes and 

mortars. These studies were made through the analysis of the hydration process 

in the cement pastes, as well as the mechanical properties of the corresponding 

mortars. 

In a first step, the effect of different w/c ratios (0.4, 0.5 and 0.57) was studied on 

the crystalline mineralogy of BAY. In all cases the hydrated phases, 

independently of w/c used, were ettringite (AFt) and AFm-type phases (such as 

monosulfoaluminate, stratlingite and/or katoite); and in a minor amount low-

crystalline C-S-H and amorphous aluminum hydroxide were identified by TG-

DTG, both of them forming part of the ACn content. Despite of the high amount of 

calcium silicates (C3S and C2S) in the system, the presence of portlandite (CH) 

was not detected, except at later ages as a product of β-form belite (β-C2S) 
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hydration. This absence was deemed due to the CH reaction with ye’elimite at 

early ages to produce ettringite, and at later ages favors the degradation of AFt 

into AFm phases. This last effect was reflected as a decrease of AFt and 

increase of AFm amount from 28 to 180 days. The influence of the w/c ratio in the 

crystalline mineralogy was only in the stratlingite/katoite ratio, where the 

increment of w/c ratio favored the precipitation of stratlingite instead of katoite. 

The compressive strength of BAY mortars was improved by decreasing the w/c 

ratio, as expected; but the most important result was that BAY cement mortar 
presents better mechanical behavior than non-active BYF (48.7(6) wt% of β-

C2S, 28.1(1.0) wt% of C4A3s, 14.9(2) wt% of C4AF, 1.3(2) wt% of CT, 2.6(5) wt.% 

of γ-C2S and 4.4(2) wt.% of C2AS), showing higher compressive strengths from 

the first day of hydration., even when that BYF cement presents a higher amount 

of ye’elimite. Thus, that result was attributed to the jointly presence of ettringite 

and C-S-H (from the hydration of ye’elimite and alite, respectively).  

The optimal amount of a polycarboxylate based superplasticizer (SP) was 

determined by rheological studies, showing a significant improvement in the 

workability (decrease of the viscosity). After the optimization, the best amount to 

be added to the samples was 0.5 wt% (referred to active solids). The effect of the 

superplasticizer on the hydration behavior was also studied by isothermal 

calorimetry and in-situ Mo-LXRPD. This study showed that the polycarboxylate 

affects the kinetic of mayenite (C12A7) hydration; therefore, it inhibited the 

competitive hydration reaction between ye’elimite and mayenite. From the 

calorimetric study, this effect was observed as a decrease in the intensity of the 

main hydration peak, which is associated with precipitation of AFt and/or other 

aluminum hydrated phases, yielding to a reduction of 28% of the total heat 

released from BAY cement pastes after 2 days. 

The use of fly ash in pastes and mortars did not show enough direct evidences of 

pozzolanic effect (reaction between fly ash and Ca2+ and OH- free ions present in 

the pore solution). Nevertheless, it was found that the increment of FA (from 0 to 
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30 wt%) had two main effects on the hydrated phase assemblage of BAY: i) 

inhibited the belite hydration; therefore, ii) favored the AFt stability. From 

calorimetric studies the acceleration of the main peak, compared to the main 

signal of unblended BAY cement, was observed. This effect gives information 

concerning the FA capacity of creating nucleation centers for hydrated phases; 

this behavior is commonly known as "early filler effect". The increase of FA partial 

replacement also increased the mechanical development of BAY during the 

hydration time. This was attributed to the filler effect at early (nucleation centers) 

and later ages (pore space filler); but could too be justified as an indirect 

pozzolanic reaction, despite of the C2S inhibition. 

With the aim of understanding the influence and behavior of jointly hydration of 

alite and ye’elimite, a deeper study by in-situ SRXPD and isothermal calorimetry 

was carried out. The mixtures of pure alite and pure ye’elimite (orthorhombic and 

pseudocubic) systems with two alite/ye’elimite ratios (1.37 and 2.74) of both 

ye’elimite polymorphs were studied. Those samples were hydrated at water-to-

solid ratios of 0.59 and 1.19 for alite/ye’elimite ratio of 2.74; and w/s ratios of 0.66 

and 1.32 for alite/ye’elimite ratio of 1.37. Those w/s ratios correspond to 110% 

and 220% of stoichiometric water amount (i.e. the stoichiometric amount of water 

to full reaction of ye’elimite and alite), respectively. The results showed that alite 

hydration was highly affected by the hydration kinetic of ye’elimite, where due to 

the lower hydration kinetic of pseudocubic ye’elimite, alite started to react after 

one day. However, alite in presence of orthorhombic ye’elimite, began to react 

much faster, just after 10 hours of hydration. The main hydration products 

obtained from these hydrations were ettringite, monosulfoaluminate, stratlingite 

and C-S-H. Again, in these systems portlandite was not detected. After 7 days, 

the systems with pseudocubic ye’elimite and alite presented less hydration 

degree than in those systems with orthorhombic ye’elimite. This last behavior 

favors the stability and amount of AFt on the system. When the water-to-solid 

(w/c) ratio in the alite/ye'elimite ratio of 1.37 mixtures was increased, the kinetics 

of hydration of ye'elimite was hastened at half of their hydration time, favoring the 

rapid precipitation of ettringite (and monosulfoaluminate in systems with 
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orthorhombic ye’elimite). Likewise, independently of the alite/ye’elimite ratio, the 

increase of w/s ratio favored the hydration degree of alite and the respective 

formation of C-S-H and stratlingite. 

It is important to emphasize that katoite did not precipitate in pure alite-ye'elimite 

systems, which is a relevant phase obtained in the hydration of BAY cement 

(even with the addition of fly ash). Its properties and influence on the mechanical 

development of BAY-cement are unknown. Consequently, these results give 

essential information about its formation mechanism in the studied BAY-cement 

system; it can be associated with the hydration of belite in an Al-rich environment 

and the joint hydration of ferrite and alite. 

Finally, the “commercial binder” B83 (83 wt% of belite clinker supplied by Buzzi 

Unicem – Italy; plus 17 and 7 wt% of calcium sulfoaluminate clinker supplied by 

Belith S.P.R.L – Belgium and anhydrite, respectively) prepared with similar 

anhydrous mineralogy than BAY synthesized cement (alite/ye’elimite ratio 1.3) 

was studied with a w/c ratio of 0.4. These studies show that the main hydration 

products of B83 were ettringite, stratlingite, katoite, monosulfoaluminate and 

amorphous aluminum hydroxide, without precipitation of portlandite; i.e. the same 

mineralogy obtained from BAY cement hydration. Particularly, this “commercial 

binder” presented a hydration degree of alite of 77.5% at 180 days, while belite 

reached a hydration degree of 55%. This low hydration degree from calcium 

silicates favored the ettringite stability without any evidence of AFm formation. 

Additionally, the formation of stratlingite and katoite was favored in this Al-rich 

environment. However, that behavior was totally opposed for BAY cement 

hydration mechanism, where due to fast hydration of alite and late hydration of 

belite, the ettringite amount decreased showing an increase of AFm-type phases 

(monosulfoaluminate, hemicarbonate, stratlingite).  

Moreover, the compressive strength of “commercial binder” B83 showed better 

values than BAY-cement mortars (without any fly ash addition) from the first 

hydration day. This mechanical development was related with the low porosity of 
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the paste of the cementitious mortars matrix, as well as the hydrated phases 

assemblage in it (i.e. ettringite stability and high amount, and elevated content of 

stratlingite). 
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Resumen 

El concreto está considerado como uno de los productos más fabricados debido 

a que es el componente primordial en el sector de la construcción. Donde la 

industria del cemento, elemento principal del concreto, es uno de los mayores 

contribuyentes de la emisión de los gases de efecto invernadero, generando 

cerca de una tonelada de dióxido de carbono (0.97 t) por tonelada de cemento 

portland ordinario (OPC, por sus siglas en inglés) fabricado. Haciéndolo, por lo 

tanto, responsable de hasta un 10% del total de CO2 generado por el hombre, 

justo detrás de la industria energética. Teniendo en cuenta que para el 2050, 

respecto al año 1990, el desarrollo de la económica global podría causar un 

incremento cinco veces mayor sobre la producción del cemento mundial, se 

alcanzarían los 5 billones de toneladas de cemento producidas alrededor del 

mundo. Por lo tanto, se espera que las emisiones relacionadas con el cemento 

se vean incrementadas en un 260% en ese periodo (1990 – 2050), aún a pesar 

de las significativas mejoras en la eficiencia de producción que actualmente 

presenta este gremio. Por otro lado, la mitigación del cambio climático está 

volcada en la búsqueda de la reducción de los gases de efecto invernadero en 

general, y a la reducción del dióxido de carbono (CO2), en particular. Como 

consecuencia, el reto a afrontar por parte de la industria del cemento, está 

direccionado en la transformación del método actual de producción en un 

modelo de negocio sostenible, a la vez que se reducen sus emisiones. 

Debido a este aspecto ambiental, la industria de cemento se encuentra bajo un 

creciente escrutinio, donde es necesario reducir la energía usada en el proceso 
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productivo del cemento portland, la cual está, a su vez, directamente asociada 

con las emisiones de dióxido de carbono. De igual manera, el cemento portland 

no es considerado el aglutinante ideal para todo tipo de aplicaciones, debido a 

que presenta problemas de durabilidad en ambientes particularmente agresivos. 

Por esta razón, actualmente hay un creciente interés en el desarrollo, 

caracterización e implementación de materiales alternativos al cemento portland 

que presenten comportamiento mecánico similar a un OPC. 

El clínker OPC está compuesto principalmente por 4 fases cristalinas: ~65% en 

peso de alita (Ca3SiO5; 3CaO.SiO2; C3S); ~ 15%p de belita (Ca2SiO4; 2CaO.SiO2; 

C2S); ~ 15%p de ferrita (Ca4Al2Fe2O10; 4CaO.Al2O3.Fe2O3; C4AF) y ~5 %p de 

aluminato tricálcico o celita (Ca3Al2O6; 3CaO.Al2O3; C3A). Su fase principal (la 

alita) es altamente demandante de calcita, generando por lo tanto, grandes 

cantidades de CO2 provenientes del proceso de descarbonatación de la misma, 

la cual es fuente principal de óxido de calcio, liberando, así, 0.58 t CO2 por cada 

tonelada de alita. Además, también está el hecho de que la temperatura de 

formación de la alita se encuentra cerca de 1450°C, requiriendo, en 

consecuencia, combustibles con alto poder calorífico. Una vez se obtiene el 

clínker, el cemento OPC es producido generalmente a partir de la conjunta 

molienda del mismo con un regulador de fraguado, donde el yeso es el mineral 

que principalmente se usa. 

El mecanismo de hidratación de un cemento OPC consiste básicamente en dos 

tipos de reacciones que suceden simultáneamente. Estas reacciones, son la que 

se dan lugar a partir del silicato y el aluminato de calcio de manera 

independiente. Por una parte, la reacción del silicato de calcio consiste en la 

disolución de la alita en agua, seguida de la precipitación de silicato de calcio 

hidratado (C-S-H) en forma de gel o nanocristalina, y del hidróxido de calcio 

cristalino conocido como portlandita (CH). Por otra parte, la reacción del 

aluminato de calcio consiste en la hidratación del C3A en presencia de una 

fuente de sulfato de calcio (usualmente yeso o hemihidrato de calcio), la cual 
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produce etringita (AFt; C6As3H32). Estas fases hidratadas (C-S-H y AFt) son las 

responsables del desarrollo de propiedades mecánicas con el tiempo, y el 

incremento de estas propiedades tras 28 días de hidratación, es debido a la 

lenta hidratación de la belita, cuya cinética es más lenta,  y a su vez, también 

produce C-S-H y portlandita. 

Por lo tanto, la obtención de un “eco-cemento alternativo” puede ser una opción 

frente al problema medioambiental del OPC. Este término  de “eco-cemento 

alternativo” hace referencia a un material mineral fabricado por el ser humano, 

que cuando es molido en un polvo fino, reacciona con el agua o el CO2 lo 

suficientemente rápido, para producir una masa endurecida la cual pueda ser 

utilizada como aglutinante en un concreto o mortero. Este es el caso de los 

cementos ricos en ye’elemita y los cementos ricos en belita. 

Los cementos ricos en ye’elemita (Ca4Al6SO16; 3CaO.3Al2O3.CaSO4; C4A3s), se 

conocen como cementos de sulfoaluminato de calcio (CSA por sus siglas en 

inglés) desde el año 1963, cuando Alexander Klein lo patentó como un cemento 

expansivo, con el objetivo de reducir el fenómeno de la retracción del OPC. El 

cemento CSA clásico, cuya fase principal es la ye’elemita (entre 40 – 70% en 

peso), se produce y utiliza en China desde los años 70 bajo el nombre de 

“Cemento de Tercera Generación”. Estos cementos son considerados 

ambientalmente eco-amigables por diversas razones, entre los que incluyen: i) el 

bajo requerimiento de caliza para alcanzar la composición mineralógica deseada 

(principalmente belita y ye’elemita) y ii) la baja temperatura de clinkerización, la 

cual se encuentra comprendida entre 1200 – 1300 ºC (lo que representa ~200 ºC 

menos que un cemento OPC). Las propiedades y aplicaciones de este tipo de 

material están fuertemente ligadas con diversos factores, tales como: i) la 

composición química y mineralógica del clínker (principalmente asociada a la 

presencia de fases minoritarias como CA, CA2, C12A7, C4AF, CT, o C2AS); ii) la 

cantidad y tipo de fuente de sulfato de calcio utilizado; iii) la relación 

agua/cemento utilizada (w/c por sus siglas en inglés); o iv) la mezcla con otros 

aglutinantes, tales como los materiales cementantes suplementarios (SCMs por 
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sus siglas en inglés) o el mismo OPC. Las propiedades de este cemento CSA, 

pueden resumirse en que presentan un rápido fraguado, alta resistencia a la 

compresión a edades tempranas, buena durabilidad, capacidades autonivelantes 

y/o de compensación de la retracción. Sin embargo, debido a los grandes niveles 

de óxido de aluminio en estos cementos CSA (entre un 30 – 40%p), y al altísimo 

costo de la bauxita (fuente principal de aluminio a nivel mundial) necesaria como 

materia prima, estos cementos aun no son competitivos desde el punto de vista 

económico. 

No obstante, recientes estudios y desarrollos han estado enfocados en los 

cementos belítico-ye’elemítico-ferrítico (BYF), cuya fase principal es la belita 

seguida de la ye’elemita (en términos de porcentaje en peso). Estos cementos 

BYF contienen hasta un 17% menos aluminio que los CSA, usándose en su 

reemplazo más cantidad de una fuente de hierro, lo cual permite la presencia de 

grandes cantidades de C4AF en ellos. Estos cementos BYF usualmente 

contienen entre 40 – 50 %p de β-C2S y 20 – 30 %p de C4A3s. Su temperatura de 

clinkerización es similar a la de un CSA típico, estando cerca de los 1250 - 1300 

°C (~200 ºC menos que la temperatura de clinkerización del OPC). El mayor 

problema que presentan estos cementos ricos en belita es la diferencia que 

existe entre la extremadamente rápida reacción de la ye’elemita (durante las 

primeras 24 horas de hidratación), y la lenta reacción de la belita (en su forma 

beta), la cual se da a lugar después de los 28 días de hidratación. En un intento 

para solventar este problema, un sinfín de ideas han sido desarrolladas y 

parcialmente implementadas en los últimos años. 

Una posible solución para solventar este problema es la activación de los 

clínkeres BYF a través de la estabilización de los polimorfos de alta temperatura 

de la belita, tales como α-C2S y α′-C2S. Esta activación puede realizarse 

utilizando la adición de elementos minoritarios como dopantes de estas fases a 

bajas temperaturas. Entre los tipos de dopantes más empleados para estabilizar 

estos dos polimorfos se encuentran el B2O3, Na2O o P2O5. Técnicamente, este 
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concepto del uso de dopantes ha sido implementado y patentado recientemente 

por la compañía cementera Lafarge, a través de un mega proyecto a escala 

industrial denominado AETHER™. Por lo tanto, actualmente, los cementos 

activados BYF son considerados como una de las alternativas más 

prometedoras del cemento OPC. Esto es apoyado por sus beneficios 

ambientales (menores emisiones de CO2), y el interés industrial, al poderse 

fabricar con la misma tecnología que un OPC. Sin embargo, es necesario 

evaluar el verdadero costo/beneficio antes que pueda ser implementado 

alrededor del mundo, debido a que sus materias primas son mucho más 

costosas que las que se usan en un cemento portland, y conocer sus 

prestaciones a medio y largo plazo. 

Una alternativa diferente de activación de los cementos BYF, serían los 

cementos belíticos-ye’elemíticos-ternesíticos (BYT), donde la ternesita 

(Ca5Si2SO12; 4CaO.2SiO2.CaSO4; C5S2s) es una de las fases principales, junto 

con la belita y la ye’elemita. La ternesita (también conocida como sulfoespurrita) 

ha sido considerada por un tiempo como inactiva hidráulicamente hablando. Sin 

embargo, estudios recientes han mostrado que en presencia de fases ricas en 

aluminio (como el C4A3s, C12A7, CA, and CA2), la ternesita es altamente reactiva 

y capaz de formar C-S-H y etringita, las cuales son las principales fases 

hidratadas responsables de las propiedades mecánicas en los cementos OPC y 

CSA, respectivamente. Sin embargo, se hace estrictamente necesario 

desarrollar mayores investigaciones en el tema, donde se pueda evaluar su 

desempeño a largo plazo, es decir la evolución de su resistencia, su estabilidad 

dimensional y durabilidad. 

Otra alternativa diferente de activación de los cementos BYF, es la obtención de 

conjunta de la alita y la ye’elemita. A estos cementos se les conoce como 

belítico-alítico-ye’elemítico (BAY) donde, dependiendo de su composición, su 

producción puede generar hasta un 18% menos CO2 que un cemento OPC. La 

alita, fase principal del OPC, al hidratarse, otorga elevadas resistencias 

mecánicas a edades tempranas. Teniendo en cuenta lo anterior y lo que se 
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conoce del sulfoaluminato de calcio, la hidratación conjunta de la alita y la 

ye’elemita podrían favorecer, durante las primeras edades de hidratación, el 

desarrollo de altas resistencias a la compresión; mientras que la hidratación de la 

belita contribuiría con la resistencia pasados los 28 días de hidratación. Sin 

embargo, la producción de un cemento BAY representa un reto importante, 

debido a la diferencia que hay entre las temperaturas de formación y 

descomposición de estas dos fases (alita y ye’elemita, respectivamente). La 

formación de la alita requiere al menos ~1350 °C; mientras que la ye’elemita 

comienza su descomposicón por debajo de esa temperatura. 

Recientes investigaciones enfocadas en la obtención de sistemas donde exitan 

conjuntamente la alita y la ye’elemita, se han centrado en conseguir cementos 

alíticos-ye’elemíticos (conocidos como ACSA por sus siglas en inglés), donde la 

fase principal es alita (30 – 50 %p), seguida de belita (30 – 40 %p) y ye’elemita 

(5 – 20 %p). En estas investigaciones, la temperatura de formación de la alita se 

ha reducido a un rango entre 1250 - 1300 °C a través del uso de 

mineralizadores; entre ellos el más utilizado es el fluoruro de calcio (fluorita), 

junto de óxido de cobre, óxido de magnesio, óxido de titanio u óxido de zinc; o 

también ha sido logrado, a través de la estabilización de la ye’elemita con la 

adición de bario o estroncio, lo cual evita la descomposición a altas temperaturas 

de ésta. A pesar de los buenos resultados obtenidos en la mineralogía de los 

cementos ACSA, a la fecha no se han encontrado evidencias, articulos o 
reportes de científicos enfocadas en la síntesis de los cementos tipo BAY, 

donde el contenido de alita pueda mitigar el gap que existe entre la reacción de 

la ye’elemita y β-belita. Por esta razón, se requiere una investigación profunda 

sobre su posible síntesis, el estudio de su verdadera mineralogía, su mecanismo 

de hidratación y el desarrollo de sus propiedades, todo esto comparándolo con 

un cemento BYF no activado. 

De acuerdo con lo anterior, esta tesis doctoral se ha enfocado en el diseño, 

síntesis y caracterización de un cemento BAY, con y sin adición de cenizas 
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volantes (como material suplementario cementicio); así como también, un 

estudio profundo sobre el mecanismo de la hidratación conjunta de la alita y la 

ye’elemita. Además, a manera de comparación, se preparó una mezcla con dos 

clínkeres comerciales, un belítico y un sulfoaluminato de calcio; con los cuales se 

logró obtener un material con una mineralogía similar al BAY sintetizado en la 

primera etapa de la tesis. 

Uno de los objetivos principales de esta Tesis, fue obtener un clínker BAY con el 

mayor contenido de alita y ye’elemita a partir del uso de materias primas 

naturales, tales como el caolín, la caliza, el yeso y arena rica en sílice. Este 

estudio fue llevado a cabo a dos escalas diferentes: i) la primera, a pequeña 

escala, denominada escala laboratorio, donde se sintetizaron ~7 g de clínker con 

diferentes composiciones de las fases objetivo, haciendo uso de 0.9 %p de 

fluorita (CaF2) como mineralizador. El proceso de clinkerización consistió en un 

calentamiento a 900 °C durante 30 min, utilizando una rampa de 5 °C/min; 

seguido de un nuevo calentamiento hasta los 1300 °C por 15 min, usando la 

misma rampa de subida. Una vez pasado el tiempo de residencia a la máxima 

temperatura (1300 °C/15 min), el clínker fue rápidamente enfriado usando 

convección forzada con aire. Este estudio mostró que la formulación de las 

materias primas jugó un papel importante en la mineralogía del clínker obtenido, 

donde con una formulación rica en óxido de hierro (Fe2O3), la formación de la 

ye’elemita (C4A3s) se vio significativamente afectada, favoreciendo así su 

descomposición en mayenita (C12A7). Además, al disminuir el contenido de óxido 

de hierro e incrementar el contenido de SO3 (adicionando yeso) en la materia 

prima, se aumentó el contenido conjunto de la alita y la ye’elemita. Finalmente, 

se logró obtener un clínker compuesto por 16.0 %p de alita y 12.1 %p de 

ye’elemita, como máxima cantidad de ambos simultáneamente. Esto representa 

una relación alita/ye’elemita de ~1.3 en el clínker. Junto a estas dos fases, 

también se estaban presentes 60.3 %p de C2S, 2.3 %p de C12A7, 7.0 %p de 

C4AF y 2.3 %p de C3A. 
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La segunda parte fue realizada a mediana escala, donde se prepararon 2 kg de 

clínker (denominado clínker “escalado”). Para llevar a cabo esto, las condiciones 

de síntesis y la formulación de materia prima (dosificación) fueron optimizadas. 

Los mejores resultados se alcanzaron cuando se utilizó un exceso de yeso 

(hasta conseguir un contenido total de SO3 de 4.3% en término de óxidos), y se 

calentó este nuevo crudo a 1300 °C durante 15 min. La caracterización del 

clínker BAY escalado, llevada a cabo por LXRPD y SEM-EDS, mostró que la 

composición final obtenida fue de 60.9(2) %p de C2S, 6.9(2) %p de C4AF, 0.6(1) 

%p de Cs, 10.4(1) %p de C4A3s, 13.5(2) %p de C3S, 5.1(1) %p de C12A7 y 2.6(1) 

%p de Fluorellestadita (C7S3s3F; 6CaO.3SiO2.3CaSO4.CaF2; 

Ca10(SiO4)3(SO4)3F2). Donde nuevamente, se adquirió una relación 

alita/ye’elemita de ~1.3.  La caracterización morfológica del clínker BAY escalado 

realizada por SEM-EDS , mostró que el tamaño promedio de partícula de la 

ye’elemita (el cual tiene una forma rómbica), la alita (la cual tiene una forma 

prismática) y la belita (cuya forma es esférica o redondeada) estuvo cercano a 

las 5 μm. Finalmente, este clínker escalado se mezcló con 12 %p de anhidrita, lo 

cual corresponde a la cantidad estequiométrica necesaria para obtener etringita 

a partir del contenido de ye’elemita y aluminato de calcio (mayenita) presente en 

el clínker. 

Es importante resaltar que el análisis de fases en el clínker BAY y sus productos 

de hidratación es una parte esencial de esta Tesis. La difracción de rayos-X 

(XRPD por sus siglas en inglés) combinada con la metodología Rietveld permitió 

cuantificar directamente el contenido cristalino de las fases presentes en la 

muestra. Esta técnica fue ampliamente usada para comprender la mineralogía 

de las muestras anhidras, y los mecanismos de hidratación tanto en el cemento 

BAY como en el sistema de alita-ye’elemita (mezcla de fases puras) estudiado. 

Por lo tanto, esto permitió correlacionar la mineralogía obtenida con el desarrollo 

de las propiedades mecánicas (resistencia a la compresión) de los 

correspondientes morteros. 
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El uso de RQPA (por sus siglas en ingles de Análisis Cuantitativo de Fases por 

Rietveld) usado para caracterizar clínkeres, cementos anhidros y pastas 

hidratadas no es una metodología fácil de aplicar debido a la cantidad apreciable 

de fases amorfas y/o de baja cristalinidad (ACn por sus siglas en ingles). El 

material amorfo, el cual es determinado indirectamente a partir de los datos de 

RQPA, está constituido por todas las fases amorfas, pero también está asociado 

a los problemas en el ajuste de las fases cristalinas analizadas (debido a su 

propio desorden interno) y a cualquier fase cristalina no incluida en el archivo de 

control de Rietveld. Como consecuencia, la cuantificación de las fases ACn es 

un punto de gran importancia para comprender los mecanismos de hidratación, 

en especial cuando los productos de hidratación pueden ser parte de ella, como 

es el caso del gel C-S-H, por ejemplo. 

El estudio de la hidratación fue realizado usando LXRPD usando la metodología 

de estándar interno para determinar el ensamblaje de fases completo, 

incluyendo el contenido de ACn. Este método fue aplicado en las muestras 

hidratadas después de haber sido detenido su proceso de hidratación; en 

consecuencia, esto permitió obtener el contenido de ACn sin la presencia de 

agua no ligada. El agua libre (FW por sus siglas en inglés) fue determinado por 

la comparación de la pérdida de masa hasta los 600 °C, obtenido en las medidas 

de TG-DTG de las muestras hidratadas paradas y el agua total adicionada. 

Otro objetivo importante comprendido en esta tesis, fue comprender el efecto de 

la relación agua/cemento usada, el contenido de superplastificante y la adición 

de ceniza volantes (FA) como SCMs en los mecanismos de hidratación de las 

pastas y en la resistencia a la compresión de los morteros del cemento BAY. 

En un primer paso, se estudió el efecto de la relación w/c sobre la mineralogía 

cristalina del cemento BAY. En todos los casos, las fases hidratadas obtenidas, 

independientemente de la relación w/c usada, fueron la etringita (AFt), fases tipo 

AFm (las cuales contemplan al monosulfoaluminato y la stratlingita) y la katoita; y 

en una menor cantidad se identificó a través de TG-DTG, C-S-H e hidróxido de 

aluminio amorfo, los cuales forman parte del material ACn. En este sistema, a 
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pesar de tener un alto contenido de silicatos de calcio (C3S y C2S), no se detectó 

portlandita (CH) por ninguna técnica, excepto a edades superiores a 28 días, 

donde procedía de la hidratación de la forma beta de la belita (β-C2S). Su 

ausencia es asociada a que la portlandita reacciona con la ye’elemita a edades 

tempranas favoreciendo la producción de etringita, y a edades tardías, favorece 

la degradación de la etringita en monosulfoaluminato u otras fases tipo AFm. 

Este último efecto se vio reflejado en las pastas estudiadas, como una 

disminución en la cantidad de etringita y el subsecuente incremento de la 

cantidad de monosulfoaluminato, cuando se compara los resultados entre los 28 

y 180 días de hidratación. El principal efecto de la relación w/c, sobre la 

mineralogía fue el aumento de la relación stratlingita/kaotita, al aumentar la 

relación w/c; el incremento de la relación w/c favoreció la precipitación de 

stratlingita en vez de la precipitación de katoita. El efecto observado de la 

relación w/c sobre la resistencia a la compresión, fue que al disminuir la relación 

w/c, la resistencia a la compresión incrementa, como era de esperarse. 

El resultado más importante encontrado sobre el comportamiento de BAY, fue 

que los morteros fabricados con el cemento BAY presentaron mejores 
resistencia a la compresión que los morteros de cemento BYF no activados 

(cuya composición mineralógica era 48.7(6) %p de β-C2S, 28.1(1.0) %p de 

C4A3s, 14.9(2) %p de C4AF, 1.3(2) %p de CT, 2.6(5) %p de γ-C2S y 4.4(2) %p de 

C2AS); desde el primer día de hidratación. Como el cemento BYF presentaba 

mayor cantidad de ye’elemita en su sistema, la mayor resistencia del BAY se 

atribuye a la coexistencia de la etringita y el gel C-S-H que provienen de la 

hidratación de la ye’elemita y la alita, respectivamente. 

La cantidad óptima del superplastificante (SP) basado en policarboxilato, fue 

determinada a partir estudios reológicos, los cuales mostraron una significativa 

mejora en la homogeneidad y trabajabilidad (decrecimiento en la viscosidad) de 

las pastas preparadas. Después de la optimización, la mejor cantidad hallada 

para adicionar en las muestras fue de 0.5 %p de materia activa del aditivo 
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respecto al contenido en sólidos. Su efecto sobre el mecanismo de hidratación 

fue investigado a través del estudio in-situ en LXRPD con radiación Molibdeno y 

por medio de medidas calorimétricas. Estos resultados mostraron que el 

policarboxilato afecta la cinética de hidratación de la mayenita, lo cual inhibe la 

reacción simultánea y competitiva entre la ye’elemita y la mayenita. Del estudio 

calorimétrico, este efecto se vio reflejado como un decrecimiento en la intensidad 

del pico principal de hidratación, el cual se asocia con la precipitación del AFt y/u 

otras fases de aluminio hidratadas, presentando una reducción del 28% del calor 

total liberado a los 2 días de hidratación de la pasta de cemento BAY. 

El uso de las cenizas volantes en las pastas y morteros no mostraron evidencias 

directas de efecto puzolánico (reacción entre la ceniza volante y los iones libres 

de Ca2+ y OH- presente en la solución de poros). Sin embargo, se observó que la 

adición de FA (de 0 a un 30 %p), tuvo dos efectos principales en el ensamblaje 

de fases del cemento BAY: i) inhibió la hidratación de la belita; y por lo tanto, ii) 

favoreció la estabilidad del AFt. Del estudio calorimétrico, se observó una 

aceleración en el pico de hidratación principal, cuando se comparó con la señal 

observada en el cemento BAY sin mezclar con FA. Este efecto arrojó 

información relativa a la capacidad del FA en presentar puntos de nucleación 

para la formación de las fases hidratadas; a este comportamiento se le conoce 

comúnmente como “efecto filler temprano”. Asimismo, al incrementarse el 

contenido de FA, se observó un aumento en las resistencias mecánicas. Este 

comportamiento de los morteros fue atribuido a un efecto filler temprano (puntos 

de nucleación), así como al relleno de poros por el aumento en contenido en 

sólidos; pero además podría ser justificado por un efecto de reacción puzolánica 

indirecta desconocida, la cual se dio lugar aún en el caso que la hidratación de la 

belita se vio inhibida. 

Con el objetivo de comprender la verdadera influencia y comportamiento de la 

hidratación conjunta de la alita y la ye’elemita, se llevó a cabo un estudio más 

profundo a través de la hidratación in-situ por SXRPD y calorimetría isotérmica 

de un conjunto de muestras que contenían ambas fases (mezcla de fases 
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puras). Para hacer esto, se prepararon cuatro mezclas de alita con ye’elemita 

(tanto el polimorfo ortorrómbico como el pseudocúbico), con relaciones de 

alita/ye’elemita de 1.37 y 2.74. Estas muestras se hidrataron a relaciones de 

agua/sólido (w/s por sus siglas en inglés) de 0.59 y 1.19 para la relación de 

alita/ye’elemita de 2.74; y con relaciones de w/s de 0.66 y 1.32 para la relación 

de alita/ye’elemita de 1.37. Esas relaciones w/s corresponden al 110 y 220% de 

la cantidad de agua estequiométrica necesaria para su completa hidratación (es 

decir, la cantidad total de agua estequiométrica para dar lugar a la reacción de la 

ye’elemita y la alita), respectivamente, según la relación alita/ye’elemita usada. 

Los resultados mostraron que la hidratación de la alita está altamente afectada 

por la cinética de la hidratación de la ye’elemita, donde debido a la lenta 

hidratación de la ye’elemita pseudocúbica, la alita empezó a 

reaccionar/hidratarse después de un día. Sin embargo, la alita que estaba 

mezclada con la ye’elemita ortorrómbica, inició su reacción mucho más pronto, 

justo después de las 10 horas de hidratación. Los principales productos de 

hidratación obtenidos de estos sistemas fueron la etringita, monosulfoaluminado, 

stratlingita y C-S-H. Nuevamente, en este tipo de sistemas no se 

observó/presentó formación de portlandita. Después de 7 días de hidratación, los 

sistemas con alita y ye’elemita pseudocúbica presentaron menores grados de 

hidratación que los sistemas que conjuntamente estaba la alita con la ye’elemita 

ortorrómbica. Este comportamiento favoreció la estabilidad (y cantidad) de AFt 

en el sistema. Al aumentar la relación w/s en la mezcla con relación de 

alita/ye’elemita de 1.37, la cinética de hidratación de la ye’elemita se aceleró de 

tal forma, que acortó el tiempo de hidratación a la mitad, favoreciendo por lo 

tanto la rápida precipitación de la etringita (y de monosulfoaluminato en el caso 

de los sistemas con ye’elemita ortorrómbica). Asímismo, independientemente de 

la relación alita/ye’elemita, el incremento de la relación w/s, favoreció el grado de 

hidratación de la alita y la respectiva formación del C-S-H y la stratlingita. 

Es importante resaltar que la katoita no se detectó/precipitó en los sistemas con 

fases puras de alita-ye’elemita, lo cual da indicios de su mecanismo de 
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formación/precipitación en el sistema BAY, donde se observó la presencia de 

katoita, incluso cuando se le adicionó ceniza volante. El efecto que presenta la 

katoita sobre el desarrollo de las propiedades mecánicas en el cemento BAY, 

aun es desconocido. Sin embargo, estos resultados obtenidos en las mezclas de 

fases puras, al igual que en las pastas de BAY, otorgan una información 

relevante sobre su mecanismo de formación, al asociarse con la hidratación de 

la belita en un ambiente rico en Al, al igual que de la hidratación conjunta de la 

alita y la ferrita. 

Finalmente, se preparó una “mezcla de cemento comercial”, B83, cuya 

formulación consistía en un 83 %p de un clínker belítico suministrado por Buzzi 

Unicem con un 17 %p de clínker de sulfoaluminato de calcio suministrado por 

Belith, donde se adicionó 7 %p de anhidrita. Este cemento fue preparado de tal 

forma que su composición mineralógica fuese similar a la mineralogía del 

cemento BAY sintetizado (relación alita/ye’elemita de 1.3), el cual también fue 

estudiado con una relación w/c de 0.4. Este estudio mostró que los productos de 

hidratación principales fueron la etringita, la stratlingita, la katoita el 

monosulfoaluminato e hidróxido de aluminio amorfo; nuevamente sin la 

precipitación de portlandita (es decir, la misma mineralogía obtenida en la 

hidratación del cemento BAY). Particularmente, este “cemento comercial” B83 

presentó un grado de hidratación de la alita de 77.5% a los 180 días, mientras 

que la belita alcanzó un grado de hidratación del 55%. Este bajo grado de 

hidratación de los silicatos de calcio favoreció en este sistema la estabilidad de la 

etringita, sin ninguna evidencia de la respectiva formación de AFm. Además, la 

formación de stratlingita y katoita se vio favorecida en este sistema rico en 

aluminio. Sin embargo, tal comportamiento fue totalmente opuesto al observado 

en el cemento BAY, donde debido a la rápida hidratación de la alita (la cual se 

consumió totalmente en los primeros 7 días de curado) y la tardía hidratación de 

la belita (a partir de los 28 días de curado, alcanzó un grado de hidratación del 

~60% a los 180 días), la cantidad de la etringita se vio disminuida presentando 

un incremento en el contenido de las fases tipo AFm (monosulfoaluminato, 

hemicarbonato y stratlingita). 
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La resistencia a la compresión del “cemento comercial” B83 presentó, desde el 

primer día de hidratación, valores mayores que los correspondientes morteros de 

cemento BAY (sin la adición de cenizas volantes). Este desarrollo mecánico está 

relacionado con la baja porosidad de la pasta en la matriz cementicia del 

mortero, así como al ensamblaje de fases hidratadas dentro del mismo, es decir, 

la estabilidad y gran cantidad de etringita, y a un elevado contenido de 

stratlingita en el sistema. 
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Introduction 

Background 

Portland cement concrete, the most widely used manufactured material in the 

world, is made primarily from water, aggregates (rocks and sand), and Ordinary 

Portland cement (OPC). Since the first Portland cement was produced in 1843 by 

William Aspdin [1] there has been a continuous process of evolution in cement 

process technology and cement itself. However, since some years ago there has 

been also a significant increase in the research and development of new 

cementitious binders. The main impulse for this development is because the 

cement industry is one of the major contributors for greenhouse gases (GHG) 

emission [2,3]. In practice, the only greenhouse gas of concern here is CO2, 

because the other greenhouse gases (NOx, SOx, CO and particle material) are 

emitted in small amounts by the cement industry.  

A typical Portland cement contains approximately: 50-70 wt% tricalcium silicate 

(alite; C3S), 15-30 wt% dicalcium silicate (belite; C2S), 5-10 wt% tricalcium 

aluminate (celite; C3A), 5-15 wt% calcium aluminoferrite (ferrite; C4AF), and up to 

5 wt% gypsum (CsH2). Several other minor phases, such as alkaline sulfates, 

magnesium oxide (periclase; M) and/or calcium oxide (free lime; Cf) are present 

only in small amounts or may be absent entirely [1,4,5]. Alite reacts with water 

rapidly and contributes to the early-age mechanical properties in Portland 

cement. The hydration reaction of belite is slower, so it contributes to the long-

term mechanical properties development. C3S and C2S (~80 wt% of Portland 

cement), and their hydration forms calcium silicate hydrate (C-S-H) plus CH. 
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These C-S-H are the primarily responsible for the properties development in 

Portland cement, e.g. setting and compressive strength. Calcium silicate hydrate 

is usually referred as C-S-H because its composition is variable depending on the 

formation conditions. Gypsum is added to Portland cement clinker to regulate the 

hydration reactions of C3A and C4AF. The hydration reactions of C3A and C4AF 

with CsH2 form ettringite (AFt; C6As3H32), which contributes with mechanical 

properties at the early-ages [1,4,5]. 

Portland cement clinker is produced from high temperature heating (usually about 

1400 - 1500 ºC) of grinded natural raw materials such as limestone and clay, and 

then it is ground with gypsum to obtain cement [1,4]. OPC production typically 

emits about ~ 0.97 t of CO2/t of clinker [6,7]. This emission comes from two main 

sources: i) raw meal-derived CO2 is released from the calcination of limestone in 

the kiln (about 60 % of the total direct CO2 emissions); and ii) fuel-derived CO2 is 

released from combustion of the fuels used to heat the kiln (about 40 % of the 

total direct CO2 emissions) [3,6]. Thus, it is responsible for ~5–10% of the total 

man-made CO2 emissions [3,7,8]. In 2016, the worldwide Portland cement 

production reached 4200 Mt, meaning a grew up over of 82 % respect of 2005 

production. Due to the global demand for concrete and future grow of the 

population, cement production for the future will be expected to reach up to 4.4 

billion tons in 2050 (i.e. to increase 2.5 times between 2005 and 2050) [9–11]. As 

a consequence of this, the CO2 emissions will increase considerably. 

Alternatives to reduce CO2 emission 

Nowadays, the most effective way to reduce CO2 emissions from OPC 

manufacture is reducing the clinker factor, blending it with Supplementary 

Cementitious Materials (SCMs). These SCMs include natural rocks and minerals 

and industrial by-products, such as ground granulated blast furnace slag, fly ash, 

silica fume, calcined clays and limestone [12–14]. The main drawback of the use 

of SCMs in a high percentage, looking a mayor reduction of CO2, is the low early 

compressive strength. Additionally, the durability of blended concretes is affected 
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by SCMs. Thus, optimization of SCM characteristics can only partly improve 

these issues. 

Facing with the need to reduce CO2 emissions, the Portland cement industry and 

scientific community implicated in it, have been also considering the development 

of “alternative low-carbon binders” not based on Portland clinkers (and their 

corresponding new standards) [3,8,15–17]. The term “alternative low-carbon 

cement binder” is used to refer a man-made mineral material that, when ground 

to a fine powder, is capable of reacting rapidly enough with water and/or CO2 in 

such a way, to produce a hardened mass which can be used as the binder in a 

concrete or mortar [3,12,16]. Belite-rich cements and ye’elimite-rich cements are 

within these alternatives [18,19,28–30,20–27]. 

Since alite is the most abundant phase in Portland cement, it requires high lime 

contents and high formation temperature [1,4]. The substitution of the main phase 

by belite in the cement, maintaining the same mineralogy (i.e. C2S-C3S-C3A-C4AF 

in the system) result in up to 12% reduction of CO2 due to the lower limestone 

requirement and less fuel required for both limestone decarbonation and 

formation of C3S. They are commonly known as high belite cements (HBC) 

[16,18,20,22–24,30]. The clinkering temperature for HBC is usually close to 1350 

°C, which is about 100 °C lower than the average for OPC, which lead to 

somewhat lower kiln heat consumption, so on less use of fuel. Physically, they 

preserve satisfying long-term properties due to the lower alkalinity of the pastes. 

However, substituting the main phase, C3S, by C2S compromises the early-age 

property development due to the slow reactivity of this phase. In addition, the 

consumption of electricity during the grinding process is higher due to its little 

porosity. This renders the HBC unusable in nearly any field of practice. 

Ye’elimite (C4A3s)-rich cements, also known as calcium sulfoaluminate (CSA) 

cements, surged as another alternative to OPC. This was developed by the 

China Building Materials Academy in the 1970s, with the intention of 

manufacturing self-stressed concrete pipes to capitalize on the expansive 

properties of this material [31,32]. These cements were produced by adding 
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gypsum to CSA clinkers, which are mainly composed with around 40 - 70 wt% of 

ye’elimite [26,28,33–36], which has the lowest calcium oxide content than any 

cement phase (i.e. ~50, 44, 41, and 20% less unit mass of CaO than C3S, C2S, 

C3A and C4AF, respectively [3]), thus reducing the limestone requirement for 

obtaining it. In addition, CSA clinkers contain belite, ferrite and other minor 

components as secondary phases. These minor phases can be anhydrite or free 

lime, calcium aluminates (such as CA and/or C12A7), perovskite (CT) and/or 

gehlenita (C2AS) [28,37,38]. The latter two phases can be regarded as non-

hydraulic. C3A is not usually present in CSA cements. In addition, the CSA 

clinkers present high porosity that permits the use of less energy to be grinded 

[32,39]. Nowadays, they are interground with different levels of calcium sulfate 

source (such as gypsum, hemihydrates and anhydrite) in order to obtain different 

properties depending on the amount and kind of calcium sulfate used. Within 

these properties are rapid-hardening, high-early strength, expansive, self-

levelling or self-stressing [34,40–42]. These properties are mainly due to the 

rapid formation of ettringite from the reaction of ye’elimite with calcium sulfate 

source (Eq. 1), and variable quantities of amorphous gel phases (such as 

aluminum hydroxide and/or C-S-H). Another hydrated phases that can be present 

and influence on the CSA properties are monosulfoaluminate and stratlingite from 

the hydration of C4A3s (Eq. 2) and the hydration of C2S with AH3 (Eq. 3), 

respectively. 

Eq. 1.             C4A3s   +   2CsHx   +   (38-2x)H     →     C6As3H32   +   4AH3   ;   

where x = 0, 0.5 or 2. 

Eq. 2.              C4A3s   +   18H     →     C4AsH12   +   2AH3 

Eq. 3.             C2S    +    AH3    +   5H     →     C2ASH8 

The temperature needed to produce sulfoaluminate cements ranges from 1200 to 

1300 ºC, which is ~200 °C lower than that for Portland cement clinkers. 



Introduction 5 
 

Limestone, bauxite and gypsum are the main raw materials involved in the 

manufacture. Depending on the composition, CSA cements emit about 25 to 35% 

less CO2 during their manufacturing compared to OPC. Nevertheless, unlike 

Portland cement, CSA cements do not have a defined phase composition range; 

it is generally referred to cements that have the same basic components of C4A3s 

and C2S, but the composition and amount of the minor phases vary significantly. 

Furthermore, production of such cements requires bauxite as a principal raw 

material, and this makes them relatively expensive compared to Portland 

cements [8,15,16]. That restricts them to niche applications. 

In an attempt to overcome the disadvantages present in HBC and CSA cements, 

but keeping the advantage of the low-CO2 emissions, recent studies, mainly in 

Europe, have been focused on systems with intermediate compositions 

[2,16,21,39,43,44]. Therefore, recently an alternative range of compositions that 

contain less ye’elimite and higher belite contents has been developed, and 

represents a better compromise in terms of cost and CO2 emissions. Current 

researches are focused on so-called belite – ye’elimite – ferrite (BYF) cements, 

where belite is the main phase and not ye’elimite [16,28,45–48]. They can be 

considered as intermediate cements between OPC and CSA cements, with the 

absence of alite. Due to the lower calcite demanding of their formulations, i.e. 20–

30% less limestone than OPC, less carbon dioxide emissions are produced from 

decarbonation in the kilns. Additionally, the clinkering temperature of BYF, 

typically near to 1250 – 1350 ºC, is lower than that for OPC, 1400 – 1450 ºC. 

Thus, BYF clinkers are also easier to grind than OPC with the consequent energy 

saving and indirect emission depletion. Consequently, the manufacturing of BYF 

releases ~20% less CO2 than OPC [2,12,16,28,49]. Taking into account all these 

advantages, different compositions found in the ternary system C4A3s-C2S-others 

phases are now contemplated by different patents, as it is listed in Figure Int.1 

[50] 
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Figure Int.1. Patents in the system C4A3s-C2S-others. Taken from [50], Copyright 

(2015) with permission from Elsevier (Annex III). 

However, the main problem of the belite-rich cements is the gap in reactivity 

between the extremely fast-reacting ye'elimite and the slow-reacting belite. This 

gap is reflected in the low mechanical strengths developed at intermediate 

hydration ages (from 1 to 28 days). To solve this problem, several ideas have 

been developed and partially implemented in the recent years, as it will be 

described below.  

Ways to overcome the disadvantages of BYF 

A possible solution to increase the reactivity during hydration consists on the 

stabilization of high temperature-more reactive polymorphs of belite, such as α-

C2S and α′-C2S forms. It is known that belite presents five crystalline polymorphs 

(β, α, α'L, α'H and ) [1,4]. Recent researchs have found two other belite 

polymorphs. These two forms of belite, known as XRD-amorphous-C2S and x-

C2S, are considered higher reactived than alite [50,51]. However, it is necessary 

a deeper investigation about their obtaining and stabilization into cements. The β-

form is present in OPC, HBC, CSA and non-active BYF clinkers. Despite of being 

unstable at low temperatures, high temperature modifications can be stabilized 

by rapid cooling, appropriate particle size and the incorporation of foreign ions. It 
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has been demonstrated that Ba is beneficial for the α stabilization; Mg, P, K, B, 

Sr and S, promote the formation of α'-C2S forms and increase its hydraulic 

properties, where specifically P and Sr favors αH′ and αL′ respectively. Whereas 

the β-polymorph can be stabilized by a broad range of elements, such as B, Na, 

K, Ba, Mn, Cr, Al, S or their combinations [23,52–55]. For this reason, there is an 

increasing interest on the role of dopants in the stabilization of belite polymorphs 

and their hydration behavior [25,36,48,56,57]; taking especial importance for 

stabilization purposes the use of B2O5, Na2O and P2O5 [21,44,48,49,52,56–60]. In 

addition, belite-activated BYF cements can gain strength at similar rates as OPC 

over a wide range of temperatures, and give acceptable durability in many 

standard tests due to their low alkalinity,as shown in the report of EU's “Aether” 

Life+ project (see Figure Int.2) [16,38,61,62]. Technically, this cement concept 

was implemented as part of a large-scale experiment in which 5500 tons of active 

BYF (AETHER™) with the composition of 55, 25 and 15 wt% of α′H-C2S, C4A3s 

and C4AF, respectively, were prepared [61,62]. However, the cost of raw 

materials is greater than that for OPC, although according to Gartner [2,12,16] 

this may not be an economic factor once the projected CO2 emissions costs 

(taxes) have been factored in. The development and testing of active BYF 

cements will show promise and could in time lead to the establishment of new 

codes and standards [38]. 
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Figure Int.2. Compressive strength of BYF compared to OPC at w/c = 0.55, 
300 kg/m3 for pilot batch of BYF (B3) compared to OPC (CEM1 42.5) at 20 °C. 

Taken from [38]. Copyright (2012) with permission from Elsevier (Annex III). 

A different alternative is the so-called belite-ye’elimite-(ferrite)-ternesite (BY(F)T) 

cement, in which besides belite and ye’elimite, the ternesite (C5S2s) is a main 

phase [63,64]. Although ternesite (also known as sulfospurrite or calcium 

sulfosilicate) has traditionally been regarded as non-hydraulically active phase 

[1,4,28,65]. Previous research on systems containing CaO, SiO2, Al2O3 and 

CaSO4 indicated that at ~1200 ºC, ternesite was formed as an intermediate 

phase instead of belite and anhydrite, in addition to ye'elimite. The results 

showed that at 1150 - 1250 ºC, belite reacted with anhydrite to form ternesite, 

which decomposed to the above two components at temperatures higher than 

1250 ºC [64,66]. Recent studies have shown that it is activated in presence of 

amorphous AH3. It hydrates yielding ettringite and C-S-H, the main hydration 

products in CSA and OPC cements respectively, and the phases to which they 

owe their mechanical properties (i.e. compressive strength and durability). 

Stratlingite may also form with or instead of C-S-H [63,66,67]. Even, according to 

the literature, sulfospurrite is a reactive phase as part of BYF systems and it is 

more reactive than belite [63,64]. Bullerjahn et al [63] propused a two-stage 
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method for ternesite formation in BYF systems, in which clinker is synthesized at 

1250 °C/1h and then cooled within the furnace to 1100 °C (during 30 min), and 

finally clinkered at 1100 °C/1h followed by rapid cooling in air. Hanein et al. [68], 

proposed a single-stage process at temperatures over 1200 °C, on the partial 

pressure of SO2 and O2. Thus, the system BYF-ternesite is able to close the gap 

between the reactivity of ye'elimite and belite. However, further work on the long-

term performance of BY(F)T cements should be performed, such as that related 

to strength development, dimensional stability and durability, and the effects of 

variability of the calcium sulfate source. 

Another way to close the gap between the reactivity of ye'elimite and belite is the 

introduction of alite in the BYF system. The production of such cements is, 

however, associated with significant challenges since there are inherent 

difficulties with the incompatibility of the formation/decomposition temperatures of 

alite and ye’elimite respectively. Alite formation is favored by the presence of 

melted phases (without any additive) at a temperature of, at least, 1350 ºC 

[1,4,69], while ye’elimite decomposition/dissolution takes place above 1350 ºC 

and it is enhanced by melting phases [58,70,71]. Fortunately, recent research 

focused on obtaining alite – calcium sulfoaluminate cements (known as ACSA), 

with C3S (30 – 50 wt%) as the main phase, followed by C2S (30 – 40 wt%) and 

C4A3s (5 – 20 wt%) phases [72,73,82–87,74–81]. There are two approaches to 

obtain both coexisting phases : i) the addition of a small amount of fluorite (and/or 

CuO [87], MgO [76,77], TiO2 [81], ZnO [75]) to the raw mixture to promote the 

coexistence of both phases at temperature ranging 1230 and 1300 °C [72,73,88–

91]. The rate of alite formation at lower temperatures is increased by lowering its 

free energy relative to belite [88–92]; ii) the addition of BaO or SrO to the raw 

material transforms ye'elimite into barium (or strontium) calcium sulfoaluminate 

and promotes the coexistence of alite and ye'elimite at temperatures between 

1350 and 1380 °C [5,89,93,94]. Despite of those results, there only are few 

works where belite-alite-ye’elimite-(ferrite) - BAY(F) clinker was synthesized 

[75,79,86]. Thus, further investigation on their synthesis, clinker mineralogy, 

hydration mechanism and mechanical properties is needed. 
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The effect of the different mineralizers on the clinkering, hydration mechanism 

and mechanical properties of C3S-C4A3s based (ACSA cement) system will be 

explained below. 

Synthesis of alite-ye’elimite systems 

Extensive research on the formation and coexistence of alite and ye’elimite 

phases with doping minor elements has been carried out, which could reduce 

both the viscosity and the formation temperature of the liquid phase, promoting 

the formation of C3S. Odler et al [95,96] investigated the SO3-rich Portland 

clinkers containing simultaneously alite and ye’elimite, burning (at ~1250 – 1300 

ºC during 30 min) a pertinent mixture of chemical reagents (i.e. CaCO3, SiO2-

quartz, Al2O3, Fe2O3, and CaSO4, that contained no more than 0.1 wt% of foreign 

ions) with 0.5 wt% of CaF2. Portland clinkers with an exceptionally good 

grindability, due to their high porosity, could be obtained. Liu et al [76,77] 

produced the clinker at temperatures between 1250 °C and 1300 °C by adding 

0.25 wt% of CaF2 and different amounts of MgO as mineralizers to natural raw 

materials (limestone, clay, gypsum and fly ash). They concluded that the addition 

of MgO at about 2–5 wt% can improved the burnability of raw meal, promoting 

the absorption of free lime and the formation of C3S and C4A3s. Ma et al [87] 

reported that the coexistence of C4A3s and C3S could be achieved in the clinker, 

using limestone, gypsum, clay and fly-ash, as a raw meal, by adding CaF2, and 

up to 1 wt% of CuO at 1300 ºC. Liu et al [81] showed that a smaller amount of 

TiO2 (up to 1 wt%) and 0.25 wt% CaF2, could improve the burnability of the raw 

mixture (chemical reagents and natural raw materials), accelerating the 

absorption of free lime, and promoting the formation of more minerals of C3S and 

C4A3s, at 1300 ºC for 30 min. Perez-Bravo et al [75] studied the effect of the 

addition of zinc oxide and calcium fluoride on the formation of C3S and C4A3s in 

ACSA materials; finding that 1300 ºC/15 min was a suitable clinkering 

temperature, and the optimum amount to be added of ZnO and CaF2 were of 1.0 

wt% of each one.  
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Recently, a new strategy to produce cements with alite and ye´elimite has been 

published by Ma et al [85], which consists on a two-step clinkering cycle, one to 

form alite at 1450 ºC in a sulfate-rich raw meal, and a second one to recrystallise 

ye’elimite at 1250 ºC. Moreover, in current studies, the addition of only 1 wt% of 

CaF2 as mineralizer was the main way to achieve the coexistence of ye’elimite 

and alite in the production of ACSA clinker at 1300 ºC [72,73,79]. There is not 

doubt about the contribution of calcium fluoride to the formation of C3S at lower 

temperatures instead of formation of C2S [88–92]. Another way newly found to 

favor the formation and coexistence of alite and ye’elimite was by the co-

synthesis of 20 wt% of ferrite (C4AF) at 1350 ºC for 60 min, maintaining the molar 

proportion between Fe2O3 and Al2O3 in 1/3 [86]. 

Hydration of alite-ye’elimite systems 

Former studies have mainly focused on ACSA clinker production and physical 

properties, but only a few studies have reported detailed hydration data, such as 

calcium–silicate–hydrates (C–S–H) and AFt composition. Li et al [97] showed that 

the main hydration products from an alite–ye’elimite cement synthesized by the 

two-stage firing process [85] with 67.0 and 4.8 wt% of alite and ye’elimite 

respectively, were ettringite, portlandite and C-S-H. The AFt formed in presence 

of portlandite is expansive, and the presence of CH accelerated the hydration of 

C4A3s to form it. Additionally, Duvallet et al [79] presented the hydration of three 

different ACSA cements with an intermediate composition of 27.2 wt% C3S, 25.4 

wt % C2S, 17.9 wt% C4A3s and 23.4 wt% C4AF with 15.0 wt% CsH2; alite and 

ye’elimite were totally consumed after 28 curing days, while ferrite persisted 

through 6 months. Respect to crystalline hydration product development, 

ettringite was the only phase formed after 5 hours of hydration. Then, portlandite 

was formed at 24 h, followed by monosulfoaluminate and hemicarbonate at 7 

hydration days. These two latter phases came from the conversion of ettringite to 

monosulfoaluminate at later ages. Some samples also showed katoite (silicious 

hydrogarnet; C3ASH4) as a hydrated product after 28 days of hydration. Hu et al 

[74] presented that the hydrated crystalline phases of ACSA cement with 57.2 
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and 1.1 wt% of alite and ye’elimite, respectively, were AFt at 12 h, CH at 5 h and 

AFm at 3 d. Over time, ettringite phase peaks increased in these samples (at 3, 

5, 12 h and 1 d)). After 1 day, the ettringite was degraded to form AFm phases 

(monosulfoaluminate), becoming larger at 28 days. Finally, Chitvoranund et al 

[72] reported the hydration mechanism of a ACSA cement, that contain around 

50 and 10 wt% of alite and ye’elimite, respectively. During the first hours, mainly 

reacts the alite, while ye’elimite starts to dissolve after 2 days; giving as main 

hydration products calcium–silicate–hydrates (C–S–H), ettringite, 

monosulfoaluminate and portlandite.  

Summarizing, during the first hydration hours, ettringite is the main crystalline 

hydration product together with amorphous aluminum hydroxide (no detected by 

LXRPD) [98,99]. Ettringite is formed in these systems from the dissolution of 

C4A3s and CsHx (x = 0, 0.5 or 2) (see Eq. 1). Once the sulfate source is depleted 

and there is enough water available, monosulfoaluminate (AFm) is formed (see 

Eq. 2) [42,100,101]. In addition, ye’elimite and calcium sulfate in presences of 

portlandite (CH) enhances the formation of AFt (Eq. 4) [102–104]. 

Eq. 4.    C4A3s   +   8CsHx   +  6CH + (90-8x)H     →     3C6As3H32 

Furthermore, and independently of the kinetic of the reaction, C3S produces 

amorphous C-S-H gel and portlandite (CH). This portlandita, at later age, favors 

the demotion of AFt into AFm phases (Eq. 5) [102,103,105]. Furthermore, at later 

ages, katoite formation could come from C2S/C3S in presences of amorphous 

AH3 and/or CH (Eq. 6 and Eq. 7) [106–109]. 

Eq. 5.     C6As3H32   +   6CH  +  2AH3    →     3C4AsH12  +  8H 

Eq. 6.    C2S   +   AH3   +    CH     →     C3ASH4 
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Eq. 7.    C3S   +   AH3     →     C3ASH4 

Properties of alite-ye’elimite systems 

Strength, hardening properties (stability in dimensions), and durability are 

required as the ultimate performance for cement-based materials and concrete. 

However, whether these are realized or not depends on the rheological 

properties of the fresh materials [110]. Rheology is the science that studies the 

flow and deformation of the matter under the influence of a mechanical force. 

This technique is wide used on fresh cement to know its workability/flowability 

[110–115].The workability/flowability can be improvement by the use of additives 

(such as plastisizers or superplastisizers) to obtain more homogeneous mixtures 

and hence, improved mechanical properties [26,114,116,117]. However, there 

are not any reports about the fresh behavior of ACSA systems. 

As mentioned in the section above, there are several studies where the effect of 

mineralizers and/or mineralogy on the mechanical strength was analyzed. Liu et 

al [76] presented that the content of MgO in the clinker, in a range from 2.0 to 5.0 

wt%, improved the strengths development of the cement, reaching up to ~74.1, 

~89.3 and ~119.3 MPa at 3, 7 and 28 d, respectively; and the final setting time is 

shortened. If the MgO content reaches about 8.0 wt%, the strength of the cement 

decreases to 106.3 MPa at 28 d and the setting time is extended. Liu et al [81] 

reported that a proper amount of TiO2 can increase the strength of cement, 

especially for clinkers with higher amounts of C3S (~56 wt%), to which 1.0 wt% 

TiO2 can increase the strength of cements at different hydration ages prominently 

(i.e. ~80, ~100 and ~125 MPa at 3, 7 and 28 d respectively). When the amount of 

TiO2 is over 1.0 wt% the setting time of cement would be obviously delayed up to 

final setting time of ~185 min. Li et al [97] reported that the alite–ye’elimite 

cement clinker synthesized by reformation (refers to the clinker annealed at 1250 

°C for 1 h to form ye’elimite from  C3A and Cs reaction) with 67.0 and 4.8 wt% of 

C3S and C4A3s respectively, yielded values of 30.0, 42.3 and 55.8 MPa at 1, 3 
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and 28 days, respectively. The early strength of the cement at 1 and 3 days was 

48.5% and 27.4% higher, respectively, than PII 52.5 Portland Chinese cement 

(under the Chinese standard). Hu et al [74] showed that the mechanical behavior 

of alite-belite-ye’elimite cement with 57.2, 25.0 and 1.1 wt% of C3S, C2S and 

C4A3s respectively; was higher than that of OPC at 1 and 3 days, but lower at 28 

days. The early compressive strengths were increased by approximately 27% 

and 17%, respectively. Finally, Chitvoranund et al [72] presented a ACSA cement 

mortar (that contained around 50 and 10 wt% of alite and ye’elimite respectively), 

that gained strength rapidly through 7 curing days and continued to gain strength 

at a slower rate through 28 days. Likewise, from 1 to 7 d, the compressive 

strength of the corresponding ACSA mortars increased by three times (i.e. 10.1, 

30.8 and 35.2 MPa at 1, 7 and 28 d respectively).  

Despite these results, these ACSA cements present more CO2 emission than 

BYF cements, due to it has high content of C3S (main phase) and few content of 

C4A3s, needing more amounts of limestone to be synthesized.  

Overview of the thesis 

The main aim of this work consists on obtaining a cementitious system that 

presents lower carbon dioxide emissions, good mechanical performance and 

optimal durability. This PhD thesis presents the preparation and hydration of an 

active BYF cement with the maximum content of alite and ye'elemite, hereinafter 

known as belite-alite-ye'elimite cement (BAY). The corresponding mortars 

showed high early compression strength values due to the coexistence of alite 

and ye'elemite. Moreover, the addition of fly ash (FA), as possible SCMs, was 

evaluated; it will also contribute to the CO2 footprint reduction of this eco-cement, 

generating economic savings due to the reuse of industrial by-product and less 

clinker requirements. Additionally, to understand the hydration mechanisms of 

alite with ye'elmite, a study of a mixture of pure alite and pure ye’elemite was 

carried out. Finally, for the sake of comparison, a blended material from 
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commercial belite cement and calcium sulfoaluminate cement, called hereafter 

"commercial binder" B83, was prepared and evaluated, which has similar 

mineralogical composition to BAY cement manufactured. 

This thesis includes 8 chapters, including this introduction. Chapter 1 describes 

the materials and methodology followed to carried out this investigation. Chapter 

2 presents the synthesis of BAY clinkers from natural raw materials, in a small (~ 

7 g) and medium (~ 2 kg) scales. Chapter 3 presents the hydration: water-to-

cement ratio effects on the hydrated phase mineralogy, hydration mechanism, 

rheological behavior and mechanical development. Chapter 4 shows a deeper 

study on the hydration of mixtures of pure alite and pure ye’elimite to understand 

the hydration mechanism in BAY cement. Chapter 5 reports the effects of fly ash 

addition on BAY cement hydration, rheological behavior and mechanical 

properties. Chapter 6 presents the results of hydration and mechanical properties 

of “commercial binder” B83. Finally, Chapter 7 provides the conclusions and 

future recommendations from this research. 
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Objectives  

The main aim of this PhD thesis was to understand the hydration mechanism and 

mechanical behavior of Belite-Alite-Ye’elimite systems to be correlated with BAY 

cements and compared with non-active BYF. The specific objectives of this study 

are described below: 

 

✓ To optimize the synthesis of BAY clinkers at laboratory level, and to 

dosage the raw materials to achieve high jointly contents of C3S and 

C4A3s through the use of CaF2 as mineralizer. 

✓ To optimize the scaling process (temperature and residence time) to 

obtain ~2 kg of that clinker. 

✓ To understand the effect of water/cement ratio (w/c), superplasticizer 

content and addition of class F - fly ash, on the rheological behavior and 

hydration mechanism of pastes and compressive strength of mortars. 

✓ To synthesize and characterize pure phases related to BAY: alite and 

ye’elimite to study the jointly hydration mechanism of these phases with 

anhydrite and different water/cement ratios. 

✓ To study the behavior of a mixture of a commercial belite clinker with 

calcium sulfoaluminate clinker, named hereafter as “commercial binder” 

clinker, whose mineralogical composition by the mixture is similar to the 

BAY clinker obtained in the scaling process. 
 

 





 

 
 

1. Materials and Methods 

In this study three types of cementitious materials were used: i) BAY 

clinker/cement/pastes/mortars (without and with fly ash), ii) mixture of pure 

phases (alite, ye’elimite and anhydrite), and iii) a commercial belite clinker mixed 

with calcium sulfoaluminate clinker, named as “commercial binder” B83.  

The description of the synthesis (including raw materials, reagents and 

procedure) of BAY clinkers, and pure phases (pseudocubic and orthorhombic 

ye’elimite, and alite), including the preparation of the corresponding mixture is 

shown below. In addition, information about both commercial belite and calcium 

sulfoaluminate clinkers used for the preparation of the “commercial binder” study 

is also given below. Finally, the methodology used to characterize anhydrous and 

hydrated samples is also detailed.  

1.1. Materials 

1.1.1. Belite-Alite-Ye’elimite (BAY) clinkers and cements 

The different BAY clinkers prepared at the first stage, likewise the scaled-up BAY 

clinker, were prepared from the combination of white kaolin (NC-35 Caolines 

Vimianzo - Spain), mineral limestone, sand, iron oxide corrector and gypsum (all 

from Financiera y Minera cement factory - Spain). The oxide composition, from 

XRF, of all these raw materials is shown in Table 1.1. Calcium fluoride reagent-

grade (>99%, Sigma-Aldrich) was added to each raw material mixture as 

mineralizer, as reported in [118]. 
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Table 1.1. Elemental composition of raw materials determined by XRF (in oxide 

wt%) 

Raw 
material Limestone Sand Kaolin Iron 

Source Gypsum Anhydrite Class F 
Fly Ash+ 

Oxide         
CaO 54.0 3.1 - 0.3 33.4 40.1 4.5 
Al2O3 0.2 1.8 35.2 0.8 1.2 - 26.4 
SO3 - - - 3.3 34.6 56.1  
Fe2O3 0.1 2.4 1.1 74.8 0.9 0.1 7.4 
SiO2 0.8 85.0 47.5 3.3 4.8 1.0 52.7 
K2O - 0.5 1.9 - 2.2 - 3.6 
Na2O - - 0.1 - 0.1 0.4  
MgO 0.5 1.9 0.2 - 1.5 0.5 1.9 
P2O5 - - - - 0.1 - 0.3 
LoI* 44.4 5.2 13.8 17.6 23.6 1.3 1.6 

LoI*: Loss of Ignition at 1050 °C. +Data from literature [119] 

The BAY cement was made by adding 12 wt% of anhydrite, as calcium sulfate 

resource (its stoichiometric amount of calcium sulfate respect to ye’elimite and 

calcium aluminate contents) to fulfill reaction of ettringite formation. Anhydrite 

(Cs) was previously prepared by heating at 700 °C for 60 min (heating rate of 10 

°C/min) a commercial micronized gypsum (CsH2) from BELITH S.P.R.L. 

(Belgium), with the aim to obtain a calcium sulfate source with a slow dissolution.  

For the fly ash (FA) study, the BAY cement was blended with 15 and 30 wt% of 

class F fly ash (provided by power station Lada – Spain). Its chemical 

composition is also shown in Table 1.1. All these samples were labeled as 

FA#BAY, where # represents the weight percent of FA referred to the total solid 

content. 

1.1.2. Alite-Ye’elimite-Anhydrite mixture 

Four alite-ye’elimite-anhydrite (C3S/C4A3s/Cs) mixtures were prepared. Two 

samples were mixed with orthorhombic ye’elimite and the other two samples 

were mixed with pseudocubic ye’elimite. The phase mixture ratios of 
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C3S/C4A3s/Cs were 48.6/35.5/15.9 and 65.4/23.9/10.7, where alite/ye’elimite 

ratios were 1.37 and 2.74, respectively. These samples were labeled as n137 

and n274, where “n” represents polymorph of ye’elimite used (“o” orthorhombic 

and “c” pseudocubic). Ye’elimite polymorphs (orthorhombic and pseudocubic) 

were synthesized following Cuesta et al procedure [120,121] using CaCO3 

(99.95%, Alfa Aesar), Al2O3 (99.997%, Alfa Aesar), and CaSO4·2H2O (98%, 

Sigma-Aldrich) reagent-grade. In addition, to stabilize the pseudocubic ye’elimite 

polymorph, Fe2O3 (99.945%, Alfa Aesar), SiO2 (99.5%, Alfa Aesar) and Na2CO3 

(99.999%, Sigma-Aldrich) reagent-grade were also used. Monoclinic III alite was 

supplied by Sarl Mineral Research Processing (France). Anhydrite used was the 

same prepared from micronized gypsum previously mentioned. The values of 

Dv50, described below, in the Particle Size Distribution Section, of pseudocubic 

ye’elimite, orthorhombic ye’elimite, anhydrite and monoclinic alite were 5.9, 9.0, 

8.9 and 13.8 μm, respectively. The Dv90 values (defined below, in the Particle 

Size Distribution Section) were 21.3, 28.7, 26.9 and 35.8 μm, respectively, for the 

pseudocubic ye’elimite, orthorhombic ye’elimite, anhydrite and monoclinic alite, 

see Figure 4.14 in Pure phases hydration study Section.  

1.1.3. “Commercial binder”, B83 

A “commercial binder” named as B83 was made mixing 78 wt% of a belite clinker 

supplied by Buzzi Unicement (Italy) with 16 wt% of calcium sulfoaluminate clinker 

– CSA (from BELITH S.P.R.L. - Belgium) and 6 wt% of anhydrite used before.  

The aim was to compare with the mineralogical and mechanical behavior of BAY 

cement (also labeled as FA0BAY). The “commercial binder” B83 was blended in 

a micro-Deval machine (A0655, Proeti S.A., Spain) at 100 rpm with 5 steel balls 

of 30 mm to improve the powder homogeneity. The average particle size of B83, 

dv50, was ~20 μm. Table 1.2 shows chemical and mineralogical composition of 

both commercial clinkers. 
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Table 1.2. Chemical and mineralogical composition for the two clinkers (belite 

and CSA) determinate by XRF and Rietveld quantitative phase analysis (RQPA) 
quantification respectively. 

FRX   RQPA,   
Oxide, 
wt% 

CSA 
clinker* 

Belite 
clinker 

wt% CSA 
clinker 

Belite 
clinker 

CaO 42.0 59.6 βC2S 18.7(2) 50.5(3) 
SiO2 8.2 22.9 αC2S 4.3(1) - 
Al2O3 33.8 5.2 oC4A3s 60.8(3) - 
Fe2O3 2.4 2.1 CT 3.7(1) - 
SO3 8.8 5.4 M 0.9(1) 2.3(1) 
K2O 0.2 1.1 C3S - 15.0(2) 

Na2O <0.1 0.3 C4AF - 7.5(2) 
MgO 2.7 2.9 CsH0.5 - 0.6(1) 
P2O5 0.1 - C3A - 0.9(1) 
TiO2 1.5 - CH - 0.2(1) 
SrO 0.1 - ACn 11.6(1) 21.8(1) 
ZrO2 0.1 - Rwp 8.19 7.68 

F - 0.1    
* Data from literature [119] 

1.1.4. Polycarboxylate-based material as superplasticizer 
(SP) 

A commercial polycarboxylate-based superplasticizer (SP), Floadis 1623 

(supplied by Adex Polymer S.L., Madrid, Spain), with a 25 wt% of active matter, 

was used to improve the homogeneity and workability of pastes and mortars 

(FA#BAY and B83). The amount of SP in every system was optimized through 

the rheological behavior of the corresponding pastes. 
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1.2. Samples preparation 

1.2.1. Clinker preparation 

For the preparation of clinkers at “small” scale, all raw materials mixed with 

fluorite were homogenized in an agate mortar throughout 30 min. Then, the 

mixtures were dye-pressed (~3 g and 20 mm of diameter). Three pellets (~9 g) 

were placed into Pt/Rh crucibles of 50 ml of volume and heated in a botton 

loading furnace HOB 33-3/16 (Hobersal, Spain) at 900 ºC at a heating rate of 5 

ºC/min and held at that temperature for 30 min. Next, the temperature was raised 

at the same rate to the final temperature (1300ºC) and held for 15 min. Finally, 

the clinkers were quenched to room temperature (RT) using forced air 

convection, ground and sieved through a 75 μm mesh. 

For the preparation of the scaled-up clinker (“medium” scale), the raw meal was 

pre-homogenized for 90 min in a micro-Deval machine (A0655, Proeti S.A., 

Spain) at 100 rpm with steel balls (9 balls of 30 mm, 10 balls of 18 mm and 20 of 

balls of 10 mm). The mixture was dye-pressed (pellets of ~30 g and 55 mm of 

diameter), and the clinkering conditions were optimized. Three pellets (~90 g) 

were heated at 1280 or 1300 ºC (at same heating rate used before for “small” 

scale) and held for 15 min or 30 min. All samples were quenched to RT using 

forced air convection. Once the clinkering conditions were optimized, seven 

pellets (~30 g and 55 mm of diameter each one) were placed into a large Pt/Rh 

crucible of 325 ml of volume, and heated at 1300 ºC for 15 min. This process was 

repeated ten times to obtain a total of ~2 kg of clinker. The pellets of clinker were 

ground using a vibration disc mill until a size of dv50 close to 10 μm was achieved. 

1.2.2. Paste preparation 

The hydration of the pastes was deeply studied. All samples were mixed using 

distilled water. BAY cement (also known as FA0BAY cement) pastes were 

prepared at w/c ratios of 0.4 and 0.5. FA15BAY and FA30BAY cements were 
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mixed at a w/c ratio of 0.4. FA0BAY and FA30BAY pastes were also prepared at 

a w/c ratio of 0.57 (which corresponds a water-to-binder ratio of 0.4 in FA30BAY), 

and characterized only at selected ages.  

All these pastes were prepared by mechanical stirring at 800 rpm in a plastic 

beaker following EN196-3 time procedure, and introduced into a hermetically 

closed polytetrafluoroethylene (PTFE) cylinder mold during 24 hours at 20 °C 

[40]. After that time, they were demolded and stored within water at 20 ºC until 

the age of study. Then, the samples were characterized after 1, 7, 28, 90 and 

180 days of hydration.  

In addition, samples n137 were mixed at a water/solid ratio of 0.66 and 1.32, and 

n274 were prepared at a water/solid ratio of 0.59 and 1.19. The w/s ratio of 0.66 

and 0.59 correspond to the stoichiometric amount of water with 10% of excess for 

n137 and n274 respectively, according to Eq. 1 (Introduction section). The w/s 

value of 1.32 and 1.19 are the double of the previous values to study the effect of 

large water excess on hydration mechanisms. These pastes were prepared by 

hand stirring using a spatula in a plastic beaker following EN196-3 time 

procedure. The used curing mold depended on the X-ray diffraction technique 

followed. For the in-situ synchrotron X-ray powder diffraction (SXRPD) study, all 

anhydrous mixtures were mixed with 20 wt% SiO2 (99.5%, Alfa Aesar) as an 

internal standard [122]. The corresponding pastes were loaded into glass 

capillaries of 0.7 mm of diameter with a syringe. The capillaries were sealed with 

grease. For the ex-situ laboratory X-ray powder diffraction (LXRPD) study, n137 

pastes at a w/s ratio of 1.32 were poured and kept into hermetically closed PTFE 

cylinder molds [40] for 1 day. Then they were demolded and stored at 20 ºC 

within distilled water until 7 days of hydration. 

Finally, B83 pastes were prepared at a w/c ratio of 0.4. The same preparation 

methodology than FA#BAY samples was followed. 
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1.2.3. Stopping hydration of pastes 

The pastes, at the selected curing ages, were crushed in an agate mortar prior to 

stopping hydration. The stopping hydration method consists on a solvent 

exchange in a Whatman system (70 mm diameter Whatman filter with a pore size 

of 2.5 μm and a Teflon support) using first acetone (in samples of FA#BAY and 

B83 cement) or isopropanol (in n137 samples) twice and finally diethyl ether 

once. The stopped powder samples were stored in a plastic eppendorf tube 

inside of a closed desiccator (without vacuum application) with silica gel to avoid 

further hydration and/or carbonation [56,119]. FA#BAY and B83 cement pastes 

were stopped at 1, 7, 28, 90, and 180 hydration days. The n137 samples were 

stopped at 7 hydration days and were compared with in-situ SXRPD study. 

1.2.4. Mortar preparation 

FA#BAY and B83 cement mortars were prepared according to EN196-1 standard 

procedure, at a cement/sand ratio of 1/3 and w/c ratio of 0.40, with the optimum 

amount of superplasticizer (previously optimized through rheological studies). 

CEN EN196-1 standard sand was used. Cubes (3 × 3 × 3 cm3) were cast and 

cured at 20 ± 1 °C and 99% relative humidity (RH) for 24 h; then the cubes were 

demolded and submerged in a water bath at 20 ± 1 °C until testing (compressive 

strength) at the same curing age than pastes were stopped and characterized (1, 

7, 28, 90, and 180 days). 

1.3. Analytical Methods  

1.3.1. Laboratory X-ray Powder Diffraction (LXRPD) 

Laboratory X-ray powder diffraction (LXRPD) measurements were carried out on 

both anhydrous and stopped-hydration samples. Powder patterns for anhydrous 

clinkers were collected using monochromatic CuKα1 radiation (λ = 1.5406 Å) on 
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an X’Pert Pro MPD (PANalytical B.V., Netherlands) diffractometer with 

X'Celerator detector. Data were acquired with an angular scan of 5-70° (2θ), with 

step size of 0.016° and step time of 300 s yielding a 160 min pattern. The 

samples were rotated during data collection at 16 rpm in order to enhance 

particle statistics.  

 

Powder patterns for the anhydrous cements and stopped pastes were also 

recorded on a D8 ADVANCE (Bruker AXS, Germany) diffractometer, using 

monochromatic MoKα1 radiation (λ = 0.7093 Å) with LYNXEYE XE 500 μm linear 

dispersive energy detector, optimized for high-energy radiation, with the 

maximum opening angle. This diffractometer works on transmission geometry 

and samples are placed between kapton foilds and are rotated at 10 rpm during 

data collection. Data were collected from 3º to 27° (2θ). To determine the 

amorphous and crystalline non-quantified (ACn) [122] content, an internal 

standard approach was employed [122,123]. As internal standard, Quartz 

(99.56%, ABCR GmbH & Co. KG) was added to the samples to a total content of 

~20 wt%. The mixtures (sample-standard) were homogenized for 15 min in an 

agate mortar.   

In addition, an in-situ LXRPD study of FA0BAY with/without addition of 

superplasticizer was performed to understand its effect on early hydration. To do 

so, LXRPD were collected on the same D8 ADVANCE diffractometer by using an 

Anton Paar MHC-trans chamber. Data were collected at 25°C and relative 

humidity (RH) value of 95%. X-ray diffraction patterns were collected every 15 

min. All patterns were measured between 2º and 27° (2θ) with a step size of 

0.017° and counting time of 0.5 s per step (total time per pattern 10 minutes). 

1.3.2. Synchrotron X-ray Powder Diffraction (SXRPD) 

An in-situ study of the hydration of the mixture of pure phases, alite-ye’elimite-

anhydrite, was carried out by SXRPD. All patterns have been collected in the 
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Materials Science and Powder Diffraction station (MSPD - BL04) located at 

ALBA, the Spanish Synchrotron Radiation Facility (Barcelona, Spain). Patterns 

were collected in Debye-Scherrer (transmission) mode [124] with a wavelength of 

0.61878(3) Å. The diffractometer is equipped with a MYTHEN detector system 

especially suited for time-resolved experiments and extremely good signal-to-

noise ratio experiments. The glass capillaries of 0.7 mm of diameter were rotated 

at 20 rpm during data collection to improve diffracting particle statistics. The 

overall data acquisition time was 6 min per pattern. Several patterns at different 

hydration times were collected for every sample over the angular range from 2 to 

40° (2θ). SXRPD patterns were normalized taking into account the loss of X-ray 

beam flux with time due to the electron beam current decline in the storage ring. 

Normalized SXRPD patterns were analyzed by using the Rietveld methodology in 

order to obtain RQPA. Internal standard methodology has been also used with 

SXRPD data using 20 wt% SiO2 (99.5%, Alfa Aesar). 

1.3.3. Rietveld methodology and ACn quantification 

Once a good powder diffraction pattern was collected from LXRPD or SXRPD, all 

the cementitious phases were identified using the X’Pert High Score Plus 

program from PANalytical with reference structures from PDF database and 

Inorganic Crystal Structure Database (ICSD). Then, the patterns were analyzed 

by direct Rietveld method using GSAS software package [125] by using a 

pseudo-Voigt peak shape function  [126] with the asymmetry correction included 

[127] to obtain RQPA. The refined overall parameters were: phase scale factors, 

background coefficients, unit cell parameters, zero-shift error, peak shape 

parameters (including anisotropic broadening correction when appropriated) and 

preferred orientation coefficient, if needed (March–Dollase ellipsoidal preferred 

orientation correction algorithm [128]). 

 

The Amorphous and Crystalline non-quantified content present in the samples 

prepared with the internal standard  was calculated comparing the weight value 
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of the standard, Wst, with the obtained value from RQPA, Rst, to obtain a 

quantification of amorphous phases [122]. 

1.3.4. Scanning electron microscopy (SEM) and Field 
emission scanning electon microscopy (FE-SEM) 

A fracture cross-section of a selected clinker pellet (scaled-up BAY_4) was 

performed in a Jeol JSM-6490LV (Japan) scanning electron microscope using 

secondary electrons at 20 kV, to study the morphology of the phases. Prior to 

SEM observation, the sample was gold coated (by sputtering during 10 min until 

obtain 30 nm of thickness) to improve the conductivity of the sample and 

observation.  

Moreover, a field emission scanning electron microscope (FE-SEM) (Helios 

Nanolab 650 dual beam from FEI) was used to study the phase distribution of 

polished scaled-up BAY_4 clinker. Backscattering electron (BSE) images were 

acquired at 15 kV with a retractable CBS backscatter detector (annular solid-state 

device) that inserts and rests directly underneath the final lens of the system. 

EDS (energy dispersive X-ray spectroscopy) analysis was acquired using a X-

Max 50 mm2 detector from Oxford Instruments with AZtec software (v.1.0). 

1.3.5. Specific surface measurement 

A Blaine specific surface is an estimation of the surface area per unit mass of a 

powder, expressed in cm²/g. The Blaine surface area is determined indirectly by 

measuring the time of a known volume of air passing through a pellet of powder 

with an effective pressure. The Blaine surface area of all anhydrous powder 

samples were measured following ASTM C 204-05 procedure. 

Furthermore, the specific surface area of anhydrous samples was carried out by 

BET (Brunauer-Emmett-Teller) methodology. These measurements were 

performed in an automatic MICROMERITICS ASAP 2020 (Micromeritics 
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Instrument Corp, GA, USA). Isotherms at low partial pressures of the inert gas 

(N2, at room temperature) were used to determine specific surface areas. The 

total surface area of the powders was calculated using the Langmuir theory and 

the BET generalization. The BET method gives results two to three times higher 

than the air permeability values (Blaine method) because it includes internal 

surfaces present in microcracks or in pores open at only one end. 

1.3.6. Particle size distribution (PSD) 

The particle size distribution of powder anhydrous samples was measured by 

laser diffraction in isopropanol suspension using a  Malvern MasterSizer S (UK) 

instrument. The powders were previously dispersed in isopropanol in test tubes 

using an ultrasonic bath. The suspension is irradiated by a laser beam that 

diffracts on the particles and the diffracted beam is recorded by a detector. From 

the measurement, information such as Dv50 (maximum particle diameter below 

which 50% of the sample volume exists - also known as the median particle size 

by volume), and Dv90 (maximum particle diameter below which 90% of the sample 

volume exists) can be obtained. 

1.3.7. Isothermal calorimetry 

An eight channel TAM Air Isothermal conduction calorimetry (TA Instruments, 

USA) was used to study the heat evolution from hydration reactions at 25 ºC for 

72 hours. An admix automatic device was used to mix 2 g of anhydrous samples 

and the corresponding amount of water inside the calorimeter for 2 minutes, with 

the aim to avoid any data loss at the beginning of the reaction. In the reference 

vessel, the same sample measured (2 g) was used, due to it has similar heat 

capacity. The reference vessel is used to reduce the signal-to-noise ratio and to 

correct both measurement and temperature gadget. Each channel is independent 

from the other channels and was calibrated for 24 hours before any experiments 

were made. 
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1.3.8. Thermogravimetric analysis (TG) 

Thermogravimetry and differencial thermogravimetry (TG-DTG) analyses were 

carried out in a SDT-Q600 analyzer from TA Instruments (New Castle, DE) under 

dry air atmosphere (flow rate of 100 ml/min), over the temperature range 20-1000 

°C with a heating rate of 10 ºC/min. Open platinum crucibles were used and the 

sample weight was approximately 40 mg. TG-DTG studies were performed on 

powder from the stopped-hydration pastes to examine the thermal decomposition 

of hydrated phases up to 600 ºC, to quantify phases, including the free water 

content. Data were processed using TA Instruments Universal Analysis 2000. 

1.3.9. Rheological measurements 

Rheological measurements of the cement pastes were carried out to optimize the 

superplasticizer content. A viscometer (Model VT550, Thermo Haake, Karlsruhe, 

Germany) with a serrated coaxial cylinder sensor, SV2P, provided with a solvent 

trap to reduce evaporation was used. Flow curves were obtained with controlled 

rate (CR) measurements using a two-stage measuring program. First, the shear 

rate was increased with ramp times of 6 s from 0 to 100 s-1, for a total of 11 

ramps. Second, the shear rate was decreased from 100 to 0 s−1 following the 

same ramp times. Before starting the rheological measurement, the pastes were 

pre-sheared for 30 s at 100 s-1. 

1.3.10. Mercury intrusion porosimetry - MIP 

MIP was carried out to characterize the connected pore network and the size of 

the pore entries on FA#BAY and B83 paste samples at 180 curing days, for the 

sake of comparison. The cylindrical pieces (15 mm length and 10 mm diameter) 

of around 2 g mass were first immersed in isopropanol for 72 h, and then dried at 

40 ºC until their weight was stable. The surface of this cylinder was removed prior 

to the analysis. Micromeritics AutoPore IV 9500 porosimeter (Micromeritics 
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Instrument Corporation, Norcross- GA, US) was used, which is capable of 

measuring porosity in the range from 1 mm down to 2 nm. The pressure applied 

by the intrusion porosimetry ranged from 0 to 300 MPa. A constant contact angle 

θ of 130° was assumed for data evaluation.  

1.3.11. Solid-state nuclear magnetic resonance (NMR) 

Solid state magic angle spinning nuclear magnetic resonance was performed on 

stopped-hydration pastes to characterize the local atomic structure of 29Si and 
27Al nuclei. 27Al and 29Si MAS-NMR spectra were recorded on a Bruker AVIII HD 

600 NMR spectrometer (Bruker AXS, Germany) with magnetic field 14.1 T, 

operating at 156.4 MHz with a 2.5 mm triple-resonance DVT probe using zirconia 

rotors at 20 and 15 kHz spinning rates (respectively for 27Al and 29Si). 

27Al MAS-NMR experiment was performed with (Hpdec) and without (One pulse) 
1H decoupling by applying a single pulse (p/12), an excitation pulse of 1 µs, 5.0 s 

relaxation delay and 200 scans. The chemical shift was referenced to an external 

solutions of 1 M of Al(NO3)3. 

29Si MAS-NMR experiments were performed with 1H decoupling (cw sequence) 

by applying a single pulse (p/2), an excitation pulse of 5 µs, 30 s relaxation delay 

and 10800 scans. The chemical shift was referenced to an external solution of 

tetramethylsilane (TMS). 

1.3.12. Compressive strengths 

The compressive strength of all mortars (3 x 3 x 3 cm3 cubes) was measured 

following the EN 196-1 protocol in a Model Autotest 200/10 W (Ibertest, Spain) 

press. The compressive strength values were calculated by dividing the total 

maximum load indicated by the testing machine (KN) by the specimen area (900 

mm2). The final results were obtained as an average of three compressions 
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values. The testing curing ages were 1, 7, 28, 90, and 180 days, which 

correspond to the same studied curing times of pastes. The strength results were 

compared between them and with non-active BYF published elsewhere [48].  

 

 

 



 

 
 

2.  Clinkering and scaled-up of BAY 

In this chapter, belite-alite-ye’elimite (BAY) clinkers were synthesized from 

natural materials, as described in the Materials and Methods Section. The 

primary goal was to synthesize BAY clinker with maximal jointly content of alite 

and ye’elimite. The procedures developed for “small” and “medium” scales are 

explained. The term "small" scale refers up to 10 g of final clinker and the term 

“medium” scale or scaled-up refers up to around 2 kg of final clinker. The phase 

content of all resulting clinkers was analyzed and quantified using laboratory X-

ray diffraction combined with the Rietveld methodology. The scaled-up clinker 

(“medium scale”) was analyzed by SEM methodology combined with EDS 

analysis to know both the morphology and phase distribution. Finally, cements 

were prepared with the scaled-up clinker by adding anhydrite to control hydration 

reactions. Part of this work has been published in Clinkering and hydration of 

Belite-Alite-Ye´elimite cement [118] (see Annex I). 

2.1. BAY clinkering optimization 

2.1.1.  Dosage optimization 

Four BAY clinker attempts were carried out at “small scale” to find the correct 

dosage of raw materials to obtain the maximal jointly content of alite and 

ye’elimite, as reported in paper # 1 [118] (Annex I). The four BAY clinkers, as 

described in the Materials and Methods section, were prepared by mixing natural 

raw materials with 0.75 wt% of calcium fluoride [75–78,85], which corresponds to 

0.9 wt% CaF2 when only the amount of oxides (after carbonation) is considering. 
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Table 2.3 reports the expected phase composition of the four clinkers, named as 

BAY_# referred to the attempt number, the elemental oxide composition of each 

mixture and the amount of the raw materials used in their preparation. 

Table 2.3. Targeted mineralogical phase assemblage (in wt%) of BAY clinkers, 
nominal elemental composition of raw mixtures (expressed as oxides) excluding 

H2O and CO2 and raw materials dosages (wt%).Taken from [118]. Copyright 
(2017) with permission from Elsevier (Annex III). 

 BAY_1 BAY_2 BAY_3 BAY_4   
Targeted composition 
(wt%)       

C2S 55 55 50 45   
C4A3s 15 20 15 18   
C3S 15 20 25 30   
C4AF 15 5 5 5   
Cs --- --- 5 2   
Elemental composition of 
raw material (wt%)     

CaO 58.1 59.1 59.7 60.0   
Al2O3 10.8 11.2 8.8 10.2   
SO3 2.1 2.6 4.9 3.5   
Fe2O3 5.5 2.4 2.4 2.4   
SiO2 22.6 23.9 23.4 23.0   
CaF2 0.9 0.9 0.9 0.9   
Raw material (wt%)       
White limestone 67.1 67.3 65.7 67.3   
Sand 5.6 6.2 8.3 6.5   
Gypsum 3.6 4.8 9.0 6.4   
Iron source 4.2 1.4 1.4 1.4   
White kaolin 18.9 19.7 15.1 17.8   
Fluorite (mineralizer) 0.6 0.6 0.6 0.6   
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Figure 2.3 shows LXRPD patterns of all BAY clinkers attempts, “small scale”, and 

Table 2.4 shows their mineralogical composition determined by Rietveld method, 

normalized to 100 wt% of crystalline phases. 

 

Figure 2.3. LXRPD patterns for BAY clinkers with monochromatic 
CuKα1(λ=1.5406Å). sk (C4A3s), f (C4AF), βb (bC2S), γb (gC2S), m (C12A7),  

a (C3S), F-ell (Fluorellestadite), g (C2AS), Cfree (Free lime),  C3A. Modified from 
[118]. Copyright (2017) with permission from Elsevier (Annex III). 
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Table 2.4. Direct RQPA (wt%) for BAY clinkers (taken from [118]). Copyright 

(2017) with permission from Elsevier (Annex III). 

Phase BAY_1 BAY_2 BAY_3 BAY_4 
β-C2S 65.0(1) 44.9(3) 59.9(2) 51.8(2) 
γ-C2S 2.7(1) 12.2(2) 2.9(2) 8.5(2) 
C4AF 22.0(2) 8.2(2) 7.6(1) 7.0(1) 
Cs - - 0.5(2) - 
o-C4A3s 3.5(1) 1.9(1) 9.7(2) 9.1(4) 
c-C4A3s - 7.9(1) 0.6(2) 3.0(4) 
C3S - 13.0(3) 13.1(2) 16.0(2) 
C12A7 6.6(1) 2.1(8) - 2.3(1) 
Fluorellestadite - - 5.0(3) - 
C3A - - 0.8(1) 2.3(1) 
C2AS - 7.0(3) - - 
Free lime - 2.7(1) - - 
 Rwp 4.33 6.37 5.89 5.40 

 

In the first attempt, in BAY_1, there was no evidence of alite; only a high amount 

of belite (β-C2S and γ-C2S polymorphs) and ferrite, 67.7 and 22.0 wt% 

respectively, with a minimal quantity of pseudocubic ye’elimite and mayenite (3.5 

and 6.6 wt% respectively), as can be seen in Table 2.4 and Figure 2.3. The high 

amount of iron oxide in this dosage affected the formation of alite despite the 

amount of fluorite and calcium sulfate added. In addition, the iron oxide content 

favored the decomposition of ye’elimite into mayenite [70]. It is known that a 

Al2O3/Fe2O3 ratio between 1.5 and 2.5 in OPC systems helps the formation of 

liquid which favors the ion diffusivity [4,129]. In this specific case, due to high 

amount of Fe2O3 in the system favors the quantity of liquid phase and its viscosity 

promote the decomposition of C4A3s into C12A7; and the sulfate in liquid phase 

generated by C4A3s decomposition inhibits the reaction of CaO with belite, 

consequently suppressing the C3S formation [79,86,130,131]. 

In the second attempt, BAY_2, it was decided to change the targeted amount of 

the phases. The desired content of C4AF was reduced to 5 wt%, both alite and 
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ye’elimite contents were tried to rise up to 20 wt%, and the amount of belite was 

fixed in 55 wt%. After the clinkering process, a significant amount of both 

polymorphs of belite, jointly with alite and ye’elimite polymorphs (57.1, 13.0 and 

9.8 wt% respectively) were present, which are the main phases of BAY systems 

[72,74,75,77,79,85,93,118]. In addition, ferrite, mayenite, gehlenite and free lime 

were also detected. BAY_2 was also ruled out due to the presence of free lime, 

because it is a revealing indicator that the clinkering process was not finished at 

1300 ºC. Furthermore, the was a non-negligible existence of gehlenite, which is 

considered an inert intermediate phase in ye'elimite-based systems [37,132]. 

Alike, there was 12.2 wt% of γ-C2S of total amount of belite in this clinker, and it 

is known that this phase is hydraulically inactive [133]. 

In the third attempt (BAY_3 targeted composition shown in Table 2.3), the 

objective was to increase the amount of C3S and C4A3s present in the clinker, 

respect to BAY_1. BAY_3 clinker contained belite (gamma and beta polymorphs), 

alite, ye’elimite (pseudocubic and orthorhombic polymorphs), ferrite, anhydrite, 

C3A and fluorellestadite (62.8, 13.1, 10.3, 7.6, 0.5, 0.8 and 5.0 wt%, respectively). 

In this case, the increases of alite and ye’elimite were not significant, and there 

also was fluorellestadite (F-ellestadite). That phase comes from reaction between 

CaF2, C2S and Cs [91,134], which is a non-hydraulic intermediate phase and is 

stable up to 1240 °C, where it began to decompose into C2S and a liquid phase 

[132,135]. Despite the presence of this inert phase, it was possible to jointly 

obtain C3S, C4A3s and C2S in a considerable good quantity. 

Finally, in the fourth attempt, BAY_4, the targeted of alite an ye’elimite were 

increase again, obtaining 16.0 and 12.1 wt%, respectively, without anhydrite and 

fluorellestadite in it. Additionally, it presented aluminum phases (C12A7 and C3A 

specifically) which are highly hydraulic ones [4,5].  

According to this, it is good to remark that the maximum alite/ye’elimite mass 

ratio achieved was 1.3, both in BAY_3 and BAY_4, for this reason they were the 

most promising candidates to be scaled-up. Although in all clinkers the phase 
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assemblage was quite different to their targeted phase composition, it can be 

seen that three of them include high percentages of both alite and ye'elimite 

jointly with belite. BAY_3 and 4 attempts were used for further optimization and 

characterization. 

2.1.2.  Mineralizer optimization 

Three assays were carried out to study the mineralizer (fluorite – CaF2) effect on 

the synthesis and phase assemblage of the BAY_3 dosage. The objective was to 

increase the quantity of C3S and C4A3s, and decrease/eliminate the formation of 

F-ellestadite. Table 2.5 shows the raw materials dosages and elemental oxides 

composition for the three attempts realized with BAY_3. The clinkering was 

carried out also at “small scale” as detailed in the Materials and Methods Section. 

Hereafter BAY_3 clinkers will be named as BAY3_x, where x stands for the 

amount of calcium fluoride in wt% (x= 0.6, 0.9 and 1.2). 

Table 2.5. Raw materials dosages (wt%) and nominal elemental composition of 
raw mixtures (expressed as oxides) for BAY_3 attempts. 

 BAY3_0.6F BAY3_0.9F* BAY3_1.2F   
Raw material (wt%)      
White limestone 65.8 65.7 65.5   
Sand 8.3 8.3 8.3   
Gypsum 9.0 9.0 9.0   
Iron source 1.4 1.4 1.4   
White kaolin 15.1 15.1 15.0   
Fluorite (mineralizer) 0.4 0.6 0.8   
Elemental 
composition of raw 
material (wt%)    

CaO 59.8 59.7 59.5   
Al2O3 8.8 8.7 8.7   
SO3 4.9 4.9 4.9   
Fe2O3 2.4 2.4 2.4   
SiO2 23.5 23.4 23.3   
CaF2 0.6 0.9 1.2   
*Corresponds to BAY_3 attempt explicated in section 2.1.1. 
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Table 2.6 gives the Rietveld quantitative phase analysis, normalized to 100 wt% 

of crystalline phases, for all samples, where the targeted phase assembly was 

not achieved independently of the amount of fluorite added. The mineralogical 

results show that the increasing of CaF2 favors the decomposition of C4A3s into 

C3A [5,70], from 10.6 to 8.4 wt% with the addition of 0.6 to 1.2 wt%, respectively, 

since fluorite helps the formation of liquid/molten in the clinker [88–90]. However, 

C3S contents were lower than expected. When 0.6 wt% of CaF2 was added, only 

6.9 wt% of alite was quantified. However, when 1.2 wt% of CaF2 was added, 8.5 

wt% of alite was formed, but also F-ellestadite was present, meaning that the 

calcium fluoride addition was too high. According to these results it was not 

possible to obtain a higher quantity of alite and ye’elimite together without a 

significant content of F-ellestadite. As a conclusion of these results, calcium 

fluoride has to be added in 0.9 wt% to promote the optimum C3S formation and to 

avoid C4A3s decomposition.  

Table 2.6. Direct RQPA (wt%) for BAY_3 clinkers synthesized with different 
amounts of CaF2. 

Phase BAY3_0.6F BAY3_0.9F* BAY3_1.2F 
β-C2S 71.9(1) 59.9(2) 59.2(2) 
γ-C2S 3.6(1) 2.9(2) 2.0(1) 
C4AF 5.4(2) 7.6(1) 10.8(3) 
Cs 0.5(1) 0.5(2) 0.5(1) 
o-C4A3s 10.2(1) 9.7(2) 8.1(2) 
c-C4A3s 0.4(1) 0.6(2) 0.3(1) 
C3S 6.9(3) 13.1(2) 8.5(1) 
Fluorellestadite 0.4(1) 5.0(3) 7.5(1) 
C3A 0.6(1) 0.8(1) 3.2(1) 
Rwp 5.74 5.89 5.32 

*Corresponds to BAY_3 attempt explicated in section 2.1.1. 

2.2. BAY clinker scaled-up 
According to the results obtained in Sections 2.1.1 y 2.1.2, the BAY_4 attempt 

was finally chosen due to the absence of fluorellestedite and the highest 
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percentages of alite and ye'elimite (16.0 and 12.1 wt%, respectively). The 

clinkering conditions had to be optimized for the scaled-up samples: temperature 

and dwelling time at that temperature. The scaled-up material obtained in this 

step was named as scBAY_4. Table 2.7 reports the normalized crystalline 

composition of scBAY_4 assays under different clinkering conditions.  In all 

cases, the quantity of ye’elimite was reduced to the half and the amount of 

mayenite was doubled; It means that the solid reaction at this scale (~90 g of 

sample) favors the ye’elimite decomposition into mayenite [70] and a loss of 

sulfur as SO2. In addition, in the sample clinkered at 1280ºC for 15 min only ~11 

wt% of alite was obtained; when the sample was heated at 1300ºC for 30 min a 

decrease of the alite amount to almost to the half was quantified, while the 

sample clinkered at 1300ºC for 15 min (same condition used in small scale) 

presented 16.2 wt% of alite. For these reasons, 1280ºC/15 min and 1300ºC/30 

min thermal processes were discarded. 

Table 2.7. Mineralogical composition (RQPA in wt%) for scBAY_4 clinker with 0.9 
wt% CaF2 at different thermal treatments. Taken from [118]. Copyright (2017) with 

permission from Elsevier (Annex III). 

Phase 1280 ºC 
15 min 

1300 ºC 
15 min 

1300 ºC 
30 min 

1300 ºC 
15min 

with excess of sulfur* 

β-C2S 60.0(2) 56.3(2) 62.2(1) 59.4(2) 

γ-C2S 3.2(1) 4.1(1) 3.6(1) 1.5(1) 

C4AF 6.0(3) 6.4(2) 6.0(2) 6.9(2) 

Cs 1.3(2) 0.9(2) 1.1(2) 0.6(1) 

oC4A3s 5.0(1) 5.2(2) 5.6(1) 10.4(1) 

C3S 11.7(2) 16.2(1) 8.9(1) 13.5(2) 

C12A7 11.3(1) 9.5(1) 10.4(1) 5.1(1) 

C3A 0.1(1) 1.2(1) 1.3(1) --- 

Free lime 1.4(1) 0.9(3) 0.6(1) --- 
* Also contains 2.6(1) wt% of F-ellestadite 
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The next step followed was to modify the amount of SO3 in the dosage, by adding 

an excess of sulfur (up to a total amount of 4.3 wt% of SO3, supplied as gypsum) 

to the raw materials to favor the ye'elimite formation/stabilization and compensate 

the loss of sulfur as SO2. Table 2.7 and Figure 2.4 show the final mineral 

crystalline composition of the clinker (2 kg) obtained, where the amount of 

ye'elimite increased up to 10.4 wt% and the amount of alite was 13.5 wt%. It 

must be noted that this clinker shows an alite/ye'elimite ratio of 1.3 (similar to that 

for small pellets selected from Table 2.4). 

 

 

 

Figure 2.4. Rietveld plot of scBAY_4 (~90 g of sample) at 1300 °C for 15 min and 
excess of sulfate, measured by XRPD with monochromatic CuKα1 (λ=1.5406Å) 

radiation 

Finally, these clinkering conditions (1300ºC/15 min and excess of sulfur) were 

selected to prepare a total of 2 kg of scBAY_4 clinker, in batches of ~210 g of 

sample. Every batch showed the same mineralogical composition than that 

prepared in batch of ~90 g (scBAY_4 with excess of SO3 at 1300 ºC for 15 min, 

Table 2.7). It is worth to highlighting that the synthesis of the scaled-up clinker, 
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releases 13.4% less CO2 than OPC (7.2% is related to the decarbonation of the 

raw materials, and the remaining is due to the reduction of fuel and milling 

electricity. 

Figure 2.5 shows the SEM micrographs of the fresh fracture surface of the 

scaled-up clinker, where the morphology and distribution of phases can be 

observed In the clinker, spherical particles (< 5 μm) of belite, prismatic particles of 

alite (Figure 2.5 left side) and rhombic particles (~ 4 μm) of ye’elimite (Figure 2.5 

right side) can be observed. As reported by Perez-Bravo et al [75] and Lu et al 

[78,93], ye’elimite has a rhombic decahedron shape. 

 

  

Figure 2.5. SEM micrographs of fresh fracture surface of scBAY_4 clinker (taken 
from [118]). Copyright (2017) with permission from Elsevier (Annex III). 

 

Figure 2.6 shows a FE-SEM micrograph of the polished scaled-up clinker where 

the EDS analysis was performed. It can be observed rounded particles of C2S 

(labeled as 1), which composition was confirmed by EDS analysis. Table 2.8 

represents the atomic ratio analysis results compared with stoichiometric atomic 

ratios of the phases.  

Prismatic particles of alite were not so clearly observed in Figure 2.6, but EDS 

analysis confirms that particles labeled as 2, clearly matches with alite. EDS 
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analysis was also helpful to identify C4A3s (labeled as 3), where rhombic shape 

particles were not evidently found. Isolated points of other phases were also 

detected, which corresponds to F-ellestadite (labeled as 5) and subcooled 

phases (labeled as 4). Due to the small particle size (i.e. less than 1 μm) of C12A7 

and C4AF, it was not possible to differentiate them in subcooled phase. Black 

holes were observed in Figure 2.6, which correspond to porosity that favors the 

grinding of the material.  

 

 

Figure 2.6. Backscatter electron (BSE) image of scBAY4 clinker (FE-SEM), 
where 1 (βC2S), 2 (C3S), 3 (C4A3s), 4 (subcooled phase) and 5 (Fluorellestadite).  
Modified micrograph from [118]. Copyright (2017) with permission from Elsevier 

(Annex III). 
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Table 2.8. Average atomic ratio obtained by EDS in sc-BAY4 clinker, where “n” 

stands the number of measurements (points) analyzed. Theoretical atomic ratios 
of clinker phases are also included. Taken from [118]. Copyright (2017) with 

permission from Elsevier (Annex III). 

Atomic ratio n Si/Ca Al/Ca S/Ca Fe/Ca F/Ca       
 Experimental EDS ratios 
C2S 12 0.47(2) 0.07(5) 0.03(3) 0.01(5) --       
C3S 4 0.31(7) 0.05(2) 0.08(4) 0.02(3) --       
C4A3s 5 0.05(1) 1.31(6) 0.25(2) -- --       
Subcooled 
phase* 5 0.06(4) 1.07(11) 0.07(8) 0.40(3) --       

Fluorellestadite 3 0.31(5) 0.31(13) 0.25(2) -- 0.26(10)       
 Theoretical stoichiometric ratios 
C2S  0.50 -- -- -- --       
C3S  0.33 -- -- -- --       
C4A3s  -- 1.50 0.25 -- --       
C4AF  -- 0.50 -- 0.50 --       
C12A7  -- 1.17 -- -- --       
Fluorellestadite  0.30 -- 0.30 -- 0.20       
*Mainly consists on C4AF and C12A7 

 

2.3. BAY cement preparation 
Once the scBAY_4 was completely obtained, BAY cement was prepared by 

mixing it with 12 wt% of anhydrite (as sulfate source), which corresponds to the 

stoichiometric amount that reacts completely with all calcium aluminates present 

in scBAY_4 (ye’elimite and mayenite) to form ettringite. The cement showed a 

Blaine surface area of ~5200 (±24) cm2/g and dv,50 of around 4 μm (see Figure 

2.7). 
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Figure 2.7. Particle size distribution of BAY cement.  

2.4. Summary  

Belite-alite-ye’elimite clinkers were successfully synthesized by combining natural 

raw materials, where the dosage has presented an important influence on the 

mineralogical composition. High amounts of Fe2O3 significantly affected the 

formation of the ye’elimite and favored its decomposition into mayenite (i.e. 

BAY_1). The quantity of C3S and C4A3s increased by decreasing the amount of 

iron oxide and by increasing the amount of SO3 in the range of study (added as 

gypsum). The maximum percentages of alite and ye’elimite (16.0 and 12.1 wt% 

respectively) were obtained in BAY_4 clinker, with a alite/ye’elimite ratio of 1.3. In 

addition, the mineralizer (CaF2) effect on the mineralogical composition was also 

studied, where the optimal quantity to be added in this system was 0.9 wt% 

(taking into account the amount of oxides). 

In a second step, using the BAY_4 clinker formulation, the scaled-up was carried 

out. The thermal conditions (clinkering temperature and dwelling time) had to be 

fine-tuned up for the preparation of 2 kg of scBAY_4 clinker; the best results were 

obtained heating the sample at 1300 ºC for 15 min, and adding an excess 

amount of SO3 up to a total amount of 4.3 wt%. The final scBAY_4 clinker 
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showed a C3S/C4A3s ratio of 1.3, same to that obtained in a previous step. That 

clinker was constituted by a high proportion of rounded particles of C2S, 

individual points of prismatic particles of C3S and rhombic shape particles of 

C4A3s. The clinker scBAY_4 was quite porous, which favored the grinding.  

 

Finally, the scBAY_4 clinker was mixed with its stoichiometric amount of 

anhydrite (12 wt%) to completely react with calcium aluminates to form ettringite. 

 

All these results have allowed to fulfill the specific objectives of synthesis and 

scaling-up optimization. 

 

 



 

 
 

3. BAY cement hydration and 
mechanical behavior 

This chapter studies the hydration of both BAY cements and mortars at 

water/cement ratios of 0.4 and 0.5 through the combination of independent 

techniques. They were characterized at 1, 7, and 28 days of hydration. The main 

goal was to unravel the hydration mechanism of this cement, the effect of water-

to-cement ratio and the corresponding mechanical properties. The behavior of 

the cement pastes at very early-age was investigated by rheology. Quantitative 

X-ray powder diffraction with Rietveld analysis were the main techniques used to 

investigate the content of crystalline and ACn phases in pastes. 

Thermogravimetric analysis (TG-DTG) was employed to confirm the mineralogy 

of the pastes and to determine the chemically bounded water. Finally, the 

mechanical behavior of the mortars, as compressive strengths, was analyzed. 

Part of this work has been published in Clinkering and hydration of Belite-Alite-

Ye’elimite cement [118] and in Influence of Fly Ash blender on hydration and 

physical behavior of Belite-Alite-Ye’elimite cement [136] (see Annex I). 

3.1. Early-age behavior of fresh pastes  

The reduction of the w/c from 0.5 to 0.4 caused a dramatic loss of workability in 

pastes and mortars. To overcome that drawback and assure the preparation of 

homogeneous pastes and mortars at a low w/c ratio, it is essential the addition of 

the right amount (and type) of additive, viz. a superplasticizer (SP). It will improve 

the homogeneity of the cementitious systems due to the better dispersion of the 
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particles and, consequently will reduce their viscosity; consequently, pastes and 

mortars will develop higher performances.   

Figure 3.8 shows the flow curves of BAY pastes prepared at w/c ratios of 0.4 and 

0.5. The former contains a small amount of superplasticizer, 0.1 wt%, since it was 

too viscous to be prepared without it. This fact confirms the needing of the 

addition and optimization of the right amount of superplasticizer, mainly when the 

water is reduced. Both pastes of Figure 3.8 show a shear thinning behavior, 

where the paste with the lowest water content shows the highest viscosity values 

(i.e. 3.9 and 1.8 Pa·s for w/c 0.4 and 0.5, respectively, at 100 s-1, from the up-

curve), as expected. 

 
Figure 3.8. Flow curves of BAY pastes prepared at water/cement ratios of 0.4 

(with 0.1wt% superplasticizer) and 0.5 (without superplasticizer). 

Figure 3.9 shows the flow curves of BAY pastes prepared at a w/c of 0.4 and 

different SP contents. The down-curves of all those pastes of Figure 3.9 were 

adjusted to the Bingham model, Eq. 8, from 100 to 10 s-1 where  is the shear 

stress, is the yield stress, µ is the plastic viscosity, and 𝛾̇ corresponds to the 

shear rate. 
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Eq. 8     =      +   µ.𝛾̇ 

 

Figure 3.9. Flow curves of BAY pastes at w/c = 0.4 and different superplasticizer 
contents. Modified from [136]. 

Table 3.9 depicts the thixotropy values and both plastic viscosity and apparent 

yield stress values obtained from the Bingham fitting for the BAY pastes prepared 

at w/c=0.4 and different SP contents. In general, the yield stress is a 

consequence of the interparticle forces, so these links are often broken 

irreversibly by shear [137,138].  Here, the apparent yield stress values, obtained 

by extrapolation using the Bingham model [139],  are only shown for the sake of 

comparison. 
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Table 3.9. Rheological properties of the fresh BYA paste prepared at w/c=0.4 and 

different SP contents. 

SP 
(wt%) 

Apparent Yield Stress 
(Pa)  

Ƞplastic 
(Pa·s) 

Thixotropy 
(Pa/s) 

0.1 255.2 1.27 5324.0 
0.2 84.6 0.66 2205.0 
0.3 74.0 0.51 749.5 
0.4 10.4 0.26 53.0 
0.5 9.0 0.22 58.3 
0.6 7.7 0.20 157.0 
0.7 7.9 0.20 269.9 

  

Figure 3.10 shows the deflocculation curve of the pastes shown in Figure 3.9. 

The values were taken from the up-curves at the shear rate of 100 s-1. Here, up-

curves have been selected to compare up-curves and down-curves (through 

plastic viscosity). The inset corresponds to the same values but at different scale.  

In all cases (Figures 3.9, 3.10 and Table 3.9), by adding SP, the viscosity 

(apparent, shown in Figures 3.9 and 3.10, and plastic, shown in Table 3.9) of all 

pastes decreases to a minimum value, which corresponds to the optimum 

amount. From there, the viscosity of all pastes was kept constant or even 

increased. On the one hand, minimum values of viscosity were achieved when 

0.5 and 0.6 wt% of SP were added (Figure 3.10 and Table 3.9), being slightly 

lower for 0.6 wt% in both cases. However, the small difference in viscosity does 

not justify the extra-addition of additive; in addition, the paste with 0.5 wt% SP 

shows a lower thixotropic cycle (Table 3.9). Furthermore, the amount of 0.4 wt% 

SP was discarded since the viscosity of that paste is higher than the selected one 

(with 0.5 wt% SP), and a small variation in the addition of the additive would 

increase considerably the viscosity. On the other hand, the apparent yield point 

values decrease by increasing the SP content in the range of study. 
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Figure 3.10. Deflocculation curve of BAY pastes with w/c ratio of 0.4 and 
different SP content at the shear rate of 100 s-1. The inset corresponds to the 

same figure but at different scale. 

The hydration of the paste (and the properties of the corresponding mortar) 

prepared at a w/c 0.5 was firstly studied; since the viscosity of that paste was 

good enough to work with it, the effect of SP was not studied. However, as 

explained before, the paste prepared at a w/c of 0.4 needed SP to be prepared; 

because of that, both mineralogical and mechanical comparative studies of this 

paste/mortar was perforemed on with 0.5 wt% SP (and w/c=0.4). 

3.2. Mineralogical behavior of BAY pastes 

The RQPA results of BAY cement pastes with time (water-to-cement ratio of 0.4 

and 0.5, the former with SP) including both ACn (amorphous and crystalline non-

quantified) and free water (FW) contents, are shown in Table 3.10 ACn contents 

were derived as detailed in Materials and Methods Section. FW was calculated 

taking into account the added water and the combined water determined by TG-

DTG, according to Eq. 9. shows the mineralogical evolution vs time of BAY at a 

w/c of 0.4, as a representative example.  
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Eq. 9           𝐹𝑊 = %𝑊𝑎𝑡𝑒𝑟𝑎𝑑𝑑𝑒𝑑 −

𝐵𝑊𝐴𝑇𝐷∗%𝐶𝑒𝑚𝑒𝑛𝑡

100−𝐵𝑊𝐴𝑇𝐷
 

where        BWATD : stands for the mass loss up to 600 ºC from TG curves. 

 
Table 3.10. RQPA (wt%) for BAY pastes at w/c 0.4 (with SP) and w/c 0.5. Taken 

from [118]. Copyright (2017) with permission from Elsevier (Annex III). 

 
a. As clinotobermorite 
b. As monosulfoaluminate 

 

Phases 

 

w/c=0.4 w/c=0.5 

to 1d 7d 28d to 1d 7d 28d 

-C2S 29.5(3) 32.1(1) 33.1(2) 28.9(2) 27.6(3) 30.6(1) 29.0(2) 24.0(2) 

γ-C2S 0.8(1) 1.0(1) 1.3(1) 2.2(1) 0.8(1) 1.5(1) 1.5(1) 1.3(1) 

C4AF 2.6(1) 2.3(1) - - 2.4(1) 0.8(1) - - 

Cs 6.6(1) - - - 6.2(1) - - - 

C4A3s 5.0(1) 1.4(1) - - 4.7(1) 1.2(1) - - 

C3S 6.8(2) 2.6(1) 0.9(1) - 6.4(2) 2.1(1) 0.9(1) - 

C12A7 3.8(1) 2.0(1) - - 3.6(1) 1.1(1) - - 

F-ellestadite 2.2(2) 2.7(1) 2.6(1) 2.6(1) 2.1(2) 3.5(1) 2.6(1) 2.4(1) 

partiallyC-S-Ha - - 0.8(2) 1.1(2) - 0.4(2) 1.2(2) 1.6(2) 

AFmb - 0.4(1) 2.4(1) 3.0(1) - 0.9(1) 2.2(1) 3.0(1) 

AFt - 20.8(2) 16.0(2) 16.6(2) - 15.1(2) 10.2(2) 12.7(2) 

Katoite - - 2.4(2) 3.7(2) - 1.1(1) 1.8(1) 2.5(1) 

C2ASH8 - 1.2(1) 4.7(2) 5.0(2) - - 5.2(2) 5.3(2) 

ACn 14.0(2) 20.9(2) 26.1(2) 28.6(2) 13.1(2) 24.7(2) 29.4(2) 34.8(2) 

FW 28.6(-) 12.6(-) 9.7(-) 8.3(-) 33.3(-) 17.1(-) 16.0(-) 12.5(-) 
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Figure 3.11. LXRPD patterns of BAY pastes at a w/c ratio of 0.4 (with SP).  

The results show that C4A3s and anhydrite reacted quickly independently on 

water content, and use of SP, within the first 24 hours of hydration. Their reaction 

can produce ettringite (AFt) and/or monosulfoaluminate (AFm) associated with 

hydrated aluminum hydroxide (crystalline and/or amorphous). From Table 3.10 

and Figure 3.11, it can be observed that AFt and monosulfoaluminate were 

formed in both pastes. However, crystalline-AH3 (gibbsite) was not detected by 

LXRPD. The amorphous content formed from these cements should be 

composed mainly of amorphous-AH3. 

-Belite (-C2S) showed its typical hydration behavior, and only after 28 days, a 

small amount of this phase reacted with water. Alite was almost consumed after 7 

days of hydration. Both silicates react with water to form calcium silicate hydrate, 

C-S-H and portlandite (CH). C-S-H, known as C-S-H gel, is mainly amorphous, 

but partially-crystalline C-S-H was detected by LXRPD and quantified as 

clinotobermorite (with the approximate chemical composition of 

Ca5[Si3O8(OH)]2.4H2O [140,141]). The amorphous content of the hydrated 
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cements should be composed also for C-S-H gel. However, crystalline CH was 

not detected by LXRPD or TGA-DTG in these systems. Therefore, it is 

speculated that the portlandite has reacted to form AFt, AFm 

(monosulfoaluminate) and katoite, following Eq. 4., Eq. 10 and Eq. 6 respectively. 

Eq. 10.    C4A3s + 2Cs + 6CH + 10H→3C4AsH12 

Stratlingite (C2ASH8) and katoite (C3ASH4 or siliceous hydrogarnet) were other 

hydration products detected by LXRPD (Figure 3.11) Stratlingite is an AFm-type 

phase and comes from the hydration of silicates (C2S and/or C3S) in presence of 

AH3 [106,142]. In this specific case, C2ASH8 is obtained from the reaction of C3S 

with AH3. Katoite is a hydration product that can be formed by different reactions, 

shown in Eq. 6, Eq. 7 and Eq. 11. The results presented here suggest that part of 

katoite is produced from Eq. 11 by the reaction of alite with ferrite. Then, when 

ferrite is completely reacted, more katoite is formed from CH (Eq. 7). 

Eq. 11.   C3S  +  xC4AF  +  (8+3x)H     →     C3A1-xFxSH4  +  4CH  +  xAH3 

The katoite formed from Eq. 11 can present a significant amount of aluminum 

substituted by iron, as reported Alvarez-Pinazo et al [56]. The A/F ratio was 

estimated in katoite with general formula C3A1−xFxSH4, using the equation 

a=0.16x+12.29 [56]. being a the unit cell parameter. In these systems, x is ~0.7 

and ~0.5 for w/c ratios of 0.4 and 0.5, respectively. Taking into account these 

values of x, it can be said that ~80 wt% of the hydrated ferrite crystallized as 

katoite, in both systems. And, it speculates that the remaining 20 wt% of the 

ferrite has yielded amorphous/highly distorted AFm. 

Analyzing Table 3.10, it can be observed that only ~50 wt% of the dissolved 

silicates phases (C3S and C2S) have crystallized as C-S-H (quantified as 

clinotobermorite), stratlingite and katoite; and ~60 wt% of the dissolved 

aluminate-bearing phases (C4A3s, C12A7 and C4AF) have crystallized as AFt and 

monosulfoaluminate. As a result, ~50 wt% and 40 wt% of the silicate and 
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aluminate content, respectively should be as ACn phase(s). Its composition may 

be mainly C-S-H gel and aluminum hydroxide gel, as were detected by TG-DTG, 

Figure 3.12. 

Figure 3.12 shows TG-DTG plots of the evolution of BAY pastes with w/c=0.4 

(with SP) (Figure 3.12a) and w/c=0.5 (Figure 3.12b) ratios at all the studied ages. 

The presumed composition of the amorphous hydrated phases was checked 

through thermogravimetric technique. In all samples, three mass loss signals 

were observed. The first one, near to ~110 °C, it is due to the overlapped 

processes among the dehydration of C-S-H and the loss of 32 water molecules 

from ettringite [105,143,144]. The second group of signals was found between 

120 and 220 ºC, and it is associated to the dehydration of AFm-type phases. It is 

known that AFm-phases can be monosulfate, stratlingite and/or C4AHx (hydroxy-

AFm phase with x = 12 to 19 depending on relative humidity). According to 

Matschei et al.[109], AFm-type phases generally can form solid solutions, with a 

maximum of ~50 mol% OH- incorporated into the sulfate-AFm and ~3 mol% of 

SO42- incorporated into C4AHx. As can be seen in Figure 3.11, the AFm-type 

phases identified in these systems were monosulfate phase and stratlingite. As it 

has been mentioned, crystalline portlandite was not detected by TG-DTG 

(absence of a signal at ~450 ºC). This is in agreement with Winnefeld & Barlag 

[102], Trauchessec et al. [145] and Hargis et al. [103]. At early hydration hours, 

the formation of AFt it is favored [105,109] following Eq. 4. After calcium sulfate 

and ye’elimite reacted completely (24 h), portlandite (from the hydration of C3S), 

started to react with AH3 and AFt to produce AFm-type phases [72,103,145]. 

Monosulfoaluminate formed above 7 days should come from Eq. 5. The third 

signal located at ~270 ºC was associated to the dehydroxylation of amorphous 

aluminum hydroxide, in concordance to the absence of crystalline gibbsite in 

LXRPD patterns. 

 

 



56 Eco-cements containing Belite, Alite and Ye’elimite 
Hydration and mechanical properties 

 
(a)             w/c = 0.4 

  

(b)             w/c = 0.5 

  

Figure 3.12. Thermogravimetric plots of BAY cement pastes after 1, 7 and 28 
days of hydration. (a) w/c=0.4 and (b) w/c=0.5. Taken from [118]. Copyright 

(2017) with permission from Elsevier (Annex III). 

-0.15

-0.05

0.05

0.15

0.25

0.350

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

D
e

ri
v.

 W
e

ig
h

t,
 %

w
t/

o
C

W
e

ig
h

t,
 %

w
t

Temperature, oC

1 d 7 d 28 d

AFt + C-S-H

AH3

Stratlingite

AFm-type

-0.15

-0.05

0.05

0.15

0.25

0.350

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

D
e

ri
v.

 W
e

ig
h

t,
 %

w
t/

o
C

W
e

ig
h

t,
 %

w
t

Temperature, oC

1 d 7 d 28 d

AFt + C-S-H

AH3

Stratlingite

AFm-type



BAY cement hydration and mechanical behavior 57 

 

3.3. Compressive strength development of BAY 
mortars  

The compressive strength of BAY mortars at different curing ages is shown in 

Figure 3.13. The results of a non-active belite sulfoaluminate (BYF) mortar 

(prepared with anhydrite, as calcium sulfate source) [48] is also shown for the 

sake of comparison. The most important result is that all mortars prepared with 

the BAY cement developed higher compressive strengths than non-active BFY-

mortars [48], independently of the amount of w/c used. As expected, the 

compressive values in BAY-mortars increase by decreasing the water content 

and by increasing the curing time. BAY-mortar at a w/c of 0.4 at 1 day of 

hydration showed a higher compressive strength value than the same mortar 

prepared with w/c ratio of 0.5 after 3 days of hydration (~25.5 and ~21 MPa, 

respectively). After 28 curing days, BAY mortars reached a compressive strength 

of ~34.5 and ~26 MPa, at w/c of 0.4 and 0.5, respectively. All of this can be 

explicated for the good particles dispersion and low porosity reached with less 

water-to-cement ratio and use of optimal superplasticizer. 

The higher compressive strength values from BAY-mortars than BFY-mortars is 

correlated to the presence of alite, in spite of BAY cements has lower amount of 

ye’elemite (~10 wt%) in contrasts of BYF cements (~30 wt%). This is likely due to 

the higher AFt contents (resulting from C4A3s and C12A7 hydration) present at any 

age, combined with the higher density related to the lower water content and 

presence of C-S-H gel phase. 
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Figure 3.13. Compressive strengths of BAY cements as a function of w/c ratio 

and time. Non-active BYF is presented for comparison [48].Taken from [118]. 

Copyright (2017) with permission from Elsevier (Annex III) 

3.4. Summary  

BAY with water-to-cement ratio of 0.5 showed a low viscosity, implying a fine 

workability and dispersion of the particles. When the w/c ratio was reduced to 0.4, 

the viscosity significantly increased, avoiding the preparation of homogeneous 

pastes (Figure 3.8). To overcome this drawback, a rheological study of the effect 

of the addition of polycarboxylate-based superplasticizer was performed with the 

conclusion that the optimum amount of the additive for pastes prepared at w/c 

ratio of 0.4 was 0.5 wt% SP. 

In a second step, the mineralogical evolution of BAY pastes was analyzed by 

LXRPD and TG-DTG. Independently of the water-to-cement ratio used, the main 

hydration phases obtained were AFt, AFm-type phases (as monosulfoaluminate 
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and stratlingite) and katoite (as siliceous hydrogarnet). Ill-crystalline C-S-H gel 

was also detected in minor quantities. Amorphous aluminum hydroxide was 

quantified by the internal standard methodology, combining LXRPD and TG-DTG. 

Crystalline portlandite was not detected in the pastes likely due to the early 

formation of AFt, katoite, stratlingite and late monosulfoaluminate. 

Finally, the mechanical strengths development was studied through a 

compressive test. BAY mortars (w/c=0.5) developed higher compressive 

strengths than non-active BYF mortars (w/c=0.55), at any hydration time (i.e. 

24.8 and 17.1 MPa respectively, at 7 days). These values have been improved 

(up to 29.9 MPa at 7 days) by decreasing the water content (w/c ratio of 0.4) and 

the addition of superplasticizer. Later, after 28 days of curing, BAY mortars 

reached ~34.5 and ~26 MPa for samples prepared at the w/c ratio of 0.4 and 0.5, 

respectively. 

All these results have allowed to fulfill part the specific objective of understanding 

of effect of w/c ratio on the hydration mechanism and compressive strength of 

BAY. 

 

 

 





 

 
 

4. Pure phase hydration study 

In this chapter, a study on different mixtures of pure phases (alite, ye’elimite and 

anhydrite) is presented to firstly unravel their hydration kinetics, and secondly, to 

be compared with the BAY cement behavior. Eight mixtures of pure phases 

(Materials and Methods Section) with different alite/ye’elimite and water-to-solid 

ratios were prepared, and the details are given in Table 4.11. The w/s ratio of 

0.66 and 0.59 correspond to the stoichiometric amount of water with 10 wt% of 

excess for n137 and n274 respectively, according to Eq. 1 (Introduction section). 

The w/s values of 1.32 and 1.19 are the double of the previous values to study 

the effect of large water excess on hydration mechanisms. The pastes were 

studied through both in-situ and ex-situ X-Ray Powder Diffraction (XRPD). The 

in-situ hydration study was carried out by Synchrotron XRPD (SXRPD) and 

isothermal calorimetry during the first 48 hours. Moreover, a SXRPD pattern at 7 

days of hydration was also collected. The ACn contents were determined by 

internal standard methodology [122]. The ex-situ study was carried out by 

Laboratory XRPD (LXRPD) to calculate the full mineralogical composition by 

Rietveld refinements and ACn contents by the internal standard method 

[122,146]. TG-DTG was used to calculate the free water content (see Chapter 

BAY cement hydration and mechanical behavior section 3.2), and o137_132 and 

c137_132 samples were also studied through Nuclear Magnetic Resonance 

(NMR) at 7 days of hydration. These results will be submitted for publication soon 

[147]. 
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Table 4.11. Pure phase mixture compositions, in weight percentages (wt%). 

Mixture 
nomenclature o-C4A3s c-C4A3s Cs C3S C3S/C4A3s w/s 

o137_0.66 35.5 - 15.9 48.6 1.37 0.66 
o137_1.32 35.5 - 15.9 48.6 1.37 1.32 
o274_0.59 23.9 - 10.7 65.4 2.74 0.59 
o274_1.19 23.9 - 10.7 65.4 2.74 1.19 
c137_0.66 - 35.5 15.9 48.6 1.37 0.66 
c137_1.32 - 35.5 15.9 48.6 1.37 1.32 
c274_0.59 - 23.9 10.7 65.4 2.74 0.59 
c274_1.19 - 23.9 10.7 65.4 2.74 1.19 

4.1. In-Situ SXRPD hydration study  

Figure 4.14 shows the particle size distribution (PSD) of the pure phases used in 

this study. Most of them show a bimodal behavior, with peaks centered at 1-2 μm 

and 10-30 μm. The values of Dv,50 are also presented in the Figure 4.14. Particle 

size distribution of C4A3s (pseudocubic and orthorhombic), Cs and C3S 

powders., where all of them are between 5.6 and 14 μm; the smallest value 

corresponds to c-C4A3s (with a polydisperse behavior), and the largest one to 

C3S. 

The effect of w/s ratio, ye’elimite polymorphism and the amount of alite jointly 

with anhydrite were studied during the hydration. Figure 4.15 depicts the raw 

SXRPD patterns at different times of hydration of c137_132 mixtures. Figure 4.16 

shows Rietveld plots of c137_132 and o137_132 mixtures after 24 hours of 

hydration, as representative examples.  
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Figure 4.14. Particle size distribution of C4A3s (pseudocubic and orthorhombic), 

Cs and C3S powders. 

 
Figure 4.15. In-situ SXRPD hydration evolution of c137_132. 1 (stratlingite), 2 
(ettringite), 3 (Quartz as internal standard), 4 (alite), 5 (pseudocubic ye’elimite) 

and 6 (anhydrite). 
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Figure 4.16. Rietveld plots of (a) c137_132 and (b) o137_132 at 24 hours of 

hydration. 1 (stratlingite), 2 (ettringite), 3 (Quartz as internal standard), 4 (alite) 
and 7 (monosulfoaluminate). 

(a)

(b)

2

2

2

3

32
2

2

2

4

4
4

4
3

2

2

2
2

3

3

22

2
2

4
4

4

4

3

3
1 1

1

7

2
7

2

1



Pure phase hydration study 65 

 
Tables A1 to A8 (see Annex II) give RQPA including the ACn and free water 

(FW) contents determined by internal standard methodology. Figure 4.17 shows 

full phase content evolution of c137 and o137 at different w/s ratios, where heat 

flow curves are also included. Figure 4.18 provides the full phase content 

evolution and heat flow curves of c274 and o274 at different w/s ratios. From all 

these Figures, two phenomena can be clearly described. Firstly, the reaction 

kinetics of polymorphs of ye’elimite were totally different in presence of anhydrite 

(as a calcium sulfate source) and alite. Orthorhombic ye’elimite, independently of 

w/s and alite/ye’elimite ratios, reacted faster than pseudocubic ye’elimite, even 

when it shows a bigger average particle size; i.e. it completely reacts at ~10 

hours while pseudocubic ye’elimite needs ~20 hours in all the compositions. This 

is in agreement with Cuesta et al [101] and Jansen et al [148]. Secondly, alite did 

not start to react until ye’elimite was completely consumed, independently of the 

polymorphism. The main crystalline hydration products of these systems were 

AFt, monosulfoaluminate and stratlingite. Moreover, the phase assemblage was 

not strongly affected by water-to-solid ratio or polymorphism of ye’elimite. 

The calorimetric curves, Figure 4.17 and Figure 4.18 (black line), present a 

strong peak within the first 25 minutes (0.4 hours) since mixing, known as the 

induction period. This peak is clearly associated with the dissolution (heat of 

wetting of the cement), and hydration of ye’elimite to form ettringite (purple 

asterisk) [101,148]. The hydration of orthorhombic and pseudocubic ye’elimite 

was published elsewhere [101] and the total heat evolved after 7 days was ~570 

and ~550 J/g, respectively. The higher amount of heat released by the samples 

with the orthorhombic polymorph at 25 minutes corroborates the quicker reactivity 

of that phase when compared with the samples pseudocubic polymorph in spite 

of the amount of water and the amount of alite. Table 4.12 gives the degree of 

reaction of ye’elimite calculated from the calorimetric data, considering that it has 

reacted with water at 25 minutes. 
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Figure 4.17. Heat flow and mineralogical in-situ hydration evolution of (a and c) 
c137 and (b and d) o137. In each plot, the left-hand vertical axis shows the rate 

of heat release, and the right-hand vertical axis shows the weight percent amount 
of the phases. Black line: Heat flow, blue diamond: C4A3s, yellow triangle: Cs, red 

square: C3S, purple asterisk: AFt, light blue circle: AFm and green cruise: 
C2ASH8. 

Table 4.12. Degree of reaction of ye’elimite in all the samples calculated from 
calorimetric data at 25 minutes (0.4 hours). 

Samples  w/s ratio  Degree of reaction 
α0.4h,%  

c137  
0.66  0.8  
1.32  1.0  

o137  
0.66  1.4  
1.32  1.8 

c274  
0.59  0.8 
1.19  0.9  

o274  
0.59  1.3  
1.19  1.5 
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Figure 4.18. Heat flow and mineralogical in-situ hydration evolution of (a and c) 
c274 and (b and d) o274. In each plot, the left-hand vertical axis shows the rate 

of heat release, and the right-hand vertical axis shows the weight percent amount 
of the phases. Black line: Heat flow, blue diamond: C4A3s, yellow triangle: Cs, red 

square: C3S, purple asterisk: AFt, light blue circle: AFm and green cruise: 
C2ASH8. 

 

The degree of reaction of ye’elimite determined by RQPA is given in Table 4.13. 

It is worth to highlight that the degree of reaction of ye’elimite at 25 minutes is 

much prone to errors due to the low variation in percentages. Consequently, it 

has not been calculated.The degree of reaction of orthorhombic ye’elimite in all 

the mixtures is higher than that of pseudocubic after 5 hours of hydration, 

confirming the slower pace of hydration of the latter. It is important to highlight 

that during the induction period, small amounts of ettringite were precipitated 

0

5

10

15

20

25

30

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 5 10 15 20 25 30 35 40 45 50

W
t%

H
e

a
t 

fl
o

w
, 

W
/
g

Time, h

Heat Flow C4A3S CS C3S Aft AFm Stratlingite

0

5

10

15

20

25

30

35

40

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 5 10 15 20 25 30 35 40 45 50

W
t,

 %

H
e

a
t 

fl
o

w
, 

W
/g

Time, h

Heat Flow C4A3S CS C3S Aft AFm Stratlingite

0

5

10

15

20

25

30

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 5 10 15 20 25 30 35 40 45 50

W
t,

 %

H
e

a
t 

F
lo

w
, 

W
/g

Time, h

Heat Flow C4A3S C3S CS Aft Stratlingite

(a)    c274_059 (b)    o274_059

(c)    c274_119 (d)    o274_119

0

5

10

15

20

25

30

35

40

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 5 10 15 20 25 30 35 40 45 50

W
t,

 %

H
e

a
t 

F
lo

w
, 

W
/g

Time, h
Heat Flow C4A3S CS Aft C3S stratlingite



68 Eco-cements containing Belite, Alite and Ye’elimite 
Hydration and mechanical properties 

 
without the dissolution of anhydrite, as previously published [101,148,149]. After 

that period at around 1.5 and 5 h for o137 and c137, respectively, a fast 

formation of ettringite jointly with dissolution of ye'elimite and anhydrite was 

detected. 

Table 4.13. Degree of reaction (%) of ye’elimite in each mixture at selected times 
calculated from RQPA. 

Samples  w/s ratio  α1.5h  α5h α10h  α18h  α48h  

c137  
0.66 6.7 21.4 41.1 66.6 100 
1.32 8.3 32.9 84.2 100 100 

o137  
0.66 4.3 78.6 98.1 100 100 
1.32 15.9 95.8 100 100 100 

c274  
0.59 6.9 24.6 69.1 99.1 100 
1.19 8.4 38.3 89.5 100 100 

o274  
0.59 11.6 47.4 93.2 100 100 
1.19 16.8 86 100 100 100 

 

Figure 4.19 show (a) the cumulative heat and (b) the heat flow for o137 and c137 

mixtures. A broad signal of heat flow between 5 to 25 hours (Figure 4.17a and 

Figure 4.17c) and a sharp peak between 0.5 and 10 hours (Figure 4.17b and 

Figure 4.17d) were detected from hydration of c137 and o137, respectively. The 

total heat at 10 h of hydration was ~150 J/g and ~300 J/g, for pseudocubic and 

orthorhombic bearing mixtures, respectively, showing again the slower hydration 

kinetic of mixtures with pseudocubic ye’elimite.  

In addition, the calculated total heat from RQPA was estimated by considering 

the total heat flow evolved for pure phases. Orthorhombic-C4A3s and 

pseudocubic-C4A3s, according to Eq. 1 (Introduction Section), would release 

~575 and ~550 J/g [101], respectively. Moreover, alite releases 517 J/g [4], 

according to Eq. 12. Figure 4.20 shows both the experimental (calorimetry) and 

calculated (XRPD) total heat (cumulative), where the similarity is reasonably 

satisfactory. 
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Eq. 12.          C3S   +   H      →      Cx-S-Hy   +   CH 

where both x and y may vary over a wide range. 

 

 
Figure 4.19. a) Total heat (cumulative) and b) heat flow curves of c137 and o137. 

The insets of the Figures (left side) correspond to the first minutes of hydration 
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Figure 4.20. Comparison between measured (blue solid line) and calculated with 
RQPA results (red dash line) of heat for c137 and o137 mixtures at different 

water/solid ratios. 

In o137 mixtures, some amounts of AFm-type phases (as monosulfoaluminate 

and stratlingite) also crystallized at early age (4 and 2 hours of hydration for w/s 

of 0.66 and 1.32, respectively), Figure 4.17. As reported by Winnefeld & Barlag 

[144] and Cuesta et al [101], the slow dissolution of anhydrite releases very little 

sulfate ions to the pore solution (unsaturated pore solution), favoring the 

formation of monosulfoaluminate, instead of ettringite. The amount of AFt in c137 

mixtures was higher than in o137 samples at any time due to the formation of 

monosulfoaluminate in the latter mixtures.  

The stratlingite comes from the amorphous aluminum hydroxide and partial 

dissolution of alite (Eq. 13), starting its precipitation close to 4 h in o137 mixtures. 

Furthermore, in c137 mixtures, the stratlingite formation started at 18 h when the 

mayor dissolution of alite occurs. Monosulfoaluminate was not observed at any 
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time as a consequence of the slow dissolution pace of both pseudocubic 

ye’elimite and anhydrite.  

Eq. 13        C3S  +  AH3   +   6H     →     C2ASH8   +   CH 

In general, the formation of stratlingite was observed in heat flow curves as a 

hump at ~8 and ~18 hours of hydration, for o137 and c137, respectively (Figure 

4.17). The formation of stratlingite was enhanced by the rapid dissolution of 

orthorhombic ye’elimite, releasing amorphous aluminum hydroxide that moves 

the equilibrium to the right in Eq. 13. In both systems (c137 and o137), the 

increase of w/s ratio favored the dissolution and reactivity of C3S and C4A3s, 

Table 4.13. When w/s ratio raised from 0.66 to 1.32, the degree of reaction of 

C4A3s increased significantly, allowing the C3S to start reacting. However, the 

total heat after 48 hours of hydration of these samples, independently of the w/s 

used, was ~300 J/g and ~350 J/g, for c137 and o137, respectively, Figure 4.19a.  

Figure A1 and Figure A2 (see Annex II) show the RQPA (in-situ SXRPD) of 

mixtures with 1.37 and 2.74 alite/ye’elimite ratios, respectively, where ACn and 

free water contents are included, as well as the RQPA at 7 days (from the in-situ 

SXRPD study). The main hydrated phases from C3S were stratlingite and C-S-H 

gel. The latter was quantified as part of ACn. 

Samples c274 and o274 showed the same mineralogical phase assemblage and 

same tendency exhibited by the previous detailed samples, where. orthorhombic 

ye’elimite reacts much faster than pseudocubic form, Figure 4.18. Figure 4.21 

shows total heat and heat flow curves for c274 and o274 at different w/s ratios. At 

15 h, when both ye’elimites have completely reacted, Table 4.12 and Table 4.13, 

and the total heat released for c274 and o274 were ~70 and ~200 J/g, 

respectively. 
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Figure 4.21. a) Total heat (cumulative) and b) heat flow curves of c274 and o274. 

The insets of the figures (left side) correspond to the first minutes of hydration 
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peak around at 4 h, Figure 4.18 and Figure A2 (Annex II) The raise of water/solid 

ratio from 0.59 to 1.19 did not affected the mixtures with orthorhombic ye’elimite. 

However, in the mixture with the pseudocubic form, both alite dissolution and 

precipitation of stratlingite are enhanced, were larger amounts of stratlingite were 

precipitated. This may be justify by the availability of water. 

The mineralogical composition of all samples at 7 hydration days (168 hours) is 

given in Table 4.14. Analyzing Table 4.14, Tables A1-A8 (Annex II) and Figures 

A1-A2 (Annex II), it can be observed that the amount of AFt slightly decreases 

and monosulfoaluminate was formed (Eq. 5) due to the rich siliceous 

environment caused by the dissolution of C3S and formation of C-S-H, as 

reported by Trauchessec et al [145] and Chitvoranund et al [72]. A similar effect 

was observed in samples of BAY cements [74,118], where a high amount of C3S 

and C2S were reacting.  

Table 4.14. Mineralogical composition in weight (wt%) at 7 days (168 hours) of 
in-situ SXRPD hydration study. 

 *Also 1.3(1) of C-S-H as clinotobermorite. 

It is noticeable that crystalline portlandite and gibbsite were not detected in the 

first 48 h of hydration in any system (c137, o137, c274 and o274). The lack of 

precipitation of CH was expected and it is associated to the enhanced hydration 

of C4A3s that favors the early-AFt formation [102,103,150]. Moreover, the lack of 

Sample c137 o137 c274 o274
w/s ratio 0.66 1.32 0.66 1.32* 0.59 1.19 0.59 1.19

Phases
AFt 32.7(1) 24.4(1) 21.5(1) 11.0(3) 25.6(2) 15.1(1) 15.3(2) 9.2(3) 
AFm 0.7(2) 0.5(1) 15.7(2) 18.3(2) - 5.4(2) 14.7(3) 9.7(4) 

Stratlingite 8.2(3) 9.8(2) 9.9(4) 3.2(5) 6.2(6) 6.7(3) 7.1(5) 5.3(5) 
C3S 14.3(4) 7.9(3) 15.4(3) 1.2(2) 27.7(4) 14.0(5) 20.2(4) 1.2(3) 

Hemicarbonate 0.1(1) 1.3(1) - 1.9(2) 0.7(1) 1.4(1) - 2.0(1) 
Cs 1.4(1) - 1.3(1) - 0.2(2) - 0.3(1) -
CH - - - - - 0.6(1) - 3.6(1) 

ACn + FW 42.6(1) 56.0(1) 36.2(1) 62.9(1) 39.7(1) 56.7(1) 42.4(1) 68.9(1) 
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crystalline AH3 is associated with the formation of stratlingite (Eq. 13) [105,151]. 

A small amount of crystalline portlandite was detected, only after 7 days of 

hydration in the in-situ study, in the samples c274 and o274 prepared at a w/s 

ratio of 1.19, see Table 4.14. This is correlated with the higher amounts of C3S 

and water that favors the formation of C-S-H (as a gel) and CH. As previously 

discussed, pseudocubic ye'elimite mixtures produced higher amounts of ettringite 

than orthorhombic ye'elimite samples, under similar hydrating conditions. This is 

due to orthorhombic ye’elimite presents a higher kinetic of hydration than 

pseudocubic ye’elimite, consequently when orthorhombic ye’elimite reacts with 

the anhydrite slow disolved, favors the joinly formation of AFt and 

monosulfoaluminate 

  

Table 4.15 shows the degree of hydration of alite in all samples; as mentioned 

before, by increasing the water-to-solid ratio to double (from 0.66 and 0.59  to 

1.32 and 1.19, respectively), the hydration of alite was favored, achieving up to 

95% of hydration degree and an increment on the ACn content, see Table 4.14,  

Tables A1-A8 (Annex II) and Figures A1-A2 (Annex II). 

Table 4.15. Hydration degree of alite at 24, 48 hours, and 7 days from RPQA 
. 

Samples w/s ratio α 24h,% α 48h,% α7d,% 

c137 0.66 20 29 39 
1.32 20 32 58 

o137 0.66 22 32 46 
1.32 25 47 92 

c274 0.59 12 18 27 
1.19 11 20 49 

o274 
0.59 11 25 46 
1.19 13 28 95 

 

These results indicate that alite reactivity is clearly influenced by the kinetics of 

reaction of ye’elimite. Stratlingite formation only occurred during the first 48 h, 

later it was not seen significant precipitation increase, see Tables A1 to A8 in the 
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Annex II. The change of C3S/C4A3s ratio from 1.37 to 2.74 favors the AFt 

degradation to monosulfoaluminate, at 7 days. These systems of samples 

showed a high competition between the hydration of ye’elimite, anhydrite and 

alite. Due to slower hydration of pseudocubic ye’elimite and anhydrite, the alite 

hydration is retarded and permitted the stabilization and high precipitation of AFt. 

While the high hydration kinetic of orthorhombic ye’elimite with the slow 

dissolution of anhydrite, promoted the monosulfoaluminate formation (due to the 

lack of sulfate in the environment), likewise dissolution of alite at early age giving 

stratlingite and amorphous C-S-H. Owing the increment of C3S/C4A3s ratio from 

1.37 to 2.74, the cumulative heat flows decreased in ~120 and ~100 J/g for the 

samples with orthorhombic and pseudocubic ye’elimite respectively. 

4.2. Ex-Situ hydration study  

For the sake of comparison, two selected samples were hydrated during 7 days 

by ex-situ technique (LXRPD) as detailed in the Chapter 1 Materials and 

Methods. The selected samples were c137_132 and o137_132. These samples 

(after stopping the hydration) were characterized by LXRPD, TG-DTG and 29Al 

and 27Si NMR. Table 4.16 shows the comparative of mineralogical content of 

those samples at 7 days by in-situ and ex-situ hydration methodologies. 

Comparing the results, it is clear that the same products of hydration were 

formed, but the methodology of preparation affected their percentage [142]. 

Furthermore, it has to be highlighted that not only the hydration methodology 

affects; the use of quartz as internal standard (added to anhydrous samples) 

enhanced the reactivity of all phases in the in-situ hydration study, giving higher 

amorphous contents and AFm in the case of o137_132. For example, 19.5(4) 

wt% of Aft were detected in o137_132 by ex-situ method, and by in-situ method 

11.0(3) and 18.3(2) wt% of AFt and AFm were quantified, respectively. 

Stratlingite precipitation was improved when ex-situ hydration was used, given 

20.5(7) and 12.5(8) wt% in o137_132 and c137_132 respectively.  
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Table 4.16. Comparative mineralogical composition of c137_132 and o137_132 

at 0 and 7 days 

Phases 
o137_132 

t = 0h in-situ ex-situ 
C4A3s 13.8 (1) - - 

Cs 6.8 (1) - - 
C3S 17.9 (4) 1.2(2) 4.0(3) 
AFt - 11.0(3) 19.5(4) 

AFm - 18.3(2) 1.4(1) 
C2ASH8 - 3.2(5) 20.5(7) 

HemiCO3* - 1.9(2) 2.2(2) 
C-S-H** - 1.3(1) 2.2(2) 
ACn+FW 4.6(1)+56.9a=61.5 62.9(2) 21.8(2)+28.5b=50.3 

 c137_132 
 t = 0h in-situ ex-situ 

C4A3s 15.5 (1) - - 
Cs 6.8 (1) - - 
C3S 18.9 (3) 7.9(3) 11.0(3) 
AFt - 24.4(1) 23.7(4) 

AFm - 0.5(1) 0.9(1) 
C2ASH8 - 9.8(2) 12.5(8) 

HemiCO3* - 1.3(1) 1.2(1) 
ACn+FW 1.9(1)+56.9a=58.8 56.0(1) 17.1(2)+33.5b=50.7 

*HemiCO3 as hemicarbonate (AFm) 
** C-S-H as clinotobermorite 
a. Theoretical free water content 
b. Free water calculated from TG-DTG analysis 

Figure 4.22 shows the thermogravimetric curves of c137_132 and o137_132 at 7 

days after ex-situ hydration and stopping procedure. The first mass loss observed 

between 50 and 130 °C is assigned to dehydration of ettringite and C-S-H 

[105,118,143,144]. Its individual identification and quantification for a 

comparative analysis with RQPA results was no possible due to their 

overlapping. A second mass loss region between 130 and 220 °C is assigned to 

dehydration of AFm-type phases [48,118,144]. AFm-type phases in these 

samples, according with the results of LXRPD (Table 4.14), were considered as 
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monosulfoaluminate and stratlingite. Being the mass loss signal centered on 

~180 ºC corresponds to the dehydration of stratlingite (marked as an asterisk in 

Figure 4.22) [56,118,152,153]. The mass loss from between 230 and 320 °C is 

related to the dehydroxilation of aluminum hydroxide [118,144,154]. This 

aluminum hydroxide obviously is amorphous since it was not detected in LXRPD 

(see Table 4.14). Nevertheless, portlandite was not identified by TG-DTG, as 

expected, which presents a typical dehydroxilation loss around 450 ºC 

[153,155,156]. This confirms that CH favors the early formation of AFt (Eq. 4) 

[105,109,150] and later reacts with AH3 and AFt to produce AFm-type phases 

(Eq. 5) [72,103,145]. The total mass loss associated with bonded water (from 

room temperature up to 600 ºC) for c137_132 and o137_132 were ~35.1 and 

~39.7 wt% respectively, while the mass loss associated with decarbonation 

process were ~0.9 and ~1.3 wt%, respectively. These values are in agreement 

with the results from LXRPD (Table 4.14). 

 
Figure 4.22. TG-DTG of c137_132 and o137_132 at 7 curing days.  

* Stratlingite as AFm-type phase 
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Figure 4.23 and Figure 4.24 gives 27Al and 29Si MAS-NMR spectra and the 

deconvolution signals of c137_132 and o137_132 at 7 days of hydration, 

respectively. Table 4.17 presents a summary of the mineralogical content 

detected by NMR spectra and their related composition. In a general view, 27Si 

NMR spectrum (left side of Figure 4.23) presents two wide regions: one between 

-67 to -76 ppm related to Q0 (isolated SiO4 tetrahedron) of anhydrous alite [157–

159], and another one between -77 to -90 ppm associated with Qn (n = 1, 2 or 3, 

refers to the number of tetrahedrons linked by oxygen bonds to the previous 

tetrahedron [159]) of C-S-H and Q2 of stratlingite [157–162]. 29Al NMR spectrum 

(right side of Figure 4.23) shows a small peak at 61.4 ppm (mark as asterisk in 

Figure 4.23) attributed to tetrahedrally (AlIV) coordinated aluminum of stratlingite 

[142,161]; two intense signals around 13 ppm are related to AFt and between 

11.8 to 8 ppm are associated with AlVI in AFm-type phases and amorphous AH3 

[98,148,161,163–168]. 

 

  
 

Figure 4.23. 27Si HPDEC (left) and 29Al One pulse (right) MAS-NMR spectra of 
stopped-pastes of c137_132 (blue) and o137_132 (red) at 7 curing days. 

*Stratlingite signal (AlIV). 
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Figure 4.24. Deconvolution of 27Si (left) and 29Al (right) MAS-NMR spectra of (a) 

c137_132 and (b) o137_132 at 7 days of hydration. Each spectrum includes 
experimental (dots)) and its deconvoluted spectrum (red line) with individual 

contribution from each sites. 

 

Table 4.17. Relative area percentages (%) from deconvolution of 29Si and 27Al 
MAS-NMR spectra of c137_132 and o137_132 pastes 

Samples 
29Si MAS-NMR 27Al MAS-NMR 

C3S C2ASH8 C-S-H AFt AFm AH3 C2ASH8 

c137_132 70.6 23.4 6.0 70.9 2.6 5.1 21.4 

o137_132 23.3 11.5 52.1 64.0 2.6 4.9 28.6 
 

For c137_132, six chemical shifts were observed by 27Si HPDEC-MAS-NMR and 

their related positions are presented in the left side of Figure 4.24a. Peaks at 

around -70.0, -71.5, -73.5 ppm were related to Q0 of alite [157–159]. Peaks 
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detected at around -79.0, -82.2 and -86.6 were correlated to Q1 of C-S-H [157–

159,162,169], and Q2(2Al) and Q2 of stratlingite [161,163,165], respectively. Eight 

chemical shifts were observed for o137_132 by the same technical 

characterization (27Si HPDEC-NMR). Their related positions are deconvoluted in 

the left side of Figure 4.24b. Q0 species of alite were also found at -70.0, -71.5, -

73.5 ppm. Q1, Q2 and Q3 species of C-S-H were found at -79.0, -84.0 and -89.8 

ppm, respectively [157–159]. Q3 indicates a more densely cross-linked silicate 

network in C-S-H with lower Ca/Si ratios [157,169]. In addition, Q2(2Al) and Q2 

species of stratlingite were detected at around -82.2 and -86.6 ppm respectively. 

From Table 4.17 it can be observed that c137_132 and o137_132 samples 

presented a non-hydrated alite relative content of 71 and 23% (relative area 

percentage), respectively. These values are in agreement with the results of 

LXRPD (Table 4.16), where non-hydrated alite represents a 58.2 and 22.3 % of 

total C3S in the samples c137_132 and o137_132, respectively. Moreover, the 

amount of amorphous C-S-H gel determined by MAS-NMR study is ~6 and 52% 

(relative area percentage), Table 4.17, for c137_132 and o137_132, respectively. 

From this last result, the peak centered on ~110 ºC in TG-DTG (Figure 4.22) is 

mainly to the decomposition of AFt in c137_132, while in o137_132 may be due 

to the latter but also to the decomposition of amorphous C-S-H gel. The MAS-

NMR study has unraveled that, for the same w/c ratio, the reaction of alite is 

strongly influenced by the chemical environment. In the orthorhombic ye’elimite 

sample, the formation of jointly AFm with AFt reduces the amount of amorphous 

AH3. This fact has a strong effect in the hydration products from alite being 

amorphous C-S-H gel formation clearly favored, instead of stratlingite, Table 

4.17. In terms of mechanical strengths, this mixture should develop higher 

mechanical strengths. 

Four chemical shifts were identified in 29Al One pulse MAS-NMR spectra (right 

side of Figure 4.24), in both samples. Their relative position and contributions are 

presented in Figure 4.24 and Table 4.17 respectively. A narrow signal at 13.0 

ppm was assigned to ettringite [98,164–166] and broader signals at 11.5, 10.7 
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and 9.7 ppm correspond to AFm, AH3 and octahedrally coordinated aluminum 

(AlVI) of stratlingite, respectively [98,142,161,164,167]. From Table 4.17, AFt 

presented the main differences of areas between c137_132 and o137_132. In 

c137_132 corresponds to 71%, while in o137_132 corresponds to 64% (relative 

area percentage). These results are in agreement with LXRPD results, where 

c137_132 produces more ettringite than o137_132, Table 4.16. Additionally, the 

relative content of stratlingite was 21 and 29% for c137_132 and o137_132, 

respectively, in agreement with LXRPD and TG-DTG results. 

4.3. Summary  

On the basis of the study performed in this chapter the following conclusions can 

be drawn:  

1) C3S hydration was influenced by the kinetic of ye'elimite dissolution and 

reaction, and it began to react after ye’elimite reacted completely. In mixtures 

with orthorhombic and pseudocubic ye’elimite, alite depletion started after 10 and 

20 hours respectively, since orthorhombic ye’elimite reacts faster than the 

pseudocubic polymorph. The main products from alite reaction were stratlingite 

and amorphous C-S-H gel. The formation of calcium hydroxide (as portlandite or 

amorphous) was not detected, as expected. The w/s ratio also affected the 

kinetic of hydration of alite. The mixtures with orthorhombic ye’elimite and higher 

w/s ratio presented, after 7 days, a higher hydration degree. Consecuently, 

higher amounts of C-S-H and stratlingite were obtained. The mixtures with 

pseudocubic ye’elimite, even after 7 days of hydration, presented high amounts 

of non-reacted C3S. Moreover, the main hydration product from the reaction of 

alite is stratlingite, while in the orthorhombic ye’elimite sample, the main phase is 

amorphous C-S-H gel. 

2) By calorimety, the hidration of both system is characterized by an initial period 

and induction period, followed by a maxima signals associated with the main 

hydration. In mixtures with pseudocubic ye’elimite the maxima signal was 
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displayed as a wide maxima signal, due to the retarded hydration of this 

ye’elimite. However, this effect favors the stability and amount of ettringite. The 

maxima signal in mixtures with orthorhombic ye’elimite was exhibited as a narrow 

peak associated with the quick precipitation of AFt, favoring the jointly formation 

of AFm (as monosulfoaluminate).  

The results obtained in this chapter can be compared with those of BAY-cement 

pastes (Chapter 3 BAY cement hydration and mechanical behavior), and here, 

many hypotheses have been clarified. The dependence of C3S hydration on the 

kinetic of hydration of ye’elimite justifies the presence of alite in BAY-pastes 

systems after 7 days of hydration. In those systems, the main hydration product 

of alite reactivity is stratlingite followed by C-S-H gel. Calcium hydroxide is not 

precipitated from C3S, due to the formation of AFt at early ages and AFm-type 

phases at later ages. Katoite phase was not detected in the mixtures studied in 

this chapter. Consequently, in the BAY-pastes katoite should come from the 

hydration of C2S and the joint reaction between C3S and C4AF. 

 

All these results have allowed to fulfill the specific objective of understanding of 

effect of w/c ratio and alite/ye’elimite ratio on the hydration mechanism on alite-

ye’elimite systems and permitted correlate these results with the hydration 

behavior of BAY.  

 

 

 

 



 

 
 

5. Influence of Fly Ash addition on 
BAY cement hydration and 
properties 

 

This chapter presents a study of the effect of class F - fly ash (FA) on the 

mineralogical and mechanical behavior of the laboratory prepared BAY cement. 

This study was carried out on pastes and mortars of FA#BAY samples (where # 

corresponds to 0, 15 and 30 wt% of FA referred to the total solid content) at the 

constant water-to-cement ratio of 0.4. FA#BAY mixtures presented a trimodal 

particle size distribution, where their Dv50 and Dv90 increased with the presence of 

FA. That is due to the larger size of fly ash compared with BAY-cement (Figure 

5.25). The blended FA#BAY pastes and mortars were studied up to 180 days of 

hydration. Moreover, FA0BAY and FA30BAY cements were selected to be also 

hydrated at a w/c of 0.57, with the aim of understanding the w/c effect (the latter 

corresponds a w/s of 0.40). The potential pozzolanic effect was analyzed by 

RQPA, isothermal calorimetry, thermogravimetric analysis, mercury intrusion 

porosimetry (MIP) and MAS-NMR spectroscopy in FA#BAY pastes and 

compressive strength measurements in FA#BAY mortars. The effect of the FA on 

the fresh pastes and the optimization of the superplasticizer content was studied 

through rheological measurements. Part of this work has been published in 

Influence of Fly Ash blending on hydration and physical behavior of Belite-Alite-

Ye’elimite cement [136]. 



84 Eco-cements containing Belite, Alite and Ye’elimite 
Hydration and mechanical properties 

 

 

Figure 5.25. Particle size distribution of FA#BAY powders. Modified from [136]. 

5.1. Rheological behavior  

As described in Chapter 3 BAY cement hydration and mechanical behavior, BAY 

paste (hereafter FA0BAY) prepared at w/c ratio of 0.4 needed the addition of 

superplasticizer, and the optimum amount of the studied polycarboxylate-based 

superplasticizer was 0.5 wt% referred to the solid (cement) content.  

In this chapter, BAY pastes were prepared with different amounts of FA. Table 

5.18 gives the amount of cement, FA and water used in the preparation of the 

three studied pastes. FA#BAY pastes were prepared at a constant w/c ratio of 

0.4, giving a water-to-solid (w/s) ratio of 0.40, 0.34 and 0.28 for FA0BAY, 

FA15BAY and FA30BAY, respectively, they also needed the addition of SP. 

Thus, the percentage of SP was also optimized in FA15BAY and FA30BAY 

pastes through rheological studies.  
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Table 5.18. Proportion of cement, fly ash and water used in pastes. 

SAMPLE w/c ratio w/s ratio Cement, wt% FA, wt% Water, wt% 

FA0BAY 0.40 0.40 71.4 0 28.6 
0.57 0.57 63.7 0 36.3 

FA15BAY 0.40 0.34 63.4 11.2 25.4 

FA30BAY 0.40 0.28 54.7 23.4 21.9 
0.57 0.40 50.0 21.4 28.6 

 

Figure 5.26a and Figure 5.26b show the flow curves of FA15BAY and FA30BAY 

pastes, respectively, with different superplasticizer contents. Pastes without SP 

were not measured due to the heterogeneity of the samples and high viscosity, 

as it happened for FA0BAY.  

In all pastes, the viscosity decreased by increasing the addition of SP down to a 

minimum value; after that, the viscosity was kept constant or even slightly 

increased. Moreover, when a low SP content, 0.2 wt%, was added, both pastes 

showed a wide thixotropic cycle (3290 and 4500 Pa/s for FA15BAY and 

FA30BAY pastes, respectively) and high viscosity; however, the thixotropic cycle 

is almost negligible when the SP content was close to the optimum one.  

The evolution of the viscosity with the SP content can be observed on detail in 

Figure 5.27, where the deflocculation curves of both pastes, taken from the up-

curves at the shear rate of 100 s-1, are shown. From this figure, it can be 

observed how the viscosity of the pastes increased by increasing the FA content 

since the solid loading also increased. In FA15BAY-family, similar to FA0BAY-

family (see Figure 3.10), samples with 0.4, 0.5 and 0.6 wt% SP show the lowest 

viscosity values (480, 420 and 430 mPa.s at 100 s-1, respectively) and similar 

rheological behaviors, where the paste with 0.5 wt% SP also shows the smallest 

thixotropic cycle (217, 138 and 165 Pa/s for pastes with 0.4, 0.5 and 0.6 wt%, 

respectively), Figure 5.26.  
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Figure 5.26. Flow curves of (a) FA0BAY, (b) FA15BAY and (c) FA30BAY pastes 

at w/c = 0.4 and different superplasticizer contents. Taken from [136]. 
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The same behavior is observed in FA30BAY-family, where the paste with 0.5 

wt% SP shows the lowest viscosity and thixotropic cycle values. The viscosity in 

FA30BAY slightly increased when the SP content was raised up to 0.6 wt% (780 

mPa.s). All these results made us to conclude that there is a range of SP content 

that will assure good dispersion of particles (from 0.4 to 0.6 wt%), where 0.5 wt% 

of polycaboxylate-based SP was the optimal amount for all FA#BAY pastes. It is 

worth to highlight that the particle size of the FA is higher than that of the cement, 

and consequently powder mixtures with higher FA contents will have higher 

particle sizes according to Figure 5.25. However, the optimized amount of SP in 

the three pastes is the same (or similar) between them, since it is related not only 

with the size of the particles, but also with their nature. 

Pastes and mortars were prepared with the optimized amount of SP, 0.5 wt%, for 

further hydration and mechanical properties studies. 

 

 
Figure 5.27. Deflocculation curves of FA15BAY (red) and FA30BAY (green) 

pastes at the shear rate of 100 s-1. Modified from [136]. 
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5.2. Isothermal calorimetric studies  

5.2.1.  Effect of superplasticizer on FA0BAY early-age 
hydration 

The effect of the superplasticizer on the hydration of the BAY-cement pastes was 

studied. This study was carried out through isothermal calorimetric analysis and 

in-situ Mo-LXRPD (described in Materials and Methods section 1.3.1). The phase 

assemblage within the first hours of hydration obtained by in-situ RPQA-LXRPD 

and their heat flow are shown in Figure 5.28.  

The heat displayed during the first 12 minutes, known as initial period, was 

associated with the partial dissolution of Cs, C12A7, C3S and C4A3s, and the quick 

early-precipitation of ettringite [144,149,170]. After 5 minutes of hydration, the 

sample without SP reaches a maximum heat flow of 0.052 ± 0.008 W/g, while the 

sample with SP reaches about half of it (~0.024 ± 0.001 W/g). That difference in 

the released heat is assigned to the effect of the SP on the aluminum-based 

phase rate dissolution and its corresponding hydrates precipitation. Previous 

works have reported that polycarboxylate-based superplasticizers have a retarder 

effect on the hydration of Al-rich phases in cement pastes [26,116,117]. Once the 

initial period finished, an induction period was not clear in these systems, giving 

directly a broad signal in the sample without SP (Figure 5.28a) and a hump in the 

sample with 0.5 w% SP (Figure 5.28b) centered at around 8 h in both samples. In 

both systems, the hydration of alite was slower than ye’elimite and mayenite, as 

expected when alite is in presence of aluminates phases [105,118,145,162].  

This is in agreement with the results reported in the previous chapter (Pure phase 

hydration study). From this study, it can be highlighted that superplasticizer has 

had a retarder hydration effect on Cs and mayenite, while ye’elimite shows the 

same dissolution behavior in both systems. Thus, this type of SP seems to affect 
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the hydration of Al-bearing phases but not the hydration of ye’elimite in this 

system. 

 
Figure 5.28. Phase evolution of FA0BAY paste prepared (w/c=0.40) (a) without 
superplasticizer and (b) with 0.5 wt% of superplasticizer. Isothermal calorimetric 

heat flow curves are shown as black lines. Taken from [136]. 
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The total heat released by FA0BAY without and with SP is shown in Figure 5.29. 

It is clear that the addition of 0.5 wt% superplasticizer (referred to solid content) 

favors the slow down on the dissolution of C12A7 and Cs and consequently, the 

released heat flow is lower. After 48 hours of hydration, a total heat of 130 J/g 

and ~180 J/g evolved by FA0BAY with and without SP, respectively, represents a 

~28% of less heat. 

 
Figure 5.29. Cumulative heat released by FA0BAY prepared without (red line) 

and with (green line) superplasticizer. 
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5.30a) show two significant signals, the dissolution peak and a shoulder once the 

initial period finished. These data clearly show the effect of the addition of fly ash.  

 

 

Figure 5.30. Normalized heat flow (a) and cumulative heat (b) per gram of solid 
for FA#BAY pastes prepared at a constant w/c of 0.4 and 0.5 wt% SP. 
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The first peak, Figure 5.30a, is associated with the partial dissolution of C3S, 

C12A7, Cs and C4A3s, and reached maximum values of ~ 24, 25 and 18 mW/(g of 

solid for FA#BAY), at 6, 5, and 6 minutes of hydration, for FA0BAY, FA15BAY 

and FA30BAY, respectively.  It indicates that the released heat due to the 

dissolution of those phases was slightly favored when 15 wt% of FA was added, 

but it was lower when 30 wt% of FA was present. The second signal (shoulder), 

displayed in the calorimetric curves, was centered at 8 h for FA0BAY, and 

released ~0.002 W/g; with the addition of FA, it was increased to ~0.005 W/g and 

accelerated up to 3-4 h, indicating an increase on the early reactivity. Taking into 

account that FA does not react at early ages, the observed effect should be 

related to the nucleation effect of FA that favors the formation of hydrates, also 

known as filler effect [13,119,152,171,172]. Figure 5.30b shows the cumulative 

heat being higher at the first 10 h in FA15BAY and FA30BAY than FA0BAY (i.e. 

111, 95 and 90 J/g, respectively). Moreover, after 36 hydration hours, the 

maximum cumulative heats of pastes with FA reached asymptote values of 145 

and 120 J/g for FA15BAY and FA30BAY respectively, while FA0BAY continues 

growing up. Finally, at 72 h, the cumulative heat of FA#BAY were 170, 150 and 

130 J/g for 0, 15 and 30 wt% of FA, respectively. These results could be 

explicated as follows: i) during the first 10 hours, the filler-nucleation effect of FA 

favors the precipitation of ettringite from aluminate-rich phases, ii) between 10 to 

36 hours, there is an oversaturation of nucleation points, despite of the high 

availability of particles, acting hereafter as a phase content diluter and iii) from 36 

h to 3 days, C3S begins to react increasing the heat flow in FA0BAY, while in 

FA15BAY and FA30BAY, C3S has reacted more quickly (through the first 24 

hours of hydration).  

5.3. Hydration studies of FA#BAY binders  

The effects of the addition of fly ash on the hydration behavior of the pastes were 

studied up to 180 curing days. The results of RQPA and TG-DTG of pastes 
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hydrated at 1, 3, 7, 28, 90 and 180 curing days are shown in Table 5.19 and 

Figure 5.31 respectively. All pastes were prepared at a w/c ratio of 0.4 and with 

0.5 wt% SP, as optimized before. 

C4A3s and C3S totally disappeared after 1 and 7 days of hydration, respectively. 

Table 5.19, in all cement pastes. The hydration of ye’elimite with anhydrite forms 

ettringite (or monosulfoaluminate) and aluminum hydroxide (amorphous or 

crystalline gibbsite); while the hydration C3S produces amorphous C-S-H gel and 

portlandite. However, crystalline aluminum hydroxide (called gibbsite) or 

crystalline portlandite were not detected by LXRPD. These data are in agreement 

with the results found in the pure phases mixtures studied before (see chapter 4 

Pure phase hydration study). Moreover, crystalline CH was not detected by TG-

DTG, except after 28 hydration days in FA0BAY, where a small endothermic 

signal around 450 ºC was detected (Figure 5.31a). These results are in 

agreement with Winnefeld et al reports [102,151] where portlandite was not 

detected in systems associated with jointly content of ye’elimite, silicates and 

anhydrite. As mentioned before, portlandite favors the formation of AFm-type 

phases, i.e. monosulfoaluminate, stratlingite [102,103,105,118,142] and katoite 

[4] at later ages. In addition, the formation of AFm-type phases increase while AFt 

contents decrease from 28 to 180 days of hydration in FA0BAY, Table 5.19. The 

hydration of the silicon-bearing phases (alite and belite) has yielded a Si-rich 

environment where AFt is unstable [72,149]. Furthermore, in this system rich in 

silicon-bearing phases and aluminum hydroxide, the stratlingite crystallization 

was favored [4,106,142]. Moreover, the presence of stratlingite was detected 

even at 1 day in FA0BAY paste, and at 7 days in FA15BAY and FA30BAY pastes. 

This is in agreement with the TG-DTG results, Figure 5.31. In all cases, two 

typical decomposition groups of signals were found: i) the first one, between 50 to 

120ºC, assigned to the overlapped dehydration of C-S-H and AFt 

[102,105,118,143]; due to the overlapping of these signals is not possible to 

compare these results with those obtained by LXRPD. ii) The second group of 

signal corresponds to the dehydration of AFm-types phases, where the 
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dehydration of monosulfoaluminate happens between 120 and 180 °C 

[102,118,144], while the dehydration of stratlingite is located at 180 and 220 ºC 

[48,106,118,152,173]. Although crystalline CH should be formed from the 

hydration of C3S, the formation of ettringite at first hydration hours could be 

favored from the Ca2+ and OH- rich environment [102,105,109].  Later, when the 

calcium sulfate and ye’elimite have been reacted completely (after 24 h), 

portlandite reacts with aluminum hydroxide and AFt forming AFm-type phases 

[103,145]. For this reason, portlandite was not detected by TG-DTG, where its 

characteristic mass loss is centered on 450 ºC [102,103,145].  

Belite showed its typical hydration behavior, where only after 28 days, this phase 

started to react with water. But, in FA15BAY and FA30BAY this reaction was even 

lower than in FA0BAY (as an example, β-C2S reacts ~41, 25 and 8% from 28d to 

90d, for pastes with 0, 15 and 30 wt% FA, respectively). The lower reactivity of 

belite with the increasing amount of FA may be attributed to the low amount of 

water used, i.e. w/c=0.4, which means w/s of 0.40, 0.34 and 0.28, for 0, 15 and 

30 wt% of FA, respectively. Consequently, a question was open at this stage: Is 

the lower reactivity of belite due to the lower amount of water?. In order to answer 

this question, FA0BAY and FA30BAY pastes were also prepared at a w/c ratio of 

0.57 (the latter has a w/s ratio of 0.4). Table 5.20 shows RQPA results of both 

pastes at 28 and 90 days. Belite showed the same pace of hydration in both 

samples, i.e. the hydration degree of belite in FA0BAY was more or less constant 

independently of the w/c ratio. In addition, the belite hydration was inhibited in 

FA30BAY at any w/c ratio. As a consequence, the hydration behavior of belite 

was not influenced by the w/c ratio under these experimental conditions, but it 

seems to be influenced by the addition of FA. Besides that, the w/c ratio affected 

the phase assemblage, concretely, the katoite/stratlingite ratio, where pastes 

prepared at w/c=0.4 presented both phases, while samples with w/c of 0.57 only 

contained stratlingite, shown in Table 5.21. 

 



 

 
 

Table 5.19. RQPA results (wt%) on cement pastes, as a function of hydration time obtained from LXRPD for FA#BAY 
pastes (w/c=0.4 and 0.5 wt% SP), including ACn and free water (FW) contents. Taken from [136] 

 
a.Also contains 0.1 and 0.3 wt% of CH at 90 and 180 days respectively.  
b.C-S-H as clinotobermorite. 
 

 

Phases FA0BAYa FA15BAY FA30BAY
to 1d 7d 28d 90d 180d to 1d 7d 28d 90d 180d to 1d 7d 28d 90d 180d

C4A3s 5.1(1) 1.3(1) - - - - 5.3(1) 2.4(1) - - - - 4.3(1) 1.0(1) - - - -
γ-C2S 1.2(1) 1.3(1) 1.3(1) 1.3(1) 1.1(1) 1.0(1) 1.5(2) 1.4(1) 1.3(1) 1.4(1) 0.8(1) 0.8(1) 1.4(1) 1.1(1) 1.2(1) 1.3(1) 0.8(1) 1.1(1)
-C2S 32.3(1) 32.9(1) 32.4(1) 27.9(1) 16.5(2) 14.4(3) 25.0(2) 28.6(2) 28.1(2) 27.2(2) 20.3(2) 18.6(2) 19.8(2) 23.2(2) 23.2(2) 21.5(2) 19.8(2) 19.8(2)
C3S 7.9(2) 3.0(2) 1.0(1) - - - 7.4(3) 2.4(2) - - - - 6.0(2) 1.5(1) - - - -
C12A7 4.3(1) 2.0(1) - - - - 3.6(1) 1.9(1) - - - - 2.7(1) 1.6(1) - - - -
F-ellestadite 2.2(1) 3.0(2) 2.7(1) 2.3(1) 3.2(3) 3.0(3) 3.4(3) 3.4(2) 2.3(2) 2.5(1) 2.6(1) 2.1(1) 3.1(3) 2.3(1) 2.0(1) 2.1(1) 2.3(2) 2.2(2)
C4AF 3.3(1) 2.6(1) - - - - 2.6(1) 2.7(1) 0.2(1) - - - 2.1(1) 1.6(1) - - - -
Cs 7.1(1) - - - - - 5.6(1) - - - - - 4.7(2) - - - - -
Mullite - - - - - - 0.5(1) 0.5(1) 1.0(1) 1.0(1) 2.1(1) 2.1(1) 1.9(2) 2.1(2) 2.4(2) 2.1(1) 2.3(1) 1.6(1)
Quartz - - - - - - 0.4(1) 0.4(1) 0.4(1) 0.4(1) 0.4(1) 0.4(1) 0.6(1) 0.7(1) 0.7(1) 0.7(1) 0.7(1) 0.7(1)
C-S-Hb - - 1.0(1) 1.0(1) 1.4(1) 1.1(1) - - 0.4(1) 1.4(1) 7.0(3) 6.7(3) - - - 1.0(1) 2.1(1) 3.4(1)
AFm - - 2.4(1) 3.0(1) 5.0(1) 5.3(1) - - 1.2(1) 1.2(1) 1.6(1) 0.6(1) - - 1.8(1) 1.3(1) 0.9(1) 0.3(1)
AFt - 19.5(1) 16.4(1) 16.6(1) 12.5(2) 12.7(3) - 17.5(1) 15.3(1) 15.0(1) 15.4(2) 15.2(2) - 14.9(2) 13.9(1) 13.4(1) 13.3(2) 13.4(2)
Katoite - - 4.0(2) 7.1(2) 4.1(2) 3.2(2) - - 2.8(2) 4.0(2) 4.8(2) 5.5(2) - - 2.6(2) 2.2(3) 3.1(3) 2.7(2)
Stratlingite - 2.1(2) 5.4(3) 6.3(3) 6.4(3) 9.2(7) - - 4.8(4) 6.5(4) 6.6(4) 7.3(2) - - 1.7(1) 1.9(2) 2.8(2) 2.8(2)
ACn 8.1 19.7 23.6 26.2 45.4 48.2 19.3 27.5 33.8 32.4 32.5 38.8 31.3 40.9 43.9 47.0 47.7 49.4
FW 28.6 12.6 9.7 8.3 5.9 2.9 25.4 11.3 8.5 7.0 5.2 2.2 21.9 9.1 6.7 5.4 4.3 2.7
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Figure 5.31. Thermogravimetric and differential thermogravimetric analyses (TG-

DTG) of (a) FA0BAY, (b) FA15BAY and (c) FA30BAY pastes, with w/c=0.4 
prepared with 0.5 wt% of superplasticizer. Taken from [136] 

-0.15

-0.05

0.05

0.15

0.25

0.350

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

D
er

iv
. W

ei
gh

t,
 %

w
t/

o
C

W
ei

gh
t,

 %
w

t

Temperature, oC

1 d

7 d

28 d

90 d

180 d

AFt + C-S-H

Stratlingite

AH3

CH

AFm-type

-0.15

-0.05

0.05

0.15

0.25

0.350

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000
D

e
ri

v.
 W

e
ig

h
t,

 %
w

t/
o
C

W
e

ig
h

t,
 %

w
t

Temperature, oC

1 d

7 d

28 d

90 d

180 dAFt + C-S-H

AFm-type

AH3

Stratlingite

-0.15

-0.05

0.05

0.15

0.25

0.350

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

D
er

iv
. W

ei
gh

t,
 %

w
t/

o
C

W
ei

gh
t,

 %
w

t

Temperature, oC

1 d

7 d

28 d

90 d

180 dAFt + C-S-H

Stratlingite

a)                                                             

b)

c)



Influence of Fly Ash addition on BAY cement hydration and properties 97 

 
Table 5.20. RQPA comparative results (wt%) on cement pastes of FA0BAY and 
FA30BAY prepared at w/c of 0.57, as a function of hydration time obtained from 

LXRPD. Taken from [136]. 

Phases  
FA0BAY FA30BAY 
w/c 0.57 w/c 0.57 

to 28d 90d to 28d 90d 
C4A3s 4.5(1) - - 4.0(1) - - 

-C2S  1.1(1) 1.9(2) 1.4(2) 1.2(1) 1.1(1) 1.1(1) 

-C2S  28.8(1) 28.4(2) 16.5(2) 18.1(2) 18.3(2) 18.1(2) 
C3S  7.1(2) - - 5.5(2) - - 
C12A7  3.8(1) - - 2.5(1) - - 
F-ellestadite  2.0(1) 2.5(2) 2.4(2) 2.9(1) 1.4(2) 1.5(2) 
C4AF  2.9(1) - - 2.0(1) - - 
Cs 6.3(1) - - 4.3(2) - - 
Mullite  - - - 1.8(1) 2.5(1) 2.2(1) 
Quartz  - - - 0.6(1) 0.7(1) 0.7(1) 
C-S-Hb - 1.4(1) 3.6(1) - 5.1(1) 3.0(1) 
AFm  - 5.7(1) 5.6(1) - 3.4(1) 4.6(1) 
AFt  - 24.0(2) 12.7(3) - 15.4(2) 15.0(2) 
Katoite  - - - - - - 
Stratlingite - 7.5(3) 9.5(4) - 2.2(2) 2.0(2) 
ACn  7.2 12.0 22.4 28.7 36.5 40.6 
FW  36.3 16.6 15.1 28.5 13.6 11.2 

 
a. Also contains 0.1 and 0.3 wt% of CH at 90 and 180 days respectively.  
b.C-S-H as clinotobermorite. 
 

Table 5.21. Comparative content (wt%) of katoite and stratlingite on FA0BAY at 
28 days, as a function of w/c ratio used. 

Phases w/c ratio 
0.4 0.5 0.57 

C3ASH4 3.7(2) 2.5(1) - 
C2ASH8 5.0(2) 5.3(2) 7.5(3) 
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Figure 5.32. 27Al (left) and 29Si (right) MAS-NMR of FA#BAY pastes at a) 7 days, 
b) 90 days and c) 180 days. FA0BAY in green line, FA15BAY in blue line and 

FA30BAY in red line. Inset at 180 days are the signal of AlIV of stratlingite 
multiplied x10 for a sake of better representation. Modified from [136] 
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Figure 5.32 shows 27Al and 29Si MAS-NMR spectra of FA#BAY pastes at 7, 90 

and 180 hydration days. 27Al MAS-NMR spectra (Figure 5.32, left site) shows AlVI 

octahedrally-coordinated zone, where AFt is located at ~ 13.8 ppm [161,164,174]. 

The wide signal located at about 9-11 ppm can be assigned to the overlapping 

contribution of AFm-type phases (stratlingite and monosulfoaluminate) and 

aluminium hydroxide [36,98,161,174]. The inset at 180 curing days corresponds 

to AlIV tetrahedrally-coordinated zone. The signal observed at ~62 ppm is 

assigned to AlIV of stratlingite [142,161]. The signals of AFm-type phases and 

aluminium hydroxide are present in all the pastes at any time. For a better 

understanding, the deconvolution of 29Al MAS-NMR of FA0BAY at 180 days, 

shown in Figure 5.33 was performed, as an example. Here, the wide signal 

associated with AFm-type phases and amorphous aluminum hydroxide was 

composed by 45% of stratlingite, 35% of amorphous-AH3 and 20% of 

monosulfoaluminate, centered at ~10.1, ~11.2 and ~12.1 ppm respectively 

[36,98,161,174]. This is in agreement with TG-DTG results for this paste.  

 

Figure 5.33. Deconvolution of 29Al MAS-NMR spectra of FA0BAY at 180 days. 
Each spectrum includes experimental (dots) and its deconvoluted spectrum (red 
line) with individual contribution of AFt (blue line), amorphous-AH3 (green line), 

AFm (purple line) and stratlingite (pink line). 
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29Si MAS-NMR spectra of all samples (Figure 5.32, right side) showed near at -72 

ppm a signal corresponding to isolated SiO4 tetrahedra (Q0 sites) of non-hydrated 

belite [159,164,169]. After 90 days of hydration, FA0BAY paste showed two small 

peaks at around -79 and -84 ppm, which may be assigned to Q1 and Q2 species 

of C-S-H gel, respectively. Q1 and Q2 represent the end chain and middle chain of 

SiO4 tetrahedron, respectively [157–159]. Later, at 180 days, those two peaks 

also appeared with shoulders centered at -82 and -86 ppm, corresponding to 

Q2(2Al) and Q2 of stratlingite [161,174]. Figure 5.32c shows wide peaks between -

75 to -88 ppm in 180 days in FA15BAY paste 29Si MAS-NMR spectra, associated 

with Q1 and Q2 of C-S-H and Q2 of stratlingite. In FA30BAY paste those 

characteristics peaks were not clearly observed. To obtain deeper information 

from these data, the deconvolution of FA#BAY at 180 days spectra, shown in 

Figure 5.34, was carried out. Here, FA0BAY and FA15BAY at 180 days showed 

the characteristic Q1 and Q2 signals of C-S-H, although they are slightly weaker in 

FA15BAY. The presence of C-S-H at later ages in these samples proves its origin 

from the belite hydration. On the other hand, these signals were not detected in 

FA30BAY sample, confirming that the belite hydration was inhibited (see Figure 

5.34c). In all cements the characteristic Q2 and Q2(2Al) signals of stratlingite were 

detected, corroborating the results obtained by LXRPD and TG-DTG (Table 5.19 

and Figure 5.31). 

The fact that the stratlingite peak at 62 ppm (27Al MAS-NMR at 180 days) was 

more pronounced than the peaks observed by 29Si MAS NMR in FA30BAY, 

suggests that the tetrahedral layer in this phase presents higher amount of AlIV 

than SiIV.[106,142] 
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Figure 5.34. Deconvolution of 27Si MAS-NMR spectra of (a) FA0BAY, (b) 

FA15BAY and (c) FA30BAY at 180 days. Each spectrum includes experimental 
(dots) and its deconvoluted spectrum (red line) with individual contribution of C2S 
(light green line), C-S-H gel (blue and dark green line) and stratlingite (pink line). 
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5.4. Mechanical behavior of FA#BAY binders  

The compressive strengths of FA#BAY mortars are shown in Figure 5.35. Here, it 

can be seen that the increment of FA content favored the increasing compressive 

strength at any age. The percentages (increase) the measured strength values of 

those mortars referred to FA0BAY, at the same ages, are shown in Table 5.22. 

These values indicate that the increase is important at early ages (1 and 7 days). 

This increase in mechanical strengths at early ages may be due to the filler effect 

and to the consequent reduction of porosity and pore size. However, the 

increases after 28 days, despites of inhibition of belite hydration, might be 

considered as an indirect experimental result of pozzolanic reaction, although at 

a small degree. However, the significant changes in phase assemblages with 

time and amount of FA are not enough to justify the raise in compressive 

strengths. Consequently, the porosity and pore size distribution of the pastes was 

studied at 180 hydration days, Figure 5.36, where the pore size diameter 

decreases by increasing the FA content. Moreover, the open porosity of pastes 

also decreases with the FA content (16, 13 and 9 vol% for FA0BAY, FA15BAY 

and FA30BAY respectively). Therefore, the increasing compressive strength can 

be justified by a decreasing in porosity with increasing FA content, mainly due to 

a filler effect, as reported by Winnefeld et al [152] and Garcia-Mate et al [119]. 

Table 5.22. Increase of the strength (in percentage) referred to FA0BAY-mortar 
at the same ages. 

Mortar 
 Curing age, days 

 1 7 28 90 180 

FA15BAY percentage (%) 15 21 5 19 6 

FA30BAY percentage (%) 43 42 24 24 19 
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Figure 5.35. Compressive strength of FA#BAY. 

 

Figure 5.36. Pore size distribution of FA#BAY pastes at 180 hydration days. 
Taken from [136]. 
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5.5. Summary 

The role of FA replacement on the hydration mechanism of BAY cement was 

studied, as a possible SCMs. Firstly, the amount of a polycarboxilate-based SP 

was optimized (0.5 wt% of the active matter referred to solids) to assure the 

homogeneity of the pastes, and the effect on the pastes hydration was also 

studied.  

The calorimetric studies revels that, the use of polycarboxylate-based 

superplasticizer, in this BAY cement (FA0BAY), mainly affected the rate of 

hydration of C12A7, inhibiting the competitive reaction between C12A7 and C4A3s.  

Secondly, the effect of FA addition was investigated through calorimetric studies, 

and the results showed that fly ash prompts the second exothermic peak to 

appear before and shorten induction period. This peak is attributed to the 

aluminate-phases consumption and the corresponding production of AFt. 

However, detailed analysis did not provide any evidence that there was any 

reaction of the FA itself at early hours of hydration. Thus, these results revel that 

FA initially works as a filler, giving nucleation points for the formation of hydrated 

phases. 

Moreover, the presence of fly ash had a small impact on the hydration 

mechanism or kinetics of BAY cement pastes. FA0BAY showed slightly different 

chemical hydration behavior than FA15BAY and FA30BAY. In all systems, the 

main hydration products were AFt, AFm-phases (monosulfoaluminate and 

stratlingite) and katoite. The increase of FA had a significant impact on the 

hydration of belite and hence on the C-S-H formation. Both of which were lower 

than in the paste without fly ash (FA0BAY). This impact favors the AFt stability, 

which suffers a considerable decrease after 28 hydration days in FA0BAY. The 

compressive strength was increased with the fly ash amount replacement and 

time evolution. On the one hand, the early age mechanical strength increase is 

thought to be related to the filler effect which decreases the porosity on the 
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pastes. On the other hand, the compressive strength enhanced after 28 days 

without significant belite depletion (FA15BAY and FA30BAY), with a reduction on 

total porosity and open pore size diameter, and higher total heat of hydration after 

the same ages, might be considered as an indirect evidence of some degree of 

pozzolanic reaction. 

 It is important to foreground that the increase of water content on BAY cement 

systems (from w/c of 0.40 to 0.57) affected the C3ASH4/C2ASH8 ratio, i.e. higher 

w/c contents favor the higher contents of stratlingite and lower contents of katoite 

(see Table 5.21). These different mineralogical phase assemblages may have an 

impact on the mechanical strengths; however, this needs more research. 

All these results have allowed to fulfill the specific objective of understanding of 

effect of w/c ratio, use of polycarboxylate as superplasticizer and percentage of 

addition of FA on the rheological behavior, heat flow, hydration mechanism and 

compressive strength of BAY. 

 

 

 

 

 

 

 





 

 
 

 

6. “Commercial binder” study 
associated with BAY cement 

This chapter describes the hydration mechanism and mechanical behavior of a 

mixture of a commercial belite Portland cement with a commercial calcium 

sulfoaluminate cement, as described in Chapter Materials and Methods section 

1.1.3. The mixture will be named hereafter as B83. For the sake of comparison, 

this cement was formulated with a similar mineralogy than FA0BAY, where 

C3S/C4A3s ratio was near to 1.37.  

Cement pastes and mortars were prepared at a water/cement ratio of 0.4 and 

were studied at 1, 7, 28, 90 and 180 days of hydration. At early-age, the 

rheological behavior of the cement pastes was investigated. Moreover, the heat 

released by this cement was also analyzed. LXRPD with Rietveld analysis was 

the main technique used to investigate the content of crystalline and ACn phases 

in pastes. Thermogravimetric analysis (TG-DTG) was employed to confirm the 

mineralogy of the pastes and to calculate the ACn content. Finally, the 

mechanical behavior, as compressive strength, of these mortars was measured 

and correlated with the composition. 

6.1. Optimization of the superplasticizer content 

The amount of the polycarboxylate based-superplasticizer was optimized for this 

paste through rheological studies. Figure 6.37 shows the flow curves of the B83 

paste prepared with different SP contents. In general, the viscosity of these 



108 Eco-cements containing Belite, Alite and Ye’elimite 
Hydration and mechanical properties 

 
pastes is lower than the corresponding FA0BAY pastes, even without SP. This 

may well be related with the larger particle size of B83 cement powder (19.9 and 

180 μm for Dv50 and Dv90, respectively) than the laboratory-prepared FA0BAY 

cement powder (3.6 and 10.3 μm for Dv50 and Dv90, respectively). It corresponds 

to a lower surface area (1.2 and 1.4 m2/g for B83 and FA0BAY, respectively), and 

thus lower particle interactions.  

As it happened before, a small addition of SP, e.g. 0.1 wt%, decreased drastically 

the viscosity of B83 pastes (from 870 to 260 mPa.s at 100 s-1 for pastes with 0 

and 0.1 wt% SP respectively). By adding SP, the viscosity decreases until a 

minimum value, associated with the optimum amount of SP. From there, the 

viscosity of was kept constant. Figure 6.37 shows the deflocculation curve using 

the values from the up-curves at the shear rate of 100 s-1, where the optimum 

value was achived when 0.4 wt% SP was added (126 mPa·s at 100 s-1). 

To deeply study the effect of the SP on the mechanical strength of the mortars, 

and check the effect of slightly diminishing the amount of SP, they were prepared 

with 0.3 and 0.4 wt%. Pastes were prepared with 0.35 wt% of SP as a mean 

value between 0.3 and 0.4 wt%, because the slightly decrease in SP amount 

does not affect drastically the hydrated phase assemblage. 
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Figure 6.37. Flow curves of B83 pastes with different superplasticizer contents 

(water/cement ratio of 0.4). 

 
Figure 6.38. Deflocculation curve of B83 pastes pastes prepared at a w/c ratio of 
0.4 and different SP contents at the shear rate of 100 s-1 (values taken from the 

up-curves). Inset shows an amplified zone between 0.2 and 0.5 wt% of SP 
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6.2. Isothermal calorimetric behavior 

As detailed in previously chapters, the heat produced by the pastes is a good 

indication of their early-age hydration behavior. For this reason, Figure 6.39a and 

Figure 6.39b show the heat flow curves and cumulative heat, respectively. 

released by B83. The curves of FA0BAY pastes are also shown for the sake of 

comparison. Both pastes show an intense signal during the initial period and a 

hump immediately after the initial period depletion [72,79,105,136].  

In the case of B83, the released heat during the initial period (from 0 to 0.3 h, 

Figure 6.39a) is assigned to the partial dissolution of anhydrite and ye’elimite and 

the initial precipitation of ettringite [144,149,170], is assigned to the partial 

dissolution of anhydrite and ye’elimite and the initial precipitation of ettringite, as 

detailed in previous chapters (Chapter 4 Pure phase hydration study and Chapter 

5 Influence of Fly Ash addition on BAY cement hydration and properties). The 

heat released during this initial period was slightly higher in B83 than FA0BAY (20 

and 18 J/g respectively) despite its larger particle size; this may be due to the 

different amounts of C4A3s, being 7.1 and 5.1 wt% for B83 and FA0BAY, 

respectively. 

Similar to FA0BAY, B83 does not present a clear induction period, directly 

showing a hump centered at around 2.5 hydration hours. This hump can be 

considered as the main hydration/precipitation signal. B83 shows an higher and 

more accelerated signal, 108 J/g at 3.5 hours, than FA0BAY (78 J/g located at ~ 

8h, Figure 6.39b), indicating that the former reacts faster. Considering the similar 

mineralogy of both cement powders, and the experience adquired from the pure-

phases mixture studies, the main peak may well be associated with the 

precipitation of AFt and AFm-type phases (monosulfoaluminate and/or 

stratlingite) [72,136]  

B83 paste shows a cumulative heat release different than FA0BAY, Figure 6.39b, 

which reflects the previous observations of their heat flow. During the first 5 
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hours, B83 released twice the total heat of FA0BAY (~120 and ~60 J/g 

respectively). And after 72 h, B83 and FA0BAY reached cumulative heats of 185 

and 142 J/g respectively.  

a) 

 
b) 

 
Figure 6.39. Heat flow (a) and total heat (b) of B83 (blue line) and FA0BAY 

(green line). 
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6.3. Hydration mechanism in B83 

The RQPA for the hydration of B83 pastes (water-to-cement ratio of 0.4 and 0.35 

wt% SP) including both ACn and FW contents, is shown in Table 6.23, and Mo 

LXRPD patterns are showing in Figure 6.40. The results show that the main 

hydration products obtained were AFt, stratlingite and katoite. After 1 day, C4A3s 

and Cs reacted quickly and contributed to the formation of crystalline AFt and 

amorphous aluminum hydroxide; same that happened in FA0BAY cement 

hydration. The amorphous content formed from these cement at early ages 

should be composed mainly for amorphous-AH3. Despite of fast reaction of 

ye’elimite, the hydration of alite in B83 was a little bit slower, only 74% of degree 

of reaction compared to FA0BAY, where after 7 days had reacted 100% (Chapter 

3 BAY cement hydration and mechanical behavior). In B83, even after 180 days, 

there was anhydrous alite remaining in the system, representing a remnant of 

22% of the initial content. This fact may be due to a passivation of the system, i.e. 

remaining alite is covered by hydrated products and free water is not reaching it. 

In addition, β-belite showed a typical slow reactivity that, after 28 days of 

hydration, presented an important depletion, reaching at 180 days a hydration 

degree of 55%. It is known that alite and belite reacts with water to produce C-S-

H gel and crystalline portlandite. However, the precipitation of CH was not 

detected by LXRPD in B83, as expected from the previous studies. Additionally, 

CH was not detected by TG-DTG, except after 180 hydration days where a small 

peak around 450 ºC was detected (see Figure 6.41). These results are in 

agreement with several studies, where crystalline portlandite was not detected in 

systems containing jointly ye’elimite and alite [102,105,118,136,151] because CH 

favors reaction of ye’elimite with calcium sulfate source to produce early ettringite 

[102,105,118,136] and the formation of late AFm-type phases (as 

monosulfoaluminate and stratlingite) [102,103,105,118,142]. In this amorphous 

aluminum hydroxide rich system, the formation of stratlingite from silicates 
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phases (C2S and C3S) is favored from the first day [4,106,142], reaching a 

maximum content of 13.8 wt% at 180 d. 

Katoite was detected at 90 hydration days, where ferrite, alite and belite had 

reached a reaction degree of ~ 69, 78 and 12%, respectively. This result confirms 

the hypothesis suggested: for belite-alite-ye’elimite systems, where katoite mainly 

comes from hydration of C2S, CH and AH3 (Eq. 6), and from C3S with C4AF (Eq. 

11). Furthermore, due to the lower hydration degree of alite, after 180 days AFt 

did not present a significant decrease, just reaching a degradation of ~9% 

respect to AFt content at 1 hydration day. Contrary to FA0BAY, where the 

degradation degree of AFt was ~ 35%. 

Table 6.23. RQPA (wt%) for B83 pastes. 

 Curing age, days 
Phases t0=0 1 7 28 90 180* 

C3S 8.9(5) 4.8(3) 2.3(3) 2.5(4) 2.0(3) 2.0(3) 
C2S 29.0(5) 32.9(3) 34.0(3) 34.5(3) 25.5(5) 13.1(6) 
C3A 0.7(1) 0.7(1) - - - - 

C4AF 5.4(2) 3.5(2) 3.6(2) 2.9(2) 1.7(2) 1.1(2) 
C4A3s 7.1(2) 1.4(8) - - - - 
MgO 1.6(1) 1.5(8) 1.5(7) 1.4(1) 1.2(1) 1.3(1) 
Cs 4.9(1) - - - - - 
AFt - 20.4(3) 20.3(3) 20.3(3) 18.5(4) 18.6(4) 

Stratlingite - 4.3(3) 9.7(6) 3.7(4) 6.0(5) 13.8(1) 
Katoite - - - - 1.0(3) 1.1(3) 
AFm - - - - 0.8(3) 0.8(2) 
Can 13.8(2) 19.1(1) 20.2(1) 25.7(2) 37.6(2) 47.7(2) 
FW 28.6 11.5 8.3 9.0 5.6 0.1 

*Also 0.5(1) wt% of CH. 
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Figure 6.40. LXRPD patterns of B83 anhydrous (blue line) and hydrated at 

selected times with peaks due to a given phase labelled. 

 

 
Figure 6.41. Thermogravimetric and differential thermogravimetric analyses (TG-

DTG) of B83 pastes. 
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All these results are in agreement with TG-DTG, where the same zones detected 

in FA0BAY were observed. A first peak centered at around ~ 110 ºC, was 

attributed to overlapped dehydration signals of AFt and C-S-H 

[102,105,118,136,143], and did not allow the correlation with LXRPD results. A 

second series of peaks located between 120 and 220 ºC were assigned to the 

dehydration of AFm-type phases, where stratlingite displays its characteristic 

mass loss peak close to 180 ºC [48,106,118,136,152,173]. This last peak was 

increasing during the hydration time, confirming the results obtained by LXRPD. 

Finally, around 230 to 300 ºC, a kind of broad peak associated was detected and 

associated with amorphous AH3 [98,118]. 

6.4. Compressive strength of B83 mortars 

Compressive strength tests were performed on B83 mortars with 0.3 and 0.4 wt% 

of SP, prepared at a constant w/c ratio of 0.4. These data were compared to 

FA0BAY mortars. The compressive strength values measured up to 180 days for 

B83 and FA0BAY are shown in Figure 6.42. Here, it can be seen that at 1 day, 

FA0BAY and B83 presented similar compressive strength values (~26, ~26 and 

~27 MPa for FA0BAY and B83 with 0.3 and 0.4 wt% SP respectively). This can 

be explain by inspecting Table 5.19 and Table 6.23. In both systems, B83 and 

FA0BAY, the phase assemblage after one day is more or less the same, ~20 wt% 

of AFt, ~20 wt% of ACn and ~12 wt% of free water. Nevertheless after 1 day, B83 

mortars always showed higher compressive strengths than FA0BAY mortars, 

reaching values at 180 curing days of ~79 and ~81 MPa for B83 with 0.3 and 0.4 

wt% SP, respectively; while FA0BAY reached a compressive strength of ~68 

MPa. In order to understand this behavior, Table 5.19 and Table 6.23, were 

analyzed in detail. Main differences between both systems are: i) AFt did not 

present a high degradation grade in B83, consequently after 180d, ~19 wt% of 

AFt was present while FA0BAY contains ~13 wt%; ii) the amount of stratlingite 

was higher in B83 than in FA0BAY, ~13 and ~9 wt%, respectively and the amount 

of katoite was smaller; finally, iii) the amount of free water is also slightly different, 
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being almost zero in B83. Therefore, we can speculate that the increasing 

compressive strengths in this system depends on the higher amounts of AFt and 

stratlingite, and the lower amount of katoite and free water. 

As expected, the compressive values in B83 increase by increasing the curing 

time and the amount of superplasticizer. This can be explained for the better 

homogeneity of the cementitious matrix (particles dispersion), the lower viscosity, 

and lower porosity reached in B83 with the use of optimal superplasticizer.  

 
Figure 6.42. Compressive strength of FA0BAY (w/c=0.4 and 0.5 wt% SP) and 

B83 (w/c=0.4) with 0.3 and 0.4 wt% of SP 
 

6.5. Summary 

In this chapter, the study of the hydration behavior and mechanical properties of 

B83 cement (a mixture of belite clinker with calcium sulfoaluminate clinker) was 

carried out, and compared with the FA0BAY system. Firstly, the amount of 

superplasticizer was optimized (0.4 wt% SP) through rheological measurements.  
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In a second step, the calorimetry behavior of B83 and FA0BAY was compared. 

During the initial period (around first 15 min of hydration), they presented same 

heat release reaching similar values to 26 mW/g (representing a total heat of 

about 20 J/g). This peak was associated with partial dissolution of C4A3s and Cs 

and initial precipitation of AFt. After that, the heat flow of B83 showed an 

acceleration and increasing hump at ~2.5 h (in relation to FA0BAY main peak 

showing also a hump at ~8 h), associated with precipitation of hydration products. 

In addition, the cumulative heat of B83 showed a different trend than FA0BAY; 

during the first 5 hours of hydration reached twice the heat of FA0BAY (~120 and 

~60 J/g, respectively), due to the acceleration and increased of the main peak. 

Finally, they reached a constant heat of ~185 and ~140 J/g, respectively. 

In a third step, the mineralogical evolution was analyzed, where the main 

hydration products were ettringite, AFm-type phases (stratlingite and 

monosulfoaluminate), katoite and amorphous AH3. Surprisingly, B83 showed a 

different chemical hydration behavior than FA0BAY, with a lower hydration 

degree of alite, and a typical hydration behavior of belite after 28 days. This 

silicate behavior favored the AFt stability, which did not present a considerable 

decrease after 28 days. In addition, the rich aluminum hydroxide in this system 

favored the precipitation of stratlingite after 1 day, and a small amount of katoite 

after 90 hydration days.  

Finally, the compressive strength of B83 mortars was evaluated and compared 

with FA0BAY. B83-mortars, during the studied curing time, always showed higher 

values of compressive strength than FA0BAY mortars; although at 1 day they 

exhibited the same compressive strength (around ~26 MPa). This mechanical 

behavior was assigned to higher amounts of AFt and stratlingite and lower 

amount of free water which may yield to a high density in the pastes due to less 

porosity than FA0BAY. 

 

All these results have allowed to fulfill the specific objective of understand and 

compare the hydration and compressive strength of BAY and a blended binder. 





 

 
 

Conclusions and Perspectives 

Conclusions 

This PhD thesis can be gathered in four parts correlated between them. In a first 

part the synthesis process (at laboratory scale) of Belite-Alite-Ye’elimite (BAY) 

cement was studied and optimized. In a second part, the effects of water-to-

cement (w/c) ratio, superplasticizer and class F fly ash (FA) addition on the 

hydration mechanism and mechanical behavior of BAY cement were 

investigated. In the third part, the effects of the polymorphism of ye’elimite, water-

to-solid (w/s) ratio and alite/ye’elimite ratio on the jointly hydration mechanism of 

ye’elimite, anhydrite and alite were evaluated. And last but not least, the fourth 

part, is focused on the hydration behavior and mechanical development of a 

“commercial binder”, named B83, formulated with similar mineralogy of the 

synthesized BAY cement, but mixing belite clinker with calcium sulfoaluminate 

clinker.  

All those study have allowed to fulfill the main objective of understand the 

hydration mechanism and mechanical behavior of belite-alite-ye’elimite systems. 

In the first part, BAY clinkers were successfully synthesized by combining natural 

raw materials, where the oxide dosage and the addition of a mineralizer (CaF2) 

presented an important influence on the mineralogical composition. The 

quantities of alite (C3S) and ye’elimite (C4A3s) increased with the addition of SO3 

(as gypsum) and deacreased by adding Fe2O3. On the one hand, the iron oxide 

favors the decomposition of ye’elimite into mayenite, on the other hand the 
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decomposition of C4A3s inhibits the reaction of CaO with C2S, consequently 

suppressing the alite formation. According to these, the maximum percentages of 

alite and ye’elimite quantified in BAY clinkers were 16.0 and 12.1 wt%, 

respectively, representing an alite/ye’elimite ratio of 1.3. The optimum clinkering 

conditions to prepare 2 kg of BAY was 1300 ºC for 15 min, and the optimum 

dosage had 0.9 wt% of fluorite and an excess of gypsum up to total amount of 

4.3 wt% of SO3 (referred to the oxides). 

Form the second part, BAY hydration, the following conclusions can be drawn: 

• The increase of the water-to-cement ratio does not affect the hydration 

product assemblage of the system, that mainly contained ettringite (AFt) 

and AFm-type phases (as monosulfoaluminate and stratlingite) and katoite. 

Moreover, the ACn phase was indirectly quantified, and its composition 

should be mainly C-S-H and amorphous aluminum hydroxide (AH3). The 

presence of crystalline calcium hydroxide, as portlandite (CH), only was 

present until later ages when belite (β-C2S) began to react. This absence is 

adjudged to: i) CH at early-ages stimulate the reaction of ye’elimite with 

anhydrite to produce AFt; and ii) CH at later ages favors the demotion of 

AFt into AFm-type. This last effect was observed in all BAY samples, where 

AFm-type phases content increased while AFt content decreased from 28 

to 180 hydration days, independently of w/c ratio used. The main effects of 

w/c ratio on the mineralogical behavior observed were: i) the kinetics of 

reaction of ye’elimite, alite and belite were improved when w/c ratio 

increases, as expected. And ii) the katoite/stratlingite ratio decreased when 

w/c ratio increased. 

 
The effect of w/c ratio on mechanical properties was as expected: the 

reduction of w/c favors the compressive strength of BAY. However, the 

decrease of water content in lab-synthesized BAY cement required the use 
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of superplasticizer to improve the workability and the homogeneity of the 

cementitious matrix; for this reason, its effect will be explained below.  

• The use of the optimal amount of superplasticizer, 0.5 wt%, determined 

through rheological studies, the better homogeneity related to the particle 

repulsion favored the workability of the cement pastes, even when FA 

was added, with the direct effect on the viscosity reduction. The samples 

with and without the addition of SP did not show significant mineralogical 

changes at ages longer than 24 h. However, in the first 24 hours, it was 

detected through isothermal calorimetry and in-situ Mo-LXRPD, that the 

SP influences on the kinetics of hydration of mayenite (C12A7), which 

yields ye’elimite to react first. This effect was reflected in the heat flow as 

a decrease of the main peak intensity, associated with precipitation of 

hydrated products, giving a reduction of the total heat of about ~ 28% 

after 2 days. 

• The addition of FA as supplementary cementitious material (SCMs) in BAY, 

showed a vaguely impact on hydration products, where their main hydrated 

phases were AFt, monosulfoaluminate, stratlingite and AH3, the same as in 

unblended cement. But the increase of FA amount impacted considerably 

on the kinetic reaction of belite (by inhibiting it), hence favored the AFt 

stability due to absences of Si-rich environment (C-S-H gel) and portlandite. 

From the calorimetric studies, as expected, the early-age FA addition effect 

was associated with a filler behavior, giving nucleation points to form 

hydrated phases. 

The compressive strength values during the 180 hydration days increased 

with the increasing FA addition on BAY cement. During the first 28 days, 

this can be attributed to the filler effect (nucleation points and pores space 

filler); but after that, despite of the insignificant belite depletion, it might be 

considered as an indirect evidence of a kind of pozzolanic reaction. 
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It is important to highlight that all samples of the studied BAY (with and without fly 

ash) presented, from the first hydration day, higher compressive strengths than 

non-active belite-ye’elimite-ferrite (BYF) cement [48], reaching after 28 days 

higher compressive strengths than non-active BYF at 120 days (~ 34.5 and ~32.2 

MPa respectively). 

In the section about the hydration of the mixture of pure phases, the following 

conclusions can be remarked: 

• The kinetic of hydration of alite was highly affected by the polymorphism of 

ye’elimite, where it began to react after the complete hydration of ye’elimite. 

Since the orthorhombic ye'elimite reacted faster than pseudocubic 

ye'elimite, the initial depletion of C3S was carried out after 10 and 20 

hydration hours, respectively. The main crystalline products obtained from 

this jointly reaction were AFt, monosulfoaluminate and stratlingite. Again, 

the absent of crystalline CH is a fact. When alite jointly reacts with 

orthorhombic ye’elimite, higher amounts of C-S-H (as ACn content) were 

detected from higher hydration degree of C3S. The reactivity of alite in 

presence of pseudocubic ye’elimite was delayed, due to the slower kinetic 

of pseudocubic than orthorhombic ye’elimite; Thus anhydrous alite was 

presented even after 7 days of hydration, which favors the stability and 

quantity of AFt. 

• The water-to-solid ratio mainly affected the kinetic hydration of the jointly 

alite, ye’elimite and anhydrite, where the increase of w/s showed an 

acceleration of ye’elimite hydration reducing its hydration time to the half, 

hence favored the quick precipitation of ettringite (and monosulfoaluminate 

in orthorhombic ye’elimite). But, independently on alite/ye’elimite ratio, the 

hydration degree of alite and its respective stratlingite and C-S-H formation 

are always favored by increasing w/s ratio. 
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• The hydration of alite/ye’elimite mixtures show initial period, induction 

period followed by a maxima signals during the main hydration. The 

maxima signal in mixtures with pseudocubic ye’elimite were displayed as a 

wide signal, corresponding to the retarded hydration of this ye’elimite. And 

the maxima signal in mixtures with orthorhombic ye’elimite was exhibited as 

a narrow peak associated with the AFt precipitation. The alite/ye’elimite 

ratios mainly affected the evolved heat flow. When alite/ye’elimite ratio was 

1.37, the main peak was located before 20 hours of hydration, and the 

maximum values of ~37 and ~10 mW/g for orthorhombic and pseudocubic 

ye’elimite respectively were reached, at ~ 2 and ~11 hours of hydration, 

respectively. When the alite/ye’elimite ratio was 2.74, the main peak was 

delayed, centered between 3 to 20 hours for orthorhombic ye’elimite, and 5 

to 40 hours for pseudocubic ye’elimite; maximum values of ~14 and ~3 

mW/g were reached at around ~5 and ~18 hydration hours, respectively. 

These results are because the hydration enthalpy of ye’elimite is higher 

than that for alite (~ 560 [101,148] and ~ 515 J/g [4]), and from their 

independent kinetics of hydration. 

Comparing these results with the BAY hydration mineralogy, it can be underlined 

that, in this jointly alite-ye’elimite-anhydrite system, katoite was not detect. This 

result yields an important information relative to katoite formation: it seems that 

its formation needs not only alite to react in an aluminate rich environment but 

also needs the reactivity of ferrite. 

Finally, in the “commercial binder” (B83) part, the following conclusions were 

obtained: 

• The heat flow showed by B83 was slightly different to that for BAY cement, 

where the main peak was accelerated and increased from the quick 

precipitation of AFt and stratlingite in the system; reaching, therefore, the 

double of total heat during the first 5 hours of hydration compared to BAY 

(~120 J/g and ~60 J/g for B83 and BAY, respectively). 
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• The main hydration products of B83 were AFt, AFm-type phases 

(stratlingite and monosulfoaluminate), katoite and amorphous aluminum 

hydroxide. In this system, alite did not react completely reaching a 

maximum hydration degree of 77.5% at 180 days, while belite reacted 

normally after 28 hydration days, reaching at 180 days, a hydration degree 

of ~ 55%. Thus, this slower alite hydration favored the AFt stability without 

a considerable AFm formation (demotion degree of AFt at 180 days was 

only ~ 8.8%). This behavior is contrary of that of BAY cement, where due to 

the total hydration of alite and partial hydration of belite, after 28 hydration 

days, ettringite showed a significant demotion with a corresponding 

increase of AFm-type phases. In addition, the stratlingite and katoite 

precipitation were favored in both rich aluminum hydroxide environments. 

• The compressive strength values obtained from B83 mortars, after 1 days 

of hydration showed higher values than BAY-cement (without fly ash 

addition). This mechanical behavior was associated with the higher amount 

of AFt (higher stability), higher amount of stratlingite and lower free water, 

that cause lower porosity of the cementitious matrix. 

Perspectives 

During this work, the study of an unexplored field has been started: the activation 

of belite cement with the jointly rich content of alite and ye’elimite, its hydration 

mechanism and mechanical properties (understanding as compressive strength). 

Although a good basis has been laid with the current work, there are still several 

points that should be assessed in the future. 

• The synthesis of BAY clinker was possible by the use of 0.9 and 4.3 wt% of 

fluorite and SO3, respectively. But it is known that MgO and CuO (up to 1.5 

and 2.0 wt%, respectively) favor the coexistence of alite and ye’elimite. The 

use of one of them, may increase C3S and C4A3s amounts, keeping the 
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alite/ye’elimite ratio near to 1. All of this is something that should be 

considered in futures works.  

 

• Lab-synthesized BAY clinker contains β-form of belite, which presents a 

slow kinetic of hydration; the activation of belite with boron may be 

considered, with the aim of obtaining a highly reactive belite, without a 

decrease of the amount and ratio of alite and ye’elimite. It is important to 

highlight that in the hydration of this system the stability of AFt could be 

comprised, but this has to be studied.  

 

• In this thesis, anhydrite was used as calcium sulfate source, thus, further 

research may be performed to determine the influence of type and amount 

of calcium sulfate source (i.e. gypsum, hemihydrate or anhydrite) in BAY 

hydration mechanism and performances 

 

• In this research, polycarboxylate-based superplasticizer was used to 

improve the homogeneity of BAY pastes (blended and unblended) when 

the w/c was reduced to 0.4. Its direct influence on the setting time and the 

effect of other kinds of superplasticizers and/or retarders could be studied. 

 

• In the hydrated phase assemblage of BAY, portlandite was not detected 

owing to its consumption to form late AFm-type phases, mainly from AFt. 

The use of calcined clay or nano-SiO2 particles could be considered, as a 

supplementary cementitious materials, with the aim of favoring the early 

formation of C-S-H and possibly inhibition on the demotion of ettringite. 

 

• Before BAY cements could be used, it is needed to establish their long-

term durability. The understanding of how the AFt degradation and the 

presence of AFm-type phases and/or katoite can affect on the later 

properties such as shrinkage/expansion, chemical resistance, freeze-thaw, 

carbonation, heavy metals encapsulation, and so on.  
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Paper # 1. Clinkering and hydration of Belite-Alite-Ye’elimite cement [118] 
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Paper # 2. Influence of Fly Ash blender on hydration and physical behavior 

of Belite-Alite-Ye’elimite cement [136] 
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The tables and figures given in this annex show the RQPA results including ACn 

and free water (FW) determined by internal standard methodology of the XRD in-

situ study of mixtures of pure phases. 

 
Table A1. RQPA results (wt%) of the in-situ hydration study of c137_066. 

Phases 
C4A3s Cs AFt AFm C2ASH8 

Hemi-
CO3a C3S ACn+FW 

Age (h) 

0 21.7 9.5 - - - - 26.4 42.4 
1 20.7 9.2 1.5 - - - 26.4 42.2 

1.5 20.3 9.2 2.0 - - - 26.4 42.2 
2 19.5 9.0 2.6 - - - 26.4 42.5 
3 18.7 8.9 3.3 - - - 26.4 42.7 
4 17.8 8.7 4.2 - - - 26.4 42.7 
6 16.3 8.2 5.7 - - - 26.4 43.3 
8 15.0 7.8 7.2 - - - 26.4 43.5 

10 12.8 7.2 10.0 - - - 26.4 43.6 
12 9.6 6.2 14.2 - - - 26.4 43.6 
14 8.0 5.6 16.4 - - - 26.4 43.5 
18 7.3 5.3 18.1 - - - 26.4 43.0 
24 0.2 2.0 32.0 0.9 1.7 - 21.2 41.9 
38 - 2.0 33.1 0.9 3.0 - 19.1 41.6 
47 - 1.9 33.2 0.9 4.6 - 18.0 41.3 

168* - 1.4 32.7 0.7 8.2 0.1 14.3 42.6 
a.Hemi-CO3 : Hemicarbonate 
*168 h = 7 days of hydration 
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Table A2. RQPA results (wt%) of the in-situ hydration study of c137_132. 

Phases 
C4A3s Cs AFt AFm C2ASH8 

Hemi-
CO3a C3S ACn+FW 

Age (h) 

0 15.5 6.8 - - - - 18.9 58.8 
1 14.6 6.6 1.2 - - - 18.9 58.7 
2 13.8 6.4 2.0 - - - 18.9 58.8 
3 13.2 6.3 2.6 - - - 18.9 59.1 
4 12.6 6.2 3.2 - - - 18.9 59.1 
6 8.2 5.0 8.5 - - - 18.6 59.7 
8 4.9 3.7 13.5 - - - 18.5 59.3 

10 2.5 2.5 17.8 - - - 18.4 58.8 
12 1.1 1.6 20.7 - - - 18.3 58.3 
14 0.4 1.1 22.8 - - - 18.3 57.4 
18 - 0.6 25.0 - - - 17.6 56.8 
24 - 0.1 25.5 0.2 2.6 0.4 15.1 56.0 
38 - - 27.4 0.2 7.9 0.7 11.4 52.4 
47 - - 26.9 0.2 10.7 1.1 10.1 51.0 

168* - - 24.5 0.2 9.8 1.3 7.9 56.0 
a.Hemi-CO3 : Hemicarbonate 
*168 h = 7 days of hydration 
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Table A3. RQPA results (wt%) of the in-situ hydration study of o137_066. 

Phases 
C4A3s Cs AFt AFm C2ASH8 C3S ACn+FW 

Age (h) 

0 19.3 9.5 - - - 25.0 46.1 
1 19.1 9.1 1.3 - - 25.0 45.7 

1.5 18.5 8.9 1.4 - - 24.7 46.5 
2 18.2 8.9 1.7 - - 24.7 46.5 
3 17.8 8.9 3.2 - - 24.4 45.7 
4 13.3 8.5 3.6 3.0 2.7 24.2 44.7 
5 4.1 7.3 9.3 6.0 6.1 24.0 43.1 
6 2.8 6.6 11.2 7.0 6.7 24.0 41.8 
7 2.0 5.7 14.7 6.9 7.0 22.6 41.0 
8 1.5 5.3 15.8 7.9 7.2 22.5 39.7 
9 1.1 4.9 15.8 8.6 7.4 22.4 40.1 

10 0.4 4.7 15.8 9.0 7.6 21.7 40.8 
14 - 4.4 16.1 9.1 8.0 21.3 41.2 
24 - 4.0 16.8 10.4 8.2 19.6 41.0 
47 - 3.0 17.9 12.0 9.6 17.7 39.9 

168* - 1.3 21.5 15.7 9.9 15.4 36.2 
*168 h = 7 days of hydration 
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Table A4. RQPA results (wt%) of the in-situ hydration study of o137_132. 

Phases 
C4A3s Cs AFt AFm C2ASH8 C3S ACn+FW 

Age (h) 

0 13.8 6.8 - - - 17.9 61.5 
1 12.4 6.2 0.9 - - 17.5 62.9 
2 10.8 6.2 2.9 1.0 - 17.2 62.0 
3 3.4 4.9 9.9 3.5 2.4 17.2 58.7 
4 1.0 3.9 12.2 4.6 2.7 16.9 58.6 
5 0.5 3.4 13.4 5.3 2.9 16.5 57.9 
6 0.5 3.2 14.1 5.8 3.1 16.3 56.8 
7 0.5 3.1 14.2 6.3 3.3 16.1 56.6 
9 0.3 2.9 14.2 6.9 3.3 15.7 56.6 

14 - 2.6 14.3 8.3 3.5 14.4 56.9 
24 - 2.4 14.4 9.0 3.7 13.5 57.0 
47 - 1.6 14.4 10.4 3.7 12.3 57.6 

168a* - - 11.0 18.3 3.2 1.4 62.9 
a.Also 1.9 wt% of C-S-H (as clinotobermorite) and 1.3 wt% of hemicarbonate. 
*168 h = 7 days of hydration 
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Figure A1. Phase assemblage during 168 hours (7 days) of hydration of (a and 
c) c137 and (b and d) o137. Dark green circle: ACn+FW, blue diamond: C4A3s, 
yellow triangle: Cs, red square: C3S, purple asterisk: AFt, light blue circle: AFm 

and green cruise: C2ASH8. 
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Table A5. RQPA results (wt%) of the in-situ hydration study of c274_059. 

Phases 
C4A3s Cs AFt C2ASH8 

Hemi-
CO3a C3S ACn+FW 

Age (h) 

0 15.8 6.8 - - - 38.1 39.3 
1 13.9 6.3 2.2 - - 38.1 39.5 
2 13.3 6.2 2.7 - - 38.1 39.6 
3 12.4 6.2 3.4 - - 38.1 39.9 
4 11.1 6.0 4.5 - - 38.0 40.3 
6 8.4 5.4 7.8 0.4 - 38.0 40.1 
8 4.2 3.9 14.1 0.4 - 38.0 39.3 

10 1.7 2.4 18.4 0.5 - 38.0 39.1 
14 1.0 2.0 20.6 0.6 - 37.7 38.1 
18 0.1 1.0 24.1 0.7 - 35.8 38.3 
24 - 0.2 26.8 1.1 - 33.6 38.3 
38 - 0.2 27.7 1.3 0.3 32.4 38.2 
47 - - 27.8 1.8 0.3 31.3 38.9 

168* - - 25.6 6.2 0.7 27.7 39.9 
*168 h = 7 days of hydration 
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Table A6. RQPA results (wt%) of the in-situ hydration study of c274_119. 

Phases 
C4A3s Cs AFt AFm C2ASH8 CH C3S ACn+FW 

Age (h) 

0 11.4 5.0 - - - - 27.6 55.9 
1 10.2 4.6 1.7 - - - 27.6 55.9 
2 9.5 4.5 2.1 - - - 27.6 56.2 
3 9.1 4.5 2.4 - - - 27.6 56.4 
4 8.9 4.5 2.7 - - - 27.6 56.3 
6 8.4 4.5 2.9 - - - 27.6 56.6 
8 7.3 4.3 4.1 - - - 27.6 56.8 

10 3.5 2.9 9.6 - - - 27.6 56.4 
14 0.3 0.9 15.9 0.2 0.2 - 27.1 55.3 
18 - 0.3 18.7 0.3 0.2 - 26.7 53.8 
24 - 0.2 19.7 0.3 0.3 0.1 24.5 54.9 
38 - - 19.7 0.3 4.8 0.3 23.0 51.9 
47 - - 19.2 0.3 5.2 0.4 21.9 52.9 

168a* - - 15.1 5.4 6.7 1.4 14.0 56.7 
a.Also 0.6  wt% of hemicarbonate. 
*168 h = 7 days of hydration 
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Table A7. RQPA results (wt%) of the in-situ hydration study of o274_059. 

Phases 
C4A3s Cs AFt AFm C2ASH8 C3S ACn+FW 

Age (h) 

0 13.3 6.6 - - - 37.6 42.5 
1 13.0 6.5 2.5 - - 37.6 40.5 
2 12.4 6.5 3.1 - - 37.6 40.4 
3 12.2 6.4 3.2 - - 37.5 40.6 
4 12.1 6.4 3.4 - - 37.5 40.7 
7 1.2 4.9 10.6 5.5 - 36.7 41.0 

10 0.9 3.3 10.6 6.0 5.6 33.8 40.5 
12 - 3.2 10.7 6.7 5.8 33.8 40.2 
16 - 3.1 10.8 7.4 6.1 33.0 39.6 
24 - 2.5 10.9 8.3 6.5 32.6 39.2 
47 - 1.0 13.1 10.8 7.4 27.1 40.6 

168* - 0.3 15.3 14.7 7.1 20.2 42.4 
*168 h = 7 days of hydration 
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Table A8. RQPA results (wt%) of the in-situ hydration study of o274_119. 

Phases 
C4A3s Cs AFt AFm C2ASH8 C3S ACn+FW 

Age (h) 

0 9.7 4.8 - - - 27.3 58.2 
1.5 8.9 4.6 0.9 - - 27.3 58.2 
3 8.7 4.6 1.1 - - 27.3 58.3 
4 6.6 4.4 1.9 1.6 - 27.3 58.2 
5 1.4 3.6 5.4 4.0 - 27.3 58.3 
7 - 2.8 6.8 5.2 3.4 26.0 55.8 

10 - 2.8 6.8 5.2 4.1 25.1 55.9 
12 - 2.8 7.0 5.4 4.6 25.1 55.1 
16 - 2.3 8.4 6.0 4.8 25.1 53.3 
24 - 2.0 8.8 6.5 5.1 24.3 52.3 
47 - 0.6 10.7 8.7 6.0 23.2 50.8 

168a* - - 8.4 13.1 2.8 1.2 68.9 
a.Also 2.0 wt% of hemicarbonate and 3.6 wt% of portlandite. 
*168 h = 7 days of hydration 
 



Annex II 149 
 

 

Figure A2. Phase assemblage during 168 hours (7 days) of hydration of (a and 
c) c274 and (b and d) o274. Dark green circle: ACn+FW, blue diamond: C4A3s, 
yellow triangle: Cs, red square: C3S, purple asterisk: AFt, light blue circle: AFm 

and green cruise: C2ASH8. 
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Figure Int.1. 
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Figure Int.2. 
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Figures 2.3-2.4, 2.7-2.8 and 3.12-3.13 and Tables 2.3, 2.5-2.6 and 3.10. 
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