An MS-CASPT2 Study of the Photodecomposition of 4-Methoxyphenyl Azide. Role of Internal Conversion and Intersystem Crossing

Daniel Aranda, Francisco J. Avila, Isabel López-Tocón, Juan F. Arenas, Juan C. Otero, Juan Soto

Department of Physical Chemistry, Faculty of Science, University of Málaga
E-mail: aranda@uma.es

Aryl azides photochemistry is strongly dependent on the substituent relative position, as has been studied by time resolved resonant Raman (TR3) spectroscopy for 4-methoxyphenyl azide and its isomer 3-methoxyphenyl azide. [1,2] When irradiated at 266 nm, the former results in 4,4'-dimethoxyazobenzene whereas the latter forms 1,2-didehydroazepine. It is proposed that the key step of the reactions is the formation of a nitrene derivative. Recently, it has been proposed by us that nitrenes might have a relevant role in the Surface-Enhanced Raman Scattering (SERS) of p-aminothiophenol, [3] however, the molecular mechanism is not well known in neither of these cases. Therefore, we studied the photodecomposition of 4-methoxyphenyl azide [4] using multiconfigurational self-consistent field methods (MC-SCF) with the CAS-SCF and MS-CASPT2 approximations and calculated the resonant Raman spectra of the relevant species using a multi-state version of Albrecht’s vibronic theory. The results propose that the reaction follows a two steps sequence after irradiation at 266 nm: an intersystem crossing $2^1A'/2^3A''$ which decays through a $2^1A'/2^1A''$ conical intersection producing molecular nitrogen and triplet 4-methoxyphenyl nitrene in its ground state.

References