MULTOMIC STUDIES TO IMPROVE FRUIT QUALITY OF BERRY FRUITS

Introduction and Objectives

Climate change is affecting berry cultivation. Goodberry Project focuses on the improvement of berry crops, studying fruit quality in different cultivars and climatic zones. Goodberry aims to discover which berry cultivars have the highest quality, in order to produce year-round, tasty, healthy fruits.

Methods

![Gas chromatography-mass spectrometry techniques](image)

Primary metabolome

- GC-TOF-MS
- HS-SPME-GC-MS

Volatileome

Figure 1: Schematic representation of gas chromatography-mass spectrometry techniques used in this study (1,2). Several cultivars of strawberry, raspberry and blackcurrant were grown in different latitudes and harvested in 2017 and 2018.

Results

![Principal component analysis (PCA)](image)

Figure 2: Principal component analysis (PCA) showing samples distribution for primary metabolites (A) and volatiles (B). Shapes indicate different cultivars of strawberry, raspberry and blackcurrant, respectively, while colors represent different countries where the berries were grown in 2017. Labels A and B indicate two different times of harvest during 2017.

Conclusion

- GC-MS techniques allowed to identify 50 primary metabolites (sugars, amino and organic acids) and 75 volatiles (esters, alcohols, aldehydes, furans, ketones and terpenoids) which have a strong impact in fruit quality traits in different berry species.
- PCA and HCA showed that both climate and genetic factors influence primary metabolite and volatile content.
- However, environment has a stronger impact on primary metabolites.

Next Steps

Metabolomic data integration, followed by transcriptomic analysis of strawberry cultivars will provide complementary information in order to facilitate the production of high-quality berry fruits, capable of bearing the climate change.

References

This work is funded by the European Union’s Horizon 2020 research and innovation programme (GoodBerry; grant agreement number 679303).