The influence of childhood obesity on spatio-temporal gait parameters

Author: Montes Alguacil, Jesús
Overweight and obesity in 6–12 year old children in Switzerland

Michael B. Zimmermann, Corina Häberli, Claudia Pintzer, Luciano Molinari

1 Laboratory for Human Nutrition, Institute for Food Science and Nutrition, Swiss Federal Institute of Technology, Zurich, Switzerland
2 Institute for Pharmaceutical Science, Swiss Federal Institute of Technology, Zurich, Switzerland
3 Department of Growth and Development, University Children's Hospital, Zurich, Switzerland

Global prevalence and trends of overweight and obesity among preschool children

Mercedes de Onis, Monika Bööckner, Elaine Borghi

Montes-Alguacil, J. Health Sciences Faculty. Malaga University, Spain. jmontes@uma.es
INTRO

Changes of intersegment angular motion of the body during gait.
Strutzenberger G. 2011; Shultz SP. 2014; Mahaffey R. 2016

Progression of angular deformities in varus/valgus of the knee.
Mc Millan AG. 2010

An increased risk of osteoarthritis in adulthood.
Strutzenberger G. 2011; Shultz SP. 2014 Clin.

A less walking stability in obese children than those with normal weight.
Yan S. 2013

Obese children need to produce more energy in the joints of lower limbs.
Shultz SP. 2014

Other...

Montes-Alguacil, J. Health Sciences Faculty. Malaga University, Spain. jmontes@uma.es
Childhood Obesity and Gait Parameters

INTRO METHODS RESULTS DISCUSSION CONCLUSION

Montes-Alguacil, J. Health Sciences Faculty. Malaga University, Spain. jmontes@uma.es
Childhood Obesity and Gait Parameters

INTRO

METHODS

RESULTS

DISCUSSION

CONCLUSION

Optogait Photoelectric System

CIRCUMSTANCES OF THE STUDY

A LARGE SAMPLE SIZE

CHILDREN WALKING OVERGROUND AT SELF-SELECTED VELOCITY

Montes-Alguacil, J. Health Sciences Faculty. Malaga University, Spain. jmontes@uma.es
Ethical Issues:

Parents provided signed consents.

Ethics Committee of the University of Malaga. CEUMA 91/2016-H)

Declaration of Helsinki.
Participants:

N=238 participants, 7 to 11 years old

Inclusion/Exclusion criteria

Primary schools.
Childhood Obesity and Gait Parameters

INTRODUCTION

METHODS

RESULTS

DISCUSSION

CONCLUSION

Data Collection:

Anthropometric variables.

Body Mass Index. Classification. Sobradillo 2004

<table>
<thead>
<tr>
<th>Age(y)</th>
<th>n (%)</th>
<th>Underweight (n/%)</th>
<th>Normalweight (n/%)</th>
<th>Overweight (n/%)</th>
<th>Obese (n/%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>35/14.70</td>
<td>-</td>
<td>28/11.70</td>
<td>07/02.94</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>45/18.90</td>
<td>1/0.42</td>
<td>25/10.50</td>
<td>06/02.52</td>
<td>13/05.46</td>
</tr>
<tr>
<td>9</td>
<td>44/18.48</td>
<td>-</td>
<td>22/09.24</td>
<td>11/04.62</td>
<td>11/04.62</td>
</tr>
<tr>
<td>10</td>
<td>57/23.94</td>
<td>2/0.84</td>
<td>32/13.44</td>
<td>09/03.78</td>
<td>14/05.88</td>
</tr>
<tr>
<td>11</td>
<td>57/23.94</td>
<td>-</td>
<td>29/12.18</td>
<td>12/05.04</td>
<td>16/06.72</td>
</tr>
</tbody>
</table>

Montes-Alguacil, J. Health Sciences Faculty. Malaga University, Spain. jmontes@uma.es
Data Collection:

Spatio-temporal variables were collected by Optgait system

- Stance phase
- Swing phase
- Single support
- Double support
- Step length
- Step time
- Load response phase
- Pre-swing phase
- Contact phase
- Foot flat phase
- Propulsive phase
- Gait cycle
- Stride length
- Speed
- Acceleration
- Cadence
- Total distance.
Statistical Analysis:

Exploratory analysis by Kolmogorov-Smirnov

Bivariante analysis by Student`s Test

Multivariante by ANOVA

In addition…

Levene Test
Browne-Forsythe Test (Robustness)
Bonferroni Test (Post-hoc)
Anthropometric characteristics of the sample by gender.

<table>
<thead>
<tr>
<th></th>
<th>95% Confidence Interval</th>
<th>Mean</th>
<th>Lower</th>
<th>Upper</th>
<th>SD</th>
<th>Min.</th>
<th>Max.</th>
<th>S. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>9.29</td>
<td>9.03</td>
<td>9.55</td>
<td>1.40</td>
<td>7</td>
<td>11</td>
<td></td>
<td>0.1310</td>
</tr>
<tr>
<td>Male</td>
<td>9.19</td>
<td>8.94</td>
<td>9.43</td>
<td>1.38</td>
<td>7</td>
<td>11</td>
<td></td>
<td>0.1240</td>
</tr>
<tr>
<td>Height (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1.3701</td>
<td>1.3454</td>
<td>1.3948</td>
<td>0.1332</td>
<td>1.10</td>
<td>1.69</td>
<td></td>
<td>0.0124</td>
</tr>
<tr>
<td>Male</td>
<td>1.3539</td>
<td>1.3341</td>
<td>1.3736</td>
<td>0.1111</td>
<td>1.09</td>
<td>1.59</td>
<td></td>
<td>0.0099</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>39.30</td>
<td>36.92</td>
<td>41.67</td>
<td>12.78</td>
<td>19</td>
<td>82</td>
<td></td>
<td>1.197</td>
</tr>
<tr>
<td>Male</td>
<td>38.55</td>
<td>36.30</td>
<td>40.81</td>
<td>12.68</td>
<td>19</td>
<td>86</td>
<td></td>
<td>1.139</td>
</tr>
<tr>
<td>Body Mass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>20.41</td>
<td>19.69</td>
<td>21.13</td>
<td>3.89</td>
<td>14.75</td>
<td>32.55</td>
<td></td>
<td>0.3646</td>
</tr>
<tr>
<td>Male</td>
<td>20.54</td>
<td>19.77</td>
<td>21.31</td>
<td>4.33</td>
<td>13.77</td>
<td>36.18</td>
<td></td>
<td>0.3895</td>
</tr>
</tbody>
</table>

Montes-Alguacil, J. Health Sciences Faculty. Malaga University, Spain. jmontes@uma.es
No statistical differences related to spatial parameters.

Temporal parameters with p<0.05 in obese and overweight children.

- Stance phase
- Swing phase
- Single support
- Double support
- Step length
- Step time
- Load response phase
- Pre-swing phase
- Contact phase
- Foot flat phase
- Propulsive phase
- Gait cycle
- Stride length
- Speed
- Acceleration
- Cadence
- Total distance.
Childhood Obesity and Gait Parameters

No statistical differences related to spatial parameters.

Temporal parameters with p<0.05 in obese and overweight children.

- **Stance phase**
 - Step length
 - Step time
 - Load response phase
 - Pre-swing phase

- **Swing phase**
 - Single support
 - Double support

- **Contact phase**
 - Foot flat phase
 - Propulsive phase

- **Gait cycle**
 - Stride length
 - Speed
 - Acceleration
 - Cadence
 - Total distance

Montes-Alguacil, J. Health Sciences Faculty. Malaga University, Spain. jmontes@uma.es
Childhood Obesity and Gait Parameters

<table>
<thead>
<tr>
<th>Phases of gait with significant differences in relation to BMI</th>
<th>95% Confidence Interval</th>
<th>Dependent Variables</th>
<th>Mean Difference</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Response_t</td>
<td></td>
<td>Normalweight</td>
<td>-0.21</td>
<td>0.468</td>
<td>-0.05</td>
</tr>
<tr>
<td>Overweight</td>
<td></td>
<td>Obese</td>
<td>-0.032</td>
<td>0.015</td>
<td>-0.06</td>
</tr>
<tr>
<td>Load Response_l</td>
<td></td>
<td>Normalweight</td>
<td>-0.014</td>
<td>0.011</td>
<td>-0.03</td>
</tr>
<tr>
<td>Overweight</td>
<td></td>
<td>Obese</td>
<td>-0.024</td>
<td>0.000</td>
<td>-0.03</td>
</tr>
<tr>
<td>Load Response_r</td>
<td></td>
<td>Normalweight</td>
<td>-0.023</td>
<td>0.038</td>
<td>-0.06</td>
</tr>
<tr>
<td>Overweight</td>
<td></td>
<td>Obese</td>
<td>-0.034</td>
<td>0.011</td>
<td>-0.06</td>
</tr>
<tr>
<td>Stance Phase_t</td>
<td></td>
<td>Normalweight</td>
<td>-0.029</td>
<td>0.080</td>
<td>-0.06</td>
</tr>
<tr>
<td>Overweight</td>
<td></td>
<td>Obese</td>
<td>-0.044</td>
<td>0.000</td>
<td>-0.07</td>
</tr>
<tr>
<td>Stance Phase_l</td>
<td></td>
<td>Normalweight</td>
<td>-0.027</td>
<td>0.135</td>
<td>-0.06</td>
</tr>
<tr>
<td>Overweight</td>
<td></td>
<td>Obese</td>
<td>-0.045</td>
<td>0.000</td>
<td>-0.07</td>
</tr>
<tr>
<td>Stance Phase_r</td>
<td></td>
<td>Normalweight</td>
<td>-0.032</td>
<td>0.050</td>
<td>-0.06</td>
</tr>
<tr>
<td>Overweight</td>
<td></td>
<td>Obese</td>
<td>-0.044</td>
<td>0.000</td>
<td>-0.07</td>
</tr>
<tr>
<td>Pre Swing_t</td>
<td></td>
<td>Normalweight</td>
<td>-0.014</td>
<td>0.007</td>
<td>-0.03</td>
</tr>
<tr>
<td>Overweight</td>
<td></td>
<td>Obese</td>
<td>-0.025</td>
<td>0.000</td>
<td>-0.04</td>
</tr>
<tr>
<td>Pre Swing_l</td>
<td></td>
<td>Normalweight</td>
<td>-0.015</td>
<td>0.005</td>
<td>-0.03</td>
</tr>
<tr>
<td>Overweight</td>
<td></td>
<td>Obese</td>
<td>-0.026</td>
<td>0.000</td>
<td>-0.04</td>
</tr>
<tr>
<td>Pre Swing_r</td>
<td></td>
<td>Normalweight</td>
<td>-0.013</td>
<td>0.019</td>
<td>-0.03</td>
</tr>
<tr>
<td>Overweight</td>
<td></td>
<td>Obese</td>
<td>-0.024</td>
<td>0.000</td>
<td>-0.03</td>
</tr>
</tbody>
</table>

Montes-Alguacil, J. Health Sciences Faculty. Malaga University, Spain. jmontes@uma.es
PREVIOUS STUDIES. SIGNIFICANT RESULTS:

3-D Analysis and Force platforms:

Stance phase, Step width, Pre-swing phase

Photoelectric systems:

Stance phase, Pre-swing phase

Beulertz J. 2016, Galli M. 2015

Montes-Alguacil, J. Health Sciences Faculty. Malaga University, Spain. jmontes@uma.es
Childhood Obesity and Gait Parameters

Montes-Alguacil, J. Health Sciences Faculty. Malaga University, Spain. jmontes@uma.es
Childhood Obesity and Gait Parameters

Gait strategy with obesity:

- Optimization of energy consumption
- Balance stabilization
- Prevention of falls.

D’Hondt E. 2011
Pau M. 2012
Yan S. 2013
Pathare N. 2015
Villarrasa-Sapiña I. 2016

Montes-Alguacil, J. Health Sciences Faculty. Malaga University, Spain. jmontes@uma.es
Childhood Obesity and Gait Parameters

Obesity influences Spatio-temporal Gait Parameters of Children

STANCE PHASE

PRE-SWING LOAD RESPOnde

STABILITY

Montes-Alguacil, J. Health Sciences Faculty. Malaga University, Spain. jmontes@uma.es
Childhood Obesity and Gait Parameters

Thank you!
Childhood Obesity and Gait Parameters