Climate control of an outdoor classroom using renewable energy

Fernando Domínguez-Muñoz
José Manuel Cejudo López
Antonio Carrillo Andrés

1Universidad de Málaga

III AdvEngHVACR Workshop
Coimbra, 30 may 2019
Project E4 (Espacio Educativo Exterior Eficiente)

Objective: the university wants an outdoor classroom, i.e., a semi-open pavilion integrated into a park located in the main campus

Purpose: the classroom should provide improved environmental conditions compared to the outside (thermal comfort, reduced air speed, adequate lighting, etc.) using passive techniques and renewable active systems (solar in our case)

Intended use: teaching in a different and more natural setting, a place to give press conferences, or a playground for the children of a nearby kindergarten

Working group:
- Architects: building and environment design
- Mechanical engineers: thermal analysis, HVAC design, structural analysis
- Electrical engineers: sensors and AI for system control
Building

Floor area 124 m². Three solar collection planes in the ceiling designed to maximize solar insolation while minimizing self-shading. Some openings, the biggest due south. Wind shields. Lightweight construction (concrete mesh + thermal insulation + coverings). Example of **parametric architecture**
Climate control approach

We are dealing with an open thermal zone, so the question is: do we have some control over the indoor conditions?

- Air conditions inside the classroom can not be effectively controlled due to the large infiltrated volumes in the zone.
- Inside surface temperatures can be partially controlled using TABS (Thermal Active Building Systems).
- Sun radiation can be selectively blocked using shading devices.
Proposed solution

- Blue: solar collection plane (PV in our case)
- Yellow: thermally active surface (controlled T inside face)
- Gray: passive surface
CFD model

Help to locate the wind shields, estimate internal wind speed, estimate Nusselt numbers
Non-standard shape ⇒ a tailored model has been developed in MATLAB and Fortran. The external surface has been meshed as showed in the figure.

The incident solar radiation has been calculated for each mesh element (includes shading mask to account for obstacles). Elemental view factors between mesh elements have been calculated and latter aggregated. Thermal balances on the surfaces were formulated and written as a system of DAEs (Differential Algebraic Equations) The solution of this system of equations gives the temperature of each surface and the thermal demand of the classroom.
Mechanical plant

Option 1: Direct activation of the heat pump with variable CC

Option 2: Conventional AC heat pump

Installed PV = 14 kWp; Peak thermal power delivered to zone = 40,8 kWp
Temperature evolution: winter day

![Graph showing temperature evolution over a winter day with different temperature metrics.](image-url)
Temperature evolution: spring day

![Temperature Evolution Graph](image)

- Ambient
- Mean Radiant
- Operative
Concluding remarks

- Unusual building geometry difficult to model with conventional building simulation programs (E+, Trnsys Type56, ...)
- Operative temperature improvement between 2 and 10 K
- Severe limits to cooling capacity in humid days (high dew point)
- Few if any CC activated heat pumps in the Spanish market
- More research needed on thermal comfort in semi-open spaces