
Reproducible Summation under HUB Format

Julio Villalba-Moreno
Dept. of Computer Architecture

University of Málaga
Málaga, SPAIN
jvillalba@uma.es

Javier Hormigo
Dept. of Computer Architecture

University of Málaga
Málaga, SPAIN

fjhormigo@uma.es

Francisco Jaime
Dept. Program. Lang. & Computer Science

University of Málaga
Málaga, SPAIN
franj@ac.uma.es

Abstract—Floating point reproducibility is a property
claimed by programmers and end users. Half-Unit-Biased
(HUB) is a new representation format in which the round
to nearest is carried out by truncation, preventing any carry
propagation and saving time and area. In this paper we study
the reproducible summation of HUB numbers by using a error-
free vector transformation technique, providing both a specific
architecture and the usage of combined HUB/Standard floating
point adders to achieve a reproducible result.

Keywords-Reproducible summation, HUB format

I. INTRODUCTION

HUB is the acronym of Half-Unit-Biased format and it
is based on shifting the standard numbers by half unit in
the last place (ULP). Some of its important features are that
the two’s complement is carried out by bit-wise inversion,
the round-to-nearest is performed by simple truncation, and
requires the same number of bits for storage as its conven-
tional counterpart for the same precision [1]. Thanks to those
characteristics, it is possible to eliminate the rounding logic
which significantly reduces both area and delay [1], [2].

The efficiency of using HUB formats for floating-point
approach has been demonstrated in several works. In [1]
the authors analyze the benefits of using HUB format for
floating-point adders, multipliers, and converters from a
quantitative point of view. Experimental analysis demon-
strate that HUB format maintains the same accuracy as the
conventional format for the aforementioned units, simultane-
ously improving area, speed, and power consumption (14%
speed-up, 38% less area and 26% less power for single
precision floating-point adder, 17% speed-up, 22% less area
and slightly less power for the floating-point multiplier).
Regarding division and square root, the hardware required
for HUB is exactly the same as that of conventional (for
the same precision), needing the same number of iterations.
Moreover, for implementations with on-the-fly conversion,
the use of HUB format saves area [3]

The non-reproducibility of the floating point addition is
due to the fact that it does not have the associative law.
This leads to having different results depending on the order

This work has been supported by the Ministry of Science and Innovation
of Spain under project CICYT TIN2016-80920R.

of the operands when a sum is carried out. The dynamic
scheduling on processor with parallel computing resources
involves different execution order of the operands in a
multioperand addition. In this paper we propose a technique
to deal with this problem for HUB numbers, in such a way
that the final result of a summation is independent of the
order of summation. Our algorithm is based on the error-
free vector transformation proposed by Rump [4]. Basically
we perform a pre-rounding of the data to a common base
according to a specific boundary. This splits the operands in
a high and low parts, in such a way that the summation of
the high parts are free of rounding error and can be added
in any order. This technique is proposed in [5] and [6] for
standard IEEE floating point operands. For HUB format, the
technique can not be directly applied but it requires some
not straightforward modifications. In this paper, we propose
an algorithm to deal with the summation of floating point
HUB numbers, overcoming the problems involved by the
particular way of rounding of the HUB approach.

The rest of the paper is organized as follows: in section II
we present the fundamentals of the HUB format for floating
point representation, in section III we describe the algorithm
proposed in [5] and [6] based on the error-free vector
transformation, in section IV we propose our algorithm to
perform the reproducible summation of floating point HUB
numbers, and finally in the last section we give the summary
and conclusion.

II. HUB FORMAT FOR FLOATING-POINT

The mathematical fundamentals and a deep analysis of
the HUB format as well as the addition and multiplication
operations under this format can be found in [7]. In this
section we summarize the HUB format defined in [7]
and particularize it for the floating-point normalized HUB
numbers.

From a format point of view, a normalized floating point
HUB number is similar to its IEEE counterpart but the
significand is HUB. Thus, the only difference is the format of
the significand. Without any loss of generality, we consider
radix-2. Let xhub denote a normalized radix–2 floating-point
HUB number with a significand HUB of p bits (denoted
mhub with 1 < mhub < 2), a sign bit s and an exponent e

such that [7]:
xhub = (−1)smhub2

e (1)

where mhub is

mhub =

[
µ+

1

2

]
2−(p−1) (2)

with µ ∈ N belonging to the bound:

2p−1 ≤ µ < 2p (3)

Let integer significand denote µ (µ = µp−1µp−2...µ0), that
is

µ =

p−1∑
i=0

µi2
i (4)

From now on the triple (s, µ, e) denotes a normalized
HUB number such that:

xhub = (−1)s
[
µ+

1

2

]
2e−(p−1) (5)

Due to the bound (eq. (3)) we have that µp−1 = 1, and
from (2) and (4) the normalized HUB significant mhub has
the form:

mhub = 1µp−2...µ0.1 × 2−(p−1) (6)

This expression is called the operational form of a HUB
significand and is used in actual circuits [7]. From expression
(6) and as shown in [7], a normalized HUB significand
can be represented by the bits µp−2...µ0 since the most
significant bit (MSB) and the less significant bit (LSB)
are both 1 and they are treated as implicit (the value
1µp−2...µ0 × 2−(p−1) is called representative form in [7]).
The implicit LSB of the operational form (fractional bit in
expression (6)) is called ILSB in [7] and corresponds to the
term 1

2 in expressions (2) and (5). Consequently, according
to equations (5), (6) and (4) xhub is a normalized floating
point HUB number given by:

xhub = (−1)smhub2
e = (−1)s

[
p−1∑
i=0

µi2
i +

1

2

]
2e−(p−1)

(7)
with µp−1 = 1 and 1 < mhub < 2. Figure 1 summarize the
expression of a normalized HUB number x.

hub

1

2

1

2
x=(−1)

s

µµ1 0. 1 x 2 x1 2eµ µp−2 p−3

(ILSB)µ
m

. . .xhub −(p−1)

hub

e
=(−1)

s(µ +)2
e−(p−1)

m 2

Figure 1. Normalized floating point HUB format

A. Round to nearest for HUB numbers

Let us deal with round to nearest for HUB format
for floating-point numbers. Consider a normalized non-
HUB number y = (sy, µy non hub, ey) (that is 2p−1 ≤
µy non hub < 2p but µy non hub /∈ N) whose significand is
composed by p integer bits and f fractional bits (f > 0):

µy = 1µyp−2 · · · µy0 . µy−1 · · · µy−f
(8)

We want to round this number to the nearest HUB number
denoted by yhub = Rhub(y) = (s′y, µ

′
y, e

′
y), where Rhub(∗)

denotes the operator that rounds a value to the nearest HUB
number. Rhub(y) is a HUB number with the same sign and
exponent as y and with its integer significand µ′

y given by the
p MSB of µy non hub, that is the integer part of µy non hub.
Thus, Rhub(y) = (sy, µ

′
y, ey) with µ′

y given by the next
expression:

µ′
y = ⌊µy non hub⌋ = 1µyp−2 ...µy0 (9)

and the corresponding operational HUB significand m′
y hub

is
m′

y hub =

[
⌊µy non hub⌋+

1

2

]
2−(p−1) (10)

Therefore, the rounded HUB number Rhub(y) is achieved
by keeping both the sign and the exponent and obtaining the
integer part of the original number (that is, by truncating the
p MSBs of the significand of y). Due to the definition of
a HUB number this truncation produces a round to nearest
number, as proved in [7]. For example, consider a 4 bit
(plus ILSB) HUB format and two consecutive HUB numbers
ahub = 1.010 1 and a+hub = 1.011 1 (the separate 1 is
the ILSB). The middle point is mdl = 1.011 0 (mdl is
not a HUB number; the separate 0 has same weigh as the
ILSB). Consider the point x = 1.010 1 01 which fulfills
ahub < x < mdl. The nearest HUB number is 1.010 1 (that
is ahub) which can be obtained by truncation of the 4 MSB
of 1.010 1 01. Now consider the number x = 1.011 0 01
which fulfills mdl < x < a+hub. The nearest HUB number
is 1.011 1 (that is a+hub) which can be also obtained by
truncation of the 4 MSB of 1.011 0 01 (note that the bit
at the position of the ILSB is always 1 in a HUB number).
Thus, truncation produces a round to nearest in both cases.

Figure 2 summarize the HUB rounding process: given a
normalized non HUB number (s, µ, e), the round-to-nearest
HUB number (s, ⌊µ⌋, e) is performed by simple truncation
of the significand (integer part).

III. REPRODUCIBLE SUMMATION BASED ON
ERROR-FREE VECTOR TRANSFORMATION

In this section we have a look to the algorithms proposed
in [5] and [6] for standard IEEE floating summation which
are based on the error-free vector transformation presented
by Rump [4]. The main idea is to pre-round the numbers
to a common base in such a way that the addition of the

y1. . .µ µp−2 p−3 µ−f. . .µ µ−1 −2

µµ1 0. . . . 11 µ µp−2 p−3

−(p−1)

−(p−1)

µ01 .

HUB rounding

HUB rounding

non HUB numbery = (s,

m

m

µ ,e)

µ HUB number,e)R (y)= (s,hub

x

x

2

2 y’hub

µ

Figure 2. HUB rounding operator Rhub(∗)

numbers can be computed accurately without any rounding
error.

Given a vector of floating point numbers, all elements
are split in high order parts and low order parts following
the well-know algorithm FastToSum [8]. The algorithm is
called an error-free transformation because it computes the
addition as well as its rounding error. The upper parts can
now be added and the result is reproducible. From this basis,
the authors propose several algorithms for reproducible
summation based on searching a common base to perform
the split of the elements and how to increase the accuracy
using the K-fold reproducible summation.

The next algorithm is used in [5] for reproducible sequen-
tial sum for a vector v = {v1, v1, ..., vn} of n floating point
numbers of p bit precision

1: m = max(|vi|)
2: δ = fl(n ∗m/(1− 2nϵ))
3: M = 2log2(δ)

4: T = 0
5: for i = 1 to n in any order do
6: qi = fl(fl(M + vi)−M)
7: T = fl(T + qi)
8: end for

where fl() denotes the evaluated result of an expression in
floating point arithmetic (round to nearest mode), m is the
maximum of |vi|, the machine ϵ = 2−p, qi is the high
order part of vi, and T is the accumulator. M is used to
operate with each element to obtain the high part qi in step
6. Thus, after running the algorithm it is ensured that T is
the reproducible sum of high order parts.

The fundamentals of these algorithms are two lemmas
(providing the conditions for exact computation), some
theorems for error bound of conventional sum and the error-
free vector transformation.

IV. PRE-ROUNDING TECHNIQUE FOR HUB SYSTEMS

In this paper we use both the standard IEEE 754-2008
floating point representation and the HUB representation.
We do not consider the subnormal numbers. Also, overflow

and underflow is not treated here. Only rounding to nearest
is considered for HUB number and rounding toward zero
for the standard representation. In both cases, the rounding
is achieved by simple truncation. This is a very important
feature throughout this paper since rounding never involves
a change of exponent or a carry propagation when using
HUB format.

The precision of a standard floating point number is
given by the number of bits of its significand. For a HUB
number, it is represented for the number of bits of its integer
significant (µ). The counterpart of the floating point HUB
numbers are the standard one with the same precision (and
viceversa). Let p denote the precision of a HUB/standard
floating point number (HUB numbers of p bit precision and
standard numbers of p bit precision involve the same amount
of numbers in both systems, the same distance between
consecutive numbers for the same exponent and the same
number of bits in the representation format [7]).

The unit in the last place of a floating point number x
(HUB and standard) is the spacing between two consecutive
floating point numbers of the same exponent and is denoted
by ulp(x).

We define machine epsilon ϵ as ϵ = 2−p. 1

The upper bound of the relative error due to HUB
rounding is u = ϵ since HUB rounding is to nearest.

For the standard, an important lemma is found in [5] and
[6] and a slightly modified version of it is used in this paper
(not valid for HUB):

Lemma I. Let Q, x, y be three standard floating point
numbers with a significand of p bits such that x and y are
multiple of 1

2ulp(Q). If |x+y| < ϵ−1 1
2ulp(Q) then x+y can

be represented as an exact p-bit signfificand floating point
number and x+ y can be exactly computed.

Proof: A number is exactly representable in a p-bit sig-
nifcand floating point format if the exponent is inside the
required range and the number of significant bits is equal or
less than p. In other words, if the difference of exponents
of the MSB and the LSB is less than p. Then, let us focus
on the weigh of the LSB and MSB:

• The minimum LSB (LSBmin) corresponds with the
addition of one operand whose ulp is the minimum
multiple possible, that is 1

2ulp(Q). Assume Q has an
exponent k so that ulp(Q) = 2k−(p−1). Thus

LSBmin = min{LSB(x), LSB(y)} =
1

2
2k−(p−1) (11)

• Tanking into account that ϵ = 2−p and ulp(Q) =
2k−(p−1), expression |x + y| < ϵ−1 1

2ulp(Q) becomes
|x + y| < 2k and thus the maximum MSB possible

1The definition of ϵ in [5] and [6] is different from ours, although the
numerical value is the same. In our paper, rounding never involves a change
in the exponent (since it is carried out by truncation) and the integer 1 is
not exactly representable

(MSBmax) of the result is

MSBmax = 2k−1 (12)

Now, the difference of exponent between the MSBmax and
the LSBmin is log2 2

k−1 − log2(
1
22

k−(p−1)) = p− 1 < p,
and thus, it is representable as an exact standard floating
point number.

Q.E.D

The underlying practical interpretation of this lemma is
that the addition of two standard floating point numbers is
reproducible if both are multiple of 1

2ulp(Q) and the number
of significant bits of the result is less than or equal to the
size of the significand (p).

Now we adapt the pre-rounding technique proposed in [5]
and [6] for HUB systems. The key idea is to perform a pre-
rounding of the input values to a common base in such a way
that their sum can be computed accurately with no rounding
error. The error depends only on the input numbers and the
selected common base and the result does not depend on the
order of summation.

With this technique the floating HUB numbers are split
into a high and low independent parts according to a com-
mon base. The summation of the high parts is reproducible,
whereas the lower part keeps the rounding error. For HUB,
this technique can be implemented in two ways: using a
direct manipulation of the exponent and significant in a
specific architecture or by using HUB adders, as shown
below.

A. Splitting the HUB number

The next theorem shows the way to split a normalized
HUB number in two independent upper and lower parts such
that the upper part is suitable for reproducible summation,
as shown below. For clarity in the exposition and from now
on, we consider positive numbers (since HUB follows sign-
magnitude representation, the treatment of negative number
is similar).

Theorem I Let Q = 2k and consider its standard
normalized floating point representation with a significand
of p bits. Let ulp(Q) denote the unit in the last place
of the standard floating point representation of Q, that is
ulp(Q) = 2k−(p−1). Let xhub be a normalized HUB number
(xhub ≡ (s, µ, e)), with Q > xhub. If we define q and r as
the upper and lower part respectively of xhub such that:

xhub = q + r (13)

where q is

q =

(
⌊µ2e−k⌋+ 1

2

)
2k−(p−1) (14)

then

q = l
1

2
ulp(Q) (15)

r <
1

2
ulp(Q) (16)

with l ∈ N
Proof:
• q = l 12ulp(Q). Since ⌊µ2e−k⌋ ∈ N then

∃l′ ∈ N such that ⌊µ2e−k⌋ = l′. Thus,(
⌊µ2e−k⌋+ 1

2

)
= l′ + 1

2 = 1
2 (2l

′ + 1). Since l′ ∈ N

then l = 2l′+1 is also an integer, that is ⌊µ2e−k⌋+ 1
2 =

l 12 . From this expression and taking into account that

ulp(Q) = 2k−(p−1), expression (14) becomes

q = l
1

2
ulp(Q) (17)

• r < 1
2ulp(Q). From expression (13) we have that

r = xhub − q. Thus, from expressions (5) and (14) we
have:

r =

(
µ+

1

2

)
2e−(p−1) −

(
⌊µ2e−k⌋+ 1

2

)
2k−(p−1) =

=

[
µ2e−k +

1

2
2e−k − ⌊µ2e−k⌋ − 1

2

]
2k−(p−1)

Taking into account expression (4) and developing the
integer part of µ2e−k:

r =

[
p−1∑
i=0

µi2
i2e−k +

1

2
2e−k−

p−1∑
i=k−e

µi2
i2e−k − 1

2

]
2k−(p−1) =

=

[
k−e−1∑
i=0

µi2
i2e−k +

1

2
2e−k − 1

2

]
2k−(p−1)

An upper bound is achieved if we consider µi = 1,∀i
in the previous expression and taking into account that∑k−e−1

i=0 2i2e−k = 1− 2e−k:

r ≤
[
1

2
− 1

2
2e−k

]
2k−(p−1) (18)

Since k is a constant and e < k then 1
2 − 1

22
e−k < 1

2 .
From this expression and taking into account the def-
inition of ulp(Q) as ulp(Q) = 2k−(p−1), expression
(18) becomes:

r <
1

2
ulp(Q) (19)

Q.E.D

Theorem I involves a disjoint splitting of a HUB number
xhub into two standard numbers q and r where there is not
any overlap between them. Moreover, if the resulting upper
parts of a set of HUB numbers fulfill the condition of Lemma
1, then their summation is exact and reproducible. Next we
prove this.

Given a vector of n HUB numbers vhub = [vhub1 , ..., vhubn],
we split its elements according to Theorem I (that is
vhubi = qi + ri,∀i) using a common base Q = 2k such
that Q > qi, ∀i. To meet the conditions of Lemma 1 the
next expression have to be fulfilled:

|
n∑

i=1

qi| < ϵ−1 1

2
ulp(Q) (20)

Now we prove that this condition is accomplished. From
Theorem I we have Q = 2k so that ulp(Q) = 2k−(p−1)

and taking into account that ϵ = 2−p we have that
ϵ−1 1

2ulp(Q) = 2k. Thus, the condition (20) of Lemma I
becomes:

|
n∑

i=1

qi| < 2k (21)

Now we have to find a suitable value of k that fulfills
equation (21). First we take into account that |

∑n
i=1 qi| ≤∑n

i=1 |qi| so that we are going to prove a stronger condition:

|
n∑

i=1

qi| ≤
n∑

i=1

|qi| < 2k (22)

Since vhubi = qi + ri, then qi = vhubi − ri and
|qi| = |vhubi − ri| ≤ |vhubi | + |ri|. Since each vhubi

fulfills the condition of Theorem I, we can use equation
(16) to ensure that |qi| < |vhubi | + 1

2ulp(Q) and then∑n
i=1 |qi| <

∑n
i=1 |vhubi | + n 1

2ulp(Q). To ensure a good
bound for |vhubi | we choose the maximum of them (denoted
|vhubi |max). Futhermore, the maximum of a set of HUB
numbers is reproducible since floating point maximum is
associative. Thus, we can write

n∑
i=1

|qi| < n|vhubi |max + n
1

2
ulp(Q) (23)

Taking into account that ulp(Q) = 2k−(p−1) and ϵ = 2−p,
we can write that ulp(Q) = 2ϵ · 2k. Substituting this
expression in equation (23) we have

n∑
i=1

|qi| < n|vhubi |max + nϵ · 2k (24)

If we select 2k such that n|vhubi |max ≤ (1 − nϵ) · 2k then
equation (24) becomes:

n∑
i=1

|qi| < 2k (25)

Thus, the value of k can be chosen as

k =

⌈
log2

n|vhubi |max

1− nϵ

⌉
(26)

In summary, given a set of HUB numbers to be added
{vhubi } we select the maximum of them and calculate
the value of Q as Q = 2k with k according expression
(26). Now, we apply the Theorem I to each HUB number
obtaining a set {qi} whose addition is reproducible.

B. Accuracy

The general rule for accuracy is the smaller Q is, the more
accurate the final sum is. For the pre-rounding technique
proposed, the accuracy depends on the common base used
for splitting, that is Q. Since the lower parts ri all fulfill
equation (16), the maximum absolute error (A error) is
bounded by the product of the number of numbers to be
added and the bound of equation (16):

A error < n · 1
2
ulp(Q) (27)

Taking into account that ulp(Q) = 2k−(p−1) we have

A error < n · 2k−p (28)

This error bound can be improved by using the K-fold
technique described in [5], which applies K passes of error-
free transformation to extract K leading parts of each input
floating point instead of just 1 leading part to improve the
computed accuracy. This technique increases the running
time substantially when n is large. In [6] the 1-Reduction
technique is proposed to avoid the computation of the global
maximum absolute value (specially useful in multiprocessor
environment since no communication is required). It is based
on a pre-computation of the boundaries independently of
input data so that each processor uses its own local boundary.
We think that these techniques can be applied for HUB
environment since the techniques proposed in [5] and [6]
are based on Lemma I and Theorem I. Nevertheless, in this
paper we do not study it and it is leaved for future works.
See [5] and [6] to find a deep analysis of improving the
accuracy.

V. ARCHITECTURES FOR IMPLEMENTATION

The splitting algorithm proposed in this paper can be im-
plemented by an architecture that manipulates the signficand
and the exponent directly or by using HUB/standard adders.
Let see both alternatives.

A. Direct manipulation of the significand by a pre-rounding
unit

The pre-rounding of the HUB numbers to be added can
be carried out by simple manipulation of the input data. For
a better explanation of the technique Figure 3 shows the
relative position of some different terms used in Theorem I.

.

2
1

2
k

2
e−p

2
e 2

k−(p−1)

2
p+1+e−k

2
p−1

2
0 2

1

2
0 2

1

1
2

1
2

1 x x x x x. x x 1
2

e
0 0 0 0 0 0 1 0 0

ulp(Q)

ILSBulp(Q)Q

xhub

µ +

µ 2
e−k

1 x x

1 x x x x x.

1x+

x x 1

Figure 3. Relative position of some terms used in Theorem I

Next, in figure 4, we can see the mechanism to split a
HUB number xhub into q and r, according to Theorem I (see
equations (14) and (13)). The main feature of this algorithm
is that it does not involve any carry propagation.

As shown in figure 4, from the value (µ + 1
2)2

e−k of
xhub (with the form 1xx · · · x.x∗x · · · xx1) we can obtain
q by taking the integer part of µ2e−k (that is ⌊µ2e−k⌋ by
truncation) and forcing the fractional bit to one (weigh 2−1).

1

0 2
e−k−1

2
p−1+e−k

x*=1 x*=0

1 x x1x .1xx . . . xx1
2

p−1+e−k
2

0 2
e−k−1

2
e−k−1

1
2(µ+)2e−k

1
2

hubx

1
2

Q=2
k hubxr = − q

1
2µ2e−k

+) 2
k−(p−1)(q =(−1)

s

.0xx . . . xx1

sign bit sign bit

1
2+2

e−k−1
µ2e−kµ e−k2)(1

2+2
e−k−1

µ2e−kµ e−k2)(

1 x xx x x* x x 1

ILSB

r q r

(µ+)2
e−(p−1)=(−1)

s

µ2e−k

+)(

Theorem I

0

2

Figure 4. Splitting a HUB number xhub as upper q and lower r parts.
No any carry propagation is involved

The involved operation to calculate r = xhub − q is
(considering a common factor of 2k−(p−1):(

µ+
1

2

)
2e−k −

(
⌊µ2e−k⌋+ 1

2

)
=

= (µ2e−k − ⌊µ2e−k⌋) + 2e−k−1 − 1

2
(29)

Let us analyze this expression in detail. The term
(µ2e−k − ⌊µ2e−k⌋) of this expression is a fractional value
of k−e bits (notice that µ ∈ N) to which we add the amount
2e−k−1. The result of this addition does not involve a carry
propagation since the LSB of (µ2e−k − ⌊µ2e−k⌋) is 2e−k.
Thus, the expression (µ2e−k − ⌊µ2e−k⌋) + 2e−k−1 has the
form 0.x∗xx · · · xx1. The substraction of the term 1/2 in

expression (29) produces either a positive number if the bit
x∗ = 1 or a negative one if x∗ = 0. Lets analyze both cases
to prove that carry propagation is always prevented:

• Bit x∗ = 1 In this case, the term (µ2e−k − ⌊µ2e−k⌋)
has the form 0.1xxx · · · xx1. Thus, the substraction of
the amount 1/2 gives a positive number. No any carry
propagation is involved since the only operation is to
force to zero the first fractional bit (final result: 0.0xxx·
· · xx1)

• Bit x∗ = 0 In this case, the term (µ2e−k − ⌊µ2e−k⌋)
has the form 0.0xxx · · · xx1. Thus, the substraction of
the amount 1/2 gives a negative number. To obtain the
negative number is enough to invert the first fractional
bit and consider the sign bit as 1 (final result: 1.1xxx ·
· · xx1)

The architecture that splits a HUB number is shown in
Figure 5. We can see that only a shifter and a 1-bit inverter
are required. The shifter carries out a shift of k−e bits to the
right, obtaining q. The outgoing bits are used to calculate r,
where the bit inverter is needed to obtain both the sign bit
and the first fractional bit. No carry propagation is involved
since all the operations are bit wise.

si
gn

 b
it

µ2e−k

2
0

1xxx xxx....
2

p−1

...1xx xx.

x*

...1xx xx.1 x*x*

µ e−k
Right shifter (x2)

1

k−e

e k

.x*
2−1

xx xx... 2
e−k

(MSB)

q r
. xx xx1...

1

Figure 5. Architecture for splitting a HUB number xhub as upper q and
lower r parts with no carry propagation

B. Using a combined HUB/standard adder

The second way to obtain the values of q and r is by
using a combined HUB/standard floating point (FP) adder
as that shown in Figure 6. The only difference between a p-
bit standard FP adder (with rounding by truncation) and its
counterpart FP HUB adder is that HUB adder has an extra
bit at its significand inputs: the ILSB bit. Thus, for having
a combined HUB/standard FP adder we use a conventional
adder of p+1 bits where the value of ILSB at each significand
input is 0 for a standard number and 1 for a HUB number.
The output (significand) has p-bits, where the rounding was
performed by truncation for both the standard and the HUB

result (for the addition of two standards (p-bits) the result
has p bits, whereas for HUB the extra ILSB is always 1)

p

xex sy eyµx

ex+ysx+y

{1 hub

0 no hub {1 hub

0 no hub{1 hub

0 no hub

Ignore for standard
1 for HUB (implicit){ilsb

(rounding by truncation)

p+1 bit

(MSB)

HUB/standard
FP adder

p+1 bit

ilsb
p

ilsb
p

µy

X Y

X + Y

µx+y

s

Figure 6. HUB/standar FP adder

To obtain q we have to carry out two operations with the
combined adder. Once the value of Q = 2k is selected, we
carry out the next operation for every element vi:

shubi = Q+ vhubi (30)

where Q is not a HUB number, vhubi is a HUB number and
shubi is a HUB number (rounding by truncation). The value
of qi is obtained after the next operation:

qi = shubi −Q (31)

where Q is not a HUB number, shubi is a HUB number and
qi is not a HUB number (rounding by truncation).

To obtain ri we perform the next operation:

ri = vhubi − qi (32)

where qi is not a HUB number, vhubi is a HUB number and
ri is not a HUB number (rounding by truncation).

Figure 7 shows how to use the combined HUB/standard
FP adder to obtain qi and ri

VI. SUMMARY, CONCLUSION AND FUTURE WORKS

In this paper we have presented a reproducible summa-
tion algorithm based on error-free vector transformation for
floating point HUB representation. This transformation was
successfully used in [5] and [6] to obtain a reproducible
summation on the standard floating point representation. In
this paper we adapt these algorithms to the case of HUB
representation, where the round to nearest is carried out by
truncation. This feature force us to reformulate the theorems
and lemmas on which reproducible summation is based,
proving that the split of the HUB floating point number is

1

sss

sv ev

p+1 bit

1
p

µv

vi
hub

ersr

sv ev µv sqeq µq

esss

ss es µs

q
i

q
i

p+1 bit

(MSB)

0
p

Q

k0 1

HUB/standard
FP adder

(rounding by truncation)

s hub

i

p+1 bit

(MSB)

1
p

r

HUB/standard
FP adder

(rounding by truncation)

p+1 bit

0
p

hub

i
v

r

p

i

p+1 bit

(MSB)

1
p

HUB/standard
FP adder

(rounding by truncation)

p+1 bit

0
p

hub

i
s Q

1k0

µs

p

µ

p

µs
e

Figure 7. Obtaining qi & ri

also possible. As consequence we propose an algorithm to
split the numbers in high and low parts in which the high
parts are suitable for reproducible summation.

The no carry propagation feature of the HUB rounding
makes possible the design of a simple architecture to split
the incoming elements. Apart from this, we also propose
the usage of standard and HUB adders to run the algorithm
(combined standard/HUB adder). As future works, we will
work on the improvement of the accuracy of the algorithm
by exploring the K-fold technique in deep (we think this is
possible since K-folder technique follows the same theoret-
ical base).

As conclusion, HUB format offers a similar performance
in terms of summation reproducibility based on error-free
vector transformation when using regular adders and makes
possible the design of simple specific architectures to split
the incoming arguments.

REFERENCES

[1] J. Hormigo and J. Villalba-Moreno, “Measuring Improvement
When Using HUB Formats to Implement Floating-Point Sys-
tems under Round-to-Nearest,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 24, no. 6, pp.
2369–2377, 2016.

[2] J. Villalba-Moreno, J. Hormigo, and S. Gonzalez-Navarro,
“Fast HUB Floating-point Adder for FPGA,” IEEE Transac-
tions on Circuits and Systems II: Express Briefs, pp. 1–1, 2018.

[3] J. Villalba-Moreno, “Digit Recurrence Floating-point Division
under HUB Format,” 23rd IEEE Symposium on Computer
Arithmetic, Silicom Valley (California, USA), July 2016.

[4] S. M. Rump, T. Ogita, and S. Oishi, “Fast High Precision
Summation,” Nonlinear Theory and Its Applications, IEICE,
vol. 1, no. 1, pp. 2–24, 2010.

[5] J. Demmel and H. D. Nguyen, “Fast Reproducible Floating-
Point Summation,” in 2013 IEEE 21st Symposium on Computer
Arithmetic, April 2013, pp. 163–172.

[6] ——, “Parallel Reproducible Summation,” IEEE Transactions
on Computers, vol. 64, no. 7, pp. 2060–2070, July 2015.

[7] J. Hormigo and J. Villalba-Moreno, “New Formats for Comput-
ing with Real-Numbers under Round-to-Nearest,” Computers,
IEEE Transactions on, vol. 65, no. 7, pp. 2158 – 2168, 2016.

[8] T. J. Dekker, “A floating-point technique for extending the
available precision,” Numerische Mathematik, vol. 18, no. 3,
pp. 224–242, 1971.

