
Construct, Merge, Solve and Adapt for Taxi
Sharing

Houssem Eddine Ben-Smida1, Francisco Chicano1, and Saoussen Krichen2

1 University of Malaga, Spain
{he.bensmida@uma.es,chicano@lcc.uma.es}

2 University of Tunisia, Tunisia
krichen s@yahoo.fr

1 Introduction

Taxis are a quick and reliable mean of transportation, especially in those cities
where the public transportation system is very inefficient. However, taxis rarely
travel with full capacity, and its impact on traffic congestion and pollution in
cities is usually important. For this reason, it is interesting to share taxis instead
of traveling alone. We are interested in this paper in finding good solutions in
a reasonable time for the taxi sharing problem for the very large instances. In
order to do this, we adapt the Construct, Merge, Solve and Adapt (CMSA)
algorithm [2] to the taxi sharing problem.

2 Taxi sharing problem

Let us imagine that a group of people in the same place decides to travel to
different destinations using taxis. The Taxi Sharing Problem consists in deter-
mining the appropriate number of taxis, the assignment of people to taxis and
the order in which the taxis must drop the people off, in order to minimize the
total monetary cost of the group of people. In our previous paper [1] we explored
the use of exact techniques to solve the taxi sharing problem, using the following
MILP formulation:

min

n∑
i=0

n∑
j=0

cijxij , (1)

subject to:

n∑
i=0

xij = 1 for 1 ≤ j ≤ n (2)

n∑
j=0

xij = 1 for 1 ≤ i ≤ n (3)

yi − yj + nxij ≤ n− 1 for 1 ≤ i 6= j ≤ n (4)

ui − uj + kxij ≤ k − 1 for 1 ≤ i 6= j ≤ n (5)



2 H.E. Ben-Smida et al.

where xij are binary variables and ui and yi are real-valued variables.
The results showed that the exact resolution using CPLEX is appropriate

for small, medium-sized and large instances. However, for very large instances,
it was not possible to obtain the optimal solution in a reasonable time.

3 CMSA for Taxi Sharing

The Construct, Merge, Solve and Adapt (CMSA) algorithm was designed by
Blum et al. [2] and combines a high level heuristic with an exact resolution
of small sub-instances of the problem. There are three key ingredients in the
algorithm that must be defined for each problem. The algorithm assumes that a
solution is a set of components from a larger set C. Thus, we need to define what
is a component in each problem. In our case a component will be an oriented
edge in the graph representing the origin and destinations of the people.

The second ingredient is a method to generate randomized good quality
solutions. Our method generates a random permutation of all the destinations.
This path is divided in many paths to fulfil the capacity constraint of the taxis
(which is 4 people in our case). Next, it applies local search using the swap
neighborhood (every pair of destinations is swapped) until a local optimum is
found.

Finally, we need in CMSA a MILP formulation for solving the sub-instances
of the problem where only the components in Zsub should be included [2]. We
start from the formulation in (1)-(5) and we add a new constraint to restrict the
edges (components) that appear in any solution. The new constraint is:

xij ≤ lij for 1 ≤ i 6= j ≤ n (6)

where lij is 1 if the component (i, j) is included in Zsub and 0 otherwise.

4 Results

For the experiments we run CMSA during 1 minute, which is a resonable time
to assign a very large group of passengers in several taxis. We use the instances
of largest size in [1]. We compared our results with those obtained by pµEA and
CPLEX [1], and we observed that the cost obtained by the CMSA algorithm is
significantly lower than the cost obtained by pµEA and in most cases it is near
the optimum provided by CPLEX.

References

1. Ben-Smida, H.E., Krichen, S., Chicano, F., Alba, E.: Mixed integer linear program-
ming formulation for the taxi sharing problem. In: Alba, E., Chicano, F., Luque, G.
(eds.) Smart Cities. pp. 106–117. Springer International Publishing, Cham (2016)

2. Blum, C., Pinacho, P., López-Ibáñez, M., Lozano, J.A.: Construct, merge, solve
& adapt a new general algorithm for combinatorial optimization. Computers &
Operations Research 68, 75–88 (2016)


