Time Series Analysis Using Transprecision Computing

Ivan Fernandez Vega NiPS Summer School 4 September 2019

About me

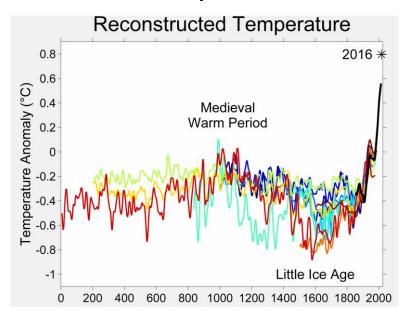
- 2nd-year **PhD Student at University of Malaga** (Spain)
- Advisors: Oscar Plata and Eladio Gutierrez
- Research topic: Acceleration of time series analysis
- Currently at ETH Zürich as an academic guest in SAFARI group, supervised by Prof. Onur Mutlu

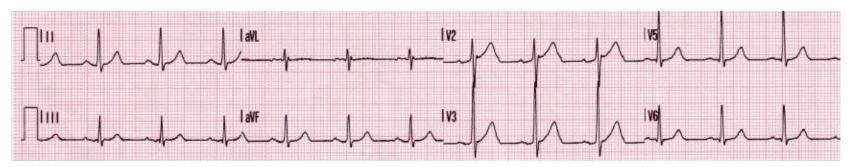
Outline

- Introduction
- Background
- Implementation
- Results
- Conclusions and Future Work

■ Time series analysis has a huge interest in many fields

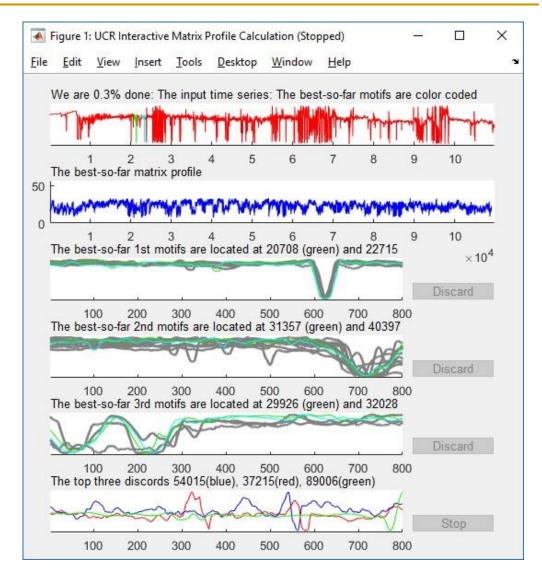
- Climate
- Seismology
- Entomology
- Bioinformatics
- Traffic Prediction
- Voice Recognition
- Energy Conservation

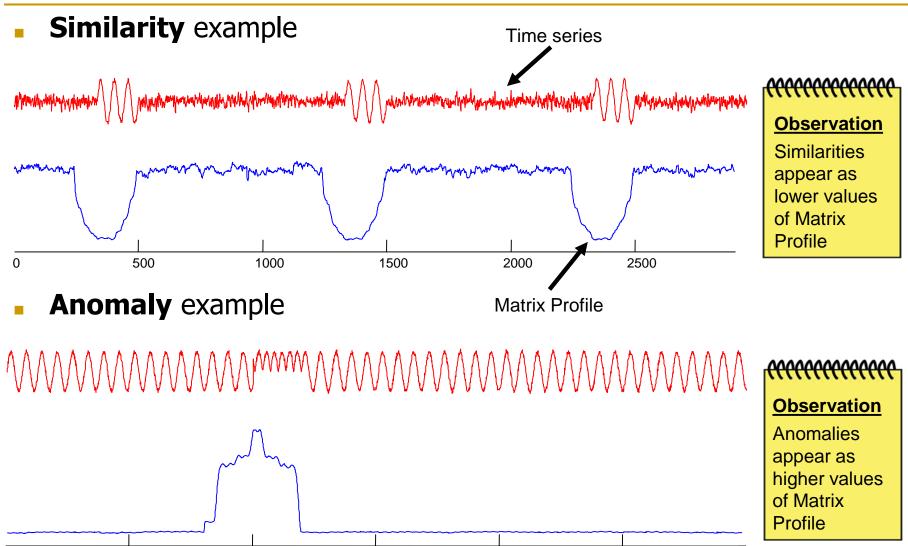




Matrix Profile (from UCR Riverside)

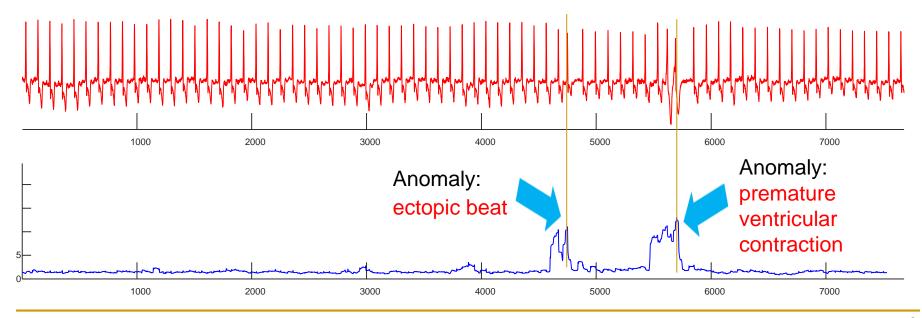
- Open source tool for motif discovery (anomalies, similarities, ...)
- Implemented in several languages: C++, Python, CUDA, R, MATLAB





Motivation

- Real data example: electrocardiogram
- In this case there are two anomalies annotated by MIT cardiologists
- Here the subsequence length was set to 150, but we still find these anomalies if we half or double that length



Motivation

- Typical data type used for the computation is double precision, while the algorithm allows for single or mixed precision
- No previous study using lower precision or flex float approach
- Analysing a time series of 131,072 elements using a window size of 1,024 elements requires:
 - 2.4 Billion subtractions (-)
 - 2.7 Billion multiplications (*)
 - 2.9 Billion divisions (/)
 - 2.8 Billion multiply-accumulations (FMA)
 - + 2.8 Billion comparisons (<)

???????????????????

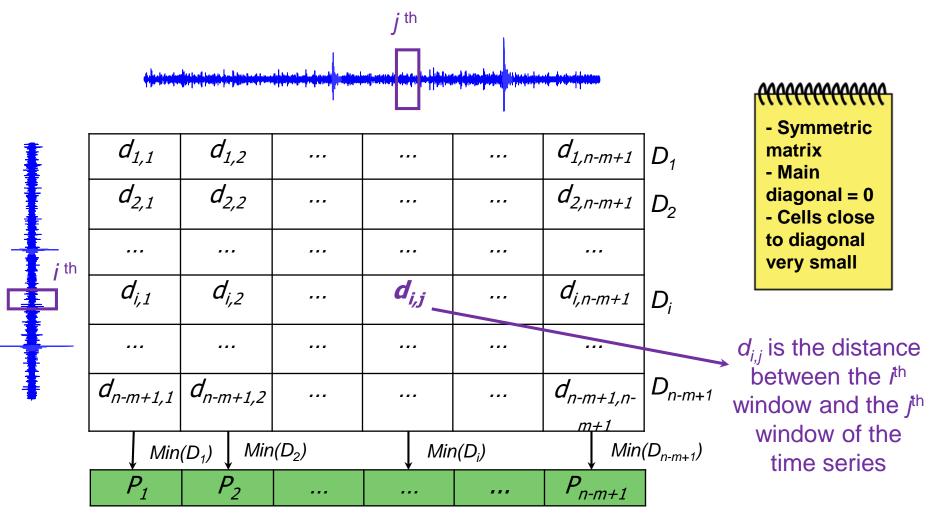
Observation

The number of operations increases exponentially with the time series length

13.6 Billion operations !!!

Background

Distance Matrix



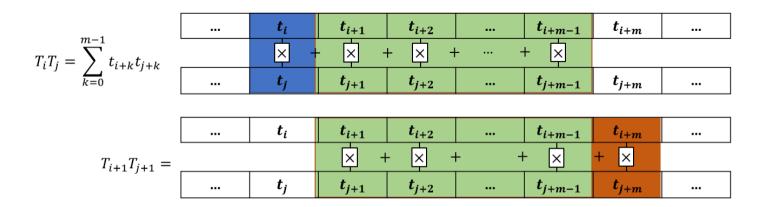
Matrix Profile: a vector of distance between each subsequence and its most similar one

Distance metric

• The similarity $d_{i,j}$ is based on Euclidean distances:

$$d_{i,j} = \sqrt{2m\left(1 - \frac{Q_{i,j} - \mu_i \mu_j}{m\sigma_i \sigma_j}\right)}$$

• The dot product $(Q_{i,i})$ can be calculated as follows:



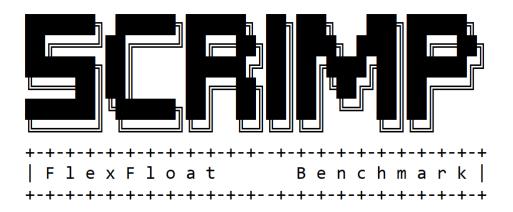
$$T_{i+1}T_{j+1} = T_iT_j - t_it_j + t_{i+m}t_{j+m}$$

O(1) time complexity

Implementation

Goal

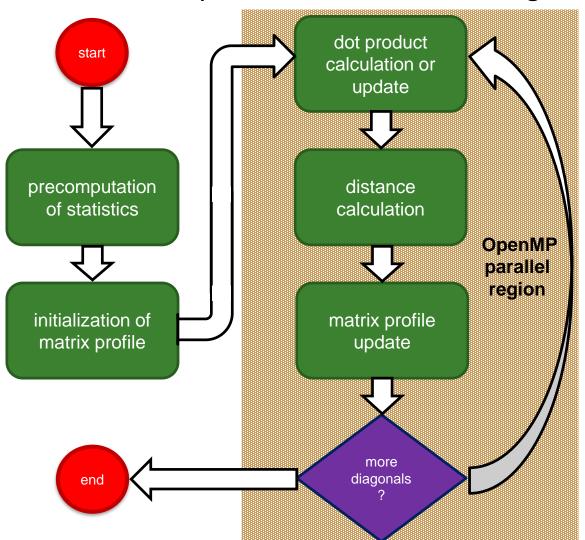
- The goal is to provide a benchmark to explore how the accuracy of the results of SCRIMP are affected by changing the precision of the floating-point operations
- This tool would be useful for architects when designing a custom accelerator for time series analysis
- The implementation is open source and based on FlexFloat



FlexFloat @ Github

SCRIMP FF

SCRIMP FF computation scheme and configuration parameters



??????????????????

The user can configure individually the precision for each block via a config file

Configurable precisions

Statistics $(\mu \text{ and } \sigma)$

Dot product

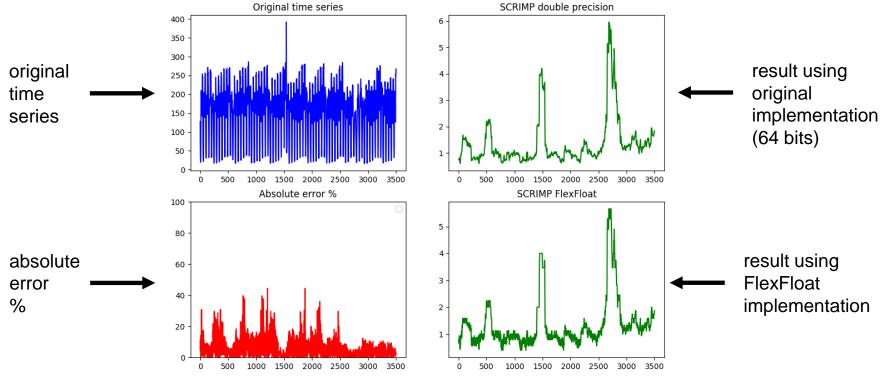
Distance

Matrix profile

User Interface

SCRIMP FF example input:

SCRIMP FF example output:



FF parameters [exp, man] => distance=[7, 16]; dotprod=[7, 16]; stats=[6, 12]; profile=[5, 2]

Results

Experiments

- The benchmark has been tested using a server equipped with two Intel Xeon Gold 6154 (72 threads) and 384 GB of DDR4 memory
- Each FlexFloat execution is compared with the original code
- In this presentation I cover four didactical examples:
 - (1) Synthetic random time series with one anomaly
 - (2) Synthetic random time series with two (very) similar subsequences
 - (3) Real data time series with four anomalies
 - (4) Real data time series with twelve anomalies

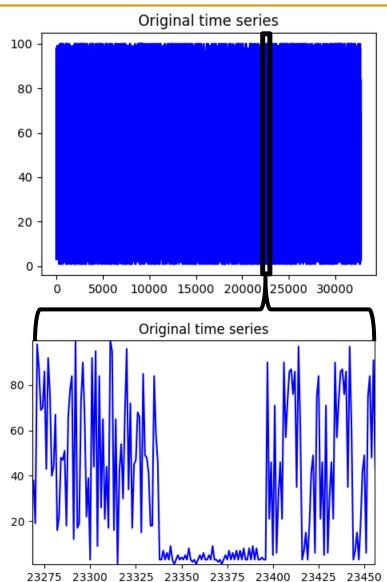
?????????????????????

Computing a 32,768 elements time series takes approx. 4 minutes in this sever

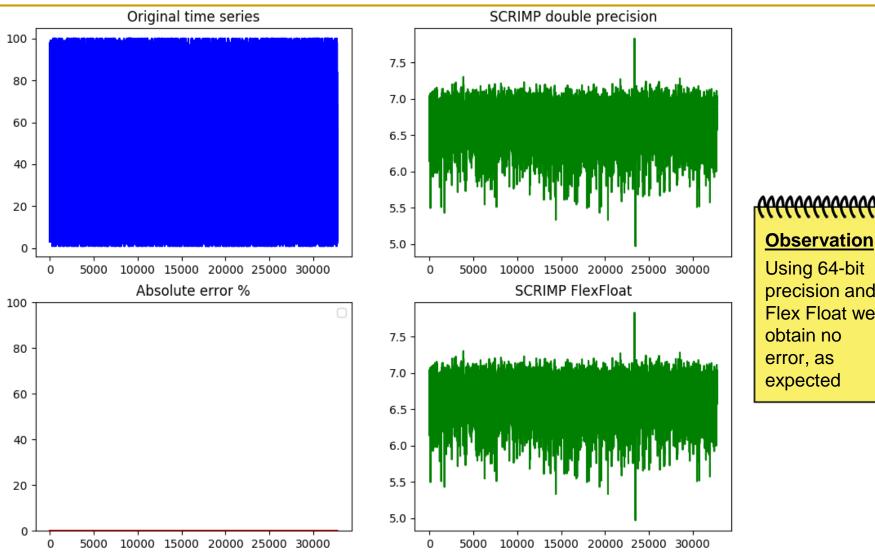
Random Serie Anomaly

Case study #1

- Random time series
- Values from 0 to 100
- 32,768 elements
- 50 window size length
- One anomaly



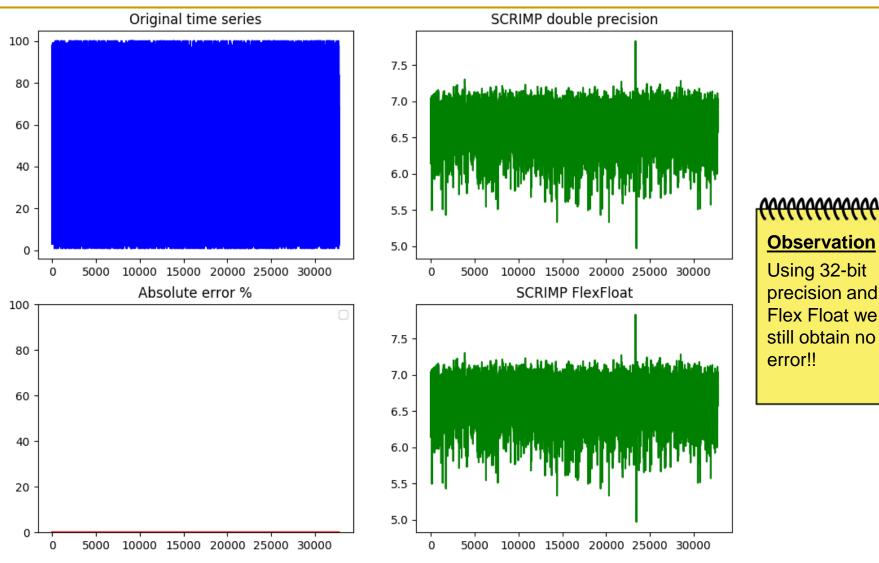
Random Serie Anomaly - 64 Bits



Using 64-bit precision and Flex Float we

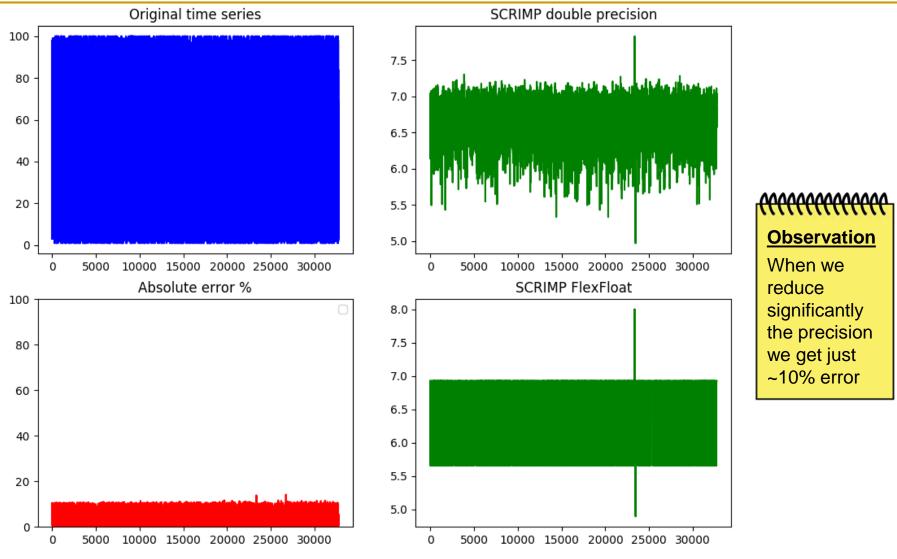
FF parameters [exp, man] => distance=[11, 52]; dotprod=[11, 52]; stats=[11, 52]; profile=[11, 52]

Random Serie Anomaly - 32 Bits



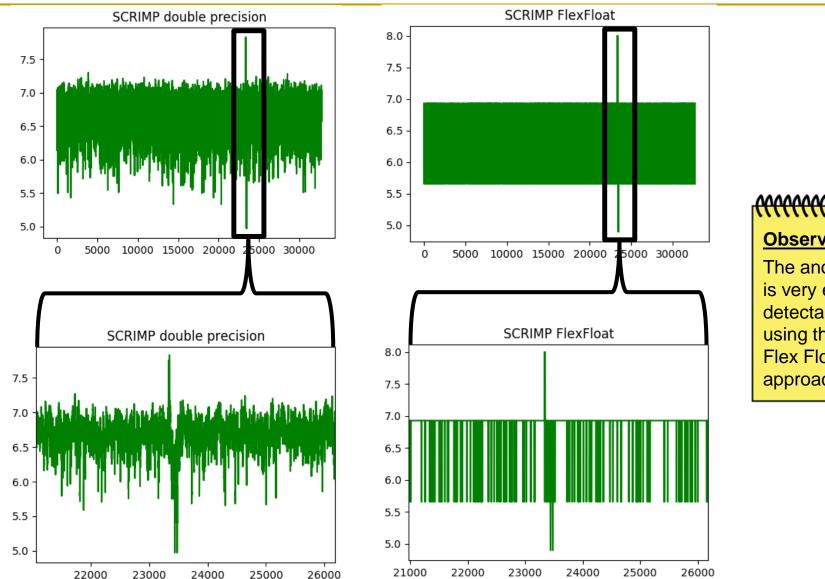
FF parameters [exp, man] => distance=[8, 23]; dotprod=[8, 23]; stats=[8, 23]; profile=[8, 23]

Random Serie Anomaly - Reduced



FF parameters [exp, man] => distance=[6, 15]; dotprod=[6, 10]; stats=[6, 12]; profile=[6, 1]

Random Serie Anomaly - Profile Zoom



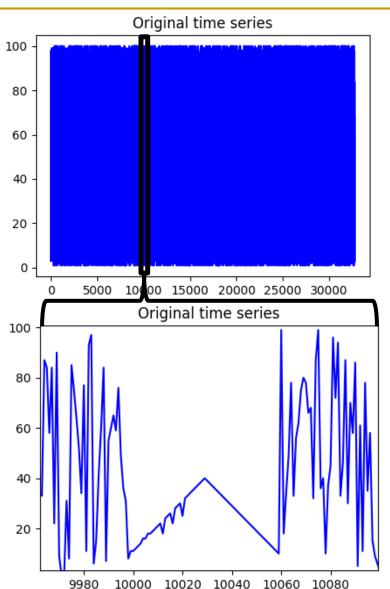
Observation

The anomaly is very easily detectable using the Flex Float approach

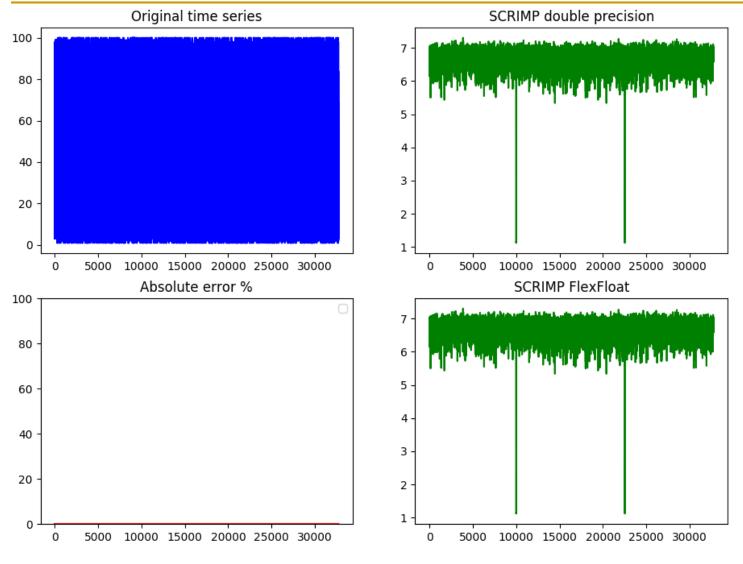
Random Serie Similarity

Case study #2

- Random time series
- Values from 0 to 100
- 32,768 elements
- 50 window size length
- Two (very) similar subsequences



Random Serie Similarity - 64 bits



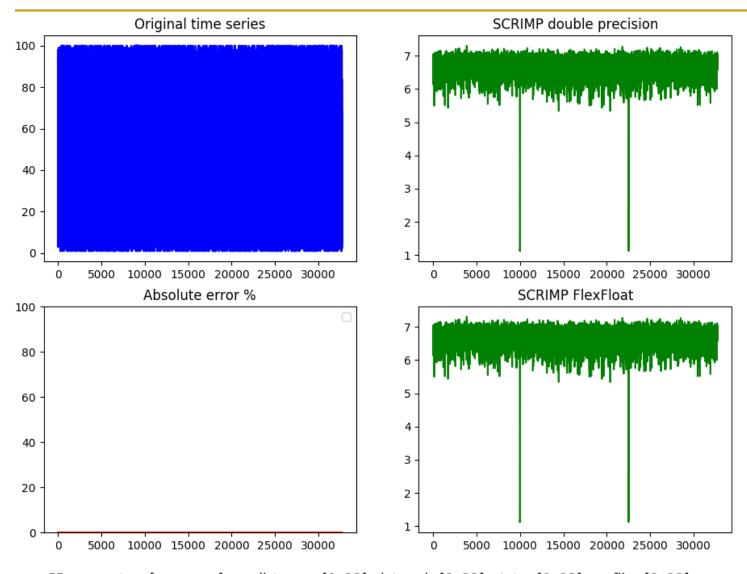
??????????????????

Observation

Using 64-bit precision and Flex Float we obtain no error, as expected

FF parameters [exp, man] => distance=[11, 52]; dotprod=[11, 52]; stats=[11, 52]; profile=[11, 52]

Random Serie Similarity - 32 Bits



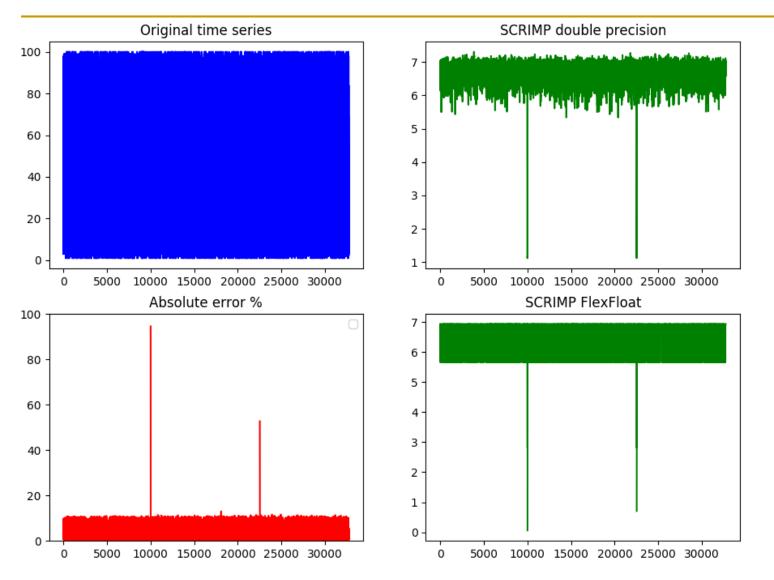
??????????????????

Observation

Using 32-bit precision and Flex Float we still obtain no error!!

FF parameters [exp, man] => distance=[8, 23]; dotprod=[8, 23]; stats=[8, 23]; profile=[8, 23]

Random Serie Similarity - Reduced



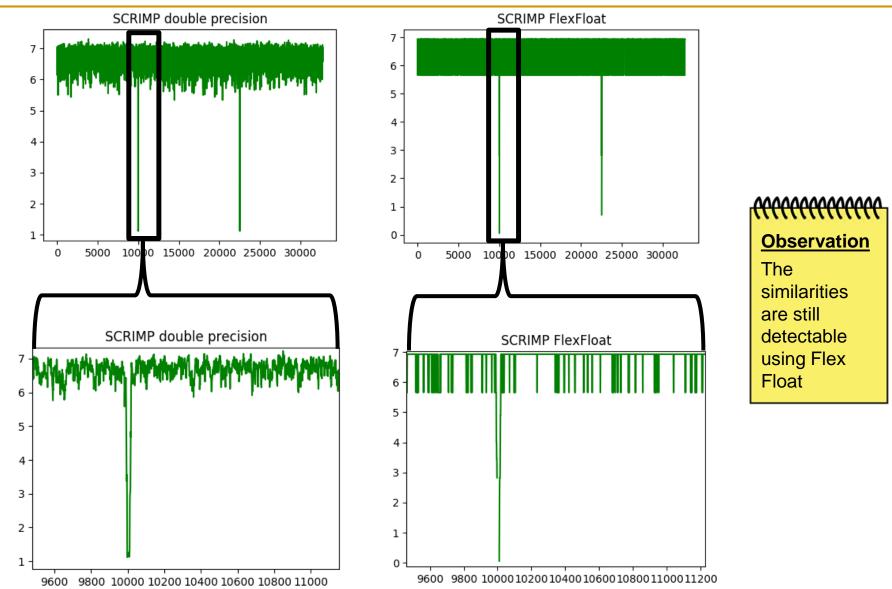
???????????????????

Observation

We obtain error in the lower values, however they are still detectable

FF parameters [exp, man] => distance=[6, 17]; dotprod=[6, 15]; stats=[6, 10]; profile=[5, 1]

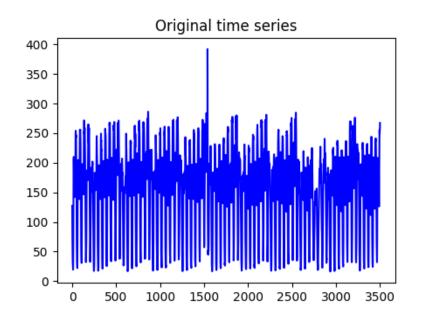
Random Serie Similarity - Profile Zoom



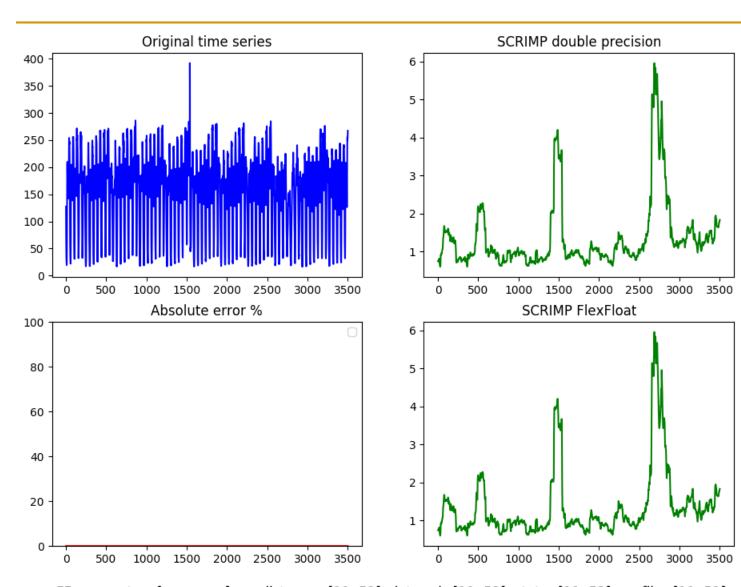
Taxi Demand Data

Case study #3

- Taxi demand data
- □ 3,600 elements
- 50 window size length
- Four anomalies



Taxi Demand Data - 64 Bits



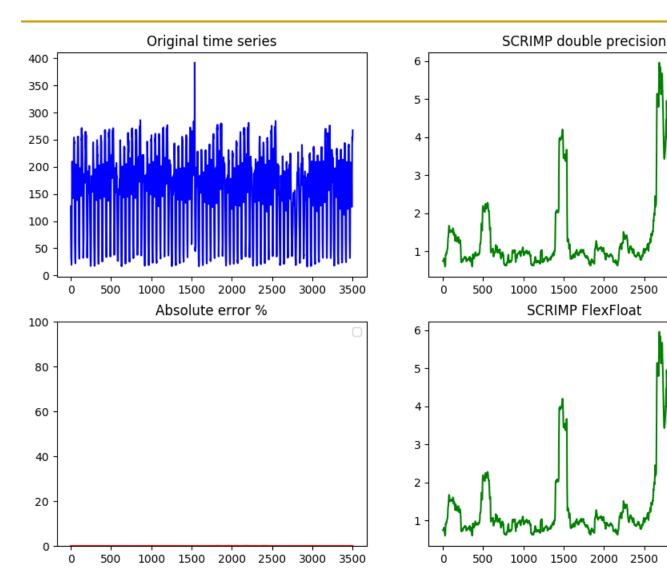
^^^^^^^

Observation

Using 64-bit precision and Flex Float we obtain no error, as expected

FF parameters [exp, man] => distance=[11, 52]; dotprod=[11, 52]; stats=[11, 52]; profile=[11, 52]

Taxi Demand Data - 32 Bits



Observation

3000 3500

2000

1500

2500

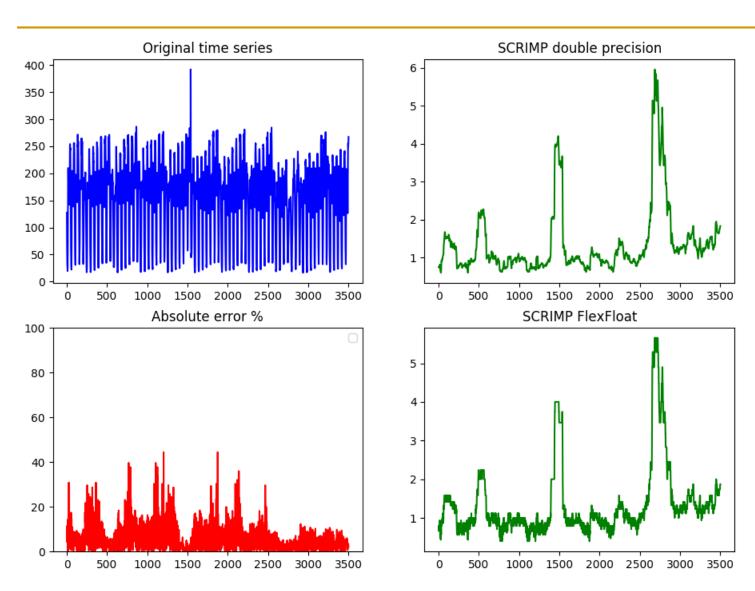
3000

3500

Using 32-bit precision and Flex Float we still obtain no error!!

FF parameters [exp, man] => distance=[8, 23]; dotprod=[8, 23]; stats=[8, 23]; profile=[8, 23]

Taxi Demand Data - Reduced



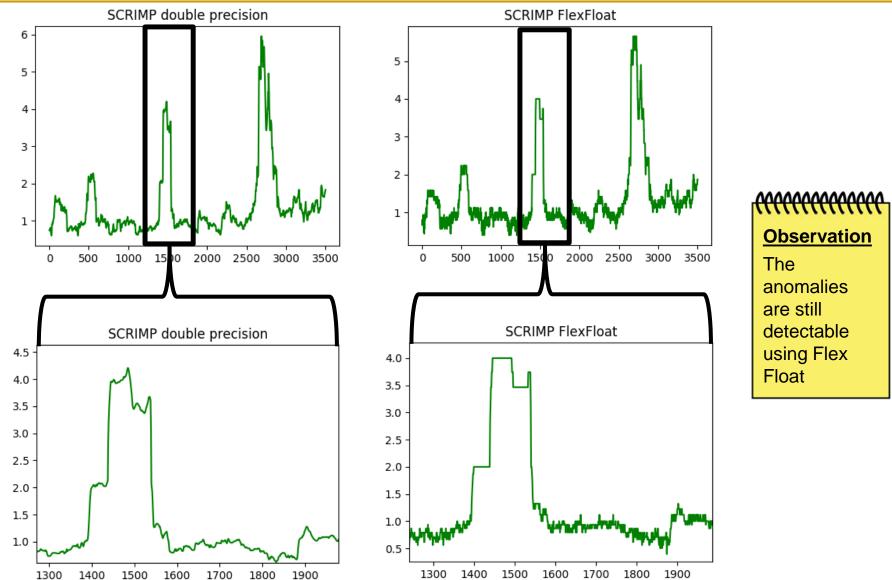
^^^^^^^

Observation

We obtain error in lower values, but anomalies are still detectable

FF parameters [exp, man] => distance=[7, 16]; dotprod=[7, 16]; stats=[6, 12]; profile=[5, 2]

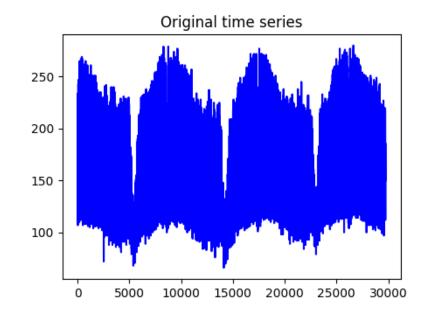
Taxi Demand Data - Profile Zoom



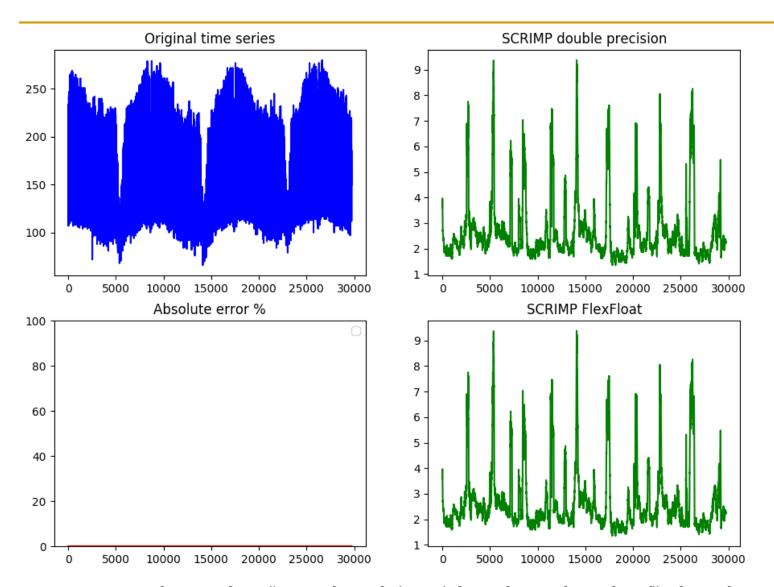
Power Demand Data

Case study #4

- Electric power demand data
- □ 30,000 elements
- 50 window size length
- Twelve anomalies



Power Demand Data - 64 Bits

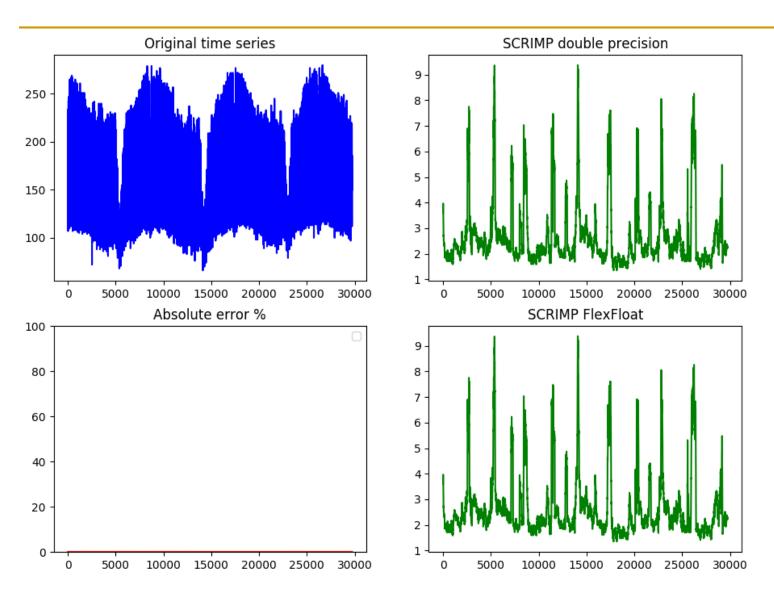


Observation

Using 64-bit precision and Flex Float we obtain no error, as expected

FF parameters [exp, man] => distance=[11, 52]; dotprod=[11, 52]; stats=[11, 52]; profile=[11, 52]

Power Demand Data - 32 Bits



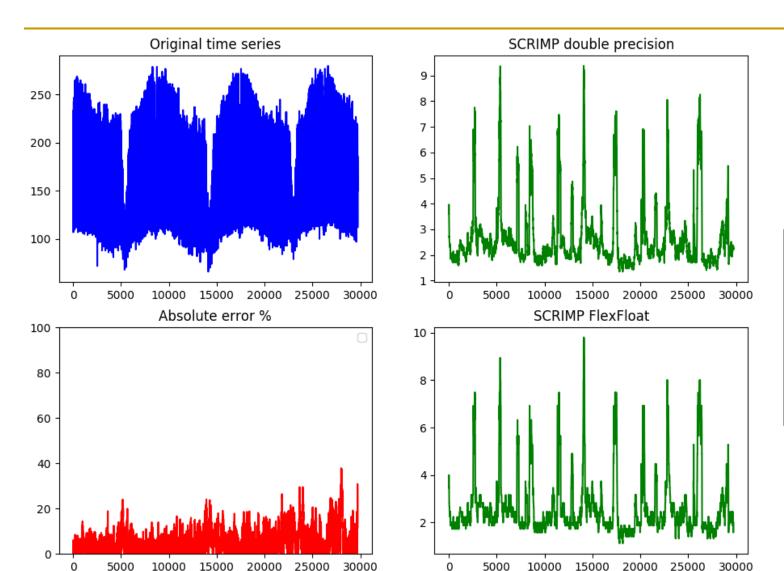
????????????????

Observation

Using 32-bit precision and Flex Float we still obtain no error!!

FF parameters [exp, man] => distance=[8, 23]; dotprod=[8, 23]; stats=[8, 23]; profile=[8, 23]

Power Demand Data - Reduced



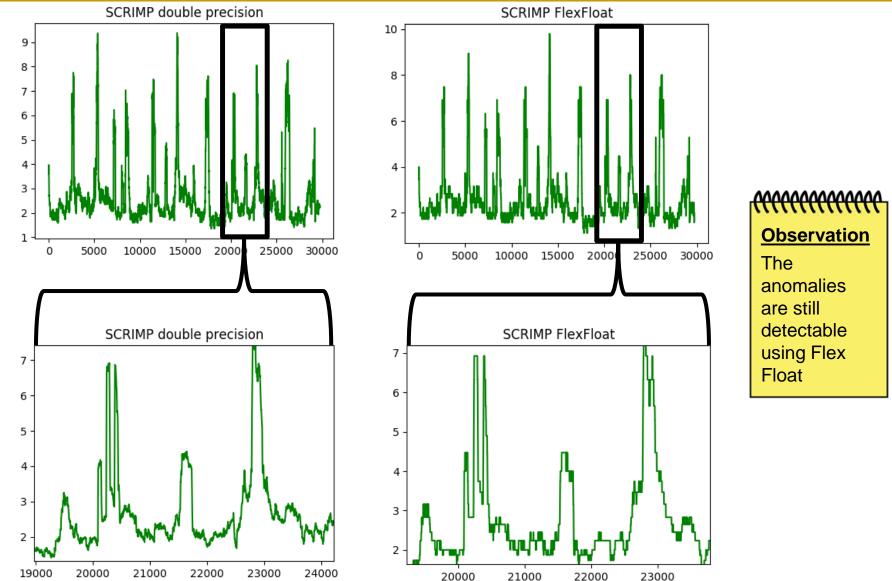
^^

Observation

We obtain error in lower values, but anomalies are still detectable

 $FF\ parameters\ [exp,\ man] => distance=[6,\ 17];\ dotprod=[6,\ 17];\ stats=[6,\ 17];\ profile=[5,\ 2]$

Power Demand Data - Profile Zoom



Conclusions and Future Work

Conclusions and Future Work

Matrix profile can be useful for many time series motif discovery applications

 SCRIMP FlexFloat benchmark allows the exploration of reduced precision computation of Matrix Profile

 Architects could design accelerators using the exact amount of precision needed for each application, maximizing performance and minimizing energy consumption

 Future work comprises evaluating time series analysis using a non emulated transprecision computing environment as pulp-platform

References

 Some of the examples are taken from the Matrix Profile tutorial available at https://www.cs.ucr.edu/~eamonn/MatrixProfile.html

SCRIMP:

- Zhu, Y., Yeh, C. C. M., Zimmerman, Z., Kamgar, K., & Keogh, E. (2018, November). Matrix profile XI: SCRIMP++: time series motif discovery at interactive speeds. In 2018 IEEE International Conference on Data Mining (ICDM) (pp. 837-846). IEEE.
- https://sites.google.com/site/scrimpplusplus/

FlexFloat:

- G. Tagliavini, A. Marongiu and L. Benini, "FlexFloat: A Software Library for Transprecision Computing," in *IEEE Transactions on* Computer-Aided Design of Integrated Circuits and Systems.
- https://github.com/oprecomp/flexfloat

Time Series Analysis Using Transprecision Computing

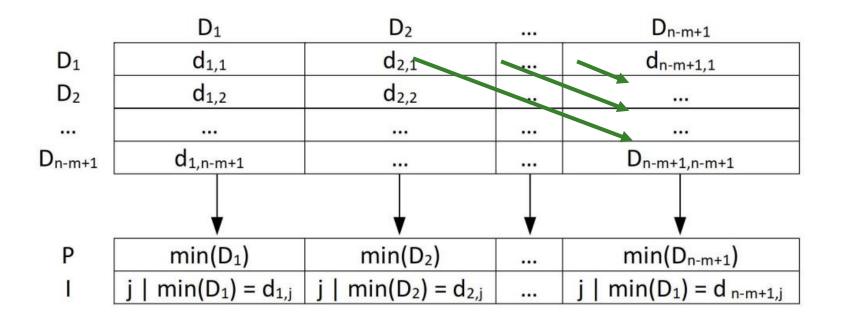
Ivan Fernandez Vega NiPS Summer School 4 September 2019

Backup Slides

SCRIMP

- Matrix Profile implementation (SCRIMP)
 - Takes advantage of the dot product from the previous step performing the calculations in **diagonals** instead of columns or rows:

$$Q_{i,j} = Q_{i-1,j-1} - t_{i-1}t_{j-1} + t_{i+m-1}t_{j+m-1}$$



Parallelization

- SCRIMP is highly parallelizable (no calculus dependency between diagonals)
- However, elements inside diagonals need results from the previous step
- Two possible computation approaches:
 - Random order for the diagonals
 - Benefit: allows the possibility of obtaining partial (maybe enough accurate) results if the program is interrupted
 - Drawback: less performance if complete solution needed
 - Sequential order for the diagonals
 - Benefit: better performance in complete solution
 - Drawback: if the program is interrupted, only part of the time series is explored

Code

SCRIMP FF code transformation examples

Original Code

FlexFloat code