10 E 30 E 600 80°N Nordaustlandet 200 Krossfjorden -Kongsfjorden-Prins Karls Spitsbergen 78°N Hornsund→ # Kongsfjord (Svalbard) 79 °N # 80+ spp of seaweeds # THE CHANGING ARCTIC - 1. Higher temperature - 2.Higher CO₂ - 3.Less ice cover (changed hydrodynamics) - 4. Changed light field (ice and turbidity) Still Special: constant light - constant darkness (summer/winter) Main hypothesis: Specific adaptation to polar conditions may influence the way seaweeds respond to Global Change # THE ARCTIC ECOTYPE The Arctic population: Higher C/N ratio Less water content Higher rubisco content At increased CO₂ and Temp: More lipids at low Temp Less regulated Rubisco and D1 content More responsive growth Olischlager et al. Planta 2014 Olischlager et al. Planta 2017 #### Comparisons between polar and temperate populations of the same species/genus on RUBISCO Saccharina latissima: Higher K_{cat}^c and K_{cat}^c/K_c in the Arctic population Palmaria sp.: K_{cat}^c and K_{cat}^c/K_c in P. decipiens (endemic Antarctic) > Arctic P. Palmata > temperate P. Palmata Phycodrys rubens: No change in Rubisco carboxylation kinetics and Rubisco content. Photosynthetis relies on diffusive CO₂ entry Acrosiphonia arcta: No significant change in Rubisco carboxylation kinetics at 4°C. Higher Rubisco content (% TSP) in the Arctic and Antarctic vs. temperate population # Carbon Acquisition: External Carbonic Anhydrase (eCA) #### Carbon Acquisition: Are they HCO₃ users? #### Carbon Acquisition: External Carbonic Anhydrase (eCA) #### Carbon Balance: Gains #### Carbon Balance: Losses # SURVIVING THE LONG WINTER 16 weeks in Darkness 3.5 and 8° C (Collected end of September) Alaria esculenta Sac. latissima Phycodrys rubens Ptilota gunneri - Up to x4 respiration rate - Only 50% Gross Photosynthesis (O₂) - No survival Alaria esculenta 3.5° C Alaria esculenta 8° C - similar respiration rate - Only 25% Gross Photosynthesis (O₂) during recovery - Lower survival (?) Saccharina latissima 3.5° C Saccharina latissima 8° C - similar respiration and photosynthetic (O₂) rates - Temp benefits in light Phycodrys rubens 3.5° C Phycodrys rubens 8° C - Up to 50% reduction in photosynthetic (O₂) rate, but not affecting recovery - Errr, ...and that's it Ptilota gunneri 3.5° C Ptilota gunneri 8° C Alaria esculenta 3.5° C # ... two months later # THE CLASSIC MODEL #### Summer #### Winter # A NEW MODEL PROPOSED Seasonal P-I curves of field material (5-8 m depth) Monostroma arcticum PAR (µmol m⁻² s⁻¹) Sept **August** 500- 400- APS (µmol 0₂ g⁻¹ FW h⁻¹) # TAKE-HOME MESSAGES - 1. Arctic seaweeds are different and respond different - 2. Temperature and CO₂ affect in species-specific ways (winners and losers) - 3. Warm winters pose a threat on survival