

10 E 30 E 600 80°N Nordaustlandet 200 Krossfjorden -Kongsfjorden-Prins Karls Spitsbergen 78°N Hornsund→

Kongsfjord (Svalbard) 79 °N

80+ spp of seaweeds

THE CHANGING ARCTIC

- 1. Higher temperature
- 2.Higher CO₂
- 3.Less ice cover (changed hydrodynamics)
- 4. Changed light field (ice and turbidity)

Still Special: constant light - constant darkness (summer/winter)

Main hypothesis: Specific adaptation to polar conditions may influence the way seaweeds respond to Global Change

THE ARCTIC ECOTYPE

The Arctic population:

Higher C/N ratio
Less water content
Higher rubisco content

At increased CO₂ and Temp:

More lipids at low Temp

Less regulated Rubisco and D1 content

More responsive growth

Olischlager et al. Planta 2014 Olischlager et al. Planta 2017

Comparisons between polar and temperate populations of the same species/genus on RUBISCO

Saccharina latissima: Higher K_{cat}^c and K_{cat}^c/K_c in the Arctic population

Palmaria sp.: K_{cat}^c and K_{cat}^c/K_c in P. decipiens (endemic Antarctic) > Arctic P. Palmata > temperate P. Palmata

Phycodrys rubens: No change in Rubisco carboxylation kinetics and Rubisco content.

Photosynthetis relies on diffusive CO₂ entry

Acrosiphonia arcta: No significant change in Rubisco carboxylation kinetics at 4°C.

Higher Rubisco content (% TSP) in the Arctic and Antarctic vs. temperate population

Carbon Acquisition: External Carbonic Anhydrase (eCA)

Carbon Acquisition: Are they HCO₃ users?

Carbon Acquisition: External Carbonic Anhydrase (eCA)

Carbon Balance: Gains

Carbon Balance: Losses

SURVIVING THE LONG WINTER

16 weeks in Darkness

3.5 and 8° C

(Collected end of September)

Alaria esculenta

Sac. latissima Phycodrys rubens Ptilota gunneri

- Up to x4 respiration rate
- Only 50% Gross
 Photosynthesis (O₂)
- No survival

Alaria esculenta 3.5° C

Alaria esculenta 8° C

- similar respiration rate
- Only 25% Gross
 Photosynthesis (O₂)
 during recovery
- Lower survival (?)

Saccharina latissima 3.5° C Saccharina latissima 8° C

- similar respiration and photosynthetic (O₂) rates
- Temp benefits in light

Phycodrys rubens 3.5° C

Phycodrys rubens 8° C

- Up to 50% reduction in photosynthetic (O₂) rate, but not affecting recovery
- Errr, ...and that's it

Ptilota gunneri 3.5° C

Ptilota gunneri 8° C

Alaria esculenta 3.5° C

... two months later

THE CLASSIC MODEL

Summer

Winter

A NEW MODEL PROPOSED

Seasonal P-I curves of field material (5-8 m depth)

Monostroma arcticum

PAR (µmol m⁻² s⁻¹)

Sept

August

500-

400-

APS (µmol 0₂ g⁻¹ FW h⁻¹)

TAKE-HOME MESSAGES

- 1. Arctic seaweeds are different and respond different
- 2. Temperature and CO₂ affect in species-specific ways (winners and losers)
- 3. Warm winters pose a threat on survival

