

Etude expérimentale de la filtration et du drainage centrifuge dans une essoreuse pilote

X. Apaolaza, M. Valat, P. Ginisty

Contexte de l'étude

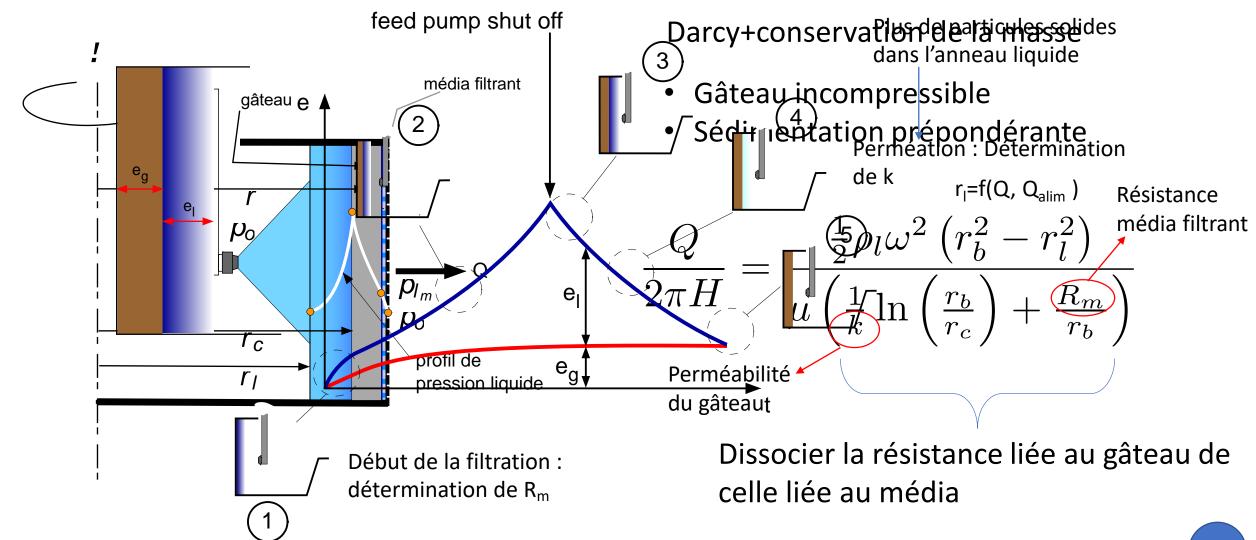
Évolution du système dépend des propriétés du gâteau et des propriétés du système...

Optimisation du procédé

Modèle

Déterminer les propriétés du système à partir d'essais sur machine

Accéder au débit de filtrat instantané tout au long de la déshydratation (filtration et essorage)



À partir du modèle, estimer les paramètres de filtration et d'essorage pour accéder à la distribution du solvant dans le gâteau

Plan de la présentation

- 1. Modélisation filtration/essorage centrifuge
- 2. Matériels et méthodes
 - Dispositif expérimental
 - Caractérisation de la suspension utilisée
- 3. Résultats
 - Estimation des paramètres du modèle
 - Validation à partir des données de l'étape de filtration
 - Validation à partir des données de l'étape d'essorage
- 4. Conclusions et Perspectives

1. Modélisation (filtration)

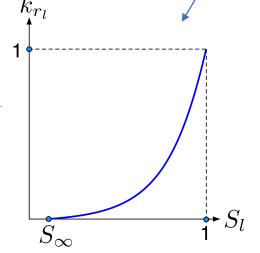
1. Modélisation (essorage)

Équation de Richards **formulée en pression** et prenant en compte la résistance du média filtrant (CL)

Modèle de Wakeman et Vince (1986) Équation de Darcy généralisée

Équation de Darcy généralisée

$$v=-rac{kk_{r_l}}{\mu_l}
abla\left(p_l-rac{1}{2}
ho_lr^2\omega^2
ight) \ p_c=p_o-p_l$$
 Gaz phase passive

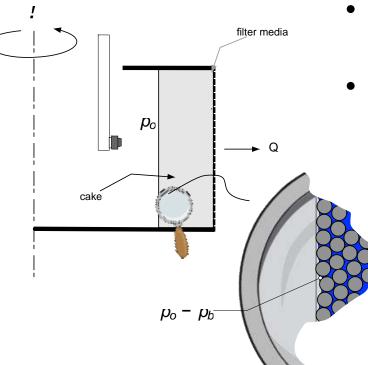

Équation de continuité

$$\frac{\partial \left(\epsilon S_l\right)}{\partial t} + \nabla \cdot v = 0$$

$$\frac{\partial (\epsilon S_l)}{\partial t} + \nabla \cdot \left(\frac{k k_{r_l}}{\mu_l} \nabla \left(p_l - \frac{1}{2} \rho_l r^2 \omega^2 \right) \right) = 0$$

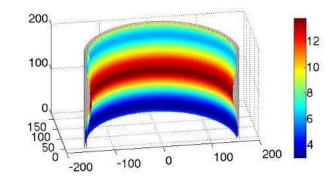
$$k_{r_l}$$

$$p_c = p_o - p_l$$


$$k_{r_l} = S_{r_l}^{\frac{2+3\lambda}{\lambda}} S_{r_l}$$

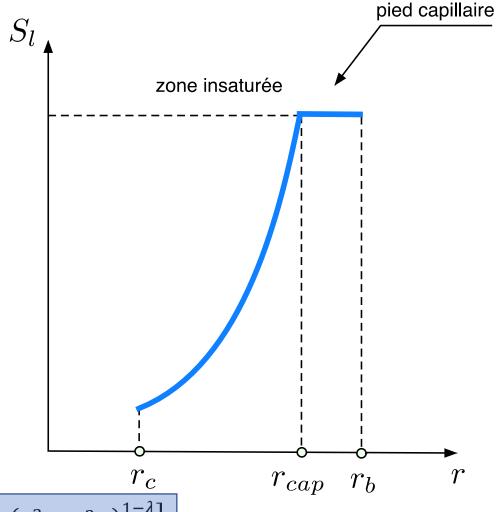
Indice de distribution de taille de pore

Saturation irréductible


Détermination de la pression d'entrée

- Le début de l'essorage correspond à une variation marquée du débit de filtrat
- Le débit initiale au début de l'essorage ne fait intervenir que la pression de d'entrée (pas les autres paramètres capillaires)

$$Q_{ini} = \frac{2\pi H}{\mu} \frac{\frac{1}{2}\rho_l \omega^2 (r_b^2 - r_c^2) - p_b}{\left(\frac{\ln(\frac{r_b}{r_c})}{k} + \frac{R_m}{r_b}\right)}$$


 r_c Déterminé au moyen d'un télémètre laser en fin d'essai

Équilibre capillaro-centrifuge : détermination de λ et S_{∞}

$$\nabla p_c + \rho_l r \omega^2 \vec{e}_r = \vec{0}$$

$$r_{cap} = \sqrt{r_b^2 - \frac{2p_b}{\rho_l \omega^2}}$$

$$r_{b}^{2} - r_{l}^{2} + S_{\infty}(r_{cap}^{2} - r_{c}^{2}) + (1 - S_{\infty})\left(\frac{p_{b}}{\frac{1}{2}\rho_{l}\omega^{2}}\right)^{\lambda} \frac{\left[\left(r_{b}^{2} - r_{c}^{2}\right)^{1-\lambda} - \left(r_{b}^{2} - r_{cap}^{2}\right)^{1-\lambda}\right]}{1 - \lambda}$$

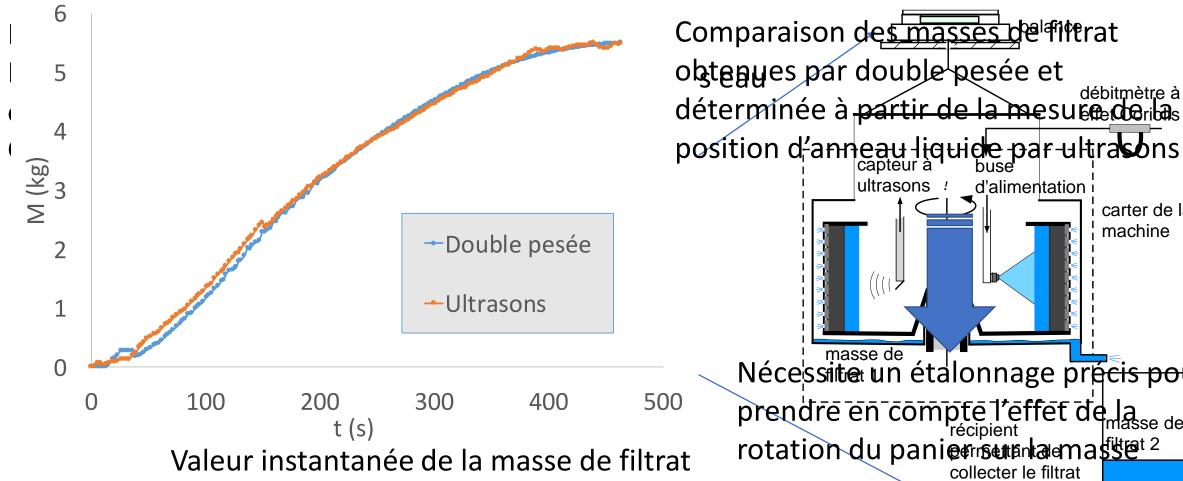
$$\langle S \rangle_{eq} = \frac{r_{b}^{2} - r_{c}^{2}}{r_{b}^{2} - r_{c}^{2}}$$

Dissocier les effets de λ et de S_{∞}

Procédure d'optimisation pour minimiser l'écart entre cinétiques théorique et expérimentale avec la contrainte d'atteindre la saturation d'équilibre

6 paramètres à déterminer

	paramètre	symbole
Filtration	Porosité moyenne	ϵ
	Perméabilité moyenne	k
	Résistance du média	R_m
Essorage	Pression d'entrée	p_b
	Indice de distribution de taille de pore	λ
	Saturation irréductible	S_{∞}


Bilan matière + volume du gâteau + ρ_s

Corrélations proposées par Wakeman et Vince (1986) pour des grains sphériques :

$$p_b = k \frac{(1 - \epsilon) \gamma \cos \theta}{\epsilon \bar{d}}$$

Wakeman (1977)
$$S_{\infty} = 0,0524 \times Ca^{-0.19}$$

2. Matériels et méthodes

prendre en compte l'effet de,

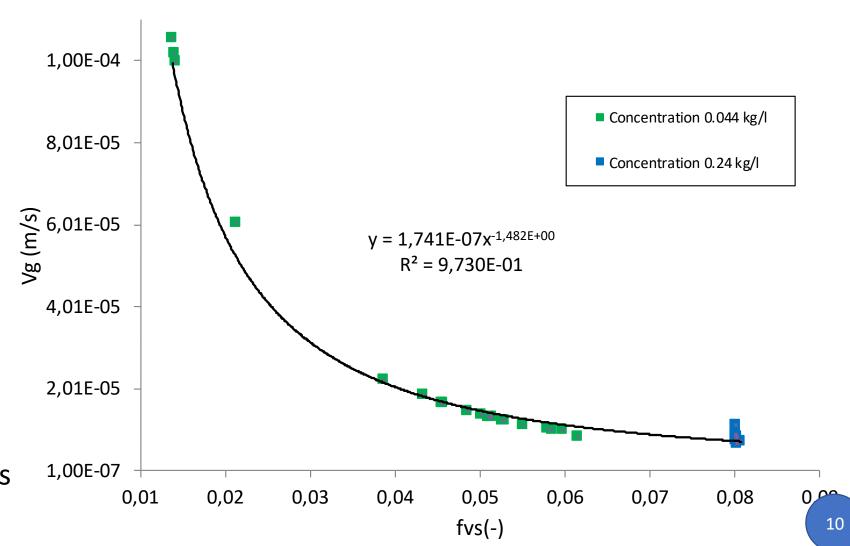
ultrasons !

rotation du panier settentalema \$ \$ \$ 2 collecter le filtrat

Nécessilte un étalonnage précis pour

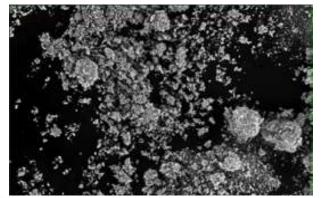
débitmètre à

carter de la machine

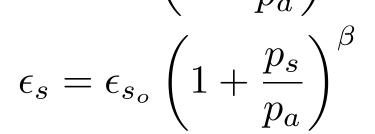

d'alimentation

2. Matériels et méthodes

Vitesse de sédimentation Déterminée en colonne de décantation



Formation du gâteau essentiellement liée à la sédimentation des particules



Caractérisation des particules de Spath (fluorure de calcium) utilisées pour les essais

$$\alpha = \alpha_o \left(1 + \frac{p_s}{p_a} \right)^n$$

Particules de forme homogène Diamètre moyen : environ 12 μm

5	7
ج 4,5 چ	- alltin.
%) s	- illillilli.
14cle	- 1111111111111111111111111111111111111
ed Jo	
	-
mibut 5	
Relative distribution of particles (%)	
adjive	
8 0,5	
0	
	4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	Diameters (µm)

paramètre	valeur	unités	
$ ho_{\scriptscriptstyle S}$	2818	kg/m³	
$lpha_o$	$1,77 \times 10^{10}$	m/kg	
p_a	93,9	Pa	
n	0,23	-	
\mathcal{E}_{SO}	0,32	-	
β	0,015	-	
k_o	$6,27 \times 10^{-14}$	m ²	

Description des essais réalisés

6 essais réalisés, à vitesses de rotation variables

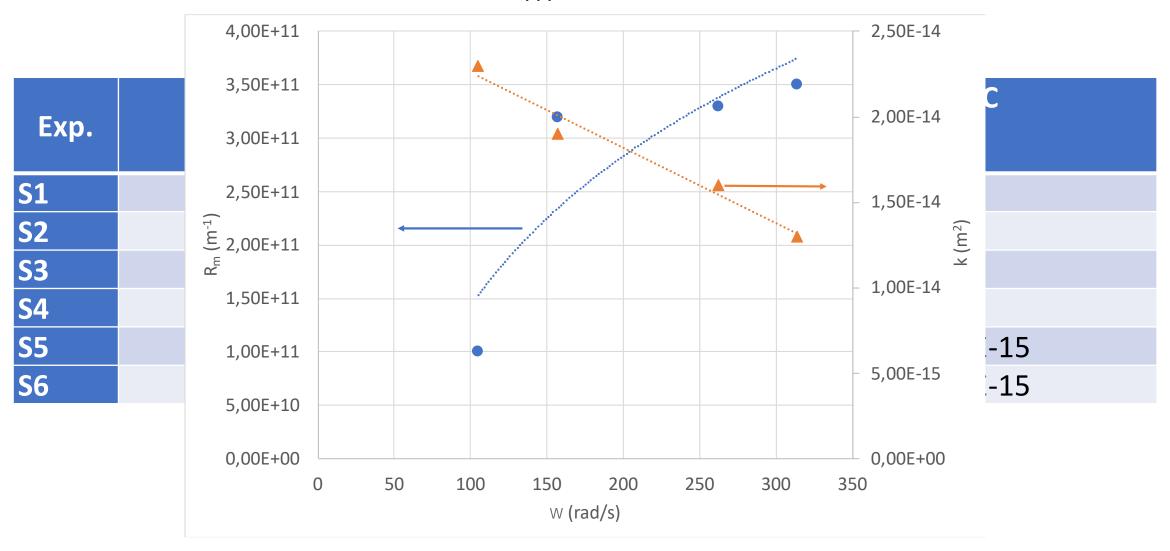
Exp.	ω filtration (rad/s)	ω drainage (rad/s)	Q alim. (kg/h)	fvs (-)	t alim. (s)
S1	105	105	199	0,0768	152
S2	157	157	209	0,0712	150
S3	262	262	201	0,0684	150
S4	314	314	206	0,0801	199
S5	105	419	204	0,0720	154
S6	105	419	177	0,0703	164

faible vitesse de rotation vitesse de rotation intermédiaire haute vitesse de rotation faible ω en filtration ω max en essorage

3. Résultats

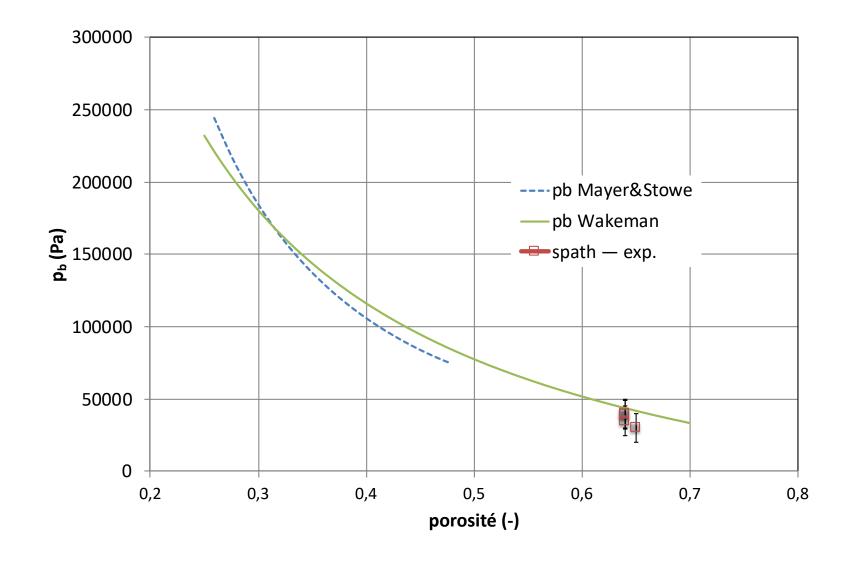
Exp.	e (mm)	W (-)	Masse de gâteau humide (g)	Masse de gâteau sec (g)	Masse de filtrat (g)	S _{eq} (-)	ε (-)
S1	8,7	0,699	2644	1557	1087	1	0,66
S2	8,1	0,581	2529	1600	929		0,64
S3	7,7	0,508	2345	1555	790	0,77	0,65
S4	11,7	0,410	3152	2236	916	0,65	0,64
S5	8,5	0,337	2182	1632	550	0,53	0,64
S6	8,1	0,323	2056	1555	501	0,51	0,64

$$p_b \ge p_b^* = \frac{1}{2} (r_b^2 - r_c^2) \rho_l \omega^2$$


 $p_b^* \approx 30000 \ Pa$

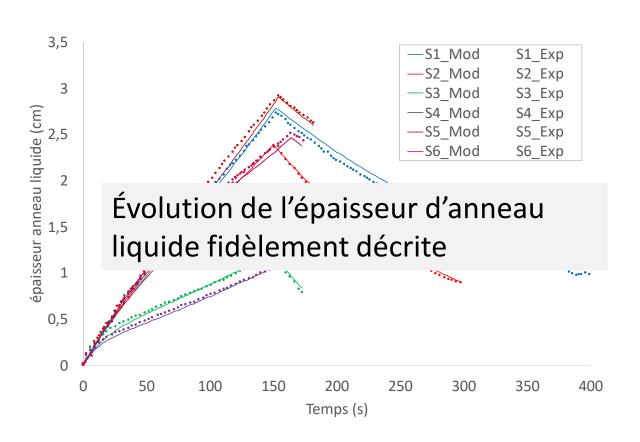
Pas de désaturation

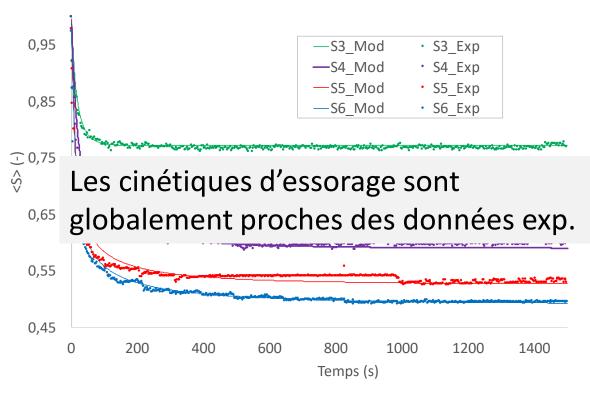
Conforme aux


données de CFC

Détermination de R_m et k

Estimation des paramètres capillaires

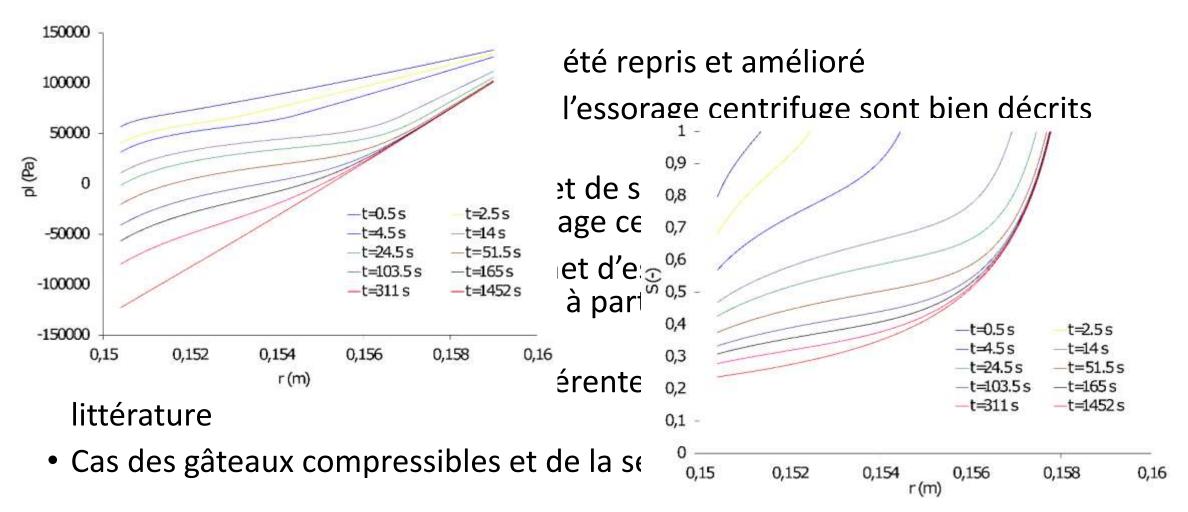

Ехр.	Pb (Pa)
S1	-
S2	-
S3	30000
S4	40000
S5	35000
S6	39000



Estimation des paramètres capillaires (cont.)

Exp.	λ (-)	$oldsymbol{S}_{\infty}$	S_{∞} (Wakeman 1977)
S1	-	-	
S1S2S3	-	-	
S3	1,03	0,14	0,13
S4	0,81	0,11	0,12
S5	0,86	0,10	0,11
S6	1,29	0,10	0,11

Comparaison modèle/exp.



Filtration

Essorage

4. Conclusions et perspectives

Merci pour votre attention!