Low Computational Cost Method to Calculate the Hosting Capacity in Radial Low Voltage Networks

Juan Morales-Conde, Sebastián Martín, Juan Pérez-Ruiz

Escuela de Ingenierías Industriales
Universidad de Málaga
Málaga, Spain

1st October 2019
Introduction
1. Introduction

Introduction: Context

- Prosumers (load + PV) → sizing, operation, management.
- Optimization problem.
- Voltage phasors and impedances → auxiliary variables.
- Comply with network constraints: overvoltage, ampacity.
Introduction: Literature Review

A) Convexification of network constraints:
- Sophisticated mathematics as second order cone programming.

B) Hosting capacity (construction of feasible regions):
- Stochastic methods (sampling), as
- Linearization of power flow equations:

Complex formulations and high computational cost.
Introduction: Proposed Method

- Low computational cost.
- High accuracy.
- Use of Thévenin equivalent to map the high dimensional problem to low dimension space.
- Valid for low voltage radial networks.
- Allows for the construction of feasible operation regions.
- Comply with the network constraints in the optimization problem without including power flow equations.
Methodology
Methodology: Problem for each user k

- **Difficulties:**
 - Uncertainty in some parameters (PV generation).
 - Uncertainty on the other users actions (non-controllable loads).

- **Simple loop circuit for each user k:**
 - System Thévenin from user k point of view.
 - Thévenin of the user own installation.
 - Each Thévenin parameter taking values in a certain region (contours of those regions are computed with the proposed method).
Methodology: Steps in the Method (I)

1) Parameters for each user k can take values in box type sets, $|S_k| \in [\underline{S}_k, \overline{S}_k], \ldots$
 - Regions for the Thévenin parameters of the installation of each user k.

2) Regions for the Thévenin parameters of the whole system from the point of view of user k.

3) Simple loop circuit using the Thévenin parameters from the previous steps:
 - Network constraints are applied on this circuit.
 - Feasible regions for power injection of user k are calculated.
Methodology: Steps in the Method (II)
Methodology: Thévenin for user k own installation (I)

- User installation: load + PV
- Load of each user:
 Equivalent impedance: $Z_k = \frac{|U_{\text{ref}}|^2}{|S_k|^2} S_k$, $|S_k| \in [|\underline{S_k}|, |\overline{S_k}|]$
- PV installation:
 - Ideal source of voltage: U_k^{inv}
 - In series with impedance $Z_k^{\text{inv}} = R_k^{\text{inv}} + j \cdot X_k^{\text{inv}}$
 - $X_k^{\text{inv}} = R_k^{\text{inv}} \cdot \tan(\phi_k^{\text{inv}})$; R_k^{inv} constant and ϕ_k^{inv} variable
Methodology: Thévenin for user k own installation (II)

Z_{th_k} and U_{th_k} depend on four parameters: $|S_k|$, ϕ_k, $|U_k^{inv}|$, and ϕ_k^{inv}.

\[
Z_{th_k} = \frac{Z_k^{inv} \cdot Z_k}{Z_k^{inv} + Z_k} \quad (1)
\]

\[
U_{th_k} = U_k^{inv} \cdot \frac{Z_k}{Z_k^{inv} + Z_k} \quad (2)
\]
Methodology: Region for Z_{th_k}

<table>
<thead>
<tr>
<th>Point</th>
<th>ϕ_k</th>
<th>ϕ_k^{inv}</th>
<th>ϕ_k</th>
<th>ϕ_k^{inv}</th>
<th>ϕ_k</th>
<th>ϕ_k^{inv}</th>
<th>ϕ_k</th>
<th>ϕ_k^{inv}</th>
<th>ϕ_k</th>
<th>ϕ_k^{inv}</th>
<th>ϕ_k</th>
<th>ϕ_k^{inv}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ϕ_k^{inv}</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ϕ_k</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ϕ_k</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ϕ_k</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ϕ_k</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ϕ_k</td>
<td></td>
</tr>
</tbody>
</table>
Methodology: Region for U_{th_k}

Table

| Point | ϕ_k^{inv} | ϕ_k | $|S_k|$ | U_k^{inv} |
|-------|------------------------|----------|--------|-------------------|
| 1 | ϕ_k^{inv} | ϕ_k | $|S_k|$ | U_k^{inv} |
| 2 | ϕ_k^{inv} | ϕ_k | $|S_k|$ | U_k^{inv} |
| 3 | ϕ_k^{inv} | ϕ_k | $|S_k|$ | U_k^{inv} |
| 4 | ϕ_k^{inv} | ϕ_k | $|S_k|$ | U_k^{inv} |
| 5 | ϕ_k^{inv} | ϕ_k | $|S_k|$ | U_k^{inv} |
| 6 | ϕ_k^{inv} | ϕ_k | $|S_k|$ | U_k^{inv} |
| 7 | ϕ_k^{inv} | ϕ_k | $|S_k|$ | U_k^{inv} |
| 8 | ϕ_k^{inv} | ϕ_k | $|S_k|$ | U_k^{inv} |
| 9 | ϕ_k^{inv} | ϕ_k | $|S_k|$ | U_k^{inv} |
| 10 | ϕ_k^{inv} | ϕ_k | $|S_k|$ | U_k^{inv} |
| 11 | ϕ_k^{inv} | ϕ_k | $|S_k|$ | U_k^{inv} |
| 12 | ϕ_k^{inv} | ϕ_k | $|S_k|$ | U_k^{inv} |
| 13 | ϕ_k^{inv} | ϕ_k | $|S_k|$ | U_k^{inv} |
| 14 | ϕ_k^{inv} | ϕ_k | $|S_k|$ | U_k^{inv} |
Methodology: Equivalent system from user k point of view (I)

- $Z_{th}^s\, k$, $U_{th}^s\, k$ Thévenin parameters for the system, point of view of user k.
- For a system with N users, the regions for $Z_{th}^s\, k$, $U_{th}^s\, k$ are computed in $N - 1$ steps.
- Based on observation from numerical experiments (no formal proof):
 1) Only the regions for the equivalent of two parallel branches are computed at each step.
 2) Calculation based on the points in the contours of the regions.
 3) Regions for the new branch parameters are defined by their contour.
Methodology: Equivalent system from user k point of view (II)

- Let be a system with N users, and M sample points for each parameter (four parameters per user).
- Less than 30 points needed to be checked to define a contour (observed).
- Computational cost (for 11 users and 10 points for parameter, $N = 11$, $M = 10$):
 1) Proposed method $\approx (N - 1) \cdot 30 \cdot 30 \Rightarrow 9000$.
 2) Sampling method $M^4 \cdot N \Rightarrow 10^{44}$.
Methodology: Results for each user k

Un knowns: I_{loop}^k, U_k, I_k

\[
I_{loop}^k = \frac{Uth_k - Uth_s^k}{Zth_s^k + Zth_k}
\]

\[
U_k = Uth_k - I_{loop}^k \cdot Zth_k
\]

\[
I_k = \frac{U_k}{Z_k}
\]

Unknowns: I_{inv}^k, U_{inv}^k, P_{inv}^k

\[
I_{inv}^k = I_k + I_{loop}^k
\]

\[
U_{inv}^k = Z_{inv}^k \cdot I_{inv}^k + U_k
\]

\[
P_{inv}^k = \text{Re} \left[U_{inv}^k \cdot (I_{inv}^k)^* \right]
\]
Methodology: Recommendations to comply with network constraints

- Inverter efficiency R_{inv}^k strongly linked to load voltage U_k.
- Inverter impedance angle ϕ_{inv}^k linked to: $I_{inv}^k, I_k, I_{loop}^k$.
- System Thévenin impedance $Z_{th}^s_k$ strongly linked to: $|I_{loop}^k|, |U_{inv}^k|$.
- System Thévenin impedance $Z_{th}^s_k$ weakly linked to: Z_k (load impedance).
Case Study
Case Study: Example with three users

<table>
<thead>
<tr>
<th>Inputs Parameters</th>
<th>User 1</th>
<th>User 2</th>
<th>User 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Model:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ_k</td>
<td>-0.7(rad)</td>
<td>-0.7(rad)</td>
<td>-0.7(rad)</td>
</tr>
<tr>
<td>ϕ_k</td>
<td>0.9(rad)</td>
<td>0.9(rad)</td>
<td>0.9(rad)</td>
</tr>
<tr>
<td>$</td>
<td>S_k</td>
<td>$</td>
<td>5000 VA</td>
</tr>
<tr>
<td>$</td>
<td>S_k</td>
<td>$</td>
<td>100 VA</td>
</tr>
<tr>
<td>$</td>
<td>U_{ref}</td>
<td>$</td>
<td>218.5 V</td>
</tr>
<tr>
<td>$</td>
<td>U_{ref}</td>
<td>$</td>
<td>241.5 V</td>
</tr>
<tr>
<td>U_{ref}</td>
<td>230 V</td>
<td>230 V</td>
<td>230 V</td>
</tr>
<tr>
<td>Line Impedances:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z_d^k</td>
<td>0.0588 + 0.01074j(Ω)</td>
<td>0.0588 + 0.01074j(Ω)</td>
<td>0.0588 + 0.01074j(Ω)</td>
</tr>
<tr>
<td>Z_p^k</td>
<td>0.0252 + 0.0130j(Ω)</td>
<td>0.0252 + 0.0130j(Ω)</td>
<td>0.0252 + 0.0130j(Ω)</td>
</tr>
<tr>
<td>Feeder:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_f^k</td>
<td>$400 \sqrt{3}$ V</td>
<td>$400 \sqrt{3}$ V</td>
<td>$400 \sqrt{3}$ V</td>
</tr>
<tr>
<td>Z^{sc}</td>
<td>0.0099 + 0.0039j(Ω)</td>
<td>0.0099 + 0.0039j(Ω)</td>
<td>0.0099 + 0.0039j(Ω)</td>
</tr>
<tr>
<td>PV Installation:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>η_{inv}^k</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>U_{inv}^k</td>
<td>233 V</td>
<td>233 V</td>
<td>233 V</td>
</tr>
<tr>
<td>U_{inv}^k</td>
<td>238 V</td>
<td>238 V</td>
<td>238 V</td>
</tr>
<tr>
<td>ϕ_{inv}^k</td>
<td>-0.45 (rad)</td>
<td>-0.45 (rad)</td>
<td>-0.45 (rad)</td>
</tr>
<tr>
<td>ϕ_{inv}^k</td>
<td>0.00 (rad)</td>
<td>0.00 (rad)</td>
<td>0.00 (rad)</td>
</tr>
<tr>
<td>S_{inv}^k</td>
<td>6000 VA</td>
<td>6000 VA</td>
<td>6000 VA</td>
</tr>
</tbody>
</table>

![Diagram of the electrical network](image-url)
3. Case Study

Case Study: Results (I)

(g) (h) (i) (j)
Case Study: Results (II)
Conclusions and Summary
Conclusions and Summary

- Thévenin mapping, from high dimension to low dimension space.
- Parameters regions defined by their contour in the Thévenin mapping.
- Low computational cost.
- It can be applied to a system with large number of users and/or repetitive processes:
 - Calculation of feasible operation for each user.
 - Optimal allocation of distributed generation in a low voltage radial network.
 - Calculation of hosting capacity for each user.
- Based on observed results from numerical experiments.
- Currently working on formal proofs for the observed results.
Thanks for your attention!