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ABSTRACT

This thesis introduces new results concerning classical operators of the type T, :
X—=>YoT:X — LZ(]D), where y is a Borel measure over the unit disk D =
{z € C: |z] < 1} and X, Y are spaces of functions over the unit disk. The space
X in most cases will be one of the following; a weighted Bergman spaces Af,, a
tent space T,f (h,w) or a weighted mixed norm space Al;7, where the weight w is a
radial weight that satisfies the doubling condition |, rl w(s)ds < [ e w(s)ds, among
other possible conditions. Our goal in this thesis will be to characterize properties of

the operators such as boundedness, compactness or belonging to a certain Schatten
class, in terms of (geometric) conditions over the measure y.

RESUMEN

Esta tesis contiene resultados originales sobre operadores clasicos de tipo T, : X —
YobienT: X — LZ(]D), donde y es una medida de Borel definida sobre el disco
unidad D = {z € C : |z| < 1} y X,Y son espacios de funciones, normalmente
analiticas, definidas sobre el disco unidad. El espacio X, suele ser alguno de los
siguientes espacios de funciones; un espacio de Bergman con pesos Al,, un espacio
de tipo tienda T(f (h,w) o un espacio de norma mixta Af;7, donde el peso w es ra-
dial y satisface la propiedad doblante | rl w(s)ds < 11% w(s)ds. Nuestro objetivo en
esta tesis es caracterizar propiedades de estos operadores, tales como la acotacién,
compacidad o pertenencia a clases de Schatten, en términos de condiciones (ge-
ométricas) sobre la medida p.

MSC 2010: 32A36, 47G10, 42B25, 47B35, 30H20, 46E15, 47B38.

Keywords: Bergman space, Mixed norm space, Tent space, weight, Carleson mea-
sure, reproducing kernel, Bergman projection, area operator, Toeplitz operatos, atomic
decomposition.
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Introduction

The main aim of this thesis is to study the boundedness of certain operators of the
type T, : X — Y with a symbol por T : X — LZ (D). Here u is a positive Borel
measure over the unit disk D = {z € C : |z| < 1}, X is a space of analytic functions
over the unit disk ID and Y is a certain space of functions.

Our main goal is to characterize the boundedness and compactness of the oper-
ators Ty in terms of (geometric) conditions over the measure p. We will work with
a variety of weighted function spaces such as weighted Bergman spaces Af,, tent
spaces T; (h, w), mixed norm spaces Az,’q. Most of our results are given for weights

in the class D, these are radial weights w(z) = w(|z|), that satisfy

/1w(s)ds < /1 w(s)ds.
Basic properties of these weights can be found in [51,54], additional conditions on
the weights might be required in each case. The standard weights w(z) = (1 — |z|)*
for « > —1 all belong to the class D. In particular for every weight w € D, there
exists a(w) > —1 such that H? ¢ A!, C Af. Some weights in the class D satisfy the
more restrictive embedding

HP C Al, C Ny 145,

which gives us an idea of why in certain problems an approach more common of
Hardy spaces is effective.

In order to characterize the boundedness of the operator T, we will work in
understanding the functions of the given spaces, equivalent norms in these spaces
or characterizations of their duals, among other techniques.

In order to study the functions in the given space we will find a suitable family
of functions { f, } belonging to the space X, and we will see that all functions of the
form f =Y cufn belong to X, where the sequence {c, } belongs to a given sequence
space S, and satisfies the inequality ||f||x < [[{cn}||s- These inequalities will allow
us to discretize the problem at hand. When possible we will also prove that every
function in the space X can be written as f =) ¢, fu.

Another way of identifying the functions in the space X is to find a projection
that is bounded onto X. If the projection P : Z — X is bounded, we can see every
f € Xas f = P(g), where g € Z, and Z is a function space of which we already
have some information.

Many of the conditions that characterize the boundedness of the given opera-
tor T),, will consist in proving that y is a certain Carleson measure. We say y is a
g—Carleson measure for the space X if Id : X — L'Z,(]D) is bounded. Some of the
classical results on Carleson measures were given by Carleson, Duren, Luecking,
Jevtic [11, 24, 35,41] for the spaces H”, AP, AP4. Peldez and Réttya characterized
Carleson measure for Af, when w € Din [55].

The remainder of this survey is organized as follows. In section 2 we give some
notation on the subject and recall certain properties on weights and function spaces.

1



Section 3 contains results on atomic decomposition of standard Bergman spaces A}
and mixed norm spaces AP. In section 4 we discuss some of the previous results
on operators, such as Carleson measures, area operators and projections. Finally
section 5 summarizes papers I-IIL



Notation

2.1 BASIC NOTATION

We use the notation a < b if there exists a constant C = C(-) > 0, which depends
on certain parameters that will be specified if necessary such that a < Cb. This
constant may change from line to line, and we define a 2 b in an analogous manner.
In particular, if a < b and a 2 b we will write a < b.

We define the euclidean unit disk D = {z € C : |z| < 1}, and its boundary
T={z€C:|z|] =1}. We denote with D(a,r) = {z € C: |z —a| < r} the euclidean
disk of center 1 € C and radius r € (0,00). The pseudohyperbolic distance is
0(a,z) = |{==%|, and A(a,r) = {z € C:0(z,a) <r} is the pseudohyperbolic disk
with center 4 € D and radius 0 < r < 1. The hyperbolic distance is defined as

d(a,z) = 1 > log nggzg} ), and the hyperbolic disk is A(a,t) = {z €D :d(a,z) < t}
foralla € Dand ¢t > 0.

A sequence Z = {z;};2, C D is called separated if it is separated in the pseudo-
hyperbolic metric, it is an e-net for ¢ € (0,1) if D = U A(2k, €), and finally it is a
d-lattice if it is a 55-net and separated with constant 6/5.

Given two normed spaces (X, || - [|x) and (Y, || - ||y) we say that a linear operator
T:X — Y is bounded if

ITllxy) = sup  {IT(x)lly} < eo.
xeX:||x||x=1

Given € T we define the non-tangential region with vertex at ¢ as follows

Q) = {geD:lo-a@l < ;0-[eh}, {=e"eT

These sets can be generalized to non-tangential regions with vertex at z in the punc-
tured unit disk D \ {0},

F(z)—{CED:|9—arg(§)|<;< Jf')} 2= €D\ {0}

The associated tents are defined by T({) = {z€ID:{ €TI(z)} forall { € D\ {0}.
When we are working with a radial weight w we set w(T(0)) = lim,_,g+ w(T(r)) to
deal with the origin.

The Carleson square S(I) based on an interval I C T is the set S(I) = {re'* ¢
D :e* € I,1—|I| <r < 1}, where |E| denotes the Lebesgue measure of E C T.

We associate to each a € D\ {0} the interval I, = {e® : | arg(ae=)| < 1%‘“'}, and
denote S(a) = S(I,). For the case a = 0 we set I[j = T, hence S(0) = D.
The polar rectangle associated with an arc I C T is

R(I) = D: —el,1-—< 1-—
(I) {ze He e lz| < pp=



Write z; = (1 — |I|/2m)&, where ¢ € T is the midpoint of I.
Let Y denote the family of all dyadic arcs of T. Every arc I € Y is of the form

In,k: {eie; 27tk <0< 27T(k+1)},

2n = 2n

where k =0,1,2,...,2" —1and n € NU {0}.

The family {R(I): I € Y} consists of pairwise disjoint rectangles whose union
covers D. For I; € Y\ {loo}, we will write z; = z;,. For convenience, we associate
the arc Iy with the point 1/2.

2.2 WEIGHTS

An integrable function w : ID — [0,00) is called a weight. We say it is radial if
w(z) = w(|z|) for all z € D, and we write @(z) = fé‘ w(s)ds. Most of the thesis
will focus on radial weights that satisfy the doubling condition &(r) < @(1§*). This
class of weights is denoted by D. Given a radial weight w, we define its associated
weight by

w*(z) = /1 w(s) log %s ds, zeD)\{0}.

Jlz]

The following lemma will show some of the characterizations of the weights in this
class.

Lemma 2.2.1. [51, Lemma 2.1] Let w be a radial weight. Then the following assertions are
equivalent:

(i) weD;
(ii) There exists C = C(w) > 0 and p = B(w) > 0 such that

@(r)gC(i_r

B
> w(t), 0<r<t<l;

(iii) There exists C = C(w) > 0and v = y(w) > 0 such that

t /1 —t¢ Y p R
< < ;
/0(1—5) w(s)ds <Cw(t), 0<t<1;

(iv) w*(z) < @(z)(1—z|), |z| = 1~;

(v) There exists A = A(w) > 0 such that

' (2) 0(Z)
o g4 < g e ¢

(vi) There exists C = C(w) > 0 such that wy = fol r*w(r)dr, x > 0 satisfies w, <
Cwyy, for n € IN.

We say a radial weight satisfies the reverse doubling condition if it satisfies one
of the following equivalent conditions.

4



Lemma 2.2.2. [59] Let w be a radial weight. Then the following statements are equivalent:
(i) There exists K = K(w) > 1and C = C(w) > 1 such that

1;7) forall0<r<1; 2.1)

@@)2c@(1—

(ii) There exists C = C(w) > 0 and o« = a(w) > 0 such that

e
@(t)gc(l_r> o), 0<r<t<i;

(iii) There exists C = C(w) > 0 such that
L @(s) .
/r 17Sds < Ca(r)

The class of weights that satisfies both the doubling condition and the reverse
doubling condition is denoted with D.

We say that a radial weight w is regular if w € D and % =w(r)for0<r<1,
and we denote this class of weights with R. The class of weights R is contained in
D. The standard weights w(r) = (1 —r)* with « > —1 belong to R. We define the
class of rapidly increasing weights denoted with 7 as those radial weights which
are continuous and lim,_,;- (:;Eglr) = co. Some examples of weights in the class 7
are

1
va(r) = 1<a<oo.

(1—-7) (log 15)"’

Both these classes R and 7 are subclasses of the class of doubling weights D by [51].
We denote w(E) = [ w({)dA({) where E is a measurable subset of ID.

Lemma 2.2.3. [54, Lemma 1.6]

(i) if w is a radial weight, then

(i) if w € D, then
w(T(z)) xw(S(z)), zeD.

The proof in [54, Lemma 1.6] is restricted to the class R UZ but also works for
the class D, as appears in [51, Pag. 55, Eq. 26].

2.3 FUNCTION SPACES AND SOME OF THEIR PROPERTIES

In this section we will define the function spaces that appear throughout this thesis.

5



2.3.1 Hardy spaces
If0<r<1land f € H(D), we set

1 27T i %
M,(r, f) = (2n / | f(re”)|pdt> , 0<p<oo, (2.2)
Me(r, f) = omax. |f(re")]. (2.3)

Since f € H(ID), the maximum modulus principle and the subharmonicity
of [f|V tells us that the integral means M, and M are non-decreasing functions
of r.

For 0 < p < oo we define the Hardy space H as the space of functions f € H (D)
such that

|fllar = sup Mp(r, f) <

0<r<1

Given a function f : ID — C we define its non-tangential maximal function as

N(f)(®) = sup |f(z)], ¢®€T. (2.4)

zeT (eif)

If f € HP, then N(f) < oo almost everywhere on T. In particular for f € H(ID) we
have the equivalent norm

1A e = [INCO ey, (2.5)

where LP(T) refers to the standard Lebesgue space on T.
We also recall the Hardy-Stein-Spencer identity, which can be found in [30]

1A% = 3 / (1£17) 108 rdA(z) + If(O))
=B [ @21 @) Plog dA) + FO) @6)
=< [ @I @R - ) dAR) + 1 O,

where dA(z) = dx’iy is the normalized Lebesgue measure on ID.

2.3.2 Weighted Bergman spaces

The Bergman spaces were introduced by Bergman [9] and Dzrbashian [22], they
worked with the weight w = 1. Given a weight w and 0 < p < oo, we define the

weighted Bergman space Af, as the space of functions f € H(ID) such that

Il = ([ V@Pe@iaE) <. @7

In particular the Bergman spaces induced by the standard weights w(z) = (1 —
|z|)® are denoted by Af.

6



It is clear that for every radial weight w we have the inclusion H? C Al,. In
addition if w € D we have the inclusion A?, ¢ AF for all & > B(w), where B(w) is
given by condition (ii) of Lemma E.

If w is a radial weight we can see that the dilated functions f;(z) = f(rz) ap-
proximate the function f in A, that is, lim,_,;- ||f — f;|| v, = 0. This implies that
polynomials are dense in A}, whenever the weight is radial.

For a function in f € H(ID) we define its non-tangential maximal function as

N(f)(Q) = sup |f(z)], TeD\{0}. (28)
zel'(g)

By applying (2.5) to the dilated functions f, we obtain the following equivalent
norm for A}, whenever w is a radial weight

£ 1az, = INCOlp - (2.9)

The proof can be found in [54, Lemma 4.4], along with additional information on
the constants of equivalence. Using (2.6) on the dilated functions f, together with
Fubini’s theorem we obtain the following equivalent norm in A!, whenever w is
radial

11y = PZ/]D F(@)"%1f'(2) Pw* (2)dA(z) + w(D)|£(0)[- (2.10)
This equivalent norm comes in very handy in the case p = 2, since we get an equiv-
alent norm in terms of the derivatives exclusively, the proof of this equivalence can

be found in [54, Lemma 4.2]. Another relevant norm in terms of the nth-derivative
is the one we can extrapolate from the Littlewood-Paley identity

Hf”Ap = / </F(u) |f(”)(§)|2 (1 _

the proof of this equivalence can be found in [54, Lemma 4.2].

¢

u

2n—2 g
) ) +Z|f 0|7, (2.11)

2.3.3 Weighted mixed norm spaces

For 0 < p < 0,0 < g < o0 and a radial weight w, the weighted mixed norm space
Al consists of f € H (D) such that

1
£ = [ MB, Feo(r) dr < o

These spaces generalize the weighted Bergman space Af,, since A, = Al;7 when
q = p and we have the obvious inclusions A, C A, when g < p. The mixed norm
spaces were introduced by Benedek and Panzone in [8].

For 0 < p < 00,0 < g < o0 and a radial weight w, the space
measurable functions f : D — C such that

LY consists of

10 = [ Mbr feotr)dr < oo



2.3.4 Tent spaces

The tent spaces were introduced by Coifman, Meyer and Stein in [17] and later work
appeared involving these spaces, such as the work done by Cohn and Verbitsky
in [16]. In their context, they work on the upper half-space R"! = {(x,t) € R :
t > 0}. We will first introduce the tent spaces on the unit disk, as described by
Cohn in [15] and we will follow with the generalization of these spaces that appears
in [55]. We will divide the traditional tent spaces in to three groups as follows.

For 0 < p < oo, the tent spaces T% consist of those (equivalence classes of)
measurable functions u : ID — C such that

Il = ( (N(u)(em))”de):’ <.

Given 0 < p,q < oo, the tent spaces T; consist of those (equivalence classes of)
measurable functions u : ID — C such that

Jully = < L (e u(z)wmyﬂ))q <o

For 0 < q < oo, the tent spaces T;° consist of those (equivalence classes of)
measurable functions u : ID — C such that

1
1 dA(Z))W
ul| e =sup | — u(z)1 < o0
Il = sop (77 iy W

For 0 < g < oo, a positive Borel measure v on ID finite on compact sets, and a
function f : ID — C, we denote A7 ,(f)(Q) = fr(g) |f(2)[7dv(z) and Acoy(f)(0) =

V-€SS SUP, (7 |f(z)], forall { € D. For 0 < p < 00,0 < g < c0 and w € D, the

tent space T,f (v, w) consists of the (v-equivalence classes of) v-measurable functions
f :ID — C such that

1 W2 (o) = 1A ()l p, < 0.

For 0 < g < oo we define

@ = swp Sy fo, VAMTEN ), ¢eD\ (o)

a€l (¢
A quasi-norm in the tent space T;°(v, w) is defined by || f ||T,;°(v,w) = [|Cqv (f) | Lo

2.3.5 Schatten classes

Let H be a separable Hilbert space. For any non-negative integer 7, the n:th singular
value of a bounded operator T : H — H is defined by

M (T) =inf {||T — R|| : rank(R) < n},
where || - || denotes the operator norm. It is clear that

IT]| = Ao(T) = A(T) = Ap(T) = --- = 0.



For 0 < p < oo, the Schatten p-class S,(H) consists of those compact operators
T : H — H whose sequence of singular values {1}, belongs to the space ¢ of p-
summable sequences. For 1 < p < oo, the Schatten p-class S,(H) is a Banach space
with respect to the norm |T|, = [[{An}5_oll¢r. Therefore all finite rank operators
belong to every S,(H), and the membership of an operator in S,(H) measures in
some sense the size of the operator. We refer to [23] and [69, Chapter 1] for more
information about S, (H).

2.4 RADEMACHER FUNCTIONS AND KHINCHINE'S INEQUALITY

The Rademacher functions are defined as ¢, (t) = sgn (sin(2"7tt)), 0 < t <1, these
functions form an orthonormal system over the interval [0, 1]. In particular the first
function is

1, 0<t< %;
(pl(t) =< —1, % <t<1;
0, t=0,4,1
Given a sequence {a,} € £2, we define the function ®(t) = ¥, a,¢,(t), 0<t<1,

which is well defined almost everywhere. These functions satisfy the following
estimate for all 0 < p < oo.

(/01 (1) dt)'la = <Z|an2> C 2.12)

n

This estimate is known as Khinchine’s inequality and was proven in [37]. For more
information on the topic of Rademacher functions and Khinchine’s inequality the
reader may check [25, Appendix 1] or [73, Chapter 5.8].
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Atomic decomposition

3.1 ATOMIC DECOMPOSITION IN STANDARD BERGMAN SPACES

The idea behind an atomic decomposition of a Banach space X is to obtain a repre-
sentation of every function in the space of the form f =), ¢,g», where the functions
gn € X are a fixed sequence which are called atoms. These atoms satisfy certain
properties and {c, } is a sequence which belongs to a certain sequence space ¢. We
will also have the norm estimate || f||x < |[{cx}||;- Obtaining an atomic decomposi-
tion for a certain Banach space X helps the study of certain properties of operators
defined on X, such as boundedness and compactness, among others. In the case of
a standard Bergman space the following theorem is known.

Theorem 3.1.1. [18] Suppose p > 0, « > —1 and

b>max(1,1) —I—DhLl.
p p

Then there exists a constant o > 0 such that for any r-lattice {ay} in the Bergman metric,
where 0 < r < ¢, the function space A} consists exactly of functions of the form

= (L a2y

fz) =) A @3.1)

where {c} € €P, the series in (3.1) converges in norm A%, and ||f|| ,» is comparable to

inf {|c||¢r : ¢ = {cx} satisfies (3.1) }.

The proof of this result was given by Coifman and Rochberg in [18] by extending
the proof of certain results given by Amar [6].

As an extension of Theorem 3.1.1, Ricci and Taibleson [63] obtained an atomic
decomposition for the mixed norm spaces AP/, but first in order to state the re-
sult we shall introduce the space of doubled indexed sequences. For 0 < p,q <
oo we define the set (P of doubled indexed sequences A such that [[A|;pg =

1N\ g
(Zj (Zk | Akl ) ’ ) < o0, and in a similar fashion we define the sets £*7, {/** and

0% by using sup | - |. We have the following inclusions between these spaces

PAC e, 0<p<r< oo,

(P CUPS, 0<q<s<co 62

We will work with these spaces of sequences with one of the indexes finite. The
following theorem from Nakamura [46, Theorem 1] describes the duals of these
spaces.
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Theorem 3.1.2. [46, Theorem 1] For any 0 < p < oo, we define p’ = % ifl <p<oo,
pP=1lifp=occand p’ = o0 if 0 < p <1. Then

sup{ Zcirjbi,j lellyq = 1} = (1Bl -
ij

The next theorem was originally proven in [63, Theorem 1.5] in the context of
IR? . Given a sequence {z;} we re-index it in the following way for each j € N U {0}
we set {z; ;} as those {z;} such that 271 <1 - |zi | < 27/, i=0,...,2/ - 1.

Theorem 3.1.3. Define the operator S on double indexed sequences by

1_1
(1— |z, )M 7

S({aij})(z) =) a A—zMm

n

where M > max {1, %} + %. Then S is bounded from (P41 to AP1 whenever {z;;} is
separated.

Some results on atomic decomposition in weighted Bergman spaces Af, were
given by Constantin [19] when the weight w belongs to the class of Békollé-Bonami
weights.

12



Operators on spaces of analytic functions

4.1 CARLESON MEASURES

Given a space X of analytic functions in ID and a positive Borel measure y on D,
we say i is a g-Carleson measure for X if the identity operator Id : X — L;’,(]D) is
bounded.

Before we dive into Carleson measures for weighted Bergman spaces with w €
D, we will state the results for Hardy and standard Bergman spaces. Recall that
there exists & = a(w, p) such that H? C Af, C AL. These inclusions tell us that the
conditions that characterize Carleson measures for Hardy spaces will be necessary
conditions for y to be a Carleson measure for Af,. In an analogous manner the
conditions that characterize Carleson measures for standard Bergman spaces A} will
be sufficient conditions (for a big enough) for y to be a Carleson measure for A,

4.1.1 Carleson measures for Hardy spaces

The characterization of g-Carleson measures in Hardy spaces is divided into two
main cases. The case 4 = p was proven by Carleson in [11], and later on was
extended by Duren [24] to the case p < g by using test functions, a covering Lemma
and the maximal operator given by M(¢)(z) = sup;; -, \1T\ Ji1e(2)1de.

Theorem 4.1.1. [24] Let 0 < p < g < oo, and y a positive Borel measure on ID. Then u
is a g-Carleson measure for HP if and only if

I
sup LW
IcT |I|¥
For the case where 0 < g < p < oo Luecking [40] uses Khinchine’s inequality
(2.12), subharmonicity, and the theory of tent spaces T{f related to Hardy spaces to
obtain the following result.

Theorem 4.1.2. [40] Let 0 < g < p < oo, and y a positive Borel measure on ID. Then u
is a q-Carleson measure for HP if and only if the function

: au(@
0y _ H 0
A‘u(el ) - /I"(eie) 1 _ |€|2/ el 6 T/

belongs to L7 (T).

4.1.2 Carleson measures for standard Bergman spaces

The first results that characterize Carleson measures on standard Bergman spaces
were given by Hastings [32] offering a description for 1 < p < g < oo, and Oleinik
and Pavlov [47] giving a characterization for 0 < p < g < oo.
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Theorem 4.1.3. [47] Let 0 < p < q < oo, and y a positive Borel measure on ID. Then the
following assertions are equivalent:

(i) w is a g-Carleson measure for Ak;

(ii)
R 1CI0)) B
2D (1—[a2)*")7

(iii) Forevery 0 <r <1
p(B(a,7))

sup ——————— < .
<D (1 [af2) >

p(Aar))

(fai2)*" 7
a g-Carleson measure for A} for any 0 < p,q < co. To prove this it suffices to
estimate the LZ(ID) norm of the normalized reproducing kernels. However it is
not a sufficient condition when 0 < g < p < oco. In this case, a characterization
of Carleson measures for standard Bergman spaces was proven by Luecking [41],
using Rademacher functions and Khinchine’s inequality (2.12), together with the
atomic decomposition of standard Bergman spaces given by Theorem 3.1.1 and the
properties of J—lattices.

The condition sup,p, < oo is a necessary condition for y to be

Theorem 4.1.4. [41] Let 0 < g < p < oo, and y a positive Borel measure on ID. Then the
following statements are equivalent:

(i) w is a g-Carleson measure for AL;

r
(ii) Forevery 0 < r < 1 the function ji,(z) = SICICZA)N belongs to Ly " (ID);

(1-|z)**

r
(iti) The function ji(z) = % belongs to Ly " (D).

Since these theorems work for the standard weights w(z) = (1 — |z|?)?%, and
w(S(z)) < w(A(z,7)) < (1—|z|?)>*%, it is reasonable to try to find a characterization
of Carleson measure for a more general w, by replacing (1 — |z|)>** with either
w(A(z,1)) or w(S(z)) in the previous theorems.

4.1.3 Carleson measures for weighted Bergman spaces

In this section we discuss Carleson measures on weighted Bergman spaces Af, with
w € D. In order to study the Carleson measures in Af, we need to define the follow-
ing Hormander-type weighted maximal function. Given a positive Borel measure y
on D and « > 0, we define the weighted maximal function

D M@
Maall)) = 500 sty *<P D

In the case « = 1, we omit it from the notation and write M1 (4) = M (u). If ¢ is
a non-negative function we write My, «(¢) as M« acting over the measure ¢pwdA.

14



Theorem 4.1.5. [51] Let 0 < p < g < coand 0 < v < oo such that py > 1. Let w € D

and p be a positive Borel measure on ID. Then [Mw(()%)]V (LE - LZ (D) is bounded if
and only if My, 4/, (1) € L. Moreover,

M (O, 1007 = M) i

The boundedness of this operator plays a big role in characterizing the Carleson
measures for the weighted Bergman space A,.

Theorem 4.1.6. [55] Let 0 < p,q < o0, w € D and u be a positive Borel measure on D.
(a) If p > q, the following conditions are equivalent:

(i) w is a g-Carleson measure for Al;

(ii) The function

_ du(g)
By(z)—/r(z) oy F€P\O)

belongs to L(’A’% (D);
(iii) Mw(p) € Lﬁ (D).
(b) u is a p-Carleson measure for AL, if and only if My, (u) € L®(ID).
(c) If g > p, the following conditions are equivalent:

(i) w is a g-Carleson measure for Al
(i)) Mug/p(1) € L(D);

(iii) z — M belongs to L*(ID) for any fixed r € (0,1).
(w(5(2)))7

There are many results about Carleson measures on Af, for other classes of
weights. We will state some of them such as the characterization of Carleson mea-
sures on weighted Bergman spaces induced by rapidly decreasing weights W de-
fined in [48], which include the family of weights

we(r) = exp ((1:17)“> , a>0. 4.2)

Theorem 4.1.7. [48, Theorem 1] Let w € VW and let y be a finite positive Borel measure
on D.

(i) Let 0 < p < q < co. Then y is a g-Carleson measure for AL, if and only if for each
sufficiently small § > 0 we have

sup L w(z)_?qdy(z) < oo.

aceD T(ﬂ) 2?“7 ./D(ﬂ,ﬁT(ﬂ))
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(ii) Let 0 < q < p < oo. Then u is a q-Carleson measure for AL, if and only if for each
sufficiently small § > 0 the function

_P_

/ ety 07 () € L7 (D),

z— %
T(z) P

Here 7: D — (0,1) is a radial function which depends on w and has the prop-
erty that it decreases to 0 as |z| — 17. For more information on the class W and the
function T we refer to [48].

There is literature on the characterization of Carleson measures for A?, when w
is a non-radial weight, like the results given by O.Constantin [21] for the Békolle
weight class. A weight w is said to belong to the Békolle class By, (1), where pg > 1
and 77 > —1 if there exists k > 0 such that

/s(a) w(z)dAy(z) (/S(u) w(z)zgqu(z)> ' <k

where dA;(z) = (1 +1)(1 — |z|)TdA(z).

=
o~

(/S(a) dA,i(z))pO, aeD, (43)

Theorem 4.1.8. [21, Theorem 3.1] Let w be a weight such that (1“’(‘2‘)) belongs to By, (1)

for some pg > 0, > —1. Consider a positive finite Borel measure y on ID and assume
g > p >0,n € IN. Then there exists a constant C > 0 such that

(1@l >)5s<:|f||AgJ @4)

if and only if y satisfies

u(D(a,a(1 - o)) < €1~ oy ( [ w@iAE) @)

(a,a(1—lal))

for some constant C' > 0 independent of a, and for some a € (0,1).

Theorem 4.1.9. [21, Theorem 3.2] Let w be a weight such that = (‘ ‘)) belongs to By, (17)

for some pg > 0, 5 > —1. Consider a positive finite Borel measure y on ID and assume
p > q > 0, n € IN. Then there exists a constant C > 0 such that

([ < cily 6)
if and only if the function

#(D(a,a(1 - [a))
P AR o @EAAG) 47

r
belongs to L, ", for some a € (0,1).
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4.1.4 Carleson measures for mixed norm spaces

Jevti¢ gives a characterization of Carleson measures for weighted mixed norm spaces
in the half-plane R%. We reindex the the family {R(I): I € Y} as {R;;},j € NU

{0}, i=0,...,2/ — 1.

Theorem 4.1.10. [35, Theorem 3.3] Let u be a positive Borel measureon D, 0 < s < p <
oo and 0 < t < g < oo. Then there exists C > 0 such that

( (Z/ z)[*du(z )é)% < C|\fllaa, (4.8)

if and only if
(1) \ "
Y. <Z#<Ri,j)§2ﬂt(p+q)> < oo, (4.9)
j i
where%:%—%and%:%—%.

Note that in the case where s = t and p = g, Jevti¢ gives a characterization of
the s-Carleson measures for AP. Luecking extended the result given by Jevti¢ by
eliminating the restriction over the coefficients and by adding a continuous charac-
terization.

Theorem 4.1.11. [41, Theorem 2] Let 0 < p,q,s < co and u be a positive Borel measure
on ID. Then the following statements are equivalent:

(i) There exists C > 0 such that ||| < C||f|| apa for all f € APA;
1,1 / /
(it) The sequence {y(Rl])Zs]("JWU)} belongs to e(5).(1).

(iii) Forall 0 < r < 1 the function k, belongs to L(?)',(Z)', where

%, s <min{p,q};
ke(z) = % g<s<p;
%, max{p,q} <s.

In the proof of this theorem, Luecking uses Theorem 3.1.3 given by Ricci and
Taibleson [63], Rademacher functions and Khinchine’s inequality (2.12), and an
equivalent norm for the functions in AP/,

4.2 AREA OPERATORS

4.2.1 Area operators in Hardy spaces

As Ahern and Bruna showed in [1], a function f € HP if and only if for a given
a>0
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/7r (/r(e,g)(l — )% |D*(2)|? (161‘_4(@))2) : o < oo, (4.10)

where D*f is the radial fractional derivative of order a. In the paper [15] Cohn
extracted the following area operator

ApEn = [, @I @

and characterized its boundedness from H? to L”(T) in terms of the measure .

Theorem 4.2.1. [15, Theorem 1] Let 0 < p < oo and y a positive Borel measure on ID.
Then Ay, is bounded from HY to LV (T) if and only if y is a p-Carleson measure for HP.

In a later work Gong, Lou, and Wu characterized in [31] the boundedness of A,
from HP to L7(T) with the following results.

Theorem 4.2.2. [31, Theorem 3.1] Let 0 < p < q < oo and y a non- negative measure
on D. Then A, is bounded from HP to L9(T) if and only if p is a ( + v 7> -Carleson

measure for H'.

In order to prove this result, they use the equivalent norm given in (2.5), the test

~1=1a)"  the boundedness of the Riesz projection from L7(T) to

(lfﬁz)nﬁﬁ
H7 when g > 1 and Calderon-Zygmund decompositions among other techniques.

functions f,(z) =

Theorem 4.2.3. [31, Theorem 3.2] Let 1 < q < p < co and y a non- negative measure
on ID. Then A, is bounded from HP to L1(T) if and only if ji({ fr for eT

belongs to L¥ (T).

1 \ZI

For this result they relied again on the equivalent norm (2.5), the characteriza-
tion of Carleson measures in Hardy spaces described in Theorem 4.1.2 and some
estimates involving the non-tangential maximal operator N.

4.2.2 Area operators in standard Bergman spaces

Given a non-negative Borel measure y on D and 7 > 0, the area operator A} on the
Bergman space A}, is defined as

A= [ 1@ e,

where the non-tangential regions I't({) as defined by Wu in [65] are
I((Q)={zeD:|z-|<1+1)(1—1z|)}, CeT.
He characterized the boundedness of the area operator A}, in terms of the growth

HAz)
Az !

of the a-density function p,(u)(z,t) =
|w[?)*dA(w).

where |A(z,t)|y = fA(Zt
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Theorem 4.2.4. [65, Theorem 1] Supposex > —1,0 < p < g<ooand 0 < p < 1. Fora
non-negative Borel measure y on ID the following statements are equivalent:

(i) A%, is bounded from Al to L1(T);
(ii) There exists T > 0 such that Aj, is bounded from AL to L(T);
(iii) There exists & > O such that the a-density function p,(u) satisfies
1 1
pul)(2,0) £ (1= ) PO,z e,
(iv) For any fixed t > 0 the a-density function p,(p) satisfies

(1) (z,t) S (1= [2)@DGVH- 2 e,

In this proof, Wu groups the conditions (i) with (ii) and (iii) with (iv). In one di-
(1—|al™)
(1_Ez)m+“}—+,2 4

in the A? norm and essentially constant in A(a,r), and the boundedness of AIZ

rection he used the test functions f,(z) = which are uniformly bounded

from AL to L1(T), to obtain the growth estimate on p,(y). For the reverse impli-
cation he uses a suitable J-lattice on ID, the subharmonicity of the functions in AP
together with some geometric arguments and the conditions on p and 4.

Theorem 4.2.5. [65, Theorem 2] Suppose &« > —1and 1 < p < g < oco. For a non-
negative Borel measure y on ID the following statements are equivalent:

(i) A%, is bounded from A} to L1(T);
(ii) There exists T > 0 such that Aj, is bounded from Al to LI(T);

(iii) There exists 6 > 0 such that the a-density function p,(p)(z,0) satisfies that the

measure »
-1

0a(p)(2,6)P1dAy(2)

is a s ((Zj; -Carleson measure for H';

(iv) For any fixed t > 0 the a-density function p,(p)(z,t) satisfies that the measure

P

Pa(p)(z, 1) 71 dAu(2)

is a 21 _Carleson measure for H'.
q(p—1)
Here, in order to prove this theorem, Wu uses the duality of L7(T) and ¢7 when
g > 1, a characterization of Carleson measures for Hardy spaces, together with
Rademacher functions and Khinchine’s inequality (2.12), é-lattices and their proper-
ties and the test functions given by an atomic decomposition like the one given in
(3.1), among other tools.

Theorem 4.2.6. [65, Theorem 3] Suppose & > —1land 1 < q < p < oo. For a non-
negative Borel measure y on ID the following are equivalent:
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(i) .A%, is bounded from A} to L1(T);
(ii) There exists T > 0 such that Aj, is bounded from AL to LI(T);

(iii) There exists 6, T > 0 such that the a-density function p, (yt)(z, 8) satisfies the property

L a7 A ¢ 1 o
Sy ) (20)) 7 T2 2 € L ()

(iv) For any fixed t, T > O the a-density function p, (1) (z,t) satisfies the property

5 dAy(z) q(;:ql)
oy ) )77 G2 € L),

To prove this Theorem Wu uses the duality of L7, Khinchine’s inequality (2.12),
the properties of J-lattices and the Poisson integral.

Theorem 4.2.7. [65, Theorem 4] Suppose & > —1,q < p < 00,0 < q < 1, y a non-
negative Borel measure on ID. Then Ay, is bounded from AY to L(T) if and only if for any
fixed T > 0, 0-lattice {z;} in D, any {a;} € (P, the a-density function p, () satisfies

q
o zi, 6
A( Y PW“1>HJ|%w|ww%

a2 (1_
jzete@)  (1—|z)@0!

In order to prove the Theorem Wu uses the test functions F;(z) = Y a;rj(t) ———5
(1—27-2) P
which satisfy the estimate ||F¢|| ,» < [[{a;}[¢», together with a generalization of Khin-
chine’s inequality given by Kalton [36] and the properties of J-lattices.

4.3 PROJECTIONS AND REPRODUCING KERNELS

4.3.1 Projections on standard Bergman spaces

For each a € ID, we define the point evaluation functionals

L. : AP = C,
ff(a),

which is bounded for each a € ID. Focusing on the case p = 2, A2 is a Hilbert space
with the scalar product

(f.8) = [ F@8EdA(R).

Since L, is a bounded and linear functional, due to Riesz representation theorem [64,
Theorem 4.12, pag.80], there exists K¥ € A2 such that

£la) = L() = (£, K8) g = [ F@KE@AA=), feA aeD. @1

The family of analytic functions {K%} ,cpp is called the reproducing kernel of A2. The
reproducing kernel K4 has an explicit formula, which can be obtained as follows.
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Theorem 4.3.1. [69, Theorem 4.19] Let {e, }5_, an ortonormal basis of A2, then
0 —
=Y ei(@en(z), zCeD. (4.13)

Next, we take a a concrete basis of A2. For each n € N U {0}, the canonical basis
is given by
Z?’l
en(z) = , zeD.

(2a+1) fy 241(1 - 2)%ds)

N—=

So, by Theorem 4.3.1,
[ee] gnzn

K& (&) =
26) = ,;)2 a+1) f r2n+1(1 )”‘dr

z,& e D. (4.14)

Then by using some properties of the Gamma function
e
I'(x) = / Flemtdr, x>0,
0
we can rewrite the reproducing kernel K7 in the following way.

Corollary 4.3.2. [69, Corollary 4.20] For a > —1 the reproducing kernel of A2 is given by

a S Tla+n+2) . 1
K3 (%) = n;o T(a+2)T(n+ 1) (¢z2)" = (1 —zg)et2’

z,¢ € D.

This together with (4.12) allows us to write the following reproducing formula.

Theorem 4.3.3. [69, Proposition 4.23] Let « > —1, then

fla) = /D OJC‘(ZZ))ZMdAa(Z), feAl,aeb.

Since A2 is a closed subspace of L2(ID), there exists an orthogonal projection
from L2(ID) to A2, which we shall denote by P,. Since P, is an orthogonal projection
it satisfies P2 = P, and it is self-adjoint

(P().8)12m) = 4 P(&)) 120
If ¢ € L2(ID) then P,(¢) € A2, and the following formula holds
Pu(9)(2) = (Pu(9), K2) 12 ) = (9, Pu(K)) 2
= (@K ) = [ 9OKEDAE)

If ¢ € LL(ID) for p > 2 the previous formula is also true since L} (D) C L2(ID). The
projection P, also makes sense for ¢ € L} (ID) since for z € D we have
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o) ) gl
o 0| < g 01400 = e 2eD

Next we are going to characterize the boundedness of the projection P, on the
corresponding Lp (D) spaces, alongside with analogous result for the maximal pro-

jection P.f (¢ = Ip ‘1 5z\2+7
Rudin proved in [28] the case &« = 0.

dA+(¢), which is a sublinear operator. Forelli and

Theorem 4.3.4. [69, Theorem 4.24] Let v,a > —1 and 1 < p < oo. Then the following
statements are equivalent:

(a) Py : LE(ID) — AL is bounded;
(b) Py : Lk(D) — LY(ID) is bounded;
@ ply+1)>a+1

Now that we have studied the boundedness of the Bergman projection, we will
use this to identify <A§> , the dual of AF, with Ail, fora > —land 1 < p < oo.

Theorem 4.3.5. [69, Theorem 4.25] Let 1 < p < oo, and & > —1. Then the following
statements are true:

(i) Every g € Agl defines a functional Ty € (A§>* as follows

/f 2(2)dAx(2),

with | Ty < g,

(ii) For every T € (Ai) *, there exists g € Ail such that

T(f / F(2)3(@)dAq(2), (4.15)
with ||g||Apr < C||T||, where C = C(p) is a constant.

For more information on the boundedness of Bergman projection P, the reader
may check [26,57,69].
4.3.2 Toeplitz operator and Berezin transform in standard Bergman spaces

Some of the early results with respect to Toeplitz operators were introduced by
McDonald and Sundberb [44] and Coburn [14]. Given f > —1 and a positive Borel

measure y on ID, define the Toeplitz operator Tﬁ as follows:

1) = [ - g dn(w) = [, f)K ) dp(w), = € D.

Pau and Zhao [49] characterized the boundedness of the Toeplitz operator in C"
from AZ} to Ag;. The following result is mostly due to Luecking ( [39] and [41]) for
the case « = 0.
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Theorem 4.3.6. [49, Theorem B] Let « > —1,0 < g < p < oo and y be a positive Borel
measure on ID. Then the following statements are equivalent:

(i) w is a g—Carleson measure for Ak;

(ii) The function

- Az, r
r(z) = (1V—(|Z(|2)(;L‘)’ zeD,

is in LZ/(pfq) (D) for any (some) fixed r € (0,1);

(iii) For any r-lattice {ay} and Dy = A(ay,r), the sequence

_ #(Dx)
{i} { (1- |ak|2)(2+“)% }

belongs to £/ (P=9) for any (some) fixed r € (0,1);

P
(iv) For any s > 0, the Berezin-type transform Bs () belongs to Ly " (ID).

Furthermore, with A = q/p, one has

- - - — 114119
HWHL;%‘?(D) = |{wil gpr -9 =< HBs,oc(V)HLﬁ o Hld||(A§,LZ(D))'

Here, for a positive measure j, the Berezin-type transform Bs o (1) is

. o 2\s
Boa(p)(e) = [ 1)

Dmdﬂ(ﬂ)), z e D.

For more information on the Berezin transform we refer to the book [33]. For addi-
tional information with respect to the Toeplitz operator, see [69].

4.3.3 Projection on weighted Bergman spaces

From now on, we assume that the norm convergence in the Bergman space A2
implies the uniform convergence on compact subsets, then the point evaluations L,
(at the point z € D) are bounded linear functionals on AZ. Therefore, there are
reproducing kernels BY € A2, with ||L;| = ||BY|| a2, such that

Lif = f(2) = (f,B) . = [ fQOBEQ@(@dAQ), ferd  @16)

In a similar fashion as in (4.13) for any orthonormal basis of A2,
BY(0) = ) en(Q)en(z), 2z €D.
n=0

When w is radial, we can use the standard orthonormal basis {zf /A /2w2j+1}, j€
IN U {0}, of A2 to obtain the following formula for the Bergman reproducing kernels

2wWop 41

BY(¢) = i (62)" , z,{eD. 4.17)
n=0
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Even if w is a radial weight, the reproducing kernels B, z € ID, do not neces-
sarily have the good properties that the standard reproducing kernels Bf have. The
fact that it is not always possible to obtain a closed formula for the reproducing ker-
nel BY makes it harder to know relevant information about the kernel such as; its
behaviour in pseudohyperbolic bounded regions, the existence of zeros or a norm
estimate. One of the main issues with these reproducing kernels BY’ is the existence
of zeros, which can appear even in radial weights with apparently good properties
as Zeytuncu [67] and Peréld [62] proved.

Theorem 4.3.7. [67, Theorem 1.5] There exists a radial weight w on ID, comparable to 1,
such that the reproducing kernel B has zeros.

Since A2, is a closed subspace of L2,(ID), we may consider the orthogonal Bergman
projection P,, from L2, to A2,. This projection is usually called the Bergman projec-
tion and it is given by the following formula

Po(f)(2) = [ fOBFQ)w(2)dAQ), z€D. (@18)

The maximal Bergman projection is the following sublinear operator

PENE) = [ IFQBL @] w(@)IAR), zeD.

Theorem 4.3.8. [58, Theorem 12] Let 1 < p < co and w € R. Then the following
statements are true:

(i) P} :LE (D) — L,(D) is bounded. In particular, P, : LE,(D) — Al is bounded.
(ii) Py : L*®(ID) — B is bounded.

The first part of this theorem is a direct consequence of [57, Theorem 3]. The
L}, (D) norm estimates of the Bergman reproducing kernels were obtained using
estimates on the moments w; by Peldez and Rattya.

Theorem 4.3.9. [57, Theorem 1] Let 0 < p < o0, w € Dand N € NU {0}. Then the
following assertions hold:

/\ﬂlr dt
Jo @(t)P(1—t)pIN+D’

(i) Mb (r,(B‘;’)(N)) = rla) — 1.

(i) If v € D, then

o 0
w\(N) P

dt, |a] —>1".

When P, is bounded on L, we can use it to obtain the dual of A, hence under
the same conditions as in Theorem 4.3.8 Peldez and Rattya obtained the following
result.

Corollary 4.3.10. [57, Corollary 2] Let 1 < p < oo and w € R. Then the following
equivalences hold under the A2, pairing: (AL)* ~ AL, and (AL)* ~ B.
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Summary of papers I-1ll

5.1 SUMMARY OF PAPER I

In this paper we characterize the embedding Al, C T{(v,w) in terms of Carleson
measures for Af,. This result can be interpreted as an additional characterization
of Carleson measures for the space Af,. We add the technical condition v({0}) = 0
because the tents I'(z) are not defined for z = 0, this condition does not carry any
real restriction.

Theorem 5.1.1. Let 0 < p,q,s < oo such that 1+ % — % >0, w € D and let v be

positive Borel measure on D, finite on compact sets, such that v({0}) = 0. Write v, ({) =
w(T(g))dv(Q) forall L € D\ {0}. Then the following assertions hold:

(i) I : A, = Td(v,w) is bounded if and only if vy, is a (p + s — %)—Carleson measure

for A(’f,. Moreover,

s - pts—
1l 790y = 11 HA 2

prs=17

(i) I : Af, — Td(v,w) is compact if and only if I : Af, — L,,, g (D) is compact.

We can generalize this theorem by extracting the following area operator and
studying its boundedness. For 0 < s < co, the generalized area operator induced by
positive measures i and v on D is defined by

Gt = ([ IFOFTEs ) =em\ (o

Minkowski’s inequality shows that G,  is sublinear if s > 1. This is not the case for
B} S B}
0 < s < 1, but instead we have ( ns(f +g)) < (G;s(f)> + (Gﬁls(g)) . Write u%

for the positive measure such that

aue (z) = T3 d(2)

[

for y-almost every z € ID. Fubini’s theorem shows that

IG5 Nlisio = [, ([ FOF TR ) @At
= Jo U O il ) 0 24

o1 )
B D\ {0} |f(€)‘ <W(T(§)) /T(g) w(z) dA(Z)) dyy (C)
FOF S Q) = 115 o)~ F O (0D

(5.1)

~ Jo\()
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and hence G : Al, — L$,(ID) is bounded if and only if #& is an s-Carleson measure

for A,. In order to study this operator the equivalent norm given by (2.9) will play
an important role.

Theorem 5.1.2. Let 0 < p,q,s < oo such that s > q — p, w € D and let p, v be positive
Borel measures on D such that y ({z € D :0(T(z)) =0}) = 0 = u({0}). Then the
following assertions hold:
ps
(i) u& is a q-Carleson measure for AY, if and only if G : Al — LEPT1(ID) is bounded.
Moreover,
H Gy S HS ps
Al —LhT

Ak .
=1 (D) Hd“AZﬁLZg(]D)

ps

(ii) 1;: A, — LZ%, (ID) is compact if and only if Gy ; : — LL™7(ID) is compact.

In order to prove the previous theorems we need to estimate the norm of the
identity operator Id : Al, — LZ(]D). The equivalence between the conditions of the
following theorem was proven by Peldez and Réttyd in [55, Theorem 1].

Theorem 5.1.3. Let 0 < p,qg < o0, w € D and let u be a positive Borel measure on D.
Further, let dh(z) = dA(z) /(1 — |z|*)? denote the hyperbolic measure.

HEW) o,
w(5(@)?

(i) If p < q, then  is a g-Carleson measure for A%, if and only if sup
Moreover,

p(S(a))

X sup ——.

||Id||qp q
AT aeb co(s(a)) 7

(ii) If p < q, then 1 : Af, — L;’; (D) is compact if and only if

im _M5@)
Jim_ (5@ 0. (52)

(iii) If g < p, then the following conditions are equivalent:
(@) I;: AV, — LZ(]D) is compact;
(b) I : A, — LZ(]D) is bounded;
(c) The function

Bi() = [ e e\,

.
belongs to L), " (ID);
(d) For each fixed r € (0,1), the function

@) =0t = [ EEEDang), o)

r
belongs to L[, " (D);
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(e) For each sufficiently large A = A(w) > 1, the function

w _ gw _ 1_|€‘ A d“l/l(C)
wie =1 - [, (7=2) atey <P

P
belongs to L, " (D).
Moreover,

q - - w
Il gy = Ml o < B e, ({0 .

= ||®Y »  +u{0}).
by = 191, (0D

=k 47 (Y
Ly (D)

To prove the compactness of these operators, we use the following lemma, the
proof of which can be obtained by adapting the proof in [25, Lemma 1 p. 21]

Lemma 5.1.4. Let v be a positive Borel measure on 1D and 0 < p < oo. If {@n}5>, C

L)(ID) and ¢ € L)(ID) satisfy limy e ||canL5(]D) = ||go\|L5<]D) and limy e @u(z) =
@(z) v-a.e. on D, then limy, 0 || @y — QDHLL’(]D) =0.

We can use Theorem 5.1.2 to study the boundedness of other operators such

as the following integral operators, also called Volterra type operators. Given g €
H(ID) we define the integral operator

(e = [ §@F@)a, zeD,

acting on H(ID). Some results of this operator in the context of Hardy spaces are
due to Aleman and Cima [2] and Aleman and Siskakis [3], while in the context of
Bergman spaces we find the results given by Aleman and Siskakis in [4]. This type
of integral operators have been extensively studied during recent decades and have
interesting connections with other areas of mathematical analysis, see [51,54] and
the references therein.

Theorem 5.1.5. Let 0 < p,q < oo such that q > 22+—Pp and w € D. Let g € H(DD) and
denote dug(z) = |g'(z)|?w*(z) dA(z). Then Ty : Al, — Al, is bounded (resp. compact) if
22
and only if I : AY, — LZ: " (D) is bounded (resp. compact).
This result is a direct consequence of Theorem 5.1.2 with v = wdA, y = pg, and

s = 2 together with the equivalent norm given in (2.10).

5.2 SUMMARY OF PAPER Il

In this paper we work with weights w which belong to either R or D. The Bergman
projection P, is given by

Pu()@) = [ FOBEQw()dAQ), zeD,

where BY are the reproducing kernels stated in (4.17). Recently, those regular
weights w and v for which P, : L}(ID) — L!(ID) is bounded were characterized
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in terms of Bekollé-Bonami type conditions [57]. In this paper we consider opera-
tors which are natural extensions of the projection P,,. For a positive Borel measure
i on D, the Toeplitz operator associated with y is

Tu(F)@) = [ FOBQ) du(0).

If dy = ®wdA for a non-negative function @, then write 7, = 7T so that To(f) =
Py, (f®). The operator T has been extensively studied since the seventies [14,44,68].
Luecking was probably the one who introduced Toeplitz operators 7, with measures
as symbols in [39], where he provides, among other things, a description of Schatten
class Toeplitz operators T, : A2 — A% in terms of an (P-condition involving a
hyperbolic lattice of ID.

Before presenting our main results we will need some additional results on the
reproducing kernels By, apart from those given in Theorem 4.3.9. First we will
estimate the norm in the Bloch space and H®.

Lemma 5.2.1. Let w € D. Then

1

BY|lg x ———— =< ||B¥||ge, e D.
18218 = gy = 1B, 2

Here the Bloch norm is given by ||f||z = |f(0)| 4+ sup,.p(1 — |z])|f'(z)|. Addi-
tionally to prove the main result of this section we will need the following pointwise
estimates of the reproducing Bergman kernels By in certain sets induced by a point
aeD.

Lemma 5.2.2. Let w € D. Then there exists r = r(w) € (0,1) such that |BY (z)| < B¥(a)
foralla € Dand z € A(a,r).

In this first result we used the definition of BY in terms of a basis and the norm
estimates || B | 42, from Theorem 4.3.9.

Lemma 5.2.3. Let w € D. Then there exists constants ¢ = c(w) > 0 and § = 6(w) €
(0,1] such that

|BY (z)| > z € 5(as), ae€D\{0}. (54)

_°
w(S(a))’
To prove this result we use estimates of the derivative of BY, the fact that By (a5) =

B‘:’/w(\/ |aas|) and Lemma E.

These pointwise estimates will allow us to avoid some of the issues of weighted
reproducing Bergman kernels B such as the possible existence of zeros in ID.

Theorem 5.2.4. Let 1 < p < q < oo, w € R and y be a positive Borel measure on ID.
Then the following statements are equivalent:

(i) Ty : AL, — Al is bounded;

Ty
w(S(+))

(ii L e1~(D);

<l —~
=

(iii) pisa %—Carleson measure for A3, for some (equivalently for all) 0 < s < oo;
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(i) —8Y) e 1~(D)
w(s()" 7
Moreover,
1'7\1() s(p +"7’)
ITallagont, = |— 22| =l ™, e
w(SE)T T ooy AL, " ) (@S ey

In order to prove this result we use the norm estimates given in Theorem 4.3.9,

the pointwise estimate Lemma 3 and the duality of the space A/, given in Corollary
4.3.10.

Theorem 5.2.5. Let 1 < p < q < oo, w € R and y be a positive Borel measure on ID.
Then the following statements are equivalent:

(i) Tu: AP — AT s compact;
(ii) Ly, —2& =
w(S(z)"

s(p+q)
(i) 1d : A3, — L, " (D) is compact for some (equivalently for all) 0 < s < oo;

(iv) Timyy_ —E0 - =0,

To prove this result we proceed in a similar fashion as in Theorem 11, together
with common techniques usually employed to study the compactness of concrete

operators, and the weak convergence of — 0in A, as |z| = 17,

BZ
1B 4
Proposition 5.2.6. Let 1 < p < o0, w € R and {z]-}]?’i1 C D\ {0} be a separated

sequence. Then
w

c e A 55
ZWWMP 5

with |||y S I{ej}2 o for all {cj}2y € 0.
For us to prove the reverse case when 1 < g < p < co, we will need the test

functions F given by the result above, which is obtained using Theorem 4.3.10, the
reproducing formula for B;‘]’, and the subharmonicity of these functions.

Theorem 5.2.7. Let1 < g < p < 00,0 <r <1, w € R and y be a positive Borel measure
on ID. Then the following statements are equivalent:

i) Ty: AP — AT s compact;

(i) Ty : Ab, — Al, is bounded;

Pq

(i) fir(-) = R € L) 7(D);

(iv) pisa (p +1-— %)—Carleson measure for AL
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14
q

(0) 1d: Al — L,

Pq

(vi) 774 L7 (D).

Moreover,

(D) is compact;

p ~
1Tl = Nl w1 | Tull o
A Ae T P ) a7 %Z SRR

The tools used to prove this result, are the characterization of Carleson mea-
sures for A!, given by Theorem 4.1.6, the test functions given by Proposition 3,
Rademacher functions and Khinchine’s inequality and the boundedness of the sub-
linear operator P given by Theorem 4.3.8.

Theorem 5.2.8. Let 0 < p < 00, w € D and y be a positive Borel measure on D. Then the
following statements are equivalent:

(i) T € Sp(A2);

.. R)\P
(ii) LRjeY (%) < oo;

(iii) ”( )) belongs to LP ((1 ||2)f01’507’}’l€0<1’<1

Moreover, if w € R such that (( (I )‘)): is also a regular weight, then T, € Sp(A2) if and
only if T, € L7, (D).

w/w*
This final result is an extension of [56, Theorem 1], with the additional character-
ization in terms of the Berezin transform when w € R. The condition ‘"2 ¢ R is

(1-1z2))?
not a restriction when p > 1, and equates to the condition p > H% from [69, Corol-
lary 7.17] when working with the standard Bergman weights.

5.3 SUMMARY OF PAPER lIII

In this article we give an atomic decomposition of the weighted mixed norm spaces
Al with w in the doubling class D. As we saw in Proposition 3, all the functions
given by a series as in (5.5) belong to the space Al,, but in order to get an atomic
decomposition for A, we need the reverse implication, that every function in A7,
could be expressed as in (5.5). This first theorem proves an analogue to Proposition
3, for the more general spaces Al with different atoms.

Theorem 5.3.1. Let 0 < p < 00,0 < g < oo, w € D, and {z;}{2, a separated sequence
inD. Let B = B(w) > 0and v = y(w) > 0 be those of Lemma E(ii) and (iii). If

M>14 L4 Bt (5.6)
pq

and A = {A;} € £, then

€ H(D) (5.7)

30



and there exists a constant C = C(M, w, p,q) > 0 such that
IElLgps < ClIAlpa- 58)

To prove this result we use the properties of the weights in D given in Lemma E
and Lemma 8.7, together with the results of Muckenhoupt in [45]. The next theorem
proves the reverse of the previous result, that is it is proved that every function in
AP can be expressed as a series of the form (5.7). In order to prove this result we
shall introduce the appropriate dyadic polar rectangles induced by K € IN '\ {1},
K>1.

For each K € N\ {1},j € NU{0} and I = 0,1,...,K/I*3 — 1, the dyadic polar
rectangle is defined as

Qi = {z €D:r < |z| < rjy1,arg z € ZHIJ%,ZNZIJJF;) },
where r; = r;(K) = 1— K~/ as before, and its center is denoted by j- For each
Me Nand k = 1,..., M?, the rectangle Q;-" ; is defined as the result of dividing
Qj into M? pairwise disjoint rectangles of equal Euclidean area, and the centres of
these squares are denoted by é;‘, ;- It is worth noticing that the cubes Q;; and Q}‘/ ) as
well as their centres @;‘, ; depend on the value of K.

Theorem 5.3.2. Let 0 < p < 00,0 < g < 00, w € D and K € N\ {1} such that
(8.1) holds. Then, for each f € AL there exists A(f) = {A(f);‘l} € P9 and M =

M(p,q,w) > 0 such that

EY.

1- |25 2M ()
ﬂm=2Amﬁ( G0 ret)

(-

z €D, (5.9)

and

[k, S 1 aza- (5.10)
To prove Theorem 18 some definitions and lemmas are needed. For f € H (D),
i 1
define f;; = SUP.cq;, |f(z)| and write A(f) = {A(f);1}, where A(f);; = K 7 &(r})7 f;)
forallj € NU{0}and!=0,1,...,Ki*3 -1,

Lemma 5.3.3. Let 0 < p,g < 00, w € D and K € N\ {1} such that (8.1) holds. Then
£l gpa = (IA(f)llepa for all f € H(D).

This equivalent norm plays a key role in the proof of Theorem 18 as it gives us a
discretization of the AF}T-norm.

A

Lemma 5.3.4. Let 0 < p < 00,0 < g < 0o and w € D, and let p = p(w) > 0 be that of
Lemma E(ii). Then Al}7 C A% forally > g + % -1

In order to demonstrate Theorem 18, this lemma allows us to represent each

fe Al as P, (f) which help us to estimate |f — S, (f)| = |P,(f) — Sy(f)|, where
(1= 1g5, 1)
Sy(f)z) = +1) Zf(é;cl)%,ﬁz ‘ fz‘ .
o )
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By dividing the dyadic squares Q;; in sufficiently small pieces, we can obtain
[1d — Sy AP ar1 S 3. Furthermore, we define the sequence f; = S,(f) and

fu =5y ( f-xnt fm) forn € N\ {1} and from the estimate

[

1
< i 1f Lz
Abf

we reach the equality f =Y > ; fu.

(5.11)

Finally we will characterize the Carleson measures for the spaces Al), together
with the boundedness of the differentiation operator D) : Al — L;,(ID) defined

by D (f) = f("). We introduce the function

_ ke
Tsl®) = @ e P

where0<r<land 0 < u,v < 0.

Theorem 5.3.5. Let 0 < p,q,s < oo,n € NU{0}, 0 < r < 1, u a positive Borel measure
on D, w € D and let K = K(w) € IN\ {1} such that (8.1) holds. Then the following

statements are equivalent:

(i) DWW : ALT — LS (D) is bounded;

(i) The sequence {y(Qj,l)Ksj(”Jr;lﬂ)c’&(rj);} belongs to 6(5)/'(2)/;
jl

(iii) The function T, belongs to L&g),'(g)/ (D), where
(@) u=sn+1landv=1ifs <min{p,q};
(b) u:sn—i—%andvzlifp§5<q;
(c) u:sn+1andv:%ifq§s<p;
(d) u=sn+ % and v = ; if s > max{p,q}.

Moreover,

ID!]

i Jrl Y _5s
oy = | {12 Paw i = T
]

(5D) {9

) (D)

In order to prove this theorem we use Theorem 5.3.1, Rademacher functions and
Khinchine’s inequality (2.12) and the equivalent norm given by Theorem 5.3.3.
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Paper |

6.1 INTRODUCTION AND MAIN RESULTS

The theory of tent spaces introduced by Coifman, Meyer and Stein [17], and further
studied by Cohn and Verbitsky [16] among others, shows the importance of maximal
and square area functions and other objects from harmonic analysis [27] in the study
of Hardy spaces in the unit disc D = {z : |z| < 1} [25,30]. The recent studies [54,55]
show that tent spaces have natural analogues for Bergman spaces, and they may play
a role in the theory of weighted Bergman spaces similar to that of the original tent
spaces in the Hardy space case. The tent space T¢ (v, w) consists of v-equivalence
classes of v-measurable functions f : ID — C such that

(/r(g) |f(Z)|sd1/(z)) 5 w(0)dA(l) <o, 0<g,s< co.

Here v is assumed to be a positive Borel measure on D, finite on compact sets,
and w € D, that is, w is radial and &(r) = [ rl w(s) ds has the doubling property
supg.,.q @(r)/@(HL) < oo. Moreover,

F(z)—{CED:|9—arg(§)|<§(1—'5')}, z—ré? e D\ {0},

are non-tangential approach regions with vertexes inside the disc, and the related
tents are defined by T({) = {z€D:{ €TI(z)} forall { € D\ {0}. We also set
w(T(0)) = lim,_,o+ w(T(r)) to deal with the origin.

The purpose of this paper is three fold. First, we are interested in the question of

when the weighted Bergman space Af,, consisting of analytic functions in the unit
disc ID such that

11y = / [f(2)[fw(z)dA(z) <o, 0 <p <eo

is continuously or compactly embedded into the tent space Td(v,w). Analogous
problems for Hardy and Hardy-Sobolev spaces have been considered in [12,15,31].
It turns out that the containment A, C Td(v,w) is naturally described in terms of
Carleson measures for Al,. For 0 < p,q < oo, a positive Borel measure y on D is a g-
Carleson measure for A}, if there exists a constant C > 0 such that || f|| 0 <C||fl AP,

forall f € Al

110y = APy = [

D

Theorem 1. Let 0 < p,q,s < co such that 1+ % — % > 0, w € D and v a positive Borel

measure on D, finite on compact sets, such that v({0}) = 0. Write v, ({) = w(T({)) dv({)
for all ¢ € ID. Then the following assertions hold:

(i) I : A, = Td(v,w) is bounded if and only if vy, is a (p + s — %)—Carleson measure

for A(’Z,. Moreover,
pts—
||IdHAP_>Tfivw) - HIdH ps -
Al L 1
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s P8
(ii) 1;: AY, — Tl (v, w) is compact if and only if I; : AL, — wa s compact.

The requirement v({0}) = 0, which does not carry any real restriction, is a
technical hypotheses caused by the geometry of the tents I'(z).

Theorem 1 can be interpret as a characterization of Carleson measures. This
is the second aim of our study and becomes more apparent when an operator is
extracted from Theorem 1. For 0 < s < oo, the generalized area operator induced by
positive measures y and v on D is defined by

GiatN@) = ([ IFOFTres ) =ep\ ok

Minkowski’s inequality shows that GY, is sublinear if s > 1. This not the case

WS
for 0 < s < 1, but instead we have ( y/s(f+g))s < (Gﬁs(f)) (Gﬁs(g))s
Anyway, we say that G;; : Al, — LI, is bounded if there exists C > 0 such that
|G (f) ||sz < C||fl av forall f e Al Write u& for the positive measure such that

wy _ w(T(z))
d [ (Z) - U(T(Z)) dﬂ(z>

for yu-almost every z € ID. Fubini’s theorem shows that
4 S _ S dﬂ(é)
IG5:Nli = [ ([ V@ s ) oz dAG)

)
a / </r< d?%((g)
1

@))) w(z)dA(z)

IF(OF dud (Q) = Hf||i;vw LA ue ({0}),

6.1)

~ Jovoy

and hence Gy : Al — L, is bounded if and only if 4 is an s-Carleson measure
for Af,. For any s > 0, we say that Gps : Al — LZ is compact if for every bounded

sequence {f,} in Al there exists a subsequence {f,, } such that Gj,s(fn,) converges
in L7(p).

The next theorem gives a characterization of Carleson measures for Bergman
spaces by using the generalized area operator G, . Theorem 1 is a special case of
this result, see also Theorem 4 in Section 6.3.

Theorem 2. Let 0 < p,q,s < oo such thats > q—p, w € D and let u, v be positive Borel
measures on ID such that y ({z € D : v(T(z)) =0}) = 0 = u({0}). Then the following
assertions hold:
ps
(i) u& is a g-Carleson measure for AL, if and only if Gls Al — LEP is bounded.
Moreover,

v S
Gkl iy = Wl
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ps
(ii) 1;: A, — LZ“’ is compact if and only if G : AL, — LE™T is compact.

The third motivation of this study comes from the equivalent Af,-norm involving
square functions, given by

I, = [ (/r@ D) (1-

Here 0 < a,p < oo, w is a radial weight, D*f denotes the fractional derivative of
order a and [«] is the integer such that [¢] < & < [a] + 1 [54, Theorem 4.2]. This
comparability shows that the operator

z

2a-2 5 4] -1
@) dA(z)) )+ 2 |f

z

. 20—2 %
Fa(f)(€)=<./r@D"‘f(Z)|2 (1-|3) dA(z)) , CeD\ {0}

is bounded from A’ to L, for each « > 0. This is no longer true when & = 0,
and therefore the definition of G ; is also motivated by the study of this limit case.
This was the starting point in the study by Cohn on the area operator G,(f)(z) =

fr(z If(C d” g) defined for z on the boundary T of D, acting from the Hardy

space HT” to LP(T) [15, Theorem 1]. The approach by Cohn relies on ideas by John
and Nirenberg [30, Theorem 2.1] and Calderon-Zygmund decompositions. More
recently, similar ideas together the classical factorization of Hardy spaces HP =
HP - HP2, p~ ! = pl_l + pz_l, were used in [31] to study the case G, : H? — L1(T).
We do not employ these techniques in the proof of Theorem 2 but instead we use a
description of the boundedness of a weighted maximal function of Hérmander-type.
To give the precise statement we need to introduce some notation. The Carleson
square S(I) based on an interval I C T is the set S(I) = {re e D: e € I,1—|I| <
r < 1}, where |E| denotes the Lebesgue measure of E C T. We associate to each
a € D\ {0} the interval I, = {¢ : |arg(ae~"%)| < 1%‘“'}, and denote S(a) = S(I,).
For a positive Borel measure # on ID and a > 0, define the weighted maximal
function

e M@
MoallE) = 0 sy P

In the case &« = 1 simply write M, (u), and if y is of the form ¢w dA, then M, (1)
is the weighted maximal function M (¢) of ¢. The following result is [55, Theo-
rem 3].

Theorem A. Let 0 < p < g < coand 0 < y < oo such that py > 1. Let w € D and p be

a positive Borel measure on ID. Then [Mw(()%)]V s LI, — L9(p) is bounded if and only if
Me,q/p (1) € L. Moreover,

==

1[Me((-)7)

Another maximal operator we will face is defined by N(f)(z) = sup;cr(,) |f(0)].
It is known that N : A?, — L}, is bounded for each radial weight w and ||[N(f

HU” ~
I£]l 4, by [54, Lemma 4.4].
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Theorems 1 and 2 would perhaps not be of much significance if we did not
understand the g-Carleson measures for A/, sufficiently well. In fact, another im-
portant ingredient in the proof of our main results is the following refinement of
the characterizations of Carleson measures for Bergman spaces given in [55, Theo-
rem 1]. The estimates for the norm of the identity operator I; : Af, — LZ are of
special importance for us.

Theorem 3. Let 0 < p,q < 0o, w € D and let u be a positive Borel measure on ID. Further,
let dh(z) = dA(z)/ (1 — |z|?)? denote the hyperbolic measure.

(i) If p < q, then y is a q-Carleson measure for Al if and only if sup,_p, ==
w(

Moreover,

p(S(@)

g X sup T
P

€D w(S(a))
(ii) If p < q, then I : AL, — LZ is compact if and only if

ps@)
\ﬂ\—IS’ W =0. (6.2)

(ii1) If g < p, then the following conditions are equivalent:

el g

(a) 1;: AZ, — LZ is compact;
(b) Iy : A, — LY is bounded;
(c) The function

Wi du(7)
B/ = [, wriey 2€DMON

P
belongs to L, ";
(d) For each fixed r € (0,1), the function

1(A(G, 7)) ))
dh(C), zeIDD\{0},
[ o \ {0}
_r
belongs to L/, *;
(e) For each sufficiently large A = A(w) > 1, the function

w _ ww _ 17|C‘ A d”(@)
W@‘%Mnié(hxﬂaﬂ@wzen

r
belongs to L), 7.

Moreover,

L = = ||By g = ||®Y )
| d”A‘rz)_)LZ IIMw(u)IIL£ I || " +u({0}) < ”HLﬁ | yllLﬁ +u({0})

An analogue of the above result for Hardy spaces is essentially known. It can
be obtained by using [40, Section 7] and [52]. Going further, the implications of the
techniques used in this paper can be employed to extend the known results on the
area operator on Hardy spaces [15,31] as well as to the study of the integral operator

fo () d{ acting on Hardy and Bergman spaces. These results are
brleﬂy dlscussed 1r1 Sectron 6.5.
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6.2 CARLESON MEASURES

In this section we prove Theorem 3. For this aim we need some preliminary results
and definitions. The following lemma provides useful characterizations of weights

in D. For a proof, see [51,58].

Lemma A. Let w be a radial weight. Then the following conditions are equivalent:
(i) w € D;
(ii) There exist C = C(w) > 0and B = B(w) > 0 such that

A\
m”§C<1—D o), 0<r<t<i; (6.3)

(iii) There exist C = C(w) > 0 and v = y(w) > 0 such that

t /71—t v
/( ) w(s)ds < Ca(t), 0<t<1; (6.4)
o \1—s

(iv) There exists A = A(w) > 0 such that

/;—EQL—dA@)v—j%Q—f [ eD;
D

|1 ,Zz|/\+1

(v) The associated weight

w*(z) = /|Zl w(s)log és ds, zeD\{0}.
satisfies
w(S8(2)) xw(T(2)) < w*(z), |z| —=>1".

If w € D, then Lemma A shows that for each 2 € D and v = v(w) > 0 large
enough, the function

1 5 rtl
— P
Fop(z) = (|a|> , zeD,

1—az

belongs to Af, and satisfies HFa,p”Zp = w(S(a)) and |F,; p(z)| < 1 for all z € S(a).
This family of test functions will be ufrequently used in the sequel.

Apart from the tent spaces T (v,w), 0 < g,s < oo, defined in the introduction,
we will need to consider the case g = co. For 0 < s < oo, define

s = su | s
GO = 50 iy g T )

A quasi-norm in the tent space T;° (v, w) is defined by || f|l7e () = [[Csp (f) | Le-

1—w

1-zw |’ and

The pseudohyperbolic distance from z to w is defined by o(z, w) =
the pseudohyperbolic disc of center 4 € ID and radius r € (0,1) is denoted by
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A(a,r) = {z : 0(a,z) < r}. The Euclidean discs are denoted by D(a,7) = {z € C :
l|a —z| < r}. Recall that Z = {z};°, C DD is called a separated sequence if it is
separated in the pseudohyperbolic metric, it is an e-net if ID = U2, A(z, €), and
finally it is a J-lattice if it is a 56-net and separated with constant v = §/5. If we
have a discrete measure v = Y J;,, where {z;} is a separated sequence, then we

write T;(v,w) = T;({Zk}rw)-

Recall that I; : A, — L7(y) is compact if it maps bounded sets of A, to relatively
compact (precompact) sets of L7(y). Equivalently, I; : AL, — L7(p) is compact if
and only if for every bounded sequence {f,} in A, there exists a subsequence that
converges in L7(p).

Proof of Theorem 3. (i). There are several ways to bound the operator norm of
I : A, — LZ from above by the claimed supremum. See [55, Theorem 9] or [51,
Theorem 3.3], and also [55, (11)] for the particular case 4 = p. The lower bound
is obtained by using test functions, for details, see either [55, Lemma 8] or [51,
Theorem 3.3].

(ii). This case can be done by following the proof of [54, Theorem 2.1(ii)], with
Lemma A in hand.

(iii). We first show that

1zl <HB‘”H e ) =<l e A||<1>“’H A r{ON) S Mol S all]
w™ L(f: LP1

w

Al —L]

Fubini’s theorem, Holder’s inequality and [54, Lemma 4.4] yield

¢
< [NENE [ e dAE) + uoplfo)!

()
11y = (@ s ) @@ 4AG) + utioplfo)

S IIN(f)HZ&HB;”IILP HUODIAN, = 1Y, <IIB§‘ZIILPPq +Pl({0}>,

and hence \|Id||q,, ||B“’|| 2 + u({0}). Moreover, |By H 2 +u({0}) =
||“I""|| s by [55, Lemma4]

Now write dv(z) = j(Ti((ZZ))) and h,((,z) Z ) for short. Then Fubini’s
theorem, [55, Lemma 4] and the fact w(T(g)) (U T(u)) and hy({,z) < hy(u,z) for
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e Aur),re(0,1),yield

_P_
p—q

175 = [, (o ey ae @) widae)

_P_

<[/ mu,z)vm(u,r))dh(u)) " w(2)dAG)
< [ ([ vawnan)” weaai o)) 6
A/< B ﬂ (u.7) dh )”p 2) + p({0))

~ o II} H({0}) = ng% L Huon,

where g(u) = £ (Blwr)  Now [55, Lemma 7] implies

w(T(w))
]l P ) ||Cl,h(g)||Lﬁ‘ (6.6)

Fubini’s theorem gives

1
Cl9)@) = s Zays [ MAED) )

ael' (¢
1
= sup ——— dh(z) ) du(u).
ety @(T(@) o Urn ) a0

The points u € D for which T(a) N A(u,r) # @ are contained in some tent T(a’),
where arga’ = argaand 1 — |a’| <1 —|a|, foralla € D\ D(0,p), where p = p(r) €
(0,1). Therefore

1 1
w(T(a)) /D </T<a>m<u,r) dh(z)) Apu) = w(T(a)) / T(a) </T<a>m<u,r) dh(z)) ()
W(TW) _ p(T()
S @T@) = wr@) “EP\POP)

and it follows that

_ #(T(a))
Ciu(8)(0) = gi‘%%’a) w(T(a)) S Mw(#)(§), ¢eD\{0}. (67)

By combining (6.5), (6.6) and (6.7), we deduce
N e =l e +u({0}) =gl >~ +p({0})
LP LV P

T (hw)

I e +u({0}) S ||Mw( )]
Lo L

w w

= [Crn(g)

To do this, we will show that

It remains to prove ”MW(‘L[)”Lﬁ S ”IdHZ’jJ—mZ'

M, (p) is pointwise equivalent to the sum of two dyadic maximal functions.
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(k+l) (k+141)

Let I,y = {e' <0< 2n+2 } and denote Y; = {I, x4 : n € NU {0},
k=0,1,...,2"2 -1} and 1 €Ao, 2} Define the dyadic maximal functions

Vi _ u(T(1)) p(D) 1
M“f,,l(y)(z)—max{ sup CU(T(I))/C(J@:))}’ ZED, le {012}/

zeT(I),I€Y,

and set
M (1) (z) = Mo (1) (z) + MY 1 (#)(2), z€D.

72

If w € D, then M% (4)(z) < M (pt)(z) for all z € D because SUp;c wgSE g% < oo by

T(I
Lemma A. For the converse inequality, given I C T such that z € S(I) there exist
intervals Iy, I xy1 (if k = 2"%2, take I, = I,0) such that |L,410] < |I| < |0,
LixNI # @and I,,_1 NI = @. We may assume that n > 3, for otherwise the
inequality we are searching for is immediate. Then I C I, U1, 11, and there exists
In_am € Yo UY% such that Ui'{il?—z ILi C Iy—3m, and S(I) C T(I,—_3,). Therefore

Lemma A yields

u(S() _ w(T(Li—sm)) _ w(T(In—am)) _ #(T(Ii—zm)) _ i
0B0) S o) S @lrire)) = (T an)) < M, (n)(z), z € S(I).

It follows that My, (1) (z) < M2 (u)(z), for all z € ID, and hence
Mo (1)(2) < M§,(1)(2), z€D. (68)

To estimate the norm of M, (1) upwards, let choose {z; } be a separated sequence

and define
|z« |
Ef (l—zkz , zeD.

By [55, Lemma 6] there exists A = A(w) > 1 such that Sy : T} ({z},w) — AL is
bounded. By denoting {b;} = {f(zx)}, this implies

q

[ [ biia o) dnz) = USn ) S Wl gV a2 56 Mgy

By replacing by by r¢(t)by, where r; denotes the kth Rademacher function, using the
fact that [ha (2, 2)| 2 X71(z,)(2) for z € T(z), and applying Khinchine’s inequality,
we deduce

g
2
2 q

A (;w mk><z>> A(z) S a1 s a2 1O H B
(6.9)
Let I € {0, %} be fixed. For each k € Z, let & denote the collection of maximal
dyadic tents T € {T(I) : I € Y;} U {ID} with respect to inclusion such that y(T) >
2%w(T), and let Ex = Ureg, T. Then 25 < MY (u)(z) < 28! for z € Ei \ Epqq. Let

now {br} be a sequence indexed by T € £ = Uy&. Assume for a moment that y has
compact support. Then {br} is a finite sequence. For T € &, let G(T) =T — U{T’ €
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E:T'CT},andhence G(T) =T —U{T' € & :T'CT}forTe & T, T el
are different (either one is strictly included in the other or they are disjoint), the sets
G(Ty) and G(T;) are disjoint, and hence

q

(ZIbTIZXT ) <Z|lesz ) Y 1brl7xc(r) (2). (6.10)

TeE TeE TeE
Index the tents in £ according to which & with maximal index they belong to, by
writing & \ Uy <k Em = {T]k : j € N}. Further, denote by; = bT]k and let z; ; denote

the vertex of T]k ie. T]I‘ = T(z,;) (with the convenience that the vertex of D is the
origin). The estimates (8.14) and (8.26) yield

Lt T = 2 T ]S Ml 0

T Tk

- ||Id|\15ﬁLZ (/]D <kX,];|bk,j|2XT}<(Z)> w(z)dA(z)) :

Write r = g for short, and choose bZ i = 2k("=1) for each k and j. Then, by using the

inequality 2 < 1\71(‘{]1(]4)(2) < 2K+ for z € Ei \ Egyq, the left hand side of (8.16) can
be estimated as

(6.11)

ol | w(mh - X () | = L2 u(E) - L2 L (T 0 B
k.j

T TS k k j
k

/ /_ — T
= ;(zk(r —1) _olk=1)(r 1))V(Ek) — < 51 )Z okr'n kz Y{k

]

REFEIZE [ (F006) el da) = 19,0017,

! 2

while the integral on the right hand side of (8.16) with the notation n = 2"V
becomes

4

/]D<;j|bk,j|2?ﬁ"]k(z)> W(Z)dA<Z>:/D<kZJ;’7kXT]k(Z)> w(z) dA(z)

4 4

= /]D (;ﬂ"m(@) 2 w(z) dA(z) = /D (’7 ) (17" — ry“) m(z)) 2 w(z) dA(z)

77_1 k
x/ﬂ)(;nk (XEk<Z)_XEk+1(Z>)> w(z)dA(Z):/]D(ZUkXEk\EkH(Z)) w(z)dA(z)
= oDt an e, D@ daE) = [ V2 (Bl dA)
k

N

NI

/

<L o, (M00() w(z)dAG) = 1M, (01
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v

Consequently, ||M, (1 )HLV < Iall’, AALZHKEiJ(V)”ZZ/and-ﬂﬁuS 1M, oIl » <

ﬁ ~Y
/
||Id”z1£,—>LZ because ' = (%) = ﬁ. Since this is valid for I € {0,1}, using
Minkowski’s inequality and (6.8) we get

M = [|M? < ||M? M? < |11l
Mol e, = WG o < IS0 o+ 198 GOl o % Wkl g

for p with compact support. If y is positive, then the above estimate, applied to the
compactly supported pir = xp(o,)#, and the standard limiting argument with mono-

tone convergence theorem gives ||M (u )H ||Id\|q Hence the claimed

L’i
operator norm estimates are valid and, in partlcular (b)- (e) are equivalent.

To complete the proof of (iii), it suffices to show that I; : A, — Lq is compact if
(e) is satisfied. By the hypothesis (e), (6.5) and the dominated Convergence theorem,

P

= lim 17‘Z| * dﬂ(z) e
0= R1~>1’ D <./{R<|z<1} (|1 —§z|) w(T(z))) w(§)dA(Z)

. du(z) 7
R D(/r@)\D(om w(T(z))) W(E)dAE).

Let {f,} be a bounded sequence in AY,. Then {f,} is locally bounded and thus con-
stitutes a normal family. Hence we may extract a subsequence {f, } that converges

uniformly on compact subsets of D to f € AL, Write g = fy, — f. For e > 0, by
(6.12), there exists Ry = Rg € (0,1) such that

(6.12)

/]1; </F(§)\D(0,RO) wil;(é)))>"‘7 w(Z)dA(Z) < =l

By the uniform convergence, we may choose kg € IN such that |g;(z)| < &'/7 for
all k > ko and z € D(0,Rp). Then Fubini’s theorem, Holder’s inequality and [54,
Lemma 4.4] yield

Isilfy = [ 8@ @ + [ 1@l dn (@)

dp(f)
<eum)+ [ ([ (Z\me h ) e@dac)
i

<&uD +/‘ (80)" (/?ﬂDmm>(Té%)‘MﬂdA@>

< eu(ID) + [IN(gi) [y e = en(D) + gl yp e S e,

and thus I; : A, — LZ is compact. O

6.3 BOUNDED OPERATOR

Theorem 2 is equivalent to the following result.
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Theorem 4. Let 0 < p,q,s < oo such that 1+ 3 i ﬁ >0, w € D and let u,v be positive

Borel measures on ID such that y ({z € D:v(T(z)) =0}) = 0 = u({0}). Then the
following assertions hold:

(i) Gy : Al — L, is bounded if and only if % is a (p +s5— —) -Carleson measure
for AL,. Moreover,

pts—
1Gks g —ypa = I all

p+s
AP L
uy

+s— 2
(ii) Gy Al, — LY is compact if and only if I; : A, — LZ“’ 7 is compact.

Theorem 4(i) will be proved in two parts. We first deal with the case 4 > p.

Theorem 5. Let 0 < p < g < 00,0 < s < coand w € D, and let u,v be positive Borel
measures on ID such that p ({z € D : 0(T(z)) = 0}) = 0 = u({0}). Then Gy : Al —

L{, is bounded if and only if u& is a (p +5— %)—Carleson measure for AY,. Moreover,

w
pts— e X sup Ho (S 11))

AwaLiH T acD w(S(u))H%*% .

v

1Ghslp 0 = l1all

Proof. Let first g > s. Assume that G;; : Al, — L{, is bounded. Let a € D and
AV
choose v = v(p, g, s) sufficiently large so that ”F“'P”Z” = w(S(a)) and ||F, (g),||(5()q), =
w ‘\s Awg
w(S(a)). Then Fubini’s theorem and Holder’s inequality yield

B (S@) < [ (@I i 2

s 1
<y For ) (U(T(z» S Faar @)l dA(g)) dn(z)

————— Jw({)dA
) 0@ aa)
< IEyqoyl s Eupl < 1F, 0 1o NGEslEy i IFoplly

5 S

o @(S@) T w(S(a))7 = (G

Hence sup,.p w(:(”;)% S ||

sure for Af, by Theorem 3.

S w 3 _ E ~ _
sllap 9 and py is a (p +5—73 ) Carleson mea

-Carleson measure for AF,. Write
(£)'/(2), [55, Theorem 3] shows

s

Conversely, let g > s and pg be a (p +5— %

\_/

t=1t(p,q,s )—p+s—p— > s for short. Since 1 5

—

py(Sa)) i
Yy = SUPeD y(5(a)) /P This
Mo

that My, : L( A L(w) is bounded with ||[M||'

gn @«
@l —
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together with Theorem 3, Fubini’s theorem and Holder’s inequality give

Gl = ) (f ror S ) wieaac)

\hH q/<1/ I ( (T(2)) /T(g) |h(z)|w(z)dA(Z)> aus (2)

S swp [IFQPMo@ s @) < sup fI5 1Mooy

D
Il g <1 Il <1
< sup (HallSy e IFIF, pIIMwII Il @
”h”L(%>’§1 w7 lw A»L”v

S+
Y(S(a L)
= (sup ’”S”) 171y

_w(5@) _

1+5—
w(S(a)) P 1
Since the assertion is valid for ¢ = s by (6.1), it remains to consider the case g < s.

and hence Gj; : AP, — LI is bounded and 1G5 (f)

)

||Lq ~ pue]D

Let first u% be a (p +5— %)-Carleson measure for A}, and let 0 < x < s. Holder’s
inequality and Fubini’s theorem yield

4 _ XT5—X dﬂg(é) g
IGisHlly = [ (. ror 228 wda)

< [NOEE ([ ror jﬁ‘;‘;"ég) ) w(odats

< </DN(f>(z)sqxqw< ) (/D/r 2 ;((g)))“’(z)dA( )>‘7

q

SING (/ FQF @) = IN( s, ||fH

Take x = (-4 7 1 < 5sothats—x = s+ p— 7 Then the estimates above together
with [54, Lemma 4.4] and Theorem 3 give

qx q(s— w(g(a
IG5 (Pl < 1A Il LW,EanAp x(w{”ﬁ”) 12,

H
@y

and hence Gj; : AP, — L] is bounded with Gy, || %
’ S(a

Lq N pge]D 5
Conversely, let g < s and G : Af, — LI be bounded. Choose a > B > 1 such

=
m\‘nv

q
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that g = 1. Fubini’s theorem and Hoélder’s inequality yield

1
B (8(@) = [ x5t (@)1 @) < [ x5 @@ sy f, @@ 4A@ dn(z)

2) \&tw
= /D (/F(g) Xs(a) (Z)IFu,p(z)ISUC(Z;EZ))J w(Z)dA(Z)

%
: </1D </r(é) |F”'p(z)|svlz§((2;)>
‘<4(A@Xwﬂ@£%30gw@MA@0y

= |Gy, (Fup)HLq 1G31 (Xs(a) )|| o
Ly

w(f) dA(C))

(6.13)

Now ﬁ > 1 because B < «, and hence |G " 71 (Xs@)ll g can be estimated by duality
LlX

arguments. Namely, since (%) = b Exlx ﬁl), Fubini’s theorem, Holder’s inequality
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and [55, Theorem 3] give

G2 (Xs@)ll o = / M0 |G (Xs(a)) (§)w(E) dA(E)
Ly (71l ,thﬁl <1

dp(z)
\h|| e <1/ 1(Z (./1_@) XS(”)(Z)U(T(z))> w(2)dA(Z)

1
= 5P Jpsot® (st o MO dA@) )tz

i gy
1 w

il iup <1/IDXS(”)(Z) (a;(T(z)) /T(Z) [h(2)|w () dA(g)) dn (z)
L, P

< sup Xs(a)(2) M (h) (2) dig ()

Il o <1 D

su d w %

= I r; <1 (/]DXS(”)(Z) Mo (Z)>

! 170(7/
< 4 (S(a))¥ (sup WS(”) " .eD.

(6.14)

By combining this with (6.13) and using the norm estimate || F,, HZ,, = w(S(a)), we
deduce .

&

po (S(a)) S IIGZ,S(Fup)IIﬁq 1Gy1 (Xs(a))]

w 7 “(S(z)NSs %7%
which yields
¢ p ~ 75 w(S(z)NS v
B (S(@)Peo(S(@) S 1GEI0 (EW) e
(6.15)
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Define dp,(z) = Xp(o,)(z)dpu(z) for 0 < r < 1. Then

" 2)) = s dur(g) _ N inte
(GioN@) = [ @F &~ [ @ e
< [ FOF RS = (G00@) , zept0),

and hence ||G7’VSHA;7 1 < HGFSHAp po forall0 <r <1
If g = p, then (6. 15) apphed to y, implies

_1 L w S(z F
w(8@)F S UGN, <up”‘>”)”> | e,
w w ze

(6.16)

o=

(H3)r(S(a))

and hence

Consequently,

sup 7 S 163l
~ ,S P p-

z€D,re(0,1) (5(2)) el Av=Le

So Fatou’s lemma and Theorem 3 show that y& is a p-Carleson measure for Af, with

1y (S(a))
H d”AP LP = sup —— =5 w(S(a)) N||G s”

AP Ll
aclD -

If g > p, then applying (6.15) to y, and bearing in mind that w is radial

@) < Gy, g wlS@)F (Sup w(5(2))

(§
w(S(a)Fra
1—
=16 vr5‘|AV~>L'7 w(S(a))f(qi%(H7> ( S(sup (5')r S(z)ms(,m)

= [IGy

mslly 0 | sup -
AT\ zs()Cs) w(S(a))” T w(S(z

< HG;t,sHAV%Lﬂ

Consequently,

1—
Sup( (Vg)r(S(Z))S> Sl #sHAP—)L” <Sup sup (o) f+Z))s>

(
aeD w(S(a))HP q aeD z:5(z)cS(a) w(S(z))
1

) (S
— 162l (uﬂg%) ,
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and thus

(1), (S(a))

(a
su +£ %N” ‘MSHAP_)L‘?

acD,r€(0,1) W(S(”))l

Fatou’s lemma and Theorem 3 show that uy is a (p +5— %)—Carleson measure

for AP, with the corresponding inequality of norms. O

Theorem 6. Let 0 < g < p <ooand 0 <s <oosuchthat1+%—g >0, w € D and let
1, v be positive Borel measures on ID such that y ({z € D : v(T(z)) = 0}) = 0 = u({0}).
Then Gy 5 AL, — LY is bounded if and only if u& isa p (1 + % — ;)—Carleson measure
for Af,. Moreover,

pt+s—

G = |1 7 = ||BY )
H ys“ AP 1l H d”A N p; ,% H VHLZ,(ZE‘D
Ho
Proof. The equivalence ||I; H Hs ps = ||By, H S follows from Theorem 3.
Al =L, =)
us

9
If By € L7, then Holder’s inequality and [54, Lemma 4.4] give

0 _ o du(@) \*
iGNy = [ ([ VP ) @A)

)
du(7) :

< [ N((a) ( /r ; U(T@)) w(z) dA(z)

< INGIE, 1B o = A1 BN s

Lw 1) L0

and hence Gy : Al, — L, is bounded and ||G;j,s\|Ap TS S Bl e -

Ly
Assume now that Gy : : A, — L[, is bounded, and let first § > s and write
t=1t(p,q,s) =(p+s— —) =s+p(1- 7) It suffices to show that ¢ is a t-Carleson
measure for Af,. Fubini’s theorem, Holder’s inequality and [54, Lemma 4.4] yield

Il = 17N ([ @@ <>) e
:/D</r<g> Iy ) 4
d

(1-2) pu(z)
< [ N (/r(@ £GP i (Z))) w()dA(Q)

p(1-

<IN, 1GR3, =< 1715 1G5y
< NGHIy o I

and hence I; : Af, — L;%, is bounded with ”IdHi\ff,aL;w SIIGHIE
v

ALl
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If g = s, then t = s and the result follows from (6.1).
Ifg <s thent=p+s—F5 <sand ] > 1because min{p,s} > g. Hence
Holder’s inequality gives

11, = o (o P iy ) @@ A

(T(
1-4
< (o rerdicy) (/ oaTey) OO
: </1D </r<§) 4 (Z”Svﬁ(z;) )
' (/ID (/r(o v%;))” @) dA@)

= 1Gis (N, [ %
(r—

Lw

< ||G”/

AF’ _>L’7 ||Bv,

q)

ot

Sq ||f||
L‘

This applied to y, yields

t
||f||L§ o
— | SIGh
£l 47 ’

and hence

f4£—>L‘LH || qv)f feAl, f#0,

t < v
HIdHA(FL_)LzM)r = ”ny, AP L) HByyHL T

Since || I||*

AL, = ||Bj, H pq by Theorem 3, we deduce

U V

t
v < v t *5
VB3 ey SIGhllg g VBRI e

and hence

v < v
LA A
w

VNP S VARTE

which together with Fatou’s lemma gives

B‘U
L ol s,

This finishes the proof. O
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6.4 COMPACT OPERATOR
In this section we prove Theorem 4(ii).

Lemma 1. Let v be a finite positive Borel measure on D and 0 < p < co. If { g}, C L}
and ¢ € L satisfy limy_co lenllr = ll@llp and limy 00 @u(z) = @(2) v-ae. on D,
then limy—ye0 || @n — q)||L5 =0.

Proof. See the proof of [25, Lemma 1 p. 21]. O
Theorem 7. Let 0 < p < g <00, 0<s <ooandw € D, and let 1, v be positive Borel
measures on D such that p ({z € D : v(T(z)) = 0}) = 0 = u({0}). Then Gj; : Al —

ps
LY, is compact if and only if I; : AL, — LZU 1 is compact.
Proof. Let first ¢ > s. Assume that G : Al, — LI is compact. For each a € D,
1 ’Y+1
let fop(z) = (w(S(a))) 7 Foplz) = (w(S(a)))? (11 ) 7. By Lemma A we
may choose ¢y = 'y(p, q,s,w) sufficiently large such that sup,. || f”/””i” = 1,
sup,ep || fa H = 1 and f;, converges uniformly to zero on compact subsets

of D as |a| — 1 A standard argument shows that

Jim 1G] fap) g, = 0. (6.17)

Fubini’s theorem and Holder’s inequality yield

#o (S(a)) S g
R | fap(2) [ dpi (2)
w(S@)7T T w(s <>> 7o
= [ V@ (s fo Yoy @@ 4AQ) ) iz
d
< [y @1 ([ Mo (”Ez))))w@dA(g)
< WMoyl @ I1Gs fap)l\La S G (fap)liie
This together with (6.17) gives limj, ;- % = 0 and hence I; : A, —
Lz;rs—% is compact by Theorem 3.

ps

+s
Conversely, let g > s and assume that I; : A, — Lp i

is compact. Write
t =t(p,q,s) = p+s—=2 > s for short. Let {f,,} be a bounded sequence in A?,.
Then, we may extract a subsequence {fn,} that converges in L;gj and uniformly on

compact subsets to some f € AL,. Write g5, = fu, — f- By Fubini’s theorem, [55,
Theorem 3] and Holder’s inequality,

IGis(gmliy = sup [ ) ([ lon @ S ) wl(2)dA@) S Il

h <1
Il <
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and hence
lim (|G (0,5 = 0.

If s > 1, two applications of Minkowski’s inequality gives
1Gh <) lliz, = 1G5 (Fllis | < IGEs(gn)llyg, =0, k= oo,

Moreover, since {f,, } converges uniformly on compact subsets of ID to f, then

dyg 1/s du¥ 1/s
(fr(z | e (€ |s b g)))) converges to ¢(z (ff(z If(C |s M ))) for
eaCh z € ID. Therefore Lemma 1 yields

Bim (1Gs (fu) = Glis(Fllyg, = Jim llgx — @l g, =0,

and thus Gy : Al, — L{, is compact.
Ifo<s<1,

L dpe(Q) s dm 1 (2)
/m) @ oy < /r(z gm (@I +/ o

which together with Minkowski’s inequality yields
1Gss(fa) I35 = 1Gas(NI5g | < 1Gs(gm Il

Now, by arguing as in the previous case we see that G, : Al, — LY is compact. In
view of (6.1), a similar reasoning also applies in the case g = s.
+s—2

It remains to consider the case 4 < s. Assume first that I; : A}, — Lp " is

compact. Let {f,} be a bounded sequence in Al,. Then we may extract a subse-
ps

quence {fy, } that convergeson L ,, " 7 and uniformly on compact subsets of D to
some f € Al,. Write go, = fs, — f, and let 0 < x < s. Holder’s inequality and
Fubini’s theorem yield

IG5 snlly, < [ N@* ( gnk<5>|5-x;%f§;))sw<z> 1A(2)

9(s—x)
< IIN(gnk)II = lgmell, ()
L I‘v

Take x = 20 7 1) < 5sothats—x = s+ p — =. Then the estimates above together
with [54, Lemma 4.4] give

||G,45(gnk)||Lq S IIgnkHAp Hgnkll Hp,m S ||8nk|| et
P’ Vv
and hence
lim (/G580 15, = 0

Now, by using Lemma 1 and arguing as in the case 4 > s, we conclude that
limy,oo [ Gl s (fur) — Gps(f)ll g =0, thatis, G : AP, — L] is compact.
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Conversely, let g < s and assume that G;; : Al, — L, is bounded. Choose
a > B > 1 such that % = 1. By arguing as in (6.13) and (6.14), we get

“((a : g
W SIGLapI, 2155 ey s I

and

(5(0) SE (156 05 ey
w sy Nty oo <ze§ w(3(2) > o eeb
and thus

B_B

e (S@) (s NS@) ) 618
a)(S(a))% ||G (fap)”lj (ze]g w(5()) ) , aecD. ( )

If 4 = p, we may use lim;|_,;- HG;Jl,S(fa,P)”LZ) = 0 and Theorem 5 to deduce that
the right-hand side of (6.18) tends to zero as a approaches the boundary. Therefore
I: AP — LZ%, is compact by Theorem 3(ii).

If ¢ > p, by using (6.18) and arguing as in the corresponding part of the proof of
Theorem 5, we get

q
s

1—
< 68 (fap), ( ’”S(f’))) , aeD.

9 (S(a)
! b w(S(b))

w(S(a))
from which arguments similar to those applied in the previous paragraph show that

pS
I: Al — LZU 7 is compact. This finishes the proof. O

5_S
roq

Theorem 8. LetO<q<p<ooand0<s<oosuchthat1+%—g >0,w€ﬁandlet

1, v be positive Borel measures on ID such that y ({z € D : v(T(z)) = 0}) = 0 = u({0}).
Then the following conditions are equivalent:

(i) GZ,S AP S LT s compact;

(i) Gjs: AL, — L, is bounded;
1+5—2

(iii) 1;: AF, — LZ%(, =) is compact;
1+5-2

(iv) I;: AP, — LZ%(J 4 q> is bounded.

52



Proof. The conditions (ii)-(iv) are equivalent by Theorems 4(i) and 3(iii). To complete

s o AP 7d : b r(+3)
the proof, it suffices to show that Gys © Aw — L is compact ifl;: A, = L "
is bounded. To see this, let {f,} be a bounded sequence in Al,, let {f,, } be a sub-

sequence that converges uniformly on compact subsets of ID to f € Al,. Write
Sk = fu, — f as before. By using Theorem 3 and the last part of the proof of Theo-
rem 3(iii), we deduce

im du(z) ﬁ w _
A (/r@\m) w<T<z>)> (€)dAg) =0.

Therefore, for a fixed € > 0, there exists Ry € (0,1) such that

/JD </f<c>\13<um w%(?» ) T e@aae <o

Choose kg € N such that |gx(z)| < €!/9 for all k > kg and z € D(0,Rp). Then
Holder’s inequality and [54, Lemma 4.4] give

t | s dp(Z) :
16550018 % [ ([ ) oo 8O iy ) () dAG)
TR
+/ID (/F(Z)\D(O/RO)W(@)I o(T(0) ) w(z) dA(z)

)
<S+/ (84)" (/< 2)\D(ORy) © tzﬁg)yw(z)d‘q(z) )

du(g) \ T ’
< e NGO, (/D (/A—y w(z)dA(z)) <e,

and consequently, limy .« || G}, (k) ||Zq = 0. Finally, by using Lemma 1 and arguing
as in the proof of Theorem 7, we deduce limy_,« |G, s (fx) — G s(f) I = 0, that is,
Gﬁ/s AP S Ll s compact. O

6.5 APPLICATIONS AND FURTHER COMMENTS

6.5.1 Area operators in Hardy spaces

For 0 < s < oo, define

Gt = ([ 1rtc >|sf”j<fg)i zeT

The method of proof of Theorem 4, combined with the results in [40, Section 7]
and [52], can be used to obtain the following result. The details of the proof does
not reveal anything new, and are therefore omitted. Here L9(T) refers to the classical
Li-space on T.
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Theorem 9. Let 0 < p,q < oo such that 1+ % - % > 0, and let y be a positive Borel
measure on 1D such that u({0}) = 0. Then G, s : HP — L9(T) is bounded (resp. compact)

S

45— P
if and only if I; : HP — LZ 7 is bounded (resp. compact). Moreover,

prs—i7 pu(S(a))
Gl —pa(my = 14| Do Xsup———5—, p<g,
' ~Hm HP—>LZ+577 aeD (1 — |a|)l+%7%

and

prs—t
1Gys ?{p_mi(jr) = |14 Z+57E = [|Byll s q<p,

HP—L, 1 Letrmq

where

Y G
B8 = /r@ TR €T

In particular, this result proves the conjecture in [31, p. 365] in the case 1 + % —
1>0
g .

6.5.2 Integral operator T, on Bergman and Hardy spaces

Each ¢ € H(ID) induces the integral operator

(e = [ @@ zeD,

acting on (D). This type of integral operators have been extensively studied dur-
ing the last decades and have interesting connections with other areas of mathemat-
ical analysis, see [51,54] and the references therein. In particular, the symbols g for
which T, is bounded or compact from AP to Al can be described in terms of the
following spaces of analytic functions when g > p.

We say that ¢ € H(ID) belongs to C7"(w*), 0 < p,q < oo, if the measure
|g'(z)[Pw*(z) dA(z) is a g-Carleson measure for A},. Moreover, g € Ci7 (w*) if the
identity operator I : A}, — L1(|¢’|?w*dA) is compact. If § > p and w € D, then
Theorem 3 shows that these spaces only depend on the quotient %. Consequently,
for g > p and w € D, we simply write C7/7(w*) instead of C%¥(w*). Thus, if & > 1
and w € D, then C*(w*) consists of those ¢ € H(ID) such that

s 18" (@)Pw*(z) dA(2)
2 = 2 Q. .
181lce (@) = 18(0)] +sup @G < (6.19)

An analogue of this identity is valid for the little space Cj(w*). We refer to [54,
Chapter 5] for further information about these spaces.

Theorem 10. Let 0 < p,q < oo such that q > 2%; and w € D. Let g € (D) and denote
dug(z) = |¢'(2)|?w*(z) dA(z). Then Ty : Al, — Al is bounded (resp. compact) if and

2p

. p p+2— 7
onlyif Iy : A — Ly, is bounded (resp. compact).
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Proof. By [54, Theorem 4.2], T : AP, — L] is bounded (resp. compact) if and only

: . AP q s -
if G 5+ Aw = Ly is bounded (resp. compact), and 1 Tgll g s = ”G;}MHAZ%LZ)'
Theorem 4 implies
2p
w 2 - p+2*7
Gy 2 Ab Ll 7 Hal , p-2
Aw—>L;,g
and this finishes the proof. I

It is worth mentioning that Theorem 3 yields

||TgH2p q = sup
Ao aeD w(S(a))

Thus T, : Al, — L} is bounded if and only if g € CZ(%7%)+1(w*). If p >q
Theorem 3 also gives

qr
2 - / 2 2(p—1q)
Iy = fo () 8@ 44G) ™ w@)aa),

qp
and thus T, : A, — Ll is bounded if and only if g € A," by [54, Theorem 4.2].
Consequently, whenever g4 > 2%7 Theorem 10 improves [54, Theorem 4.1] be-
cause the hypothesis on w are stronger in the original result. In particular, if g < p,
the weight w is assumed to be continuous and strictly positive with the local regu-
larity
w(t)<w(r), 1-tx<1-r.

This hypothesis allows one to use the strong factorization AP = APV AP p’l =

12 T 123 1, [54, Theorem 3.1], which is a principal ingredient in the proof of [54,
Theorem 4.1].
However, the defect of Theorem 10 is the extra hypothesis g > 2%Tpp which is a

restriction only in the case p > g. This condition is inherited from Theorem 4 and

appears there because Carleson measures are finite measures. This is not true in
qp

general for yy when ¢ € Al and g < 2%,. The case of compact operators can be
analyzed in the same way.

If g > 22+7pp one may characterize bounded and compact operators Tg : HF — H1
by using Section 6.5.1. In order to avoid unnecessary repetition, we omit the details.
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Paper I

7.1 INTRODUCTION AND MAIN RESULTS

Let #(ID) denote the space of analytic functions in the unit disc D = {z € C : |z]| <
1}. For 0 < p < oo and a nonnegative integrable function w on D, the weighted
Bergman space Af, consists of f € H(ID) such that

1% —/ [f(2)[fw(z) dA(z) < oo

where dA(z) = dx;i Y is the normalized Lebesgue area measure on ID. As usual,
Al denotes the weighted Bergman space induced by the standard radial weight

(1= [z)"

A radial weight w belongs to the class D if &( fl jw s) ds satisfies the dou-

bling condition @(r) < C&(15L). Further, a radial welght w € D is regular, denoted
by w € R, if w(r) behaves as its integral average over (r,1), that is,

frl w(s)ds

< 1.
T 0<r<

w(r) =<
Every standard weight as well as those given in [4, (4.4)-(4.6)] are regular. It is
easy to see that for each radial weight w, the norm convergence in A2, implies the
uniform convergence on compact subsets of ID, and hence the Hilbert space A2 is a
closed subspace of L2, and the orthogonal Bergman projection P,, from L2 to A2, is
given by

)= [ FOBEDw(@)dA),

where BY are the reproducing kernels of A2. Recently, those regular weights w
and v for which P, : L} — L} is bounded were characterized in terms of Bekollé-
Bonami type conditions [57]. In this paper we consider operators which are natural
extensions of the orthogonal projection P,,. For a positive Borel measure u on D,
the Toeplitz operator associated with y is

2) = [ FOBED) du(0).

If dy = ®wdA for a non-negative function ®, then write 7, = To so that To(f) =
P, (f®). The operator T has been extensively studied since the seventies [14,44,68].
Luecking was probably the one who introduced Toeplitz operators 7, with measures
as symbols in [39], where he provides, among other things, a description of Schatten
class Toeplitz operators T, : A2 — A2 in terms of an {’-condition involving a
hyperbolic lattice of ID. More recently, Zhu [71] gave an alternative characterization

in terms of L7 (ufﬁ)-integrability of the Berezin transform of 7, in the widest
possible range of the paremeters p and «. We refer to [69, Chapter 7] for the theory
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of Toeplitz operators 7, acting on A2 and to [13,49] for descriptions in terms of
Carleson measures and the Berezin transform of bounded and compact Toeplitz
operators 7, : Al — Al,1 < p,q < 0. The Berezin transform of a bounded linear
operator T : A2, — A2, is

T(z) = (T(¥), ) 42,0 (7.1)

where by = are the normalized reproducing kernels of A2. Given 0 < p,q <

B
BN,
oo and a positive Borel measure yu on D, we say that y is a g-Carleson measure
for Al if the identity operator Id : Al, — LZ is bounded. A description of g-
Carleson measures for A, induced by doubling weights was recently given in [55],
see also [60].

One of the main purposes of this study is to characterize, in terms of Carleson
measures and the Berezin transform 7~;, those positive Borel measures p such that
the Toeplitz operator 7, : Al, — Al, where 1 < p,q < co and w € R, is bounded or
compact. We also describe Schatten class Toeplitz operators 7, : A2 — AZ in terms
of their Berezin transforms and show how this result can be used to study Schatten
class composition operators induced by symbols of bounded valence.

A simple fact that is repeatedly used in the study of Toeplitz operators on stan-
dard Bergman spaces A}, is the closed formula (1 —z{ )~ (2+4) of the Bergman repro-
ducing kernel of A2. This shows that the kernels never vanish, and allows one to
easily establish useful pointwise and norm estimates. However, the situation in the
case of A2, with w € R is more complicated because of the lack of such an explicit
expression for BY. In fact a little perturbation in the weight, that does not change
the space itself, might introduce zeros to the kernel functions [67]. This difference
causes severe difficulties in the study related to Toeplitz operators on Af,, and forces
us to circumvent several obstacles in a different manner. We will shortly indicate
the main tools used in the proofs after each result is stated.

We need a bit more of notation to state our first result. For each 1 < p < o0
we write p’ for its conjugate exponent, that is, l + l, = 1. The Carleson square
S(I) based on an interval I on the boundary T of ]D is the set S(I) = {ret € D :

et € I,1—|I| <r < 1}, where |E| denotes the Lebesgue measure of E C T. We

associate to each a € D\ {0} the interval I, = {e : |arg(ae )| < 1_7‘”}, and
denote S(a) = S(I,).

Theorem 11. Let 1 < p < g < 0o, w € R and y be a positive Borel measure on ID. Then
the following statements are equivalent:

(i) Ty: AF, — Al is bounded;
(i) — 7
w(S(:))

) g,
+771

'vsb—‘ "\

(p+q )

(iii) pisa -Carleson measure for A3, for some (equivalently for all) 0 < s < oo;

(iv) —CL0
p
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Moreover,

7O ol u(s()
W Tull agng, = | — 52| =l o) < T IiT
w(S())P T e AL, 7 w(S()" 7 ||

The equivalence between (ii) and (iv) shows that the Berezin transform 7~'ﬂ be-
haves asymptotically as the average u(S(:))/w(S(+)). By using Fubini’s theorem
and the reproducing formula

Li(f) = £(z) = (£,B) = [ FOBEQDw()dAQ), feal, (2

we deduce

(Tu(f): &) a2, = <f/8>L,% (7.3)

for each compactly supported positive Borel measure y and all f, g € A2,. This iden-
tity shows that Carleson measures and Toeplitz operators are intimately connected,
and thus the use of Carleson measures in the proof of Theorem 11 does not come
as a surprise. Another key tools in the proof are the LP-estimates of the kernels
BY, obtained in [57, Theorem 1], and a pointwise estimate for By’ in a sufficiently
small Carleson square contained in S(z), given in Lemma 3 below. We also prove
a counterpart of Theorem 11 for compact Toeplitz operators. This result is stated
as Theorem 15 and its proof relies, among other things, on the duality relation
(AL)* ~ Az,/ under the pairing (-, ) 42, valid for all w € R [57, Corollary 7].

To describe the positive Borel measures such that 7, : AP — AT is bounded
on the range 1 < g < p < oo, we write 0(a,z) = |¢a(2z)| = |{==|, for the pseu-
dohyperbolic distance between z and a, and A(a,r) = {z : 0(a,z) < r} for the
pseudohyperbolic disc of center a € D and radius r € (0,1).

Theorem 12. Let 1 < g < p < oo, 0<r <1, w € R and u be a positive Borel measure
on ID. Then the following statements are equivalent:

(i) Tu: AP — AT s compact;

(it) Ty AP — AT is bounded;

Pq

0 ) = e 1

(iv) pisa (p +1- §>—Carleson measure for AL

41—
() Id: AP, — Li 1 is compact;

~ e
(i) T € LL 7.

Moreover,
=N p+1-E ~
I Tull ap g0 =< Ml e <10 7 STl o
v Ly ap—L LE
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Apart from standard techniques, such as a duality relation for Bergman spaces
and the use of Rademacher functions along with Khinchine’s inequality, the bound-
edness of the maximal Bergman projection

P (f)(2) =/1D|f(€)IIB§’(C)Iw(€)dA(C)

on L!, for p € (1,00) and w € R [57, Theorem 5] plays a crucial role in the proof of
Theorem 12. Another important fact employed is that, even if the kernels may van-
ish, by Lemma 4 for each w € D they obey the relation |BY’| < B (a) on sufficiently
small pseudohyperbolic discs centered at a. This is used when (iii) is considered,
but (iii) involves pseudohyperbolic discs of all sizes, and therefore a suitably chosen
covering of ID will be used to deal with this technical obstacle.

As for the statements of our results on Schatten classes, some notation are in
order. The polar rectangle associated with an arc I C T is

R(I) = D: —el,1-—<|z 1-— .
(I) {ze He = |z] < pp

Write z; = (1 — |I|/27)&, where ¢ € T is the midpoint of I. Let Y denote the family
of all dyadic arcs of T. Every arc I € Y is of the form

o 21k 2(k+1
I”/k—{elezzng9<(2n )},

where k =0,1,2,...,2" —1 and n = N U {0}. The family {R(I) : I € Y} consists of

pairwise disjoint rectangles whose union covers ID. For [; € Y\ {Ipo}, we will write
zj = zJ;. For convenience, we associate the arc Iy with the point 1/2. Given a radial

weight w, we write

w*(z) = /1 w(s) log |z—|s ds, zeD)\{0}.

|zl

Theorem 13. Let 0 < p < 00, w € D and u be a positive Borel measure on ID. Then the
following statements are equivalent:

(i) Ty belongs to the Schatten p-class Sp(AZ);
R;
(ii) ZR €Y ( ”(( ))> < 0o,

(iii) WAL e ))) belongs to LP ((1 B )for some (equivalently for all) 0 < r < 1.

Moreover,

b HRY)\' (A=) dA()
ﬁ'*’}%(w*(z]«)) =L (o) ae

If w € R such that WO s also a regular weight, then T, € Sp(A2) if and only if

a=Ip=_
Ta € L er nd [Tl = | Tall

w/w*’ o .
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The equivalence of the first three statements were proved in [56, Theorem 1],
and hence the novelty of Theorem 13 stems from the last part involving the Berezin

transform. The hypothesis ( wi( ))2 € R is not a restriction for p > 1, and for w(z) =

-
(1 —z|?)* it reduces to the inequality p(2+ «) > 1. Therefore Theorem 13 is an
extension of [69, Theorem 7.18], see also [71]. Since each standard weight is regular,

the cut-off condition = (I ?)2 € R is in a sense the best possible.

The proof of the last statement of Theorem 13 for p > 1 follows by standard
techniques once the pointwise kernel estimate given in Lemma 4 is available. How-
ever, the proof for 0 < p < 1 is more involved because the reproducing kernels
of A% with w € R do not necessarily remain essentially constant in hyperbolically
bounded regions, a property which the standard kernels (1 —z)?** trivially admit
and is used in the proof of [69, Theorem 7.18] concerning the weighted Bergman
spaces A}. This obstacle is circumvent by using subharmonicity and estimates for
the AP-norm of BY for doubling weights w,v € D, obtained in [57, Theorem 1].

Theorem 13 can be applied to study Schatten class composition operators when
the inducing symbol ¢ is of finite valence. To state the result, some more notation
and motivation are in order. For an analytic self-map ¢ of D, let { € ¢~!(z) denote
the set of the points {{,} in ID, organized by increasing moduli and repeated ac-
cording to their multiplicities, such that ¢({,) = z for all n. For a radial weight w
and ¢ as above, the generalized Nevanlinna counting function is

Nopwr(z) =}, w* (), zeD\{p(0)}.
feel(2),

In [56, Theorem 3] it was shown that, for each w € 13, the composition operator
Cy belongs to the Schatten p-class Sp(AZ) if and only if Ny~ € L7 (Ufﬁ)
This condition might be difficult to test in praxis because of the counting function

Ny,+- Therefore it is natural to look for more workable descriptions. As for this, we
observe that by using [57, Theorem 1] one can show that the Berezin transform of

oty O
|z| = 17, characterizes compact operators C, : A2 — A2 when w € R by [56,

Theorem 20 and Lemma 23]. Therefore one may ask how close is the condition
14
w*(2) ) 2 w(z)
dA(z) < o0 7.4
b (Fomm) e 7

to describe Schatten class composition operators? The next result shows that this is
a description in the case p > 2 under the hypothesis of ¢ being of bounded valence.

CyCy behaves asymptotically as %{{58)), and moreover, the condition

Theorem 14. Let 2 < p < oo and w € R, and let ¢ be a bounded valent analytic self-map
of D. Then Cy € Sy(A2,) if and only if (7.4) holds.

Theorem 14 is an extension of [70, Theorem 1.1] to the setting of regular weights.
If w(z) = (1 —|z|?)%, then the statement in Theorem 14 is not valid for p(a +2) <
2 because in this case the condition (7.4) fails for all analytic self-maps ¢. More
generally, by using [54, p. 10 (ii)] one can show that if w € R and p is small enough,
then (7.4) fails for each ¢. Moreover, [66, Theorem 3] shows that the statement in
Theorem 14 does not remain valid for w = 1 without the additional hypothesis
regarding the valence of ¢.
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It is easy to see that each regular weight w satisfies w(r) =< w(t) whenever
1 —r =< 1—t. This asymptotic relation shows that w € R must be essentially con-
stant in each hyperbolically bounded region, and hence, in particular, w may not
have zeros. This apparently severe requirement does not cause too much loss of

generality in our study. This because in the next section we will show that if w € D
satisfies the reverse doubling property @(r) > C (1 - %) for some K > 1 and
C > 1, a condition that is satisfied for each w € R, then there exists a differentiable
strictly positive weight W € R such that || - || ar and Il Ap, are comparable. In Sec-
tion 7.2 we also discuss the kernel estimates and other auxiliary results. Section 8.3
is devoted to the study of bounded and compact Toeplitz operators. Schatten class

Toeplitz and composition operators are discussed in Sections 7.4 and 7.5, respec-
tively.

7.2 POINTWISE AND NORM ESTIMATES OF BERGMAN REPRO-
DUCING KERNELS

We begin with considering the classes of weights appearing in this study and their
basic properties. Then we will prove several pointwise and norm estimates for
the reproducing kernels, and finally an auxiliary result on weak convergence of
normalized kernels is established.

The first auxiliary lemma contains several characterizations of doubling weights
and will be repeatedly used throughout the rest of the paper. For a proof, see
[51, Lemma 2.1]. All along we will assume @(r) > 0 for all 0 < r < 1 without
mentioning it, for otherwise Al, = H(ID).

Lemma B. Let w be a radial weight. Then the following conditions are equivalent:
(i) w € D;
(ii) There exist C = C(w) > 0and B = B(w) > 0 such that

~ 1—-r\P _
w(r)<cC 17 o), 0<r<t<l;

(iii) There exist C = C(w) > 0 and v = y(w) > 0 such that

t /1 —t¢ v
/’( ) w(s)ds < Cat), 0<t<1;
o \1-—s

(iv) The asymptotic equality

is valid;
(v) w*(z) < @(z)(1—|z|),
(vi) There exists A = A(w) > 0 such that

[ i = 28 e,
D

|1 _ZZ|/\+1

z| =17
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(vii) There exists C = C(w) > 0 such that the moments wy, = fol r"w(r) dr satisfy the
condition wy, < Cwyy,.

We next briefly discuss radial weights having a kind of reversed doubling prop-
erty, and then show how this is related to the pointwise condition that defines the

class R of regular weights. More precisely, we show that if w € D satisfies the
reverse doubling condition appearing in part (i) of Lemma 8.7 below, then one can
find a strictly positive n times differentiable weight which belongs to R and induces
the same Bergman space as w. The next lemma can be find in [59].

Lemma C. Let w be a radial weight. For each K > 1, let p, = p,(w, K) be the sequence

defined by @(py) = @(0)K™", and for each p € R, write wig(z) = w(z)(1 — |z|). Then
the following statements are equivalent:

(i) There exist K = K(w) >1land C = C(w) > 1 such that C/L\)(I’) > Ci (1 — %)ﬂ)r
alo<r<1;

(ii) There exist C = C(w) > 0and B = B(w) > 0 such that

au)gc<1‘t

B
—r) w(r), 0<r<t<i;

(iii) For some (equivalently for each) B € (0,00), there exists C = C(B,w) € (0,1) such

that
[raop —npf-1at

1—7)p <Cw(r), 0<r<l
—r

By Lemma 8.7 and [54, Lemma 1.1] each w € R satisfies the reverse doubling

condition.The next result shows that if w € D satisfies the reverse doubling condi-
tion, then there exists a continuous and locally smooth weight W that induces the
same Bergman space as w.

Proposition 1. Let 0 < p < co and w € D, and write W(r) = W, (r) = &(r)/(1—71)
forall 0 < r < 1. Then ”fHA€v = Hf”AZ for all f € H(D) if and only if w satisfies the

reverse doubling condition appearing in part (i) of Lemma 8.7.

Proof. Since w belongs to D by the hypothesis, so does W. Therefore ||f|| Al =<
||f||A£ forall f € H(ID) by [55, Theorem 1] if W(S(a)) =< w(S(a)) foralla € D\ {0}.
Since w and W are radial, this is the case if

w(t) 1 N
—dt < < .
cﬁ(r)l—tdt w(r), 0<r<1

W) =a0) [

If now w € D satisfies the reverse doubling condition, then Lemma E(ii) and
Lemma 8.7(ii) applied to the middle term above imply the asymptotic equality we
are after.

Conversely, assume that w € D and Hf||A$V = Hf||A£ for all f € H(ID). Write

A
fa(z) =(1— Ez)_%l for all 4 € D. By Lemma E(vi) there exists A = A(w) > 0 such
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that

w(a) / w(z) p P / ! w(r)
= dA(z) = = = d
T Jat o Lz 4 = Wl =< Wellag = Jy @ pampc— @
! w(r) &(r)
> / dr 2 ,
jaf (1= 1a[r)*(1—7) (1 =[]+
and thus w satisfies the Lemma 8.7(iii) with = 1. O

Consider now w € D satisfying the reverse doubling condition. Then Af, = Ang
and W, € R by the first part of the proof of Proposition 1. The weight W, is
continuous and strictly positive. Further, the differentiable weight W, (r)/(1 — r)
belongs to R and induces the same Bergman space as w. Therefore, by repeating
the process, for a given w € D satisfying the reverse doubling condition, we can
always find a strictly positive n times differentiable weight that induces the same
Bergman space as the original weight w. Therefore assuming w € R instead of the
two doubling conditions is not a severe restriction in our study.

The true advantage of the class R is the local smoothness of its weights. It is
clear that if w € R, then for each s € [0,1) there exists a constant C = C(s,w) > 1
such that

Clw(t) <w(r) < Cw(t), 0<r<t<r+s(l—r)<l. (7.5)
Therefore, for w € R and r € (0,1),
w(S(z)) <x@(z)(1— |z]) < w(z)(1— |z|)2 =w(A(z,1)), zeD, (7.6)

where the constants of comparison depend on w and also on r in the last case.
This observation finishes our discussion on basic properties of different classes of
weights.

We next turn to kernel estimates. In order to prove our main results, and in
particular to deal with the Berezin transform of a Toeplitz operator, we will need
asymptotic estimates for the norm of the Bergman reproducing kernel in several
spaces of analytic functions in ID. The next result follows by [57, Theorem 1] (see
also [54, Lemma 6.2]), Lemma E and (7.6).

Theorem B. Let w,v € D,0 < p < coand n € N U {0}. Then

2| v(t)
w\(n)||pP - —
|(B2)! )||A5 A/o S0P (1 — D dt, |z| —1". (7.7)

In particular, if 1 < p < oo, w € Rand r € (0,1), then
Iy = =y = —
Ao T w(S@)PT T w(B(z )t

As usual, we write H* for the space of bounded analytic functions in D, and
B stands for the Bloch functions, that is, the space of f € H(ID) such that ||f||z =

sup.ep | f/(2)[(1 = |z]) +[f(0)] < oo.

Lemma 2. Let w € D. Then

IIB zeD. (7.8)

1B 15 = —
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Proof. Since

© Z\n 0 n—1l=n
5@ mey-r " e,
n=0 n

= 2wy

the estimate [57, (20)], with p = 1, N =2 and r = |z\2, together with Lemma E
yields

|Z|2(TZ 1 |Z 1
[(BY) ()] =< - i
1 / “na-m (7.9)
o)1~ PP aJ(S(z))(l_|z|)' 2| =17,
and hence 1
w(5(2)) S|IBC B,z — 1.

Since ||BY||g < 2 ||BY|| gy, it remains to establish the desired upper estimate for the
H®-norm. To see this, observe first that

|BY(C i , z,{eD.

Then, by using again the estimate [57, (20)], but now with p =1, N =1and r = |z,
it follows that

2 |z|" J2] dt 1
1B 1o < == = o =1
z IIH ngb 0 (U(

H1-1)? " w(S(z)

This finishes the proof. O
We next establish two local pointwise estimates for the Bergman reproducing

kernels. To do this, for each § € (0,1] and a € D\ {0}, write a5 = (1 — (1 —

|a|))e'@8?. Then ay = a, |as| > |a| for all 6 € (0,1), and limy_,o+ as = a/|al.

Lemma 3. Let w € D. Then there exist constants ¢ = c(w) > 0 and 6 = &(w) € (0,1]

such that
|By (z)| =

w5’ z € S(as), a€D)\{0}. (7.10)

Proof. By Theorem B there exists a constant C; = C;(w) > 0 such that HB‘in\z >
C1/w(S(a)) for alla € ID \ {0}, and hence

|B7'(2)] 2 By (as)| — |B3 (as) — By’ (2)] = [BY oo (v laas )| — By (a5) — By (2)]

_ ||pw 2 w w G w w

= ‘B o] A%)_|Ba (a(;)—Ba (Z)| > m_|3u (ué)_Bu (Z)|
C w w

> W(la)) — By (as) — By’ (z)|, zeD.

(7.11)
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Moreover, by (7.9) and Lemma E,

By (as) — B ()| < sup [(By) ({)l|z —as| <26(1—la]) sup [(BY)'(0)]
C€las z] C€las 2]

<s(1—Ja)) Y 2 <

By combining this with (7.11), and choosing § = C;/2C, we deduce the assertion
forc=Cy/2. O

Lemma 4. Let w € D. Then there exists r = r(w) € (0,1) such that |BY(z)| =< BY(a)
foralla € Dand z € A(a,r).

Proof. The proof is similar to that of [54, Lemma 6.4]. First, use the Cauchy-Schwarz
inequality, Theorem B and Lemma E to obtain

1 1
n 2n 2 2n 2
B oz |z |a| — (BY() 1} B ()2
|By (2)] _ZTMH < ;T%H ;726«}2%1 |By (a)]2|BY (z)]
BY@)|?  _  |BY(a)|2
Vo) (1-1z])  o(a)(1—la])

for all a € ID. This gives the claimed upper bound. To obtain the same lower bound,
let r € (0,1) and note first that

(7.12)

=

= |Bi(a)l, zeAar),

B3 (2)| = By (a)] — max |(By')'()]|z — af
g€laz]

> |B7 (a)] - max [(B) (Q)IrC(1 — |al),
where C = C(r) > 0 is a constant for which sup,_,_, C(r) < oo for each ro € (0,1).
Now the Cauchy integral formula and a reasoning similar to that in (7.12) yield

By (a)]

max |(BY)’ <|“ , aeD,

max (B (O £ T

and the desired lower bound follows by choosing r sufficiently small. O

The last aim of this section is to show that for each w € R, the normalized
reproducing kernels by, = BY /|| BY || ar, converge weakly to zero in Al as |z| = 1.
To do this, the following growth estimate is used.

Lemma5. Let 0 < p < coand w € D. Then

If(Z)|—0< ! ) 2 =17,
(@(2)(1— 2]))?

forall f e AL,
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Proof. Let f € Af, and e > 0. Then there exists r € (0,1) such that

€> /1 M;(s,f)sw(s) ds > Mz(r,f)r@(r),

which together with the well-known estimate

Mp M/ f
Moo(r,f)g(zl), 0<r<i,
(1—r)r
and the hypothesis w € D yields the assertion. O

The proof of the weak convergence we are after relies on the following known
duality relation [57, Corollary 7].

Theorem C. Let 1 < p < oo and w € R. Then (Al,)* ~ Afj,,, with equivalence of norms,
under the pairing

(.80 = [ FEEE0E AAR). 7.13)
With these preparations we can prove the last result of the section.
Lemma 6. Let 1 < p < o0 and w € R. Then by, — 0 weakly in AL, as |z| =17

Proof. Let1 < p < co and w € R. By Theorem C it suffices to show that

o | 1s@)l -
’< pz,g>Aa TBe] .0 =0, |z|—=17,
forall g € Af,,. But since ||B§"||Zp = (@(z)(1 — |z|))*? by Theorem B, and 1 — p =
—p/p’, the assertion follows by Lemma 5. O

7.3 BOUNDED AND COMPACT TOEPLITZ OPERATORS

The main objective of this section is to prove Theorems 11 and 12, stated in the
introduction, and establish a characterization analogous to Theorem 11 for compact

operators 7y : AP — AL, given as Theorem 15 below. We begin with the following
technical result.

Lemma 7. Let u be a finite positive Borel measure on ID. Then (7.3) is satisfied for all
flz) =00 f(n)z" and g(z) = Y50 §(n)z" such that f € H® and Y)"_ |3(n)| < co.

Proof. Fubini’s theorem and the dominated convergence theorem yield

T = tim [ ([ OB ) (@) ) o) dAGw)

s—=17 J|u|<s

~ i [0 ([, . g(u)B‘g"(u)w(u)dA(”)> an(Q)

s—1—

n S 2n+1 -
= 1m [ £ ( e )dy@): | f@s@an(@),

and the assertion is proved. O
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Recall that b’ = BY'/||BY|| 42, for all z € D. If y is a finite positive Borel measure

onD and w € D, then by using the definition (7.1) of Berezin transform, Lemma 7
and Theorem B, we deduce

I1B117

Tu(z) = (T(09),2) 4o, = e =@ (56) |BSI2,, zeD. (7.14)
z AZW

We now embark on the proofs by considering the cases p < g and p > g sepa-
rately.

73.1 Casel<p<g<oo

We first consider bounded Toeplitz operators.

Proof of Theorem 11. Since %17/ > 1by the hypothesis g > p, the equivalence (iii)<>(iv)

and the estimate
(pﬂ/ )

(R

s(p+g') = sup +L,

AL, IeT w(S(1))

follow by [55, Theorem 1], see also [60, Theorem 3] and [54, Theorem 2.1].
If Ty : Al, — A{, is bounded, then Holder’s inequality and Theorem B yield

u(s(I 2

Tue)| = | Tt 1) | <

[ 7,(62) HAq ||bw||Aq = ||7;‘||A”AA'4 ||bw||A” waH

B[] ap, 1Bl 1o w(S(z))

= HnHAfO—m ||Bw||345, = || VHA£,—>AZ,

STl ap -t , zeD,

7;(1-
w(s(-)?

Assume next 7&
w(S(-)"
Lemma 3. Then Theorem B and (7.14) give

and hence | — 20| < |17y

&\‘ |

€ L*, and let 6 = §(w) and ¢ = c(w) be those of

< 1B 1% Tu(2) = 1B I

> [ @R > 2EEED z Doy,

and hence 1(S(zs)) < ’ﬁ(z)w(S(z)) for all z € D\ {0}. It follows from Lemma E
that

Tu()
+%1

and hence (ii)=(iv).
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!
If now pisa %—Carleson measure for A}, that is, y is a 1-Carleson measure

p !

q
for A[Z,”/ by [55, Theorem 1], then Lemma 7, [60, Theorem 3] and Holder's inequality
yield

(Ta(F) 8

< [ @8 du) S 1) Ly ( A |f<2)g(2)|ﬂ"’w<2)dA(Z)> )

7
AL —L}

Sl Wfllag 81

p+q’
ASTT L

for all polynomials f and g. Since polynomials are dense in both Af, and AZ:,

and (Al)* ~ AZ; by Theorem C, it follows that 7 : AP — Al is bounded and
rq

||7;,HA5J%AZ) < || 14]] ;%/7, - This is the right upper bound for s = s and the
Aw T =Ly
general case follows by an application of [60, Theorem 3]. g

Now we turn to compact Toeplitz operators.

Proposition 2. Let 1 < p < g < coand w € R. If T : AL, — Al is a compact linear
operator, then

lim I(z)

=0.
T (s ()

-1

Proof. Since b?’,z — 0 weakly in Al as |z] = 17, by Lemma 6, and T : Al — Al is
compact, and in particular completely continuous, by the hypothesis, we deduce

|7 (bi:)

By Holder’s inequality this implies

(7 (1) )

Moreover, by Theorem B,

—0 zl - 1.
AZ] 4 ||

=0, |z|=>1".

1 1
||B§OHA” HB;UH g = 1 1 1 1
B R € B ) Rk~ e e B )
1 1
X”B,‘ZUHZZ(U 1_1_1 1_1_1 XHB;’H‘?‘L% 1-1_17
wiEz) P rd-=z) 77 w(S(z)) 7 7

and hence

T(2)] w(5(2)

and the assertion is proved. O



The following result is the analogue of Theorem 11 for compact Toeplitz opera-
tors.

Theorem 15. Let 1 < p < g < oo, w € R and y be a positive Borel measure on ID. Then
the following statements are equivalent:

(i) Ty: Al — Al is compact;

Tu

—

(ii) Timy - D=0
w(S@)" 7
s(pt')
(iii) 1d : A;, — L,"" is compact for some (equivalently for all) 0 < s < oo;

(I'U) hm“‘_>0

Proof. The equivalence (iii)< (iv) follows from [60, Theorem 3], see also [54, Theo-

rem 2.1]. If 7, : Al, — Al is compact, then limy, - 7747(12)

I_

w(s(z)? T

sition 2. Assume next that (ii) is satisfied, and let § = é(w) € (0,1) be that of
Lemma 3. By the proof of Theorem 11, there exists a constant C = C(w) > 0 such

that 1(S(zs5)) < Cﬁ(z)w(S(z)) for all z € D\ {0}. By applying Lemma E, and

= 0 by Propo-

letting |z| — 17, it follows by the assumption (ii) that lim;|_,;- % =0, and
w(S(z)) P
s(pte')
thus Id : A3, — L, " is compact by [60, Theorem 3].
s(p+q)

Assume now that Id : A}, — L, " is compact for some (equivalently for all)
mﬂl , ptd’

0 < s < co. Then, by [60, Theorem 3], Id : A, — L,” and Id : Al — L,"
are compact. Let {f,} be a bounded sequence in Af,. Then the proof of [54,
Theorem 2.1] shows that there exists a subsequence {fy, } and f € Al such that
limy oo [ fy — Il iy = 0. Write pr = xp(o)p for 0 < r < 1. Then Theorem 11

!

L7
yields
T e = W ag, < W T e = PN a0, + 1T = T ) g = )l g,
ST G = H)llag, + 1T = Tl ag s

where
S(I)\ D(0, S(I _
||7;¢ 77747HA57HAZ) 5 sup “Ll( ( )\ l(Jr 17’)) S sup % —)0, r — 1 ,

Cw(s)rtT s w(s(n)
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p+q’

by Theorem 11 and [60, Theorem 3], because Id : AL, — L/ 7 s compact by the
hypothesis. Moreover, (7.3), Theorem 11 and Holder’s inequality yield

Tor o = 8012 < [ 1 = @) d1r(2) < i = I g 8] e
Llqu Ll‘rp

< Hf”k _fH p+q HIdH .t Hg”Aq/

LT AL —L,’ ¢

S W = S e TN g (18-

L, 7 AL—L, P ¢

Since (Al)* ~ AZ: by Theorem C, we obtain
1T o= Ol s, = sup (T (o = £, 802

sl <1}
<l iy o = fl iy =0 k= 0.
AL =L, " L, e
Thus 7, : Al, — Al is compact, and the proof is complete. O

732 Casel<g<p<oo

We begin with constructing appropriate test functions to be used in the proof of
Theorem 12. To do this, some notation is needed. The Euclidean discs are denoted
by D(a,r) = {z € C : |a—z| < r}. A sequence Z = {z}p, C D is called
separated if it is separated in the pseudohyperbolic metric, it is an e-net for € € (0,1)
if D = Uy A2k, €), and finally it is a d-lattice if it is a 50-net and separated with
constant 6 /5.

Proposition 3. Let 1 < p < oo, w € R and {zj}‘?" 1 CID\ {0} be a separated sequence.

Then F =} 1c]b“’ € Al with ||FHA‘;; < ||{c] % 1\ler for all {c] °, €L

Proof. Let {c;}2; € {/,0 <r <landz € D(0,p) with 0 < p < 1. Then Holder’s
inequality and Theorem B yield

[0 9)

1/p'
S Hejbzalle (Z W(A(ijr))|3fz‘;(z)|p,> < C(w, p)[Hej} il rw (D),

j=1
and hence F € H(ID). Moreover, by Holder’s inequality, Theorem B, (7.6), the
subharmonicity of |g|¥ and (7.5),

]Pr

Oof 8( j)
1B ap,

S Il (f: /Mz ;

]/

0 vy
S e} ller (z%am (zj,7)Ig(z))I? )
=
1/p
8(2)]” dA(z))

o 1y
= HejiZaller (;/ 8 2)|P wi(z )dA(Z)> S Hedizalleligh
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where in the last step the fact that each z € ID belongs to at most N of the discs
A(zj,r) is also used. Therefore F defines a bounded linear functional on Al with

norm bounded by a constant times ||{C] © 1ller. Since (Ap )* ~ Al, by Theorem C,
this implies F € A, with ||FHA5} < ||{C/}]:1||gp. O

Proof of Theorem 12. Write x = x(p,q) = p+1— s for short. Assume first (ii). Take
{a;}52, C D\ {0} a separated sequence. Then Proposition 3 gives

(o)

By replacing cy by r¢(t)ck, where r; denotes the kth Rademacher function, and ap-
plying Khinchine’s inequality, we deduce

q

N ||7;t‘|:£;ﬁAsz{Cj};O:1HZP'
Al

q/2
I Tll%, r_ar IHE 2 1l N'/D <Zc]| [T (bp.a;) (2 )I2> w(z)dA(z)

J
2Ll [, Tl e aAE), 0<s<1,
= i
(7.15)

where in the last step the fact that each z € ID belongs to at most N = N(s) of the
discs A(aj, s) is also used. By using the subharmonicity of |774(b‘r;',aj) |7 together with
(7.5) and (7.6), and then applying Lemma 4 and Theorem B, we obtain

/A(a s)

Tt @) dAR) 2 0 (A(a;»s)) Talb) @)
— a]’ w 2
- |Bw” L[ msora)

‘U(A(“jfs)) w (72 !
2 g, (/A o |B@) dﬂ(é))

j/
w (A(aj,s))
8217,

q
o). v
w aj,s Poa

where r(w) is that of Lemma 4. This together with (7.15) yields

vV

1 (B(aj, )" |Bg (aj) >

X

q
o 1 (A(aj,s)) o
xcj|q< 1)) ST, el 0 <s <rw). (16
j=1 w (AMaj,s)) 7

=

Let now s € (r(w),1) and Z = {z]-}]?’i1 C D\ {0} a é-lattice with 56 < r(w). For
each z; choose N = N(s,7(w)) points z;; of the d-lattice Z such that A(z;,s) C
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UY_,A(zgj, 7(w)). Then, by (7.5), (7.6) and (7.16),

o § T e N A(zyj r(w))
2%"7( <V(A(Z] ? ) SL L lel d w)
= w

1
A(z,s)) 't

. 1+1
CU (MG @)
Il o e Y2l
Therefore (7.16) holds for each 0 < s < 1 and any J-lattice {zj}]?';l C D\ {0} with
56 < r(w). The classical duality relation (ﬁ’/ q >* ~ (7 now implies

qr

- A(zj,s " ad A(z;,s P
Z(M) w<A<z]»s>)=Z( B ));) STl

=\ (aG9) 7

Let 0 < r < 1, and choose s = s(r,4) € (0,1) such that A(z,7) C A(zj,s) for all
z € A(z;,56) and j € N. Then (7.5) and (7.6) imply

_y w(z]-) i
= q /A(ZM)MA(Z r)7T dA(z) 717

qr

5 u(A(z,»s))qf” . (  (8(z,,9)) )

w (A(zj,s))1+57%

Thus (iii) is satisfied and ||y,|| HTHHAp _, a1, for each fixed 0 <7 < 1.

Assume next (iii). By usmg the subharmonicity of |f|* together with (7.5) and
(7.6), and then Fubini’s theorem and Holder’s inequality we deduce

y Jaon F@F@(©) dAQ)
/ QI / w (A(z,1)) #z)

_ [ rAG) . L
= Jow(a,n) @ w@)dad) < Hf”AZHVrHL%

Therefore pis a (p+1— %)—Carleson measure for Afz,, that is, (iv) is satisfied,
and [|Id||*, ¢ S ||l a2 . In fact, it follows from [21, Theorem 3.2] and [54,
Aw—)LH L£—q

Lemma 1.4] that Id : Af, — L;‘, is bounded if and only if (iii) is satisfied.
The equivalence (iv)<(v) follows from [60, Theorem 3].
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Let us now prove (iv)=-(ii). Since u is an x-Carleson measure for Al by the
hypothesis (iv), Lemma 7, Holder’s inequality and [60, Theorem 3] together with

the equality % = ;‘—: give

(Tu(f),8) a2,

< [ 1f@)()1dn(z) < If; sy
< ||1d Ll s / 7.18
1961 g 141y 151, 11 7.18)

S Al gy 14z, N8l

for polynomials f and g. Since polynomials are dense in both AZ: and Al,, and
(AZ,)* ~ AT by Theorem C, it follows that 7, : AP — Al is bounded and
I Tall g ag, S 1413

The implication (ii)=-(i) follows by a general argument. Namely, for 1 < p < oo,
A?, is isomorphic to ¢7 by [43, Corollary 2.6] and Lemma B. Moreover, each bounded
linear operator L : {F — ¢9,0 < q < p < oo, is compact by [38, Theorem I. 2.7, p. 31].
Thus 7, : Al, — Al, is compact.

It remains to prove (iii)<(vi) and the equivalence of norms || ;|| o < || 7; |
L£ Ly
_ e
for each fixed r € (0,1). Assume 7, € L{,?, and let first r € (0,r(w)], where r(w) is

that of Lemma 4. Then Lemma 7 and Theorem B give

Tule) = [ I@Pdu@) > [ 16Q)P () = 102 () Pr(AG ) = fir(z).
(7.19)

Hence ji, € L” i and ||7ir|| 4

||7;,|| . Let now r € (r(w),1), and let {z;}
Lii

be a é-lattice. Further, let s = s(7,9) be that of (7.17), and choose ' = 7'(r(w))

such that A(z,7") C A(w,r(w)) for all z € A(w,7’) and w € D. Furthermore,

choose 27 € A(zj,s), n =1,...,N, such that A(z,s) C UN A(z 7 r") for all j and

inf; Ny, £ Q(z zj m > 0. Then (7.17), Lemma E, Lemma 4, Theorem B and (7.14)

yleld

P MG e N ( A(Z}W’)))qpr
HV HLW N];l w(A(Zj,S))%fl N];n;lw( (Z],S)) w(A(zj,s))
© N ap
= L L @la )
j=1n=
© N %
“L Y i ( Jusn Ib‘z"(é)Izdﬂ(é’)> (2)4A(2)

qr

LY i (30) 7 w246 < 17075,
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Now assume (iii), and let & be a positive subharmonic function in ID. Then (7.5),
(7.6) and Fubini’s theorem yield

Amwwwsﬁ(ﬂfhyAmmoM@QW@

- w(0) .
B /lD </A<z,r) h(g)w(A(C,r))dA(g)) dp(z) = /Dh(é)yr(é)w(é) dA(Q).

This together with (7.14), Theorem B, and Lemma 2 yield

)= [ @@ S [ 100 PR (@) dAR)

- [l “<>@wmo
IB¢|1%
‘B HH°° dA - P+ ~
< ||B“’|| | e Jw(8) dA(L) = Pg (7ir)(2).
e g
But P : L}, " — L/, " is bounded by [57, Theorem 5] because p q >land w € R,
and hence _
<IP* (i < )
Il s, S NBS G s, 5 ] s, < oo
This finishes the proof. O

7.4 SCHATTEN CLASS TOEPLITZ OPERATORS

The purpose of this section is to prove Theorem 13, or more precisely, the last part
of it, and then show that it can not be extended to the whole class D of doubling
weights. We begin with some necessary notation and definitions, and preliminary
results which are well-known in the setting of standard weights [69].

Let H be a separable Hilbert space. For any non-negative integer #, the n:th
singular value of a bounded operator T : H — H is defined by

An(T) =inf {||T — R|| : rank(R) < n},
where || - || denotes the operator norm. It is clear that
HT” = AO(T) > /\1(T> > /\Z(T) > ... >0.

For 0 < p < oo, the Schatten p-class S,(H) consists of those compact operators
T : H — H whose sequence of singular values {1, }}°_, belongs to the space ¢ of p-
summable sequences. For 1 < p < oo, the Schatten p-class S, (H) is a Banach space
with respect to the norm |T|, = [[{An}5_oll¢r. Therefore all finite rank operators
belong to every S,(H), and the membership of an operator in S,(H) measures in
some sense the size of the operator. We refer to [23] and [69, Chapter 1] for more
information about S,(H).

The first auxiliary result is well known and its proof is straightforward, so the
details are omitted.

Lemma D. Let H be a separable Hilbert space and T : H — H a bounded linear operator
such that Y, |(T(en),en) | < oo for every orthonormal basis {e,}. Then T : H — H is
compact.

75



The next result characterizes positive operators in the trace class S (A2,) in terms
of their Berezin transforms.

Theorem 16. Let w € Dand T : A2 — A2 a positive operator. Then T € Sy (A?2)) if and
only if T € L] /- Moreover, the trace of T satisfies

w(z)

tr(T):/DT(Z)HB;’Hiéw(z)dA(z)x/]DT(z)w*(z) dA(z).

Proof. The proof is similar to that of [69, Theorem 6.4], and is included for the
convenience of the reader. Fix an orthonormal basis {e,}% ; for A2. Since T is
positive, [69, Theorem 1.23] and Lemma D show that T € S;(A2) if and only if
Yo—1(T(en), en) 42 < oo, and further, tr(T) = L2 1(T(en), €n) g2 Let S = VT. By
the reproducing formula (7.2) and Parseval’s identity, Theorem B and Lemma E, we
have

(T) = Y- (Tlen) e, = 3 ISten) g

=§/ﬂ'3|s< ) (2)Pw(z) dA(2) /(i (en)( )w(z)dA(z)
0 2

(s )w
o0 2

:/]D<n¥1‘<en, A2, w(

= [ IS(B) 2y 0(@)dA() = /D T(BY), BY) () dA(2)

_ w w(z)

= [, T@IBE By w(z) dAG) = [ T(a) 105 dACz),

and the assertion is proved. O

By combining Theorem 16 with [69, Proposition 1.31] we obtain the following
result.

Lemma 8. Let w € Dand T : A2 — A% a positive operatot.

(i) f1<p<ooand T € Sy(AZ), then T € Ll , . with ”T”LZ s T}

(i) f0<p<1land T €L’ then T € Sy(AZ) with |T|} < |\T||Lp

w/w*’ *.

Recall that

To(f)(2) = Pu(f®)(2) = [ fOBEQ) @Qw@dAQ), fe A2,

for each non-negative function ® on ID. We next establish a sufficient condition for
To to belong to Sp(A2) for 1 < p < co.

Proposition 4. Let 1 < p < 00, w € D and ® € Lz)/w* positive. Then To € Sy(A2)
with |Tolp S @l

76



Proof. We will follow the proof of [69, Proposition 7.11]. Assume first that ® has
compact support in ID. Then 7g is a positive compact operator with canonical
decomposition

To(f) = il Alfen) sz

where {A,} is the sequence of eigenvalues of 7y, and {e, } is an orthonormal set of
A2, Therefore

M= (Talen)end s, = [ len(z) PO()0(z) dA), neN,
by (7.3). Since p > 1, the Holder’s inequality yields
M < [ len@)PoE) wE)dA),
D

and hence

AL - en(2)]2®(2)Pw(z z
LAhs [ X lenz) o)), aa() -
w(z)

w*(z

< /]D BY (2)®(2)Pw(z) dA(z) =< /]D (z)"

by Theorem B. Thus 7o € Sp(A2).

To prove the general case, assume ® € L’

Then Holder’s inequality and

Lemma E yield wlw
lim fS(a) q)(Z)CU(Z) dA(Z) < lim fS({z) (D(Z)p(d Z) dA(Z) %
la|—1- w(S(a)) T a|=1- w(S(a))
im w(z) ’ =
= |u1|er (/s<a> q)(z)pw*@) dA(Z)) o

and hence Tg : A2, — A2, is compact by Theorem 15.

Now write &, = ®xpq,), where xp(q,) is the characteristic function of D(0, ).
Arguing as in (7.20) it follows that {7g,},c(,1) is Cauchy in the Banach space
(Sp(A2),]-|p). Hence there exists T € Sy(A2) such that lim, ;- |Te, — T|, = 0.
On the other hand, if f is a polynomial and z € D, then Lemma 7 and Holder’s
inequality yield

oy~ Ta)(1)(2)] = (Ta, —Ta) () B) g
- ‘/r<g|<1f(€)B2](Z)q)(€)w(g) dA(g)‘

<Clflus [ ®@Ow(@)dAQ)

r<|gl<1

w(0) ’
<l ([, 20" S aa0)

' </1D W (§) () dA(é)) ’ S0, ro1,
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where C = C(z) is a constant. Thus 7o, (f) — 7o (f) pointwise for any polynomial

f. Since Tg, and To are bounded on A2, and polynomials are dense in A2, we

deduce that 7¢,(f) — To(f) pointwise for all f € A2Z. Therefore T = T €

Sp(A%). O
We will need one more auxiliary result in the proof of Theorem 13.

Proposition 5. Let w € R, 0 < r < 1 and yu be a finite positive Borel measure on ID
such that T, A2 — AZ is bounded. Then Ty : A2 — A2 is bounded, and there exists

C = C(w,r) > 0such that (T, (f), f) 2, < C(T,(f), f) g2, for all f € A3,

Proof. Note first that 7, : A2 — A2 is bounded by Theorem 11 and [55, Theorem 1],
see also [21, Theorem 3.1 and Theorem 4.1]. Let f be a polynomial. Then

re 1 ran = [ UL
FOF S Gy fop, fOP AR < [ G2 dAG), CeD,

and hence Fubini’s theorem, Lemma 7, Lemma E and (7.6) yield

2
T g = [ @R s [ ([ A da@) ) duo

:/ O—chiz))ii() (/A(m i (€)> w(z)4A4(2)

L[ &P e
= Jo w(a(z ) (/A(Z’r) dﬂ(C)) w(z)dA(z) = (Tg, (f), ) a2, -

Since Ty, : A2 — A2 and T, : A2, — A2 are bounded, and polynomials are dense
in A2, it follows that

(Tu(F) Fhaz, S (T, (), flar f € A
and the proof is complete. O

Proof of Theorem 13. The conditions (i)-(iii) are equivalent by [56, Theorem 1], so it
suffices to prove the last claim which concerns the Berezin transform.

The assertion is valid for p = 1 and w € D by Theorem 16. For 1 < p < oo,
Lemma 8 shows that T, € S,(A2%) implies 7, € L’ /o With H7;[|\Lp S ATulp-

To see the converse implication, let » € (0,7(w)), where r(w) is that of Lemma 4.
If 7, € L}, ., then i, € L}, . with ||ﬁ,||Lp/ 5 |\7;\|Lp/ _ by (7.19). Therefore

Ts, € Sp(AZ) by Proposition 4, which in turn implies 7, € Sp(A2) with [T, [, <
||7~;, I 2, _ by Proposition 5 and [69, Theorem 1.27].

Jeors then Ty, € Sp(A2) with |T|, < ||7;,||Ln
Lemma 8. Conversely, assume that 7, € S,(A2)). Then (7.14) yields

(Tu(2)P = (@ @) IBE[15 = (@ ( /\Bw P du(0) )
" Ri€Y

A\ P
<@ @)Y (”(R%)) 1B (2,) PP (w2, || =

w*

Letnow0<p<1 InyEL

7

N —
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where Zj, € R; such that SUPgck; |BY ()| = |BY (Zj2)|- Consequently,

ITull} < 3 (

Ko R;EY
“Rj% (w*(z]j)> (w (Z;))”/ID |B: (Z;,Z)IZ”W dA(z)

because w € R. Now, fix 0 < r < 1and 6 = é(r) € (0,1) such that A(z,7) C A(z;,6)
for all z € R;. Then, by the subharmonicity of |B¥'|* and Fubini’s theorem,

[ B G i aate

—s @ (7)) _wi(@)P

5/@ (1—|Ejrz|)2 </A<z,,z,r> 1B (D)l pdA(é)) SEL S dA(z)
! o w* (2)"

SJ<1—|zj|>2/ (/A<. Bg<z>|2PdA<a>>( L tAG)

(1—\z]| / (/ |BY C (|)r; dA (Z)> dA(g).

An application of Theorem B together with Lemma E and the hypothesis that
w*(-)/(1 —|-])? is a regular weight show that the inner integral above is domi-
nated by a constant times

) ) [ 1B 35) 2 (@ (2)) (@) dAG)

(7.21)

1
N L 1 e 1

L GrEa—E = aapa o < sora s

and hence

W/~ w*(z))P 1 _ 1 ' -
Jo 2 @ G 44 £ = < e F

by Lemma E. This combined with (7.21) and the equivalence (i)<>(iii), proved in [56,
Theorem 1], gives the assertion. g

In V1ew of Theorems 13 and 16 it is natural to ask whether or not the condition
7;, eL’ .+ characterizes the Schatten class Toeplitz operators for the whole class D
of doub{mg weights. The next result answers this question in negative.

Proposition 6. For each 1 < p < co there exist w € D and a positive Borel measure y on
D such that T, € L}, . but Ty & Sp(AZ).
a7 —1
Proof. Letw(z) = {(1 —z]) <log 1%‘2‘) } ,wherea > —1,and letdu(z) = v(z) dA(z),
—141 e —at1-p 1
where v(z) = (1 — |z]) "7 (log 1_—‘Z|) and 0 < B < 5 Then (7.14), Theo-

rem B and Lemma E yield

0(z 1 e —p
@) [ 1B OP 0 aAQ) = 25 = - laF (s ) = g




Therefore

_/3 p

1 e dA(z)

= 1127 (1o ) :
D\D(0,3) <( )7 (o8 T ) (1—[z))?log 57

= <OO,

D\D(0,3) (1-|z) (10 e )ﬁp+1

and thus 7;, el However, for each r € (0,1),

w/w**

z,r — |z])%v(z 1 e P
ﬁr(z) — V(A( ’ )) - (1 | |) ( ) - (1_ |Z|)p <10g1_|z) i |Z| > %,

w*(z) w*(z)
and hence
B\" dA(z)
- P > 1— |z l]“(lo ) ey
B dA(z) o
PO (1 _ 12 (1og 27) "
Consequently, 7, ¢ Sp(AZ) by Theorem 13. -

The asymptotic relation w(z)/w*(z) < (1 —|z|)72, valid for each w € R and
z € D uniformly bounded away from the origin, has been repeatedly used in this

paper. This relation fails for w € D\ R and, for example, the doubling weight
-1
w(z) = {(1 —|z]) (log %M)a] , where & > —1, satisfies w(z)(1 — |z])?/w*(z) <

-1
(log 1%\4) — 0, as |z| — 17. The last result of this section shows that this in-

nocent looking difference is significant concerning the conditions 774 eL! <(d7A)

1-[-[)?
and 7;1 € Lw/w*

Therefore one may not replace L} o+ PY L! ( ( ) in the state-
ment of Theorem 16.

dA
1-|-])?

Proposition 7. There exists w € D and a positive Borel measure y on D such that Tu €
Si(AL) and Ty ¢ L' ()

Proof. Choose w(z) = [(1 —|z]) (log %m)a} 71,where a>2,and du(z) = u(z)dA(z),

where u(z) = (log 1—€|Z| ) e and 0 < B < min{1,« —2}. Then, by Lemma E,

[e.9)

HBWHLZ _ Z L i 10g1/l)“ B—2 _ <10g e )ﬂéﬁll
= (G = "+1 1=
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alld heIlCE

by (7.14). It follows that 7;, ¢ L ( R ) However,

= oy @) dA(z) oo
/na\D(o,;)T"(Z)w*( j A= /D (1—1z]) (logl—%z\)m1 -

and hence 7, € S;(A2) by Theorem 16. O

7.5 SCHATTEN CLASS COMPOSITION OPERATORS

The main purpose of this section is to prove Theorem 14. The following result of its
own interest plays a role in the proof.

Proposition 8. Let 0 < p < coand w € D, and let @ be an analytic self-map of ID. Then
the condition (7.4) is sufficient if 0 < p < 2 and necessary if 2 < p < oo for C, to belong

to Sp(A2)).

Proof. First observe that

(F,Co02)) g, = (Co(f), b¢) 2 = 1B 32 (Co(f), BY) gz, = 1B 1 2 f((2)),

(7.22)
and hence Cj(b¢) = HB“’H ) Consequently,
1By 1122 w(5(2))
C* ba} 2 — (P(Z) Aw = , z € ID, (723)
1S = ez, = ol e@))
by Theorem B. This and Lemma E yield
[ (2 20 a0« [ e, 9= [ 1TE)IE 2 dac)
D\ w*(¢(2)) *(2) '

where T = C(PC;;. The assertion follows from [69, Theorem 1.26] and Lemma 8.

An alternative way to establish the assertions is to follow the reasoning in [42,
p. 1143]. O

Proof of Theorem 14. Since Cf can be formally computed as

CoNG) = (Cof B g, = Uf Co(BE)) i, = U BE (9))
= | FOB(9(0)w(?) dAQ),

it follows that

z) = /Df(fP(C))Bé"((P(ﬁ))W(C) dA(D).
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Let 1 be the pull-back measure defined by y(E) = w (¢~ (E)). Then

CoColf)(2) = /]Df(u)B‘z"(u) dp(u) = Tu(f)(2),

and hence C, € S,(A2) if and only if 7, € Sp/Z(A2 ) by [69, Theorem 1 26]. There-

fore, by Theorems 13 and 8§, it suffices to show that (7.4) implies 7; € L
this, we use Theorem B to write

0/ To see

~ - w 2 .
Tale) = (1)) g, = [ R 000) = wis(a)) [ 184 (00 Peo(d) dA(0)

“ Jo ||BY Hig}
We will now argue as in [70, p. 180]. Note first that [54, Theorem 4.2] gives
Tu(z) = w(S(2))[BY (9(0)* + w(S( / (B) (9(2)) Plg' () Peo* (£) A(D).
Hence it suffices to show that
@) [ 1) (0(0)Ple/ (0)Pe™ () dA()

belongs to LZ//

rem 3.8]. Let

e 1o do this we will use Shur’s test with two measures [69, Theo-

_ w(@@) | g2
- w*(q)(g))w (g)l d

A(Z)

and

so that the operator ‘
T(f) = [ HE Q) dv()
satisfies T () = ®. Since ¢ is of bounded valence, we obtain
[ HEO@E@) = w(5) [ 1(B2) (9(0) P (9(E)le @)PdAQ)
= w(S(2)) /D |(BY)'(8)Pw™(8) dA(Z) =

by Theorem B. Moreover, by Theorem B,

/ He, g)% dA(z) = L) [

p/2

w/w*

because w € R. Now ¢ € L by the assumption (7.4), and v < w/w* by

the Schwarz-Pick lemma and the assumption w € R, so ¢ € L} /2 Therefore we
may apply Schur’s test (with both test functions equal to 1) to deduce that T is a

82



bounded operator from Lﬁ/ 2 into LZ//zw*, and thus, in particular, T(y) = ® € LZ} //2“)*

Therefore 73, IS LZ]//Z(U* as desired. O

The following result is parallel to Proposition 8. By the Schwarz-Pick lemma,
(7.4) implies (7.24) for all 0 < p < oo and w € R, and therefore the case 0 < p < 2 is
of particular interest.

Proposition 9. Let 0 < p < coand w € D, and let @ be an analytic self-map of D. Then

the condition
wz) \! g @Pa—|zP)r?
/]D (w*((p(z))> (1—[g(z)?)? dA(z) < o (7.24)

is sufficient if 0 < p < 2 and necessary if 2 < p < oo for C, to belong to S,(A2)).

Proof. Let first p > 2. The Schwarz-Pick lemma, a change of variable and a standard
inequality yield

Flg@Pa -y,
( >> 0 le@pr A

5 ()2
/D< <(<2>>> 1|—(qu)<.1|>|2 44(z)

B (@) p/2§ dA(Q) Ng,o+({) : dA(7)
/ 0F aojeer < . ( Q) ) a1z

and hence the assertion follows by [56, Theorem 3]. A similar reasoning shows the
case p < 2. 0
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8.1 INTRODUCTION AND MAIN RESULTS

Let H(ID) denote the space of all analytic functions in the open unit disc D = {z €
C : |z| < 1} of the complex plane C. Further, let T stand for the boundary of ID and
D(a,r) = {z: |z —a| < r} for the Euclidean disc of center 2 € C and radius r > 0.
For0 <r<1and f € H(DD), set

1 2m it 1/p
Mp(r,f):(zn/o f(re )|Pdt) , 0<p<c,

Meo(r, f) = sup | f(2)].

An integrable function w : ID — [0, o) is called a weight. It is radial if w(z) = w(]z|)
for all z € D. For a radial weight w, write @(z) = fé‘ w(s)ds for all z € D.

For 0 < p < 00,0 < g < o0 and a radial weight w, the weighted mixed norm
space Al consists of f € #(ID) such that

g = [ M feor) e < oo

If g = p, then Al;7 coincides with the Bergman space A!, induced by the weight
w. As usual, A} denotes the weighted Bergman space induced by the standard
radial weight (1 — |z|?)*. Weighted mixed norm spaces arise naturally in operator
and function theory, for example, in the study of the boundedness, compactness
and Schatten classes of the generalized Hilbert operator Hg(f)(z) = fol f()g (tz)dt
acting on Bergman spaces [53,61].

A weight w belongs to the class D if there exists a constant C = C(w) > 1 such
that @(r) < C&(42) for all 0 < r < 1. Moreover, if there exist K = K(w) > 1 and
C = C(w) > 1 such that

1—7r
K

cTJ(r)ZCcTJ(l— ), 0<r<i, (8.1)

then we write w € D. Weights w belonging to D = DN D are called doubling.
The classes of weights D and D emerge from fundamental questions in operator
theory: recently the first two authors showed that the weighted Bergman projection
P, induced by a radial weight w, is bounded from L to the Bloch space B = {f €
H(D) : sup,.p [f'(2)[(1—|z|) < oo} if and only if w € D, and further, it is bounded
and onto if and only if w € D [59].

The primary aim of this study is to establish a representation theorem, commonly
known as an atomic decomposition, for functions in AL in the sense of Coifman and
Rochberg [18]. This last-mentioned celebrated result concerning classical weighted
Bergman spaces has been extended to the vector-valued Bergman spaces [20], the
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Bergman spaces induced by exponential weights [7], the classical Dirichlet spaces
[29], the Fock spaces [72] and the classical mixed norm spaces on the upper half
plane [63]. In concrete means we will prove that each function in the mixed norm
space AP} with w € D can be written as an adequate sum of normalized translates
and dilates of powers of the Cauchy kernel in such a way that the coefficients belong
to the doubled indexed complex-valued sequence space ¢P4. For 0 < p,q < oo, the
space (P4 consists sequences A = {A;;};; such that

[Algpa = H{“{A]"l}l L”’}j

where [[{a,},| o = sup, |ax| and |[{an}n || = L, [an|° forall 0 < s < co.

In order to state our main results we need to introduce some notation and recall
that the class D can be described by the equivalent conditions given in the following
lemma [51, Lemma 2.1].

< oo,
01

Lemma E. Let w be a radial weight. Then the following conditions are equivalent:
(i) w € D;
(ii) There exist C = C(w) > 0and B = B(w) > 0 such that

~ 1—r\F _
w(r)<cC 1 7 W), 0<r<t<l;

(iii) There exist C = C(w) > 0and v = y(w) > 0 such that

t /71—t v
/’( ) w(s)ds < Ca(t), 0<t<1.
o \1-—s

We write ¢(a,z) = |@a(z)| = |{=% | for the pseudohyperbolic distance between z
and a, and A(a,r) = {z : 0(a,z) < r} for the pseudohyperbolic disc of center a € ID
and radius 7 € (0,1). A sequence {z;};2, in ID is called separated if infy.; 0(z, z) >
0. Now for each K > 1, a sequence {z;} in DD, is re-indexed in the following way
depending on K: For each j € N U {0}, let {z;,}; denote the points of the sequence
{z¢} in the annulus Aj = A;(K) = {z: 7j < |z| <71}, where rj = r;(K) =1 — K.
The following result contains a half of the aforementioned atomic decomposition for
functions in AT,

Theorem 17. Let 0 < p < 00,0 < g < 00,1 <K< o0, w € D, and {zk}}f’zo a separated
sequence in ID. Let p = B(w) > 0and v = y(w) > 0 be those of Lemma E(ii) and (iii). If

1 Bty

M>14+-42121 (8.2)
p q
and A = {A;,} € €91, then the function F defined by
M—1 _1
(1= lz)™ Pao(zjp) 7
F(z) = YA ] e
i (1 —Zjz
belongs to H(ID), and there exists a constant C = C(K, M, w, p,q) > 0 such that
IF[l gpa < C Ml goa - (8.3)
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One important tool in the proof of Theorem 5.3.1, to be given in Section 7.2,
is the description due to Muckenhoupt [45] of the weights U and V such that the
Hardy operators fo t)dt and f f(t)dt are bounded from the Lebesgue space
L*(U?, (0,00)) to L*(V?, ( )).

To complete the atomic decomposition we are after, for each K € N\ {1}, j €
NU{0}and ! =0,1,...,K/*3 — 1, define the dyadic polar rectangle as

I [+1
Q1 = {z €D:r; < |z| <rjpqargz € 27‘[K]+3,27TK].+3) } , (8.4)
where r; = 1;(K) =1~ K~/ as before, and denote its center by { j- Foreach M € N
and k=1,..., M2, the rectangle Q;‘ ; is defined as the result of dividing Qj,l into M2
pairwise disjoint rectangles of equal Euclidean area, and the centers of these squares

are denoted by @;‘ ;» respectively. Write A = {A;;;} € (P17 if
N
o (KItS—1 M2 AN

Ml = | Y ( Z ZMﬂkl”) < .

]:

The representation part of our result reads as follows and will be proven in Sec-
tion 8.3.

Theorem 18. Let 0 < p < 00,0 < g < 00, K€ IN\ {1} and w € D such that (8.1) holds.
Then there exists M = M(p,q,w) > 0 such that Al;? consists of functions of the form

(1 1252 P @iy 0
=Y A(H)F e , D, 8.5
S0 = LAW, T 2 e (85)
where A(f) = {A(f);‘l} € (P and
Ak, = 171z (5.6)

Atomic decompositions, and even partial results of the same fashion, for func-
tions in spaces of analytic functions are very useful in operator theory. In particular,
they can be used to describe dual spaces [63] or to study basic questions such as the
boundedness, the compactness or the Schatten class membership of concrete opera-
tors [5,7,21,29,48,54,55,69,72]. In this study we will use Theorem 5.3.1 to describe
those positive Borel measures y on ID such that the differentiation operator defined
by D (f) = f® for n € N U{0} is bounded from AF;7 to the Lebesgue space
L}, The special case n = 0 gives a description of the s-Carleson measures for AL
Carleson measures have attracted a lot of attention during the last decades because
of their numerous applications in the operator theory and elsewhere, and descrip-
tions of these measures have been obtained for many spaces of analytic functions
such as the Hardy spaces [10, 11, 24, 25, 40], the classical Bergman spaces [41, 69],
the Bergman spaces induced by Bekollé-Bonami, rapidly decreasing or doubling
weights [21,48,54,55], the Fock spaces [72] and the classical mixed norm spaces [41],
to name a few instances.
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To state our result on the differentiation operator, write

k)
Tsl®) = @ e P

for a positive Borel measure y onID,0 <r <land 0 < u,v < oo.

Theorem 19. Let 0 < p,g,s < co,n € NU{0}, w € D, 0 < r < 1, u a positive Borel
measure on D, and let K = K(w) € N\ {1} such that (8.1) holds. Then the following
statements are equivalent:

() D) . AZ,’q — L; is bounded;

(ii) {V(Qj,z)Ksj(”+’l7>cD(rj)3} e ()Y,

jil

i

(iii) Tryp € LL(U ) (g) , where
(@) u=sn+1landv=1ifs <min{p,q};
(b) u:sn—i—%andvzlifp§5<q;
(c) u:sn+1and7]:%ifq§s<p;
(d) u:s(n—k%)andv:gifszmax{p,q}.

Moreover,

~
—~

It

HAM%LS

(@t Daw) }],,

Theorem 19 will be proven in Section 8.4.

Ay R

8.2 PROOF OF THEOREM 17

Throughout the proof and in several other occasions in this work we will use the
fact that a radial weight w belongs to D if and only if there exist C = C(w) > 0 and
a = a(w) > 0 such that

1—t¢

@(t)gc(l

o
r) w(r), 0<r<t<l (8.7)
This equivalence can be proved by following the ideas used in the proof of [51,
Lemma 2.1].
To see that the function F defined in Theorem 5.3.1 is analytic, observe first that
#{zp € Aj} S K/ for all j € IN U {0} since {z;} is a separated sequence by the
hypothesis. This together with Lemma E(ii) and the hypothesis (8.2) yields

1

(1= |z )M 7@ D) 1 Al o i(m-pe1) -
il

=

—z;z|M 1-nM &
Mo © _1_q4_8 All peo
< MM 5 gei(aeg an, 2 <r<1,
NSO IV (1—r)M
@(0)7(1—r)Mj=0
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and hence F € H(D).
From now on we write c]’.’ = Y |AjlP. By following the idea used in the half

plane case [63, (1.5) Theorem], we will split the proof into six cases according to the
values of p and g:

Case 1.1: 0<p<landg <yp;
Case 1.2: 0<p<landp<g;
Case 2.1: 1< p<oandg < p;
Case 22: 1< p<ocoandp <g;
Case 3.1: p=coand 0 < g < 1;
Case 32: p=coand 1 < g < oo.
Assume first 0 < p < 1. Then

R _r
(1= |z )M @(zj,) 0

‘pM , ze€D.

[F(2)[P <Y |AjlP
il ’1 —Zjz

By using pM > 1, which follows from the hypothesis (8.2), and Lemma E(ii) we
obtain

14
1— |z )PM=1G(z) 1 & (1—r;)pM-1
p ( jil jil - p j
Mp(r/ F) 5 Z |/\],l|p pM—l - Z Cj pM_l .~ p- (88)
(1~ =yl R L

Case 1.1: 0 < g < p < 1. Observe first that M > % + % by the hypothesis (8.2),
and hence gM — % > . By using (8.8) and Lemma E(iii) we deduce

j=0 " (1—r7) @(

= =)™
~ 2 ] (7 / M—1 dr

j=0 w(rj) O (1—rn)™ >

q

o 1-r)™ % w(r) o
Yyl / dr=Y"d,

]ZO ! Z ! w(r]-) 0 (1—7"7’)q 14 ]g)

and thus (8.3) is satisfied.
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Case 1.2: 0 < p < 1and p < gq. By (8.8) and standard estimates

1 [ o (1 _ r,)pM—l P
1EI% S [ | L f w(r)dr
Aa o \;=o’ (1— r]-r)prl @(r)g

]

To prove the estimate S;(F) < ||/\HZW for I = 1,2 we will use the characterization,
obtained by Muckenhoupt [45], of the weights U and V such that the Hardy op-
erators [ f(t)dt and [ f(t)dt are bounded from L*(U¥, (0,0)) to L*(V*, (0,0)),

where s = % > 1. To do this, consider first the step functions

P

U(x):(lf’x%_l, xelk+1), keNU{O}
f(x):cpw x€kk+1), ke NU{0};

C o)t o '
V(x) = wlrg)? xelkk+1), ke NU{0}.

(1 —ry)pM-1"

With this notation
o [e'e) q
Al = Yot = [ (V) £(x))7 ax
k=0
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and

0 0 : o 00 \pM—1 7
/ (uw>A fwww) dx z:( B ZflA<)p) @(re) = S1(F).
k=0 rj q

j=k+1 " (1 —=rjrg) @

Therefore the estimate S1(F) < \|/\||Z,,,q follows by [45, Theorem 2] once it is shown
that

sup (/Ox U(y)% dy)z </xoo V(y)_(%>l dy) ar < oo, 8.9)

x>0

To see this, let x > 0, and take N = N(x) € NU {0} such that N < x < N + 1. Then
Lemma E(ii) and the inequality M > % + g, which follows by the hypothesis (8.2),

imply

, (8.10)
q

(e el
Gt T TP

Another application of Lemma E(ii) and M > % + g give

which together with (8.10) gives (8.9).
We next establish Sy (F) < [|A||},,. Define

P
q

U(x) = o(r)1, €kk+1), keNU{0};
Flx) = A(C'f) , xelkk+1), ke NU{0);
W\ T

V(x)=d(rg)1, xelkk+1), ke NU{0}.
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Then

and

and thus

o (k1 &\ 7 . - . g
Sz(F)SZ(' C"Z) 2+ L= 7 (Ut [ rwdy) e It

Therefore the estimate Sy(F) < H)\||ZM we are after, follows by [45, Theorem 1] if

sup (/xoo U(y)% dy)s </Ox V(y)(?’)/dy> @ < oo, (8.11)

x>0

To prove this, let x > 0 and choose N = N(x) € NU {0} such that N < x < N+ 1.
Then (8.7) yields

(/xoo U(y) vdy) (Z Uk Z>Z - <kiN(4AJ(”k)>Z < (kivc_—:f])“@(m))s = &(ry)T

and

1

X 7\’ % N N IRY 15
(/o v () dy)“ < (kzwk)—(p))(p) _ (2 1P><p>
—0 )

k=0 @(1’]() -r

-

(%(1—m>ﬂp 1 )”v 1
SN @) T @(ry)"

from which (8.11) follows. Case 1.2 is now proved.
Assume next 1 < p < co. Before dealing with Cases 2.1 and 2.2, we will estimate
M, (7, F). We claim that there exist 77,0 € (0,1) such that

N

M1 -0)p >1,
M(q—9)+1;’7 >0,
1
p’(l—n)(M—p—§> > 1,
(8.12)
pMo > 1,
1
QW(M—E) >,

L—y ay
My —0)+ —1L < =1
(1 —-0) . p
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where « is that of (8.7) and M, 8,y are those in the statement of the theorem. We
postpone the proof of this fact for a moment and estimate M, (r, F) first. By Holder’s
inequality,

r
- "(M=1)a-n) v
[z M0 (1= Jz)" M
P (P 1/ ji
|F(Z)| S ZI |)\],l 7 pMG N P Xl: - p’M(lf(?) N v (1-7)
I ’1 — z]-,lz‘ w(zj,,) q Jr ‘1 —Zjz w(z]-’l) q
(8.13)

for all z € ID. Since {z;} is separated by the hypothesis, there exists § = §(K) >
0 such that A(z;;,0) C {rj-1 < |w| < rj2} for all | with the convenience that
ro1 =19 = 0, and A(z;,,6) NA(zj1,,0) = @ if I; # . Therefore by using the
subharmonicity and the first case in (8.12) we obtain

< K2 / _aaAw)
;’1_2]12 P/M(l—f)) ~ ; A ]Z’ |1_7 ‘p/Ml 9)

w A (8.14)

> D(0/7j+2)\D(O/rj—1) |1 _ wZ|P M(1-0)

< K1 K

~ 'M(1-6)-1 MO_01-1’
(1 rjpalz]) M0 (1 = rilz]) MO

and hence
(1~ fzyl)” M H) 0 (1 =y (30

D

i |1 -z

p/IM(lfe) —~ M ’S Z p’M(l—@)—l Y P,(lfﬂ)
W(zjy) Io(1—rjlz]) w(ry) 7

(1 ry)r (M=p) 01
/ /( o )
B (1—ryl2) MO0 G T
1—r P (M=) -n-1
" 2 ( )Ml 8)-1 P'(-y)
ri>lel (1 - rylz]) M Orj) 7

- % Z (1- r]-)p/<M’?>(1*77)*p’M(179)

X

==

1 — Tj)p/(M_%>(1_’7)_l

+ , )y e
(1 | |) M(l 9 -1 >|z &\)(r])i’ (lq )
= 53(F) 4 S4(F).
(8.15)
Since M (7 — 0) + 177’7 > 0 by the second case in (8.12),
1 1 1
S3(F) < ; ) = . )
(1-1y) ’ _ 1-n (1-1)
(TJ(z)p = < (1_rj)p (M(W 0)+ p'7> @(z)p 7 (1= || ( (n-0)+ )
(8.16)



Now, by using Lemma E(ii) and the third case of (8.12), we deduce

(1-n)
L (pM(1-6)-1)
1—1|z (M—1)(1—p)—1— B (=n)
sy(p) < 17 |)A e )3 (177]-)”( p) ) i
w(z) 7 >l (8.17)
1
S .
()" (1~ [a)y MO0+ ")

Consequently, by combining the estimates (8.13)—(8.17) we deduce

_p(]fq) ) prl)T]

o(z)” 7 = |zjul)
FEIP S (M oLt ,7)Z| Al e 2D
(1-I2I) )1—zﬂz\ @(zj))'"
and hence the fourth case of (8.12) gives
p(=n)
A(r) q (1 — rj)(PMfl)Vi 27 dt
M (r,F) S e )ZV\]‘JV’ — /O Mo
(1-r)" il @(rj) 1 ’1fﬁrelf
=R p(-n) _
< w(r)y P (1 *T’j)(pM L
, [
I G A B (R i)
(8.18)
By using this estimate we will deal with Cases 2.1 and 2.2.
Case2.1: p>1and 0 < g < p. By (8.18),
_1
L &) (1= rj)q(M p>"@(rj)*v
||FHAM ~ - ¢ T w(r)dr
0 (1— r)q(M(ﬂ—9)+T> F (1 — T’ji’)q P
1 1 o ()~ (-1
=) d1-r (M P)’Qﬁ(r])_”/ a;(r) —yw(r) dr
" (1- rjr)qMG_? (1- T)q<M(17—9)+T)
(8.19)

Lemma E(iii) together with the fifth case of (8.12) yields

j @(r)~ =M (r) j &(r)~ = ew(r)
/0 Mo— 1 q(M(U_G)Jrl,n) dr < /0 : dr
(1—r) ™ (1-7) P

< = dr
@)1 Jo (1—r)q'7(M 7)
< @(7’])’7
(1 —r])'m(M %)
(8.20)
while the fourth case of (8.12) implies
! ()~ 1 o)
/ w(rq) w(r) — dr < lM - / @(r) ol (1) ),
i (1—rjr)qM9_E (1—r)'7<M(’77 +5) (L=r) 7P 1 (g oyt a(M(r-0)+51)
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where, by an integration by parts and (8.7) together with the sixth case of (8.12),

/l o) 1 i w(r)dr
i (1= gyt (MO0 )
= )" 1 /1 w(r) Y
p(1— ) (MO0 g(MOy = 6) + 1) T g ppa(M-0)+ )
< w(rj)" ()" /1 dr
1=y ) A=) Iy (M0 )
- w(rj)"
a ) M(-0)+551)
and thus
/rl &(r)~=New(r) s o(r,)"

I Nt G R T C)

This together with (8.19) and (8.20) gives (8.3).
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Case2.2: p > 1and 0 < p < g. By (8.18) and the fourth case of (8.12),

_p=n) LN
1 olr q 00 (] — r-)(PM 1)’7w( ) q
7 % | ( ( () S ),,Mg_{ w(r)dr
( -

1_r)l7 M(y=0)+=") iZo (1*1’]'1’
q
© ot i e N (R (O LTl A
-4 / (M(—-0)+157) ‘i pMO—1 (r)dr
k=0/me \ (1 = )P MmO+ 57) 5 (1 =rjr)

20\ (1= P MO0+ 3 (1= )™M () T
9
A S Y
~ k=0 (1 _ rk)P<M(77*9)+1%,7) j=k+1 (1 — V]Tk)p 0 1(:}(1’])%’7

~

w(r]) q

To prove the estimate S5(F) < ||A[|7 /pa, define the step functions

py
O(re) v
U(x) = (1—TI(<)I:7)(’”M1)’ xe€[kk+1), ke NU{0};
— . )1(pM—-1)
flx) = ci’(lrz‘))pq, xelkk+1), ke NuU{o}
Tk
py
V()= QT kk+1), k
(x)_(l—rk)’?(PM 5 *€lkk+1), ke NU{o}
Then
[} 0 q
Al = Yok = [ (V) f()7 dx
k
and

3 w(r )pql E (1 — r)PMO=0)+(1-1) ’
'L ( Loy 2 Z 2] = S5(F) + Se(F).
.



Therefore S5(F) < ”/\”ZW follows by [45, Theorem 2] if

sup (/Ox U(y)?’dyy; (/xoo V(y)(ﬁq’>,dy> ay < oo. (8.21)

x>0

<k [

To prove this, let x > 0 and take N = N(x) € NU {0} such that N < x < N+ 1.
Then Lemma E(ii) and the hypothesis (8.2) yield

"X % % N+1 g _ N @(rk)%ﬂ %
(/0 U(y) dy) < (kglu(k)) = k;o((l—rk)’?(PMl))

P

q

==

(8.22)
Another application of Lemma E(ii) and the hypothesis (8.2) give
0—p
1 Py -\ T
° =1 Y () - W(r) © i
1% (%) dy |7 < e L. 7 A
</x () y) = k:ZN ((1 — 1) 1(PM=1)
q—p
o -p
(0= 1 '
T\ G T R (1= ) PRI
(1 —ry)7(PM-1)
iz 7
w(ry)
which together with (8.22) implies (8.21).
We next prove Se(F) < [|A||7,,. Define
2"
U(x) = O (re) xefkk+1), keNU{0};

(1 r )P MO0+
(1 — 1) PMO=0) 41y
flx) = C;f 7 ’

x€lkk+1), ke NU{0};

@(r)
pn
@(re) 7

V(x) = (1= )P MO0+

xelkk+1), ke NU{0}.
Then
A5, = Eo o = /O (V(x)f(x))7 dx
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and

(e dy)zdx > <”<k>li1f<f>> |

=
T
—
=
—~
—_
‘\ﬁ
~
=
=2
=
|
S}
—
+
—~
[
|
~

_ i ( &)™
(1—rg

)p(M(nfe)#%?) =’ @(r) 7
and hence ]
[e'e] X P
so(F) 5 [ (UG [ fdy) " dxs 1Al

Therefore Sq(F) < HAHZW follows by [45, Theorem 1] once we have shown that

sup (/xoo U(y)gdy>5 </0x V(y)_(?’>/dy> () < oo, (8.23)

x>0

To see this, let x > 0 and choose N = N(x) € NU {0} such that N < x < N+ 1.
Then, by (8.7) and the sixth case of (8.12) we deduce

==

ir

(ay N (1_rk)pM(17—9)+1—17 ﬁ 1
=L T
k=0 w(rg) T

/N
o\k
<
—

<
S~—
|
~—~
==
~—
[
<
~—
—
<k |
~
AN

N
N
—
—_
|
-
Z
N—
-
|
<
1=
—
—_
I
-
SN—
=
\‘&
=
—
=
=
<)
®
+
—
2
|
"=
&‘Q
N~—
~—
=

from which (8.23) follows. This finishes the proof of Case 2.2.
Finally, let us prove that there exist 7, 8 satisfying (8.12). By (8.2), the third and
fifth cases in (8.12) are equivalent to
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where the inequality —— — < 1— / ( 11 ;
p —=—LC

q

111 Therefore we may choose an 7 satisfying

24 . 1 M-1
176(M,mm{l—p/(M_;_g),M_;}). (8.24)

Next, observe that the first and the fourth cases in (8.12) are equivalent to

1 1
oe (MP 1_MP’>’

) follows from (8.2). Let us observe

that (8.2) also implies ——1 ) <

1
where W

in (8.12) are equivalent to

o (M-p)rty 1
where trivially i < i - Itis clear that z7; < ~——7— as

(Mf%)ly+% 1 ..
a« < B, and ~—— < 1-— My by (8.24). Therefore it is enough to choose 6
satisfying (8.25). This finishes the proof of (8.12).
Case 3.1: p = o0 and 0 < g < 1. For this we set A(j) = sup; |A;;[. Then the
estimates in (8.14) imply

0 L \M-1
FEI YA — e, 526
=0 (=l @)

for each M > 1. Since 0 < g < 1 and g(M —1) > 7 by the hypothesis (8.2),
Lemma E(iii) yields

0 1
IFl e S Y AG) [
w ]-:0 0

and thus this case is proved.
Case 3.2: p = c0 and 1 < g < co. By using (8.26) we deduce

q
I |Z'l|)M_1
1Fla S [ | LA ——25— w(r) dr

(1 —rj)q(M—l) (r)dr < i/\(.)q ||AHq
— w(r)dr < )= s
(1—rjr)q(M Dc?}(rj) =0 o

k=0 \ j=k+1
o [ & w(r

+) (Z AG) (@Er"o ) = S7(F) + Ss(F)
k=0 \ j=0 j
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To prove Sy(F) < ||A||Zw,q, define the step functions

U(x <1°f(::>);1, x€[kk+1), keNU{0};
o) =AMk, keNU (o)
@(ry)a
V(x)—(lf(::)]\;_l, xelkk+1), keNU{0}.
Then
s = Y2007 = [ (V) f))" d
k=0
and
(e [ ) aes 5 (2 a0 (o) (@)
[ (ue [t an) txz ) (j_;lA(]><1_rk> <@(r].>> ) = 57(F).

Therefore S7(F) < [|A| %, follows by [45, Theorem 2], if

1

x s ., 7
2}3 ( /O U(y)qdy) ( /x V(y)™T dy> < 0. (8.27)

To prove this, let x > 0 and N € N U {0} such that N < x < N+ 1. Then

Lemma E(ii) and the hypothesis (8.2) imply
¥ Y an)
Uy)ldy < —_—_—
/0 )ty < k;o (1—r)aM=D)

< @(n) ¢ 1 G(rn)
Y (A=r)P S (1) I MED=B T (1 — g )a(M-1)

from which (8.27) follows. Thus S7(F) < [|A|| %
To obtain Sg(F) < H)\||Zoo,q, define

U(x) = @(n)7, xelkk+1), keNU{0;

f(x) = /\(k)l, xelkk+1), ke NU{0};
w(rg)7
V(x) =@(n)i, xelkk+1), keNU{ok.
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Then

[e9)

1A ]| foq = kzzo Ak)T = /0 (V(x)f(x))" dx

and

1\ 1
(oo [ o) aes 5 [ ac (@00
U(x / d ) dx > AG) | = ,
[ (ue [ rwar) a= o (};) () (w@

and hence q

ss(F) £ [ () [ dy) v 1Al
Therefore Sg(F) < ||/'\||Zoo,,, holds by [45, Theorem 1], once we have shown that

) 1 X 5
sup (/ U(y)1 dy) ! (/ V(y)*q' dy) T < . (8.28)
x>0 X 0

To see this, let x > 0 and N € N U {0} such that N < x < N + 1. By using (8.7) we
deduce

k=N (1—rn)* =
and
X A N ;‘1/ 1 r %/ N — i ~ ,i
[vday=Yorg® s TN 5 0% <o 7,
’ k=0 W(rn) T k=0

from which (8.28) follows. Thus Sg(F) < ||A[|%«,. This finishes the proof of Case 3.2
and the proof of the theorem as well.

8.3 A REPRESENTATION THEOREM FOR FUNCTIONS IN AL°

To prove Theorem 18 some definitions and lemmas are needed. For each dyadic
polar rectangle Q;, defined in (8.4), consider the set of indexes

. . 1 1 . )
u]"l = {(l,m) : dlst(Qj,m, Q]'/[) S W (1 — K) } ;] S NU{O}, | = 0, 1,. . .,K]+3_1,

and denote R
Qu= U Qim (8.29)

(i,m)EU]-,]
For f € H(ID), define fii = SUP.cq,) |f(z)| and J?j,l = supg’eéj,, |f(Z)]- Then

fu< ¥ fmSFu jeENU{0}, 1=01,.. K1, (8.30)
(l',m)GU]‘,l
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because #U;; has a finite uniform bound independent of j,  and K. For f € H(ID),
write A(f) = {A(f);;}, where

_1
AMf)jp =K ra(r ) fil (8.31)
forallj € NU{0}and!=0,1,..., Ki*3 1.

Lemma 9. Let 0 < p,g < oo, w € D and K € N\ {1} such that (8.1) holds. Then
£ apa = WACH) | epa for all f € H(D).

Proof. Lemma E(ii) implies

Ti+1 oo R
||f||qu = Z{) 5 MZ(?’,f) (rydr < Z M T]+1,f)w(r]) Z{MZ(rj/f)w(Tj),
=00 j= =
where
21 ) Kit3-1 271(‘[++31) o 7'K1+3_1
M;(T’j,f) :/0 ‘f(rjele)‘ doe = Z /275/ ’f(i’jele)’ do < K7 Z fj;,jl’
1=0 xi+3 =
and hence

3

]K1+3 1 ‘7 o Kit3_1 _%,\ | % | P %< ]
||f|\Am S Z K~ Z fir] @) Y (K rar)if < A Igp.a-
]

i=1 I=0
To prove the reverse inequality, choose z7; € Qj; such that fj; = |f (z;l)\, and
ng € IN such that
diamQ; diamQ);
. . il . it .
ST T Tgm o STt T ST

for all j and . Then the subharmonicity of |f|V gives

Kit3-1 Kit3-1 1
LS L ——amar o, e FOFAQ
Is i= ‘D(Zzl/ dlaKﬂ;OQJ,I” D(z}"l/ K”o“)

<K /A,. o FOPIAQ) S KM (), j€NU{O,

with the convenience that A_; = @. Moreover, (8.1) implies & r] 1 f L w(r)dr
for all j € N U {0}. These two estimates together with Lemma E(u) now yleld

o [Kit3-1 i P , . q
e ||W—2< (K@i ) <Y (KT () M (12, )
j=0 \ =0 j=0

< S0 € 5 [ Myt et dr = 1

j=2

~.

(8.32)

and therefore the assertion is proved. O
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Lemma 10. Let 0 < p < 00,0 < g < coand w € D, and let = B(w) > 0 be that of
Lemma E(ii). Then AL C A} for all 1 > g + % —1

Proof. If f € H(D) and w € D, then the well known inequality Me(r, f) <
My(5, f) (1 —7)1/P gives

g > [, bt frcte)ds = M (157, ) @ (157) 2 Mt (=),

from which Lemma E(ii) yields

-}

1(1—7) £l a1 18
Ifllay S I lLags [, = dr S =2 [20 =72 5 ar < |1£] .

&(r)d @(0)7
and the assertion follows. O

Proof of Theorem 18. The fact that the functions of the form (8.5) with A(f) =
{A(f)f;} € €7 belong to AL}’ and the inequality H{A( f);g,}H < Nfll ypa follow
from Theorem 5.3.1.

Let us now prove that each function in A% is of the form (8.5), where A(f) =
{A(f);‘l} € (P4, and HfHAZ;q S H{A(f);(l}Hzm . To do this we use ideas from [63, (1.5)
Theorem]. Lety = 5(p,q,w) > 1+ % + ﬁ%, where f = B(w) > 0and vy = y(w) >0

opAa

Theorem 5.3.1, and AY/T A% by Lemma 10. Therefore, in particular,

)@ =0+ [ T gpaaq) = fe), zeD, fea

D (1—z)%H1

Consider the operator S, defined by

1— gk, 12)n
Sy(F)(z) = (n+1) }_ f(Z5) Ll ‘ k’

L A= )
=+ 1) LA 0 - 18P @ty —— [l
ik (1-7)
(1= g5, ) 7@ (r)
=+ D) L) — ||, zeD,
o —\7 j
i (1-z)

where

1,1 ,
a(f)jix = f(gj{,)(l — |§;-‘/1\2)Pw(rj)'%, jeNU{0}, I=0,....,Kl-1, k=1,..., M~
(8.33)
1
The estimate Moo (7, f) S ||f\|A5J,qc?)(r)_5 (1—r) 7, obtained in the proof of Lemma 10,
ensures that S (f) is well defined for each f € AL. Write a(f) = {a( £k} and

observe that
la(H)llera S WA era =< Nl gpa (8.34)
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by Lemma 9. It is shown next that for M large enough, 5,7 satisfies

1
1f =Sy (Pl aps < SI1F 1 apa- (8.35)
To see this, note first that

f(z) = 5y (f)(z) = Py(f)(2) = S4(f)(2)

= (1) ( im0 keraa@

ik 2}
—Zf(g’?’)w’ k ‘) (8.36)

where H;({) = f({) ((1 d )‘,1)“ for all z,{ € D. It is clear that H; satisfies

H(Z) - HZ(C;‘(,I) < diam Q;‘(,l sup [VH(w)|, (€ Q;'(,lf (8.37)
wEQN

and also

0

_ 1
210 = (F@a-1eP - s@nt) ST cem w3

(1- gz’

and

9 T ¢ e L 1-gP
in(@ _f(g)W ((77 +2)z 1-zz —’7§> , ¢geD. (8.39)

Moreover, the Cauchy integral formula implies

TRIGTES SO \del SK7F, ceQu neNU{o).
“:_g‘ KJ+1(1 1 ) |€ €|
K
(8.40)
The identities (8.38) and (8.39) together with the estimate (8.40) now give
(1= gk, [»rt (1= g5, 12y
sup |[VHz(w)| < ]—7,7+ up f(w)] = —7,7+2f]l (8.41)
wed, ‘1 —zg{l’ w0 ‘1—z
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The identity (8.36) together with the estimates (8.37), (8.41) and (8.30) give

1— k 12y7—1
DT i 1@l | aa@)

fE-siAEISE | [, | diam 0 i
jlk il ‘ — zé] l‘ weQ;;
M2 (1—[g Pyt
k| g k il
S ‘Q]ll’dmm Qi) 2 f]l
il k=1 ’1_ , ’
jl
1 (1_ |€j[| )UJFZ M
S, M3 n+2 f] Zl
il ‘1—2@ ‘ =1
1« (1= g )n+2
< M 2 72 Z fim
il ‘1—2511‘ (i,m)e Uy,
7121y -4
< Ly, LGl r et
~ M & s n+2 ’
il ‘1—2@1‘

where {Aj,l} is that of (8.31). Then, by combining the above estimate with Theo-
rem 5.3.1, with M = 5 + 2, and Lemma 9 it follows that

1
1f =Syl aps < II)\(f)IIW = il aza-
The inequality (8.35) follows by choosmg M large enough.
Let {f,}_, be defined by f; = S,(f) and f, = S, (f— yrt fm) forn € N\
{1}. Further, let a(f)(l)k = a(f);1x where {a(f);;x} are those defined in (8.33), and
1 1
a(f)hk = (f me) A=) @), ne N\ {1}

With this notation

(1= zk 2y F(r)
fu) = r+1) Wat) Gyt LT o
ik (1—gk )

by the definition of S,;. Moreover, n applications of (8.35) give

n n—1 n—1
Hf—me - f_me_fn (Id—sﬂ)<f_2fm>
m=1 AP:‘I m=1 A}W m=1 Ap'q
w “(8.43)
l 1
<3 (f me> S-S g fllap
P
Ay
Therefore, by denoting a(f)™ = {a(f )j(rll)k}, and applying (8.34) to f — 221;11 fn
yields
n—1
la(H) P lera S| f = X ful <27 fllgpa, n €N (8.44)
m=1 AZ}/‘i
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Finally, set b(f);1x = Y1 ﬂ(f)](z)k and

-

1= |28 Y1 P (r)
8(z) = (’7+1)Zb(f)j,l,k( ul) ) ‘ g

ik (1= gkz)r2

, zeDD.

Then (8.42) yields

1

: o) (18P R
_ Zlfm = (17+1) 2 (b(f)j,l,k - Z a(f)](,l,z> ( | | w(r; ‘Qjﬁl‘

ik m=1 (1- C;{,IZ)”H

~ W\ (=125 P o)
- (B i) O o

7

jlk \m=n+1

from which Theorem 5.3.1 and (8.44) give

m=n+1 Lk oA

=27 ||f||A£)q , ne&lN.

— —mmin{1p,q} min{]l/p’q}
S ||f”Afj;‘7 Z 2 P

m=n+1

5,

Aw"*

By combining this with (8.43) we deduce

n n
If = gllapa < ||f = X fu+ Y fn —
m=1 m=1 Afj;”
n n (8.45)
S|f= X fm +lg— ) fm
m=1 Agqu m=1 Aﬁ'q

S22 llape, ne NA{1}
and it follows that f = g. The assertion of the theorem follows for M = 5 4+ 2 and

. Q)
APjr = O+ Dok g ey
il

because H{A(f);‘l}ngq S |If |l 4pa by (8.44). This finishes the proof. O

8.4 DIFFERENTIATION OPERATORS FROM A’° TO LS

We recall that the spaces ¢P*1 obey the basic inclusion relations ¢/ C "1 for p <,
and (P41 C £P® if g < s. Moreover, it is known that by denoting

{ o, 0<p<l,

/

p:

pfl, 1<p<oo,
1, p=oo,
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we have

ibj1

6]l g = sup { Hllellena = 1}
il

by [46, Theorem 1]. The following proof uses ideas form the proof of [41, Theo-
rem 2].

Proof of Theorem 19. Assume first that D(") = AL/ — Lj, is bounded. Let

—Jz )M @ (z)

Zj,l P ]l q

Z”J, jil M
(1—@2

where {z;} is a separated sequence and a;; are the Rademacher functions [25, Ap-
pendix A] and M satisfies the hypothesis (8.2) of Theorem 5.3.1. Then

, z€D,

% ”L; < [|D"" HAvuLs IEl| ppa < 1D ||Apup [Al[epa- (8.46)

Moreover, Khinchine’s inequality [25, Appendix A] yields
1
R 1 e

1 1
1—|z; veo(zig) 9
—/ / MM+1)---(M+n—1) Z”]l ]lZ],ln( Gl 1) dtdu(z)

2 o
>/ (Z, X0,
g

= L (@) - 2y )
I

Zj,l

R

ADA], QK)o

(8.47)

By integrating (8.46) with respect to ¢, using (8.47) and writing b = {b;;} = {|A;;[°}
we obtain

js(n++ ) ~ s
L (@K ) @) S DO g 101 2y
for all b € £(5)(2) with b;; > 0. Tt follows that
L@ Va7 ettty
I
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with norm bounded by a constant times || D) ||;,,,,,_} 1+ by [46, Theorem 1]. Thus (ii)
w U

is satisfied.
To see the converse implication, note first that the estimate (8.40) implies fj(?) N

Kf'"fjll. This together with the fact that #U/;, has a finite uniform bound independent
of j, I and K, and Lemma 9 give
i 1
<t
il

!
= A lgpa = N f 1l pa-

By applying [46, Theorem 1] and the estimate just established, we deduce

LI @) antz) 2/ <2(],) ()

[~.

<

~

Yoz

==

st Dag

i 1
{fj'lK pW(rj)q}'l
1

oPA opa

< {(ﬁ(?)SKjS(MP)Q(Y’);}M »
H{” @ )st<n+p)@(”);};z (22
— |‘{f](7)1<f<"+§)@(r])3}jll N
H{MQJ >Kf5<"*v>a<r]>‘3}j,l -
Sk [{ e >1<"S<”+5)@<r]>‘3}jll ey
and hence
D@ g 5| { i) sf(”*i)@m)‘é}ﬂ e

It remains to show that (ii) is equivalent to its continuous counterpart (iii). To
do this, first define U].VJ = {(i,m) :0(Qj1, Qim) < r}, and note that sup; #lljr,l <
C(r) < oo. Further, set Q]r.’l = U(l'/m)eu/(/l Qi m and write T, = T, , for short. Assume
first s < min{p, q}. Then, by choosing r = r(K) > 0 sufficiently large we have

mQ Q")
ZZKJ(WAJ)ZJ)XQN ZZK]TWXQM (z) = B:(2)
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for all z € ID. By using sup, #U].’,l < o0 we deduce

= 1/ e o P (7=5)
8175 o = [ ([ B a0) " i
LW*S —Ss
(p—s)
o rrey (K1 bk (en) s =
<Y [ L M@ KK G ) war
k=0""k i=0

A
gk
S
7~
pgle
AN
N
~
@) )
I Ky
+
e
=
T
- |»
N———
=
s
‘S\Q
5

and an essentially identical reasoning gives

a(p=s)
q oo [Kk3_1 £\ plg=s)

s k _'_l _5s p—s
|S|q”v2< L (K Pt ) ) .

i=0

This finishes the proof of the case s < min{p,q} for r > 0 large enough.
In the case p <'s < g, we have

Q]l) r)
R R R e

i1

M/ LA . (z) = By(z
K —js(n+1 )A( ]) XQ]J( ) (z)

for all z € ID. By using again sup; #U;l < oo we deduce

—S

1 9 0
I8 ep, = () (et iyt
a T
00 Tea1 " 1y B ~ —5
=z /" (K"“ o) 1supu<Qk,i>> w(t)dt)
k=0""k i
N\ T
o ks(n+) s\
=X supzt( DK G ()
k=0
AN
- ks n+) s\
Sl supu(sz) w(r) ,
k=0

and similarly

AN T
(e} l s I]—S
1B o L X (Z (supy Q]z n+p)w(rk) q) ) )
L, 17 k=0
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Hence the case p < s < g is proved for r > 0 large enough.
In the case 4 < s < p we have

K~ J(sn+1 o ])%XQM (z) ST(z) < ;Zl:

ZZ

for all z € ID. By using again sup;, #U].’J < oo we deduce

p—s

27T . p T

1Bl o .= sup ( / Br(té’le)’”d9> g
p—s’ 0

Ll 0<t<1

Kk+3 1 r i P 1 . __sp B
= sup 2 (0 P KIS VK ()T
j

Kk+3_q ) 1 . % pT
xs9p< y <y( ;’i)K]S(n+p)@(r].)’1) )
j i=0

p—s

K21 js(n+1) _s % o
5511?( L (P‘(quf)K]” vl ) ) =S 2

] i=0

completing the proof of the case g < s < p for r > 0 large enough.
The remaining case s > max{p,q} is the simplest one of all because now

w(Q:)
) C EL C I3 i

]' 1 K ]S T’l-‘r (r]) ] i K ]S n+- )A( ])

XQ//[ (Z) = BV(Z)/

and hence

en <[ @
3 s ~ YIL® ~ : s
K_JS(n-s-%)@(rj)ﬁ il K_JS(n+%)¢3(r]~)ﬁ itll

§ { 1(Qy) }
~ —js(n+1) ~ H )
K +p)“‘)(’/]')q JH] geo

This completes the proof of the theorem in the case in which r > 0 is sufficiently
large, say r > rg = ro(K). If r € (0,r), then dividing Qj; into M? rectangles of
equal area as in the proof of Theorem 18, and then slightly modifying the proof just
presented, the assertion easily follows. The details of this deduction do not offer us
anything new and are therefore omitted. O
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