
PUBLICATIONS OF THE UNIVERSITY OF EASTERN FINLAND
DISSERTATIONS IN FORESTRY AND NATURAL SCIENCES

N:o 300

Kian Sierra McGettigan

CLASSICAL OPERATORS ON WEIGHTED
BERGMAN AND MIXED NORM SPACES

ACADEMIC DISSERTATION

To be presented by the permission of the Faculty of Science and Forestry for pub-
lic examination in the Auditorium M301 in Faculty of Science and Forestry at the
University of Eastern Finland, Joensuu, on March, 16, 2018, at 12 o’clock.

University of Eastern Finland
Department of Physics and Mathematics

Joensuu 2018



!  

AUTOR: Kian Sierra McGettigan 

        http://orcid.org/0000-0002-3245-2453 

EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga 

�  
Esta obra está bajo una licencia de Creative Commons Reconocimiento-
NoComercial-SinObraDerivada 4.0 Internacional: 
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode 
Cualquier parte de esta obra se puede reproducir sin autorización  
pero con el reconocimiento y atribución de los autores. 
No se puede hacer uso comercial de la obra y no se puede alterar, transformar o 
hacer obras derivadas. 
 
Esta Tesis Doctoral está depositada en el Repositorio Institucional de la 
Universidad de Málaga (RIUMA): riuma.uma.es

http://orcid.org/0000-0002-3245-2453
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode


Grano Oy
Jyväskylä, 2018

Editors: Tarja Lehto, Pertti Pasanen, Matti Tedre,
Jukka Tuomela, Matti Vornanen

Distribution:
University of Eastern Finland Library / Sales of publications

julkaisumyynti@uef.fi

http://www.uef.fi/kirjasto

ISBN: 978-952-61-2718-7 (print)
ISSNL: 1798-5668
ISSN: 1798-5668

ISBN: 978-952-61-2719-4 (pdf)
ISSNL: 1798-5668
ISSN: 1798-5668

ii



Author’s address: University of Eastern Finland
Department of Physics and Mathematics
P.O. Box 111
FI-80101 Joensuu
FINLAND
email: kian.sierra@uef.fi

Supervisors: Professor Jouni Rättyä.
University of Eastern Finland
Department of Physics and Mathematics
P.O. Box 111
FI-80101 Joensuu
FINLAND
email: jouni.rattya@uef.fi

Professor José Ángel Peláez Márquez.
Universidad de Málaga
Departamento de Análisis Matemático
Campus de Teatinos
C.P 29071 Málaga
SPAIN
email: japelaez@uma.es

Reviewers: Professor Jordi Pau.
Universitat de Barcelona
Departament de Matemática Aplicada i Analisi
C.P. 08007 Barcelona
Gran Via 585
SPAIN
email: jordi.pau@ub.edu

Professor Ruhan Zhao.
SUNY Brockport
Department of Mathematics
NY 14420 Brockport
UNITED STATES
email: rzhao@brockport.edu

Opponent: Professor Mikael Lindström.
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ABSTRACT

This thesis introduces new results concerning classical operators of the type Tµ :
X → Y or T : X → Lq

µ(D), where µ is a Borel measure over the unit disk D =
{z ∈ C : |z| < 1} and X, Y are spaces of functions over the unit disk. The space
X in most cases will be one of the following; a weighted Bergman spaces Ap

ω, a
tent space Tp

q (h, ω) or a weighted mixed norm space Ap,q
ω , where the weight ω is a

radial weight that satisfies the doubling condition
∫ 1

r ω(s)ds .
∫ 1

1+r
2

ω(s)ds, among
other possible conditions. Our goal in this thesis will be to characterize properties of
the operators such as boundedness, compactness or belonging to a certain Schatten
class, in terms of (geometric) conditions over the measure µ.

RESUMEN

Esta tesis contiene resultados originales sobre operadores clásicos de tipo Tµ : X →
Y o bien T : X → Lq

µ(D), donde µ es una medida de Borel definida sobre el disco
unidad D = {z ∈ C : |z| < 1} y X, Y son espacios de funciones, normalmente
analíticas, definidas sobre el disco unidad. El espacio X, suele ser alguno de los
siguientes espacios de funciones; un espacio de Bergman con pesos Ap

ω, un espacio
de tipo tienda Tp

q (h, ω) o un espacio de norma mixta Ap,q
ω , donde el peso ω es ra-

dial y satisface la propiedad doblante
∫ 1

r ω(s)ds .
∫ 1

1+r
2

ω(s)ds. Nuestro objetivo en
esta tesis es caracterizar propiedades de estos operadores, tales como la acotación,
compacidad o pertenencia a clases de Schatten, en términos de condiciones (ge-
ométricas) sobre la medida µ.

MSC 2010: 32A36, 47G10, 42B25, 47B35, 30H20, 46E15, 47B38.
Keywords: Bergman space, Mixed norm space, Tent space, weight, Carleson mea-
sure, reproducing kernel, Bergman projection, area operator, Toeplitz operatos, atomic
decomposition.
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1 Introduction

The main aim of this thesis is to study the boundedness of certain operators of the
type Tµ : X → Y with a symbol µ or T : X → Lq

µ(D). Here µ is a positive Borel
measure over the unit disk D = {z ∈ C : |z| < 1}, X is a space of analytic functions
over the unit disk D and Y is a certain space of functions.

Our main goal is to characterize the boundedness and compactness of the oper-
ators Tµ in terms of (geometric) conditions over the measure µ. We will work with
a variety of weighted function spaces such as weighted Bergman spaces Ap

ω, tent
spaces Tp

q (h, ω), mixed norm spaces Ap,q
ω . Most of our results are given for weights

in the class D̂, these are radial weights ω(z) = ω(|z|), that satisfy∫ 1

r
ω(s)ds .

∫ 1

1+r
2

ω(s)ds.

Basic properties of these weights can be found in [51, 54], additional conditions on
the weights might be required in each case. The standard weights ω(z) = (1− |z|)α

for α > −1 all belong to the class D̂. In particular for every weight ω ∈ D̂, there
exists α(ω) > −1 such that Hp ⊂ Ap

ω ⊂ Ap
α . Some weights in the class D̂ satisfy the

more restrictive embedding

Hp ⊂ Ap
ω ⊂ ∩α>−1 Ap

α ,

which gives us an idea of why in certain problems an approach more common of
Hardy spaces is effective.

In order to characterize the boundedness of the operator Tµ we will work in
understanding the functions of the given spaces, equivalent norms in these spaces
or characterizations of their duals, among other techniques.

In order to study the functions in the given space we will find a suitable family
of functions { fn} belonging to the space X, and we will see that all functions of the
form f = ∑ cn fn belong to X, where the sequence {cn} belongs to a given sequence
space S, and satisfies the inequality ‖ f ‖X . ‖{cn}‖S. These inequalities will allow
us to discretize the problem at hand. When possible we will also prove that every
function in the space X can be written as f = ∑ cn fn.

Another way of identifying the functions in the space X is to find a projection
that is bounded onto X. If the projection P : Z → X is bounded, we can see every
f ∈ X as f = P(g), where g ∈ Z, and Z is a function space of which we already
have some information.

Many of the conditions that characterize the boundedness of the given opera-
tor Tµ, will consist in proving that µ is a certain Carleson measure. We say µ is a
q−Carleson measure for the space X if Id : X → Lq

µ(D) is bounded. Some of the
classical results on Carleson measures were given by Carleson, Duren, Luecking,
Jevtic [11, 24, 35, 41] for the spaces Hp, Ap, Ap,q. Peláez and Rättyä characterized
Carleson measure for Ap

ω when ω ∈ D̂ in [55].
The remainder of this survey is organized as follows. In section 2 we give some

notation on the subject and recall certain properties on weights and function spaces.

1



Section 3 contains results on atomic decomposition of standard Bergman spaces Ap
α

and mixed norm spaces Ap,q. In section 4 we discuss some of the previous results
on operators, such as Carleson measures, area operators and projections. Finally
section 5 summarizes papers I-III.
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2 Notation

2.1 BASIC NOTATION

We use the notation a . b if there exists a constant C = C(·) > 0, which depends
on certain parameters that will be specified if necessary such that a ≤ Cb. This
constant may change from line to line, and we define a & b in an analogous manner.
In particular, if a . b and a & b we will write a � b.

We define the euclidean unit disk D = {z ∈ C : |z| < 1}, and its boundary
T = {z ∈ C : |z| = 1}. We denote with D(a, r) = {z ∈ C : |z− a| < r} the euclidean
disk of center a ∈ C and radius r ∈ (0, ∞). The pseudohyperbolic distance is
$(a, z) =

∣∣ z−a
1−az

∣∣, and ∆(a, r) = {z ∈ C : $(z, a) < r} is the pseudohyperbolic disk
with center a ∈ D and radius 0 < r < 1. The hyperbolic distance is defined as
d(a, z) = 1

2 log
(

1+|$(a,z)|
1−|$(a,z)|

)
, and the hyperbolic disk is Λ(a, t) = {z ∈ D : d(a, z) < t}

for all a ∈ D and t > 0.
A sequence Z = {zk}∞

k=0 ⊂ D is called separated if it is separated in the pseudo-
hyperbolic metric, it is an ε-net for ε ∈ (0, 1) if D =

⋃∞
k=0 ∆(zk, ε), and finally it is a

δ-lattice if it is a 5δ-net and separated with constant δ/5.
Given two normed spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y) we say that a linear operator

T : X → Y is bounded if

‖T‖(X,Y) = sup
x∈X:‖x‖X=1

{‖T(x)‖Y} < ∞.

Given ζ ∈ T we define the non-tangential region with vertex at ζ as follows

Γ(ζ) =
{

ξ ∈ D : |θ − arg(ξ)| < 1
2
(1− |ξ|)

}
, ζ = eiθ ∈ T.

These sets can be generalized to non-tangential regions with vertex at z in the punc-
tured unit disk D \ {0},

Γ(z) =
{

ξ ∈ D : |θ − arg(ξ)| < 1
2

(
1− |ξ|

r

)}
, z = reiθ ∈ D \ {0}.

The associated tents are defined by T(ζ) = {z ∈ D : ζ ∈ Γ(z)} for all ζ ∈ D \ {0}.
When we are working with a radial weight ω we set ω(T(0)) = limr→0+ ω(T(r)) to
deal with the origin.

The Carleson square S(I) based on an interval I ⊂ T is the set S(I) = {reit ∈
D : eit ∈ I, 1− |I| ≤ r < 1}, where |E| denotes the Lebesgue measure of E ⊂ T.
We associate to each a ∈ D \ {0} the interval Ia = {eiθ : | arg(ae−iθ)| ≤ 1−|a|

2 }, and
denote S(a) = S(Ia). For the case a = 0 we set I0 = T, hence S(0) = D.

The polar rectangle associated with an arc I ⊂ T is

R(I) =
{

z ∈ D :
z
|z| ∈ I, 1− |I|

2π
≤ |z| < 1− |I|

4π

}
.

3



Write zI = (1− |I|/2π)ξ, where ξ ∈ T is the midpoint of I.
Let Υ denote the family of all dyadic arcs of T. Every arc I ∈ Υ is of the form

In,k =

{
eiθ :

2πk
2n ≤ θ <

2π(k + 1)
2n

}
,

where k = 0, 1, 2, . . . , 2n − 1 and n ∈N∪ {0}.
The family {R(I) : I ∈ Υ} consists of pairwise disjoint rectangles whose union

covers D. For Ij ∈ Υ \ {I0,0}, we will write zj = zIj . For convenience, we associate
the arc I0,0 with the point 1/2.

2.2 WEIGHTS

An integrable function ω : D → [0, ∞) is called a weight. We say it is radial if
ω(z) = ω(|z|) for all z ∈ D, and we write ω̂(z) =

∫ 1
|z| ω(s)ds. Most of the thesis

will focus on radial weights that satisfy the doubling condition ω̂(r) . ω̂( 1+r
2 ). This

class of weights is denoted by D̂. Given a radial weight ω, we define its associated
weight by

ω?(z) =
∫ 1

|z|
ω(s) log

s
|z| s ds, z ∈ D \ {0}.

The following lemma will show some of the characterizations of the weights in this
class.

Lemma 2.2.1. [51, Lemma 2.1] Let ω be a radial weight. Then the following assertions are
equivalent:

(i) ω ∈ D̂;

(ii) There exists C = C(ω) > 0 and β = β(ω) > 0 such that

ω̂(r) ≤ C
(

1− r
1− t

)β

ω̂(t), 0 ≤ r ≤ t < 1;

(iii) There exists C = C(ω) > 0 and γ = γ(ω) > 0 such that∫ t

0

(
1− t
1− s

)γ

ω(s) ds ≤ Cω̂(t), 0 ≤ t < 1;

(iv) ω?(z) � ω̂(z)(1− |z|), |z| → 1−;

(v) There exists λ = λ(ω) ≥ 0 such that∫
D

ω(z)
|1− ζz|λ+1

dA(z) � ω̂(ζ)

(1− |ζ|)λ
, ζ ∈ D;

(vi) There exists C = C(ω) > 0 such that ωx =
∫ 1

0 rxω(r) dr, x ≥ 0 satisfies ωn ≤
Cω2n for n ∈N.

We say a radial weight satisfies the reverse doubling condition if it satisfies one
of the following equivalent conditions.

4



Lemma 2.2.2. [59] Let ω be a radial weight. Then the following statements are equivalent:

(i) There exists K = K(ω) > 1 and C = C(ω) > 1 such that

ω̂(r) ≥ Cω̂

(
1− 1− r

K

)
for all 0 ≤ r < 1; (2.1)

(ii) There exists C = C(ω) > 0 and α = α(ω) > 0 such that

ω̂(t) ≤ C
(

1− t
1− r

)α

ω̂(r), 0 ≤ r ≤ t < 1;

(iii) There exists C = C(ω) > 0 such that

∫ 1

r

ω̂(s)
1− s

ds ≤ Cω̂(r).

The class of weights that satisfies both the doubling condition and the reverse
doubling condition is denoted with D.

We say that a radial weight ω is regular if ω ∈ D̂ and ω̂(r)
1−r � ω(r) for 0 ≤ r < 1,

and we denote this class of weights with R. The class of weights R is contained in
D. The standard weights ω(r) = (1− r)α with α > −1 belong to R. We define the
class of rapidly increasing weights denoted with I as those radial weights which
are continuous and limr→1−

ω̂(r)
ω(r)(1−r) = ∞. Some examples of weights in the class I

are

vα(r) =
1

(1− r)
(
log e

1−r
)α , 1 < α < ∞.

Both these classes R and I are subclasses of the class of doubling weights D̂ by [51].
We denote ω(E) =

∫
E ω(ζ)dA(ζ) where E is a measurable subset of D.

Lemma 2.2.3. [54, Lemma 1.6]

(i) if ω is a radial weight, then

ω?(z) � ω(T(z)), |z| ≥ 1
2

.

(ii) if ω ∈ D̂, then
ω(T(z)) � ω(S(z)), z ∈ D.

The proof in [54, Lemma 1.6] is restricted to the class R∪ I but also works for
the class D̂, as appears in [51, Pag. 55, Eq. 26].

2.3 FUNCTION SPACES AND SOME OF THEIR PROPERTIES

In this section we will define the function spaces that appear throughout this thesis.

5



2.3.1 Hardy spaces

If 0 < r < 1 and f ∈ H(D), we set

Mp(r, f ) =
(

1
2π

∫ 2π

0
| f (reit)|pdt

) 1
p

, 0 < p < ∞, (2.2)

M∞(r, f ) = max
0≤t<2π

| f (reit)|. (2.3)

Since f ∈ H(D), the maximum modulus principle and the subharmonicity
of | f |p tells us that the integral means Mp and M∞ are non-decreasing functions
of r.

For 0 < p ≤ ∞ we define the Hardy space Hp as the space of functions f ∈ H(D)
such that

‖ f ‖Hp = sup
0<r<1

Mp(r, f ) < ∞.

Given a function f : D→ C we define its non-tangential maximal function as

N( f )(eiθ) = sup
z∈Γ(eiθ)

| f (z)|, eiθ ∈ T. (2.4)

If f ∈ Hp, then N( f ) < ∞ almost everywhere on T. In particular for f ∈ H(D) we
have the equivalent norm

‖ f ‖Hp � ‖N( f )‖Lp(T), (2.5)

where Lp(T) refers to the standard Lebesgue space on T.
We also recall the Hardy-Stein-Spencer identity, which can be found in [30]

‖ f ‖p
Hp =

1
2

∫
D
4
(
| f |p

)
log

1
|z|dA(z) + | f (0)|p

=
p2

2

∫
D
| f (z)|p−2| f ′(z)|2 log

1
|z|dA(z) + | f (0)|p

�
∫

D
| f (z)|p−2| f ′(z)|2 (1− |z|) dA(z) + | f (0)|p,

(2.6)

where dA(z) = dxdy
π is the normalized Lebesgue measure on D.

2.3.2 Weighted Bergman spaces

The Bergman spaces were introduced by Bergman [9] and Dzrbashian [22], they
worked with the weight ω ≡ 1. Given a weight ω and 0 < p < ∞, we define the
weighted Bergman space Ap

ω as the space of functions f ∈ H(D) such that

‖ f ‖Ap
ω
=

(∫
D
| f (z)|pω(z)dA(z)

) 1
p
< ∞. (2.7)

In particular the Bergman spaces induced by the standard weights ω(z) = (1−
|z|)α are denoted by Ap

α .

6



It is clear that for every radial weight ω we have the inclusion Hp ⊂ Ap
ω. In

addition if ω ∈ D̂ we have the inclusion Ap
ω ⊂ Ap

α for all α > β(ω), where β(ω) is
given by condition (ii) of Lemma E.

If ω is a radial weight we can see that the dilated functions fr(z) = f (rz) ap-
proximate the function f in Ap

ω, that is, limr→1− ‖ f − fr‖Ap
ω
= 0. This implies that

polynomials are dense in Ap
ω whenever the weight is radial.

For a function in f ∈ H(D) we define its non-tangential maximal function as

N( f )(ζ) = sup
z∈Γ(ζ)

| f (z)|, ζ ∈ D \ {0}. (2.8)

By applying (2.5) to the dilated functions fr we obtain the following equivalent
norm for Ap

ω whenever ω is a radial weight

‖ f ‖Ap
ω
� ‖N( f )‖Lp

ω
. (2.9)

The proof can be found in [54, Lemma 4.4], along with additional information on
the constants of equivalence. Using (2.6) on the dilated functions fr together with
Fubini’s theorem we obtain the following equivalent norm in Ap

ω whenever ω is
radial

‖ f ‖p
Ap

ω
= p2

∫
D
| f (z)|p−2| f ′(z)|2ω?(z)dA(z) + ω(D)| f (0)|p. (2.10)

This equivalent norm comes in very handy in the case p = 2, since we get an equiv-
alent norm in terms of the derivatives exclusively, the proof of this equivalence can
be found in [54, Lemma 4.2]. Another relevant norm in terms of the nth-derivative
is the one we can extrapolate from the Littlewood-Paley identity

‖ f ‖p
Ap

ω
�
∫

D

(∫
Γ(u)
| f (n)(ζ)|2

(
1−

∣∣∣∣ ζu
∣∣∣∣)2n−2

) p
2

ω(u)dA(u) +
n−1

∑
j=0
| f (j)(0)|p, (2.11)

the proof of this equivalence can be found in [54, Lemma 4.2].

2.3.3 Weighted mixed norm spaces

For 0 < p ≤ ∞, 0 < q < ∞ and a radial weight ω, the weighted mixed norm space
Ap,q

ω consists of f ∈ H(D) such that

‖ f ‖q
Ap,q

ω
=
∫ 1

0
Mq

p(r, f )ω(r) dr < ∞.

These spaces generalize the weighted Bergman space Ap
ω, since Ap

ω = Ap,q
ω when

q = p and we have the obvious inclusions Ap
ω ⊂ Ap,q

ω when q < p. The mixed norm
spaces were introduced by Benedek and Panzone in [8].

For 0 < p ≤ ∞, 0 < q < ∞ and a radial weight ω, the space Lp,q
ω consists of

measurable functions f : D→ C such that

‖ f ‖q
Lp,q

ω
=
∫ 1

0
Mq

p(r, f )ω(r) dr < ∞.
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2.3.4 Tent spaces

The tent spaces were introduced by Coifman, Meyer and Stein in [17] and later work
appeared involving these spaces, such as the work done by Cohn and Verbitsky
in [16]. In their context, they work on the upper half-space Rn+1

+ = {(x, t) ∈ Rn+1 :
t > 0}. We will first introduce the tent spaces on the unit disk, as described by
Cohn in [15] and we will follow with the generalization of these spaces that appears
in [55]. We will divide the traditional tent spaces in to three groups as follows.

For 0 < p < ∞, the tent spaces Tp
∞ consist of those (equivalence classes of)

measurable functions u : D→ C such that

‖u‖Tp
∞
=

(∫
T

(
N(u)(eiθ)

)p
dθ

) 1
p
< ∞.

Given 0 < p, q < ∞, the tent spaces Tp
q consist of those (equivalence classes of)

measurable functions u : D→ C such that

‖u‖Tp
q
=

(∫
T

(∫
Γ(eiθ)

|u(z)|q dA(z)
1− |z|

) p
q

dθ

) 1
q

< ∞.

For 0 < q < ∞, the tent spaces T∞
q consist of those (equivalence classes of)

measurable functions u : D→ C such that

‖u‖T∞
q = sup

I⊂T

(
1
|I|

∫
T(I)
|u(z)|q dA(z)

1− |z|

) 1
q
< ∞.

For 0 < q < ∞, a positive Borel measure ν on D finite on compact sets, and a
function f : D → C, we denote Aq

q,ν( f )(ζ) =
∫

Γ(ζ) | f (z)|
q dν(z) and A∞,ν( f )(ζ) =

ν-ess supz∈Γ(ζ) | f (z)|, for all ζ ∈ D. For 0 < p < ∞, 0 < q ≤ ∞ and ω ∈ D̂, the

tent space Tp
q (ν, ω) consists of the (ν-equivalence classes of) ν-measurable functions

f : D→ C such that
‖ f ‖Tp

q (ν,ω) = ‖Aq,ν( f )‖Lp
ω
< ∞.

For 0 < q < ∞ we define

Cq
q,ν( f )(ζ) = sup

a∈Γ(ζ)

1
ω(T(a))

∫
T(a)
| f (z)|qω(T(z)) dν(z), ζ ∈ D \ {0}.

A quasi-norm in the tent space T∞
q (ν, ω) is defined by ‖ f ‖T∞

q (ν,ω) = ‖Cq,ν( f )‖L∞ .

2.3.5 Schatten classes

Let H be a separable Hilbert space. For any non-negative integer n, the n:th singular
value of a bounded operator T : H → H is defined by

λn(T) = inf {‖T − R‖ : rank(R) ≤ n} ,

where ‖ · ‖ denotes the operator norm. It is clear that

‖T‖ = λ0(T) ≥ λ1(T) ≥ λ2(T) ≥ · · · ≥ 0.
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For 0 < p < ∞, the Schatten p-class Sp(H) consists of those compact operators
T : H → H whose sequence of singular values {λn}∞

n=0 belongs to the space `p of p-
summable sequences. For 1 ≤ p < ∞, the Schatten p-class Sp(H) is a Banach space
with respect to the norm |T|p = ‖{λn}∞

n=0‖`p . Therefore all finite rank operators
belong to every Sp(H), and the membership of an operator in Sp(H) measures in
some sense the size of the operator. We refer to [23] and [69, Chapter 1] for more
information about Sp(H).

2.4 RADEMACHER FUNCTIONS AND KHINCHINE’S INEQUALITY

The Rademacher functions are defined as ϕn(t) = sgn (sin(2nπt)) , 0 ≤ t ≤ 1, these
functions form an orthonormal system over the interval [0, 1]. In particular the first
function is

ϕ1(t) =


1, 0 < t < 1

2 ;
−1, 1

2 < t < 1;
0, t = 0, 1

2 , 1.

Given a sequence {an} ∈ `2, we define the function Φ(t) = ∑n an ϕn(t), 0 ≤ t ≤ 1,
which is well defined almost everywhere. These functions satisfy the following
estimate for all 0 < p < ∞.

(∫ 1

0
|Φ(t)|p dt

) 1
p
�
(

∑
n
|an|2

) 1
2

. (2.12)

This estimate is known as Khinchine’s inequality and was proven in [37]. For more
information on the topic of Rademacher functions and Khinchine’s inequality the
reader may check [25, Appendix 1] or [73, Chapter 5.8].
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3 Atomic decomposition

3.1 ATOMIC DECOMPOSITION IN STANDARD BERGMAN SPACES

The idea behind an atomic decomposition of a Banach space X is to obtain a repre-
sentation of every function in the space of the form f = ∑n cngn, where the functions
gn ∈ X are a fixed sequence which are called atoms. These atoms satisfy certain
properties and {cn} is a sequence which belongs to a certain sequence space `. We
will also have the norm estimate ‖ f ‖X � ‖{cn}‖`. Obtaining an atomic decomposi-
tion for a certain Banach space X helps the study of certain properties of operators
defined on X, such as boundedness and compactness, among others. In the case of
a standard Bergman space the following theorem is known.

Theorem 3.1.1. [18] Suppose p > 0, α > −1 and

b > max
(

1,
1
p

)
+

α + 1
p

.

Then there exists a constant σ > 0 such that for any r-lattice {ak} in the Bergman metric,
where 0 < r < σ, the function space Ap

α consists exactly of functions of the form

f (z) =
∞

∑
k=1

ck
(1− |ak|2)(pb−2−α)/p

(1− zak)b , (3.1)

where {ck} ∈ `p, the series in (3.1) converges in norm Ap
α , and ‖ f ‖Ap

α
is comparable to

inf {‖c‖`p : c = {ck} satisfies (3.1) } .

The proof of this result was given by Coifman and Rochberg in [18] by extending
the proof of certain results given by Amar [6].

As an extension of Theorem 3.1.1, Ricci and Taibleson [63] obtained an atomic
decomposition for the mixed norm spaces Ap,q, but first in order to state the re-
sult we shall introduce the space of doubled indexed sequences. For 0 < p, q <
∞ we define the set `p,q of doubled indexed sequences λj,k such that ‖λ‖`p,q =(

∑j

(
∑k |λj,k|p

) q
p
) 1

q

< ∞, and in a similar fashion we define the sets `∞,q, `p,∞ and

`∞,∞ by using sup | · |. We have the following inclusions between these spaces

`p,q ⊂ `r,q, 0 < p ≤ r ≤ ∞,
`p,q ⊂ `p,s, 0 < q ≤ s ≤ ∞.

(3.2)

We will work with these spaces of sequences with one of the indexes finite. The
following theorem from Nakamura [46, Theorem 1] describes the duals of these
spaces.
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Theorem 3.1.2. [46, Theorem 1] For any 0 < p ≤ ∞, we define p′ = p
p−1 if 1 < p < ∞,

p′ = 1 if p = ∞ and p′ = ∞ if 0 < p ≤ 1. Then

sup

{∣∣∣∣∣∑i,j ci,jbi,j

∣∣∣∣∣ : ‖c‖p,q = 1

}
= ‖b‖p′ ,q′ .

The next theorem was originally proven in [63, Theorem 1.5] in the context of
R2

+. Given a sequence {zk} we re-index it in the following way for each j ∈N∪ {0}
we set {zi,j} as those {zk} such that 2−j ≤ 1− |zi,j| < 2−j+1, i = 0, . . . , 2j − 1.

Theorem 3.1.3. Define the operator S on double indexed sequences by

S({ai,j})(z) = ∑
n

ai,j
(1− |zi,j|2)

M− 1
p−

1
q

(1− zi,jz)M ,

where M > max
{

1, 1
q

}
+ 1

p . Then S is bounded from `p,q to Ap,q whenever {zi,j} is
separated.

Some results on atomic decomposition in weighted Bergman spaces Ap
ω were

given by Constantin [19] when the weight ω belongs to the class of Békollé-Bonami
weights.
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4 Operators on spaces of analytic functions

4.1 CARLESON MEASURES

Given a space X of analytic functions in D and a positive Borel measure µ on D,
we say µ is a q-Carleson measure for X if the identity operator Id : X → Lq

µ(D) is
bounded.

Before we dive into Carleson measures for weighted Bergman spaces with ω ∈
D̂, we will state the results for Hardy and standard Bergman spaces. Recall that
there exists α = α(ω, p) such that Hp ⊂ Ap

ω ⊂ Ap
α . These inclusions tell us that the

conditions that characterize Carleson measures for Hardy spaces will be necessary
conditions for µ to be a Carleson measure for Ap

ω. In an analogous manner the
conditions that characterize Carleson measures for standard Bergman spaces Ap

α will
be sufficient conditions (for α big enough) for µ to be a Carleson measure for Ap

ω.

4.1.1 Carleson measures for Hardy spaces

The characterization of q-Carleson measures in Hardy spaces is divided into two
main cases. The case q = p was proven by Carleson in [11], and later on was
extended by Duren [24] to the case p ≤ q by using test functions, a covering Lemma
and the maximal operator given by M(φ)(z) = supI:Iz⊂I

1
|I|
∫

I |φ(ζ)|dζ.

Theorem 4.1.1. [24] Let 0 < p ≤ q < ∞, and µ a positive Borel measure on D. Then µ
is a q-Carleson measure for Hp if and only if

sup
I⊂T

µ (S(I))

|I|
q
p

< ∞.

For the case where 0 < q < p < ∞ Luecking [40] uses Khinchine’s inequality
(2.12), subharmonicity, and the theory of tent spaces Tp

q related to Hardy spaces to
obtain the following result.

Theorem 4.1.2. [40] Let 0 < q < p < ∞, and µ a positive Borel measure on D. Then µ
is a q-Carleson measure for Hp if and only if the function

Aµ(eiθ) =
∫

Γ(eiθ)

dµ(ζ)

1− |ζ|2 , eiθ ∈ T,

belongs to L
p

p−q (T).

4.1.2 Carleson measures for standard Bergman spaces

The first results that characterize Carleson measures on standard Bergman spaces
were given by Hastings [32] offering a description for 1 ≤ p ≤ q < ∞, and Oleinik
and Pavlov [47] giving a characterization for 0 < p ≤ q < ∞.

13



Theorem 4.1.3. [47] Let 0 < p ≤ q < ∞, and µ a positive Borel measure on D. Then the
following assertions are equivalent:

(i) µ is a q-Carleson measure for Ap
α ;

(ii)

sup
a∈D

µ (S(a))

(1− |a|2)(2+α)
q
p
< ∞;

(iii) For every 0 < r < 1

sup
a∈D

µ (∆(a, r))

(1− |a|2)(2+α)
q
p
< ∞.

The condition supa∈D
µ(∆(a,r))

(1−|a|2)(2+α)
q
p

< ∞ is a necessary condition for µ to be

a q-Carleson measure for Ap
α for any 0 < p, q < ∞. To prove this it suffices to

estimate the Lq
µ(D) norm of the normalized reproducing kernels. However it is

not a sufficient condition when 0 < q < p < ∞. In this case, a characterization
of Carleson measures for standard Bergman spaces was proven by Luecking [41],
using Rademacher functions and Khinchine’s inequality (2.12), together with the
atomic decomposition of standard Bergman spaces given by Theorem 3.1.1 and the
properties of δ−lattices.

Theorem 4.1.4. [41] Let 0 < q < p < ∞, and µ a positive Borel measure on D. Then the
following statements are equivalent:

(i) µ is a q-Carleson measure for Ap
α ;

(ii) For every 0 < r < 1 the function µ̂r(z) =
µ(∆(z,r))
(1−|z|)2+α belongs to L

p
p−q
α (D);

(iii) The function µ̃(z) = µ(S(z))
(1−|z|)2+α belongs to L

p
p−q
α (D).

Since these theorems work for the standard weights ω(z) = (1 − |z|2)α, and
ω(S(z)) � ω(∆(z, r)) � (1− |z|2)2+α, it is reasonable to try to find a characterization
of Carleson measure for a more general ω, by replacing (1 − |z|)2+α with either
ω(∆(z, r)) or ω(S(z)) in the previous theorems.

4.1.3 Carleson measures for weighted Bergman spaces

In this section we discuss Carleson measures on weighted Bergman spaces Ap
ω with

ω ∈ D̂. In order to study the Carleson measures in Ap
ω we need to define the follow-

ing Hörmander-type weighted maximal function. Given a positive Borel measure µ
on D and α > 0, we define the weighted maximal function

Mω,α(µ)(z) = sup
z∈S(a)

µ(S(a))
(ω (S(a)))α , z ∈ D. (4.1)

In the case α = 1, we omit it from the notation and write Mω,1(µ) = Mω(µ). If φ is
a non-negative function we write Mω,α(φ) as Mω,α acting over the measure φωdA.
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Theorem 4.1.5. [51] Let 0 < p ≤ q < ∞ and 0 < γ < ∞ such that pγ > 1. Let ω ∈ D̂
and µ be a positive Borel measure on D. Then [Mω((·)

1
γ )]γ : Lp

ω → Lq
µ(D) is bounded if

and only if Mω,q/p(µ) ∈ L∞. Moreover,

‖[Mω((·)
1
γ )]γ‖q

(Lp
ω ,Lq(µ))

� ‖Mω,q/p(µ)‖L∞ .

The boundedness of this operator plays a big role in characterizing the Carleson
measures for the weighted Bergman space Ap

ω.

Theorem 4.1.6. [55] Let 0 < p, q < ∞, ω ∈ D̂ and µ be a positive Borel measure on D.

(a) If p > q, the following conditions are equivalent:

(i) µ is a q-Carleson measure for Ap
ω;

(ii) The function

Bµ(z) =
∫

Γ(z)

dµ(ζ)

ω(T(ζ))
, z ∈ D \ {0},

belongs to L
p

p−q
ω (D);

(iii) Mω(µ) ∈ L
p

p−q
ω (D).

(b) µ is a p-Carleson measure for Ap
ω if and only if Mω(µ) ∈ L∞(D).

(c) If q > p, the following conditions are equivalent:

(i) µ is a q-Carleson measure for Ap
ω;

(ii) Mω,q/p(µ) ∈ L∞(D);

(iii) z 7→ µ (∆(z, r))

(ω (S(z)))
q
p

belongs to L∞(D) for any fixed r ∈ (0, 1).

There are many results about Carleson measures on Ap
ω for other classes of

weights. We will state some of them such as the characterization of Carleson mea-
sures on weighted Bergman spaces induced by rapidly decreasing weights W de-
fined in [48], which include the family of weights

ωα(r) = exp
(
−1

(1− r)α

)
, α > 0. (4.2)

Theorem 4.1.7. [48, Theorem 1] Let ω ∈ W and let µ be a finite positive Borel measure
on D.

(i) Let 0 < p ≤ q < ∞. Then µ is a q-Carleson measure for Ap
ω if and only if for each

sufficiently small δ > 0 we have

sup
a∈D

1

τ(a)
2q
p

∫
D(a,δτ(a))

ω(z)
−q
p dµ(z) < ∞.
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(ii) Let 0 < q < p < ∞. Then µ is a q-Carleson measure for Ap
ω if and only if for each

sufficiently small δ > 0 the function

z→ 1

τ(z)
2q
p

∫
D(z,δτ(z))

ω(ζ)
−q
p dµ(ζ) ∈ L

p
p−q (D).

Here τ : D → (0, 1) is a radial function which depends on ω and has the prop-
erty that it decreases to 0 as |z| → 1−. For more information on the classW and the
function τ we refer to [48].

There is literature on the characterization of Carleson measures for Ap
ω when ω

is a non-radial weight, like the results given by O.Constantin [21] for the Békolle
weight class. A weight ω is said to belong to the Békolle class Bp0(η), where p0 > 1
and η > −1 if there exists k > 0 such that

∫
S(a)

ω(z)dAη(z)

(∫
S(a)

ω(z)−
p′0
p0 dAη(z)

) p0
p′0
≤ k

(∫
S(a)

dAη(z)
)p0

, a ∈ D, (4.3)

where dAη(z) = (η + 1)(1− |z|)ηdA(z).

Theorem 4.1.8. [21, Theorem 3.1] Let ω be a weight such that ω(z)
(1−|z|)η belongs to Bp0(η)

for some p0 > 0, η > −1. Consider a positive finite Borel measure µ on D and assume
q ≥ p > 0, n ∈N. Then there exists a constant C > 0 such that

(∫
D
| f (n)(z)|qdµ(z)

) 1
q
≤ C‖ f ‖Ap

ω
(4.4)

if and only if µ satisfies

µ(D(a, α(1− |a|))) ≤ C′(1− |a|2)nq
(∫

D(a,α(1−|a|))
ω(z)dA(z)

) q
p

(4.5)

for some constant C′ > 0 independent of a, and for some α ∈ (0, 1).

Theorem 4.1.9. [21, Theorem 3.2] Let ω be a weight such that ω(z)
(1−|z|)η belongs to Bp0(η)

for some p0 > 0, η > −1. Consider a positive finite Borel measure µ on D and assume
p > q > 0, n ∈N. Then there exists a constant C > 0 such that

(∫
D
| f (n)(z)|qdµ(z)

) 1
q
≤ C‖ f ‖Ap

ω
(4.6)

if and only if the function

a→ µ(D(a, α(1− |a|)))
(1− |a|2)nq

∫
D(a,α(1−|a|)) ω(z)dA(z)

(4.7)

belongs to L
p

p−q
ω , for some α ∈ (0, 1).
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4.1.4 Carleson measures for mixed norm spaces

Jevtić gives a characterization of Carleson measures for weighted mixed norm spaces
in the half-plane R2

+. We reindex the the family {R(I) : I ∈ Υ} as {Ri,j}, j ∈ N ∪
{0}, i = 0, . . . , 2j − 1.

Theorem 4.1.10. [35, Theorem 3.3] Let µ be a positive Borel measure on D, 0 < s < p <
∞ and 0 < t < q < ∞. Then there exists C > 0 such that∑

j

(
∑

i

∫
Ri,j

| f (z)|sdµ(z)

) t
s


1
t

≤ C‖ f ‖Ap,q , (4.8)

if and only if

∑
j

(
∑

i
µ(Ri,j)

1
s 2ju

(
1
p +

1
q

)) v
u

< ∞, (4.9)

where 1
u = 1

s −
1
p and 1

v = 1
t −

1
q .

Note that in the case where s = t and p = q, Jevtić gives a characterization of
the s-Carleson measures for Ap. Luecking extended the result given by Jevtić by
eliminating the restriction over the coefficients and by adding a continuous charac-
terization.

Theorem 4.1.11. [41, Theorem 2] Let 0 < p, q, s < ∞ and µ be a positive Borel measure
on D. Then the following statements are equivalent:

(i) There exists C > 0 such that ‖ f (n)‖Ls
µ
≤ C‖ f ‖Ap,q for all f ∈ Ap,q;

(ii) The sequence
{

µ(Ri,j)2
sj(n+ 1

p +
1
q )
}

belongs to `(
p
s )
′
,( q

s )
′
;

(iii) For all 0 < r < 1 the function kr belongs to L(
p
s )
′
,( q

s )
′
, where

kr(z) =



µ(∆(z,r))
(1−|z|)2+sn , s < min{p, q};

µ(∆(z,r))

(1−|z|)1+ s
p +sn , p ≤ s < q;

µ(∆(z,r))

(1−|z|)1+ s
q +sn , q ≤ s < p;

µ(∆(z,r))

(1−|z|)
s
p + s

q +sn , max{p, q} ≤ s.

In the proof of this theorem, Luecking uses Theorem 3.1.3 given by Ricci and
Taibleson [63], Rademacher functions and Khinchine’s inequality (2.12), and an
equivalent norm for the functions in Ap,q.

4.2 AREA OPERATORS

4.2.1 Area operators in Hardy spaces

As Ahern and Bruna showed in [1], a function f ∈ Hp if and only if for a given
α > 0
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∫
T

(∫
Γ(eiθ)

(1− r)2α |Dα(z)|2 dA(z)
(1− |z|)2

) p
2

dθ < ∞, (4.10)

where Dα f is the radial fractional derivative of order α. In the paper [15] Cohn
extracted the following area operator

Aµ( f )(eiθ) =
∫

Γ(eiθ)
| f (z)| dµ(z)

1− |z| , (4.11)

and characterized its boundedness from Hp to Lp(T) in terms of the measure µ.

Theorem 4.2.1. [15, Theorem 1] Let 0 < p < ∞ and µ a positive Borel measure on D.
Then Aµ is bounded from Hp to Lp(T) if and only if µ is a p-Carleson measure for Hp.

In a later work Gong, Lou, and Wu characterized in [31] the boundedness of Aµ

from Hp to Lq(T) with the following results.

Theorem 4.2.2. [31, Theorem 3.1] Let 0 < p ≤ q < ∞ and µ a non-negative measure
on D. Then Aµ is bounded from Hp to Lq(T) if and only if µ is a

(
1 + 1

p −
1
q

)
-Carleson

measure for H1.

In order to prove this result, they use the equivalent norm given in (2.5), the test
functions fa(z) =

(1−|a|)m

(1−az)m+ 1
p

, the boundedness of the Riesz projection from Lq(T) to

Hq when q > 1 and Calderon-Zygmund decompositions among other techniques.

Theorem 4.2.3. [31, Theorem 3.2] Let 1 ≤ q < p ≤ ∞ and µ a non-negative measure
on D. Then Aµ is bounded from Hp to Lq(T) if and only if µ̂(ζ) =

∫
Γ(ζ)

dµ(z)
1−|z| for ζ ∈ T

belongs to L
pq

p−q (T).

For this result they relied again on the equivalent norm (2.5), the characteriza-
tion of Carleson measures in Hardy spaces described in Theorem 4.1.2 and some
estimates involving the non-tangential maximal operator N.

4.2.2 Area operators in standard Bergman spaces

Given a non-negative Borel measure µ on D and τ > 0, the area operator Aτ
µ on the

Bergman space Ap
α is defined as

Aτ
µ(ζ) =

∫
Γτ(ζ)

| f (z)| dµ(z)
1− |z| , ζ ∈ T,

where the non-tangential regions Γτ(ζ) as defined by Wu in [65] are

Γτ(ζ) = {z ∈ D : |z− ζ| < (1 + τ)(1− |z|)}, ζ ∈ T.

He characterized the boundedness of the area operator Aτ
µ in terms of the growth

of the α-density function ρα(µ)(z, t) = µ(Λ(z,t))
|Λ(z,t)|α , where |Λ(z, t)|α =

∫
Λ(z,t)|(1 −

|w|2)αdA(w).
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Theorem 4.2.4. [65, Theorem 1] Suppose α > −1, 0 < p ≤ q < ∞ and 0 < p ≤ 1. For a
non-negative Borel measure µ on D the following statements are equivalent:

(i) A1
µ is bounded from Ap

α to Lq(T);

(ii) There exists τ > 0 such that Aτ
µ is bounded from Ap

α to Lq(T);

(iii) There exists δ > 0 such that the α-density function ρα(µ) satisfies

ρα(µ)(z, δ) . (1− |z|)(α+2)( 1
p−1)+1− 1

q , z ∈ D;

(iv) For any fixed t > 0 the α-density function ρα(µ) satisfies

ρα(µ)(z, t) . (1− |z|)(α+2)( 1
p−1)+1− 1

q , z ∈ D.

In this proof, Wu groups the conditions (i) with (ii) and (iii) with (iv). In one di-
rection he used the test functions fa(z) =

(1−|a|m)

(1−az)m+ α+2
p

, which are uniformly bounded

in the Ap
α norm and essentially constant in ∆(a, r), and the boundedness of Aτ

µ

from Ap
α to Lq(T), to obtain the growth estimate on ρα(µ). For the reverse impli-

cation he uses a suitable δ-lattice on D, the subharmonicity of the functions in Ap
α ,

together with some geometric arguments and the conditions on p and q.

Theorem 4.2.5. [65, Theorem 2] Suppose α > −1 and 1 < p ≤ q < ∞. For a non-
negative Borel measure µ on D the following statements are equivalent:

(i) A1
µ is bounded from Ap

α to Lq(T);

(ii) There exists τ > 0 such that Aτ
µ is bounded from Ap

α to Lq(T);

(iii) There exists δ > 0 such that the α-density function ρα(µ)(z, δ) satisfies that the
measure

ρα(µ)(z, δ)
p

p−1 dAα(z)

is a p(q−1)
q(p−1) -Carleson measure for H1;

(iv) For any fixed t > 0 the α-density function ρα(µ)(z, t) satisfies that the measure

ρα(µ)(z, t)
p

p−1 dAα(z)

is a p(q−1)
q(p−1) -Carleson measure for H1.

Here, in order to prove this theorem, Wu uses the duality of Lq(T) and `q when
q > 1, a characterization of Carleson measures for Hardy spaces, together with
Rademacher functions and Khinchine’s inequality (2.12), δ-lattices and their proper-
ties and the test functions given by an atomic decomposition like the one given in
(3.1), among other tools.

Theorem 4.2.6. [65, Theorem 3] Suppose α > −1 and 1 ≤ q < p < ∞. For a non-
negative Borel measure µ on D the following are equivalent:
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(i) A1
µ is bounded from Ap

α to Lq(T);

(ii) There exists τ > 0 such that Aτ
µ is bounded from Ap

α to Lq(T);

(iii) There exists δ, τ > 0 such that the α-density function ρα(µ)(z, δ) satisfies the property∫
Γτ(ζ)

(ρα(µ)(z, δ))
p

p−1
dAα(z)
1− |z| ∈ L

q(p−1)
p−q (T);

(iv) For any fixed t, τ > 0 the α-density function ρα(µ)(z, t) satisfies the property∫
Γτ(ζ)

(ρα(µ)(z, t))
p

p−1
dAα(z)
1− |z| ∈ L

q(p−1)
p−q (T).

To prove this Theorem Wu uses the duality of Lq, Khinchine’s inequality (2.12),
the properties of δ-lattices and the Poisson integral.

Theorem 4.2.7. [65, Theorem 4] Suppose α > −1, q < p < ∞, 0 < q < 1, µ a non-
negative Borel measure on D. Then Aµ is bounded from Ap

α to Lq(T) if and only if for any
fixed τ > 0, δ-lattice {zj} in D, any {aj} ∈ `p, the α-density function ρα(µ) satisfies

∫
T

 ∑
j:zj∈Γτ(ζ)

|aj|
ρα(µ)(zj, δ)

(1− |zj|)
(α+2)( 1

p−1)+1

q

|dζ| . ‖{aj}‖
q
`p .

In order to prove the Theorem Wu uses the test functions Ft(z) = ∑j ajrj(t)
(1−|zj |m)

(1−zjz)
m+ α+2

p
,

which satisfy the estimate ‖Ft‖Ap
α
. ‖{aj}‖`p , together with a generalization of Khin-

chine’s inequality given by Kalton [36] and the properties of δ-lattices.

4.3 PROJECTIONS AND REPRODUCING KERNELS

4.3.1 Projections on standard Bergman spaces

For each a ∈ D, we define the point evaluation functionals

La : Ap
α → C,

f 7→ f (a),

which is bounded for each a ∈ D. Focusing on the case p = 2, A2
α is a Hilbert space

with the scalar product

〈 f , g〉A2
α
=
∫

D
f (z)g(z)dAα(z).

Since La is a bounded and linear functional, due to Riesz representation theorem [64,
Theorem 4.12, pag.80], there exists Kα

a ∈ A2
α such that

f (a) = La( f ) = 〈 f , Kα
a 〉A2

α
=
∫

D
f (z)Kα

a (z)dAα(z), f ∈ A2
α, a ∈ D. (4.12)

The family of analytic functions {Kα
a}a∈D is called the reproducing kernel of A2

α. The
reproducing kernel Kα

a has an explicit formula, which can be obtained as follows.
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Theorem 4.3.1. [69, Theorem 4.19] Let {en}∞
n=0 an ortonormal basis of A2

α, then

Kα
z (ξ) =

∞

∑
n=0

en(ξ)en(z), z, ξ ∈ D. (4.13)

Next, we take a a concrete basis of A2
α. For each n ∈N∪ {0}, the canonical basis

is given by

en(z) =
zn(

2(α + 1)
∫ 1

0 s2n+1(1− s2)α ds
) 1

2
, z ∈ D.

So, by Theorem 4.3.1,

Kα
z (ξ) =

∞

∑
n=0

ξnzn

2(α + 1)
∫ 1

0 r2n+1(1− r2)αdr
, z, ξ ∈ D. (4.14)

Then by using some properties of the Gamma function

Γ(x) =
∫ ∞

0
tx−1e−t dt, x > 0,

we can rewrite the reproducing kernel Kα
z in the following way.

Corollary 4.3.2. [69, Corollary 4.20] For α > −1 the reproducing kernel of A2
α is given by

Kα
z (ξ) =

∞

∑
n=0

Γ(α + n + 2)
Γ(α + 2)Γ(n + 1)

(ξz)n =
1

(1− zξ)α+2 , z, ξ ∈ D.

This together with (4.12) allows us to write the following reproducing formula.

Theorem 4.3.3. [69, Proposition 4.23] Let α > −1, then

f (a) =
∫

D

f (z)
(1− za)2+α

dAα(z), f ∈ A1
α, a ∈ D.

Since A2
α is a closed subspace of L2

α(D), there exists an orthogonal projection
from L2

α(D) to A2
α, which we shall denote by Pα. Since Pα is an orthogonal projection

it satisfies P2 = P, and it is self-adjoint

〈P( f ), g〉L2
α(D) = 〈 f , P(g)〉L2

α(D).

If φ ∈ L2
α(D) then Pα(φ) ∈ A2

α, and the following formula holds

Pα(φ)(z) = 〈Pα(φ), Kα
z 〉L2

α(D) = 〈φ, Pα(Kα
z )〉L2

α(D)

= 〈φ, Kα
z 〉L2

α(D) =
∫

D
φ(ξ)Kα

z (ξ)dAα(ξ)

=
∫

D

φ(ξ)

(1− ξz)α+2
dAα(ξ).

If φ ∈ Lp
α(D) for p ≥ 2 the previous formula is also true since Lp

α(D) ⊂ L2
α(D). The

projection Pα also makes sense for φ ∈ L1
α(D) since for z ∈ D we have
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∣∣∣∣∫
D

φ(ξ)

(1− ξz)α+2
dAα(ξ)

∣∣∣∣ ≤ 1
(1− |z|)2+α

∫
D
|φ(ξ)| dAα(ξ) =

‖φ‖L1
α

(1− |z|)2+α
, z ∈ D.

Next we are going to characterize the boundedness of the projection Pγ on the
corresponding Lp

α(D) spaces, alongside with analogous result for the maximal pro-
jection P+

γ (φ)(z) =
∫

D

|φ(ξ)|
|1−ξz|2+γ dAγ(ξ), which is a sublinear operator. Forelli and

Rudin proved in [28] the case α = 0.

Theorem 4.3.4. [69, Theorem 4.24] Let γ, α > −1 and 1 ≤ p < ∞. Then the following
statements are equivalent:

(a) Pγ : Lp
α(D)→ Ap

α is bounded;

(b) P+
γ : Lp

α(D)→ Lp
α(D) is bounded;

(c) p(γ + 1) > α + 1.

Now that we have studied the boundedness of the Bergman projection, we will

use this to identify
(

Ap
α

)∗
, the dual of Ap

α , with Ap′
α , for α > −1 and 1 < p < ∞.

Theorem 4.3.5. [69, Theorem 4.25] Let 1 < p < ∞, and α > −1. Then the following
statements are true:

(i) Every g ∈ Ap′
α defines a functional Tg ∈

(
Ap

α

)∗
as follows

Tg( f ) =
∫

D
f (z)g(z)dAα(z),

with ‖Tg‖ ≤ ‖g‖Ap′
α

.

(ii) For every T ∈
(

Ap
α

)∗
, there exists g ∈ Ap′

α such that

T( f ) = Tg( f ) =
∫

D
f (z)g(z)dAα(z), (4.15)

with ‖g‖
Ap′

α
≤ C‖T‖, where C = C(p) is a constant.

For more information on the boundedness of Bergman projection Pα the reader
may check [26, 57, 69].

4.3.2 Toeplitz operator and Berezin transform in standard Bergman spaces

Some of the early results with respect to Toeplitz operators were introduced by
McDonald and Sundberb [44] and Coburn [14]. Given β > −1 and a positive Borel
measure µ on D, define the Toeplitz operator Tβ

µ as follows:

Tβ
µ f (z) =

∫
D

f (w)

(1− wz)2+β
dµ(w) =

∫
D

f (w)Kβ
z (w) dµ(w), z ∈ D.

Pau and Zhao [49] characterized the boundedness of the Toeplitz operator in Cn

from Ap1
α1 to Ap2

α2 . The following result is mostly due to Luecking ( [39] and [41]) for
the case α = 0.
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Theorem 4.3.6. [49, Theorem B] Let α > −1, 0 < q < p < ∞ and µ be a positive Borel
measure on D. Then the following statements are equivalent:

(i) µ is a q−Carleson measure for Ap
α ;

(ii) The function

µ̂r(z) =
µ(∆(z, r))

(1− |z|2)(2+α)
, z ∈ D,

is in Lp/(p−q)
α (D) for any (some) fixed r ∈ (0, 1);

(iii) For any r-lattice {ak} and Dk = ∆(ak, r), the sequence

{µk} =
{

µ(Dk)

(1− |ak|2)
(2+α)

q
p

}

belongs to `p/(p−q) for any (some) fixed r ∈ (0, 1);

(iv) For any s > 0, the Berezin-type transform Bs,α(µ) belongs to L
p

p−q
α (D).

Furthermore, with λ = q/p, one has

‖µ̂r‖
L

p
p−q

α (D)
� ‖{µk}‖`p/(p−q) � ‖Bs,α(µ)‖

L
p

p−q
α (D)

� ‖Id‖q
(Ap

α ,Lq
µ(D))

.

Here, for a positive measure µ, the Berezin-type transform Bs,α(µ) is

Bs,α(µ)(z) =
∫

D

(1− |z|2)s

|1− wz|2+s+α
dµ(w), z ∈ D.

For more information on the Berezin transform we refer to the book [33]. For addi-
tional information with respect to the Toeplitz operator, see [69].

4.3.3 Projection on weighted Bergman spaces

From now on, we assume that the norm convergence in the Bergman space A2
ω

implies the uniform convergence on compact subsets, then the point evaluations Lz
(at the point z ∈ D) are bounded linear functionals on A2

ω. Therefore, there are
reproducing kernels Bω

z ∈ A2
ω with ‖Lz‖ = ‖Bω

z ‖A2
ω

such that

Lz f = f (z) = 〈 f , Bω
z 〉A2

ω
=
∫

D
f (ζ) Bω

z (ζ)ω(ζ) dA(ζ), f ∈ A2
ω. (4.16)

In a similar fashion as in (4.13) for any orthonormal basis of A2
ω

Bω
z (ζ) =

∞

∑
n=0

en(ζ)en(z), z, ζ ∈ D.

When ω is radial, we can use the standard orthonormal basis {zj/
√

2ω2j+1}, j ∈
N∪{0}, of A2

ω to obtain the following formula for the Bergman reproducing kernels

Bω
z (ζ) =

∞

∑
n=0

(ζz)n

2ω2n+1
, z, ζ ∈ D. (4.17)
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Even if ω is a radial weight, the reproducing kernels Bω
z , z ∈ D, do not neces-

sarily have the good properties that the standard reproducing kernels Bα
z have. The

fact that it is not always possible to obtain a closed formula for the reproducing ker-
nel Bω

z makes it harder to know relevant information about the kernel such as; its
behaviour in pseudohyperbolic bounded regions, the existence of zeros or a norm
estimate. One of the main issues with these reproducing kernels Bω

z is the existence
of zeros, which can appear even in radial weights with apparently good properties
as Zeytuncu [67] and Perälä [62] proved.

Theorem 4.3.7. [67, Theorem 1.5] There exists a radial weight ω on D, comparable to 1,
such that the reproducing kernel Bω

a has zeros.

Since A2
ω is a closed subspace of L2

ω(D), we may consider the orthogonal Bergman
projection Pω from L2

ω to A2
ω. This projection is usually called the Bergman projec-

tion and it is given by the following formula

Pω( f )(z) =
∫

D
f (ζ)Bω

z (ζ)ω(ζ)dA(ζ), z ∈ D. (4.18)

The maximal Bergman projection is the following sublinear operator

P+
ω ( f )(z) =

∫
D
| f (ζ)Bω

z (ζ)|ω(ζ)dA(ζ), z ∈ D.

Theorem 4.3.8. [58, Theorem 12] Let 1 < p < ∞ and ω ∈ R. Then the following
statements are true:

(i) P+
ω : Lp

ω(D)→ Lp
ω(D) is bounded. In particular, Pω : Lp

ω(D)→ Ap
ω is bounded.

(ii) Pω : L∞(D)→ B is bounded.

The first part of this theorem is a direct consequence of [57, Theorem 3]. The
Lp

ω(D) norm estimates of the Bergman reproducing kernels were obtained using
estimates on the moments ωn by Peláez and Rättyä.

Theorem 4.3.9. [57, Theorem 1] Let 0 < p < ∞, ω ∈ D̂ and N ∈ N ∪ {0}. Then the
following assertions hold:

(i) Mp
p

(
r, (Bω

a )
(N)
)
�
∫ |a|r

0

dt
ω̂(t)p(1− t)p(N+1)

, r, |a| → 1−.

(ii) If v ∈ D̂, then

‖ (Bω
a )

(N) ‖p
Ap

v
�
∫ |a|

0

v̂(t)
ω̂(t)p(1− t)p(N+1)

dt, |a| → 1−.

When Pω is bounded on Lp
ω we can use it to obtain the dual of Ap

ω, hence under
the same conditions as in Theorem 4.3.8 Peláez and Rättyä obtained the following
result.

Corollary 4.3.10. [57, Corollary 2] Let 1 < p < ∞ and ω ∈ R. Then the following
equivalences hold under the A2

ω pairing: (Ap
ω)

? ' Ap′
ω and (A1

ω)
? ' B.
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5 Summary of papers I-III

5.1 SUMMARY OF PAPER I

In this paper we characterize the embedding Ap
ω ⊂ Tq

s (ν, ω) in terms of Carleson
measures for Ap

ω. This result can be interpreted as an additional characterization
of Carleson measures for the space Ap

ω. We add the technical condition ν({0}) = 0
because the tents Γ(z) are not defined for z = 0, this condition does not carry any
real restriction.

Theorem 5.1.1. Let 0 < p, q, s < ∞ such that 1 + s
p −

s
q > 0, ω ∈ D̂ and let ν be

positive Borel measure on D, finite on compact sets, such that ν({0}) = 0. Write νω(ζ) =
ω(T(ζ)) dν(ζ) for all ζ ∈ D \ {0}. Then the following assertions hold:

(i) Id : Ap
ω → Tq

s (ν, ω) is bounded if and only if νω is a (p + s− ps
q )-Carleson measure

for Ap
ω. Moreover,

‖Id‖s
Ap

ω→Tq
s (ν,ω)

� ‖Id‖
p+s− ps

q

Ap
ω→L

p+s− ps
q

νω

.

(ii) Id : Ap
ω → Tq

s (ν, ω) is compact if and only if Id : Ap
ω → L

p+s− ps
q

νω (D) is compact.

We can generalize this theorem by extracting the following area operator and
studying its boundedness. For 0 < s < ∞, the generalized area operator induced by
positive measures µ and v on D is defined by

Gv
µ,s( f )(z) =

(∫
Γ(z)
| f (ζ)|s dµ(ζ)

v(T(ζ))

) 1
s

, z ∈ D \ {0}.

Minkowski’s inequality shows that Gv
µ,s is sublinear if s ≥ 1. This is not the case for

0 < s < 1, but instead we have
(

Gv
µ,s( f + g)

)s
≤
(

Gv
µ,s( f )

)s
+
(

Gv
µ,s(g)

)s
. Write µω

v

for the positive measure such that

dµω
v (z) =

ω(T(z))
v(T(z))

dµ(z)

for µ-almost every z ∈ D. Fubini’s theorem shows that

‖Gv
µ,s( f )‖s

Ls
ω(D) =

∫
D

(∫
Γ(z)
| f (ζ)|s dµ(ζ)

v(T(ζ))

)
ω(z) dA(z)

=
∫

D

(∫
Γ(z)
| f (ζ)|s dµω

v (ζ)

ω(T(ζ))

)
ω(z) dA(z)

=
∫

D\{0}
| f (ζ)|s

(
1

ω(T(ζ))

∫
T(ζ)

ω(z) dA(z)
)

dµω
v (ζ)

=
∫

D\{0}
| f (ζ)|s dµω

v (ζ) = ‖ f ‖s
Ls

µω
v
(D) − | f (0)|

sµω
v ({0}),

(5.1)
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and hence Gv
µ,s : Ap

ω → Ls
ω(D) is bounded if and only if µω

v is an s-Carleson measure
for Ap

ω. In order to study this operator the equivalent norm given by (2.9) will play
an important role.

Theorem 5.1.2. Let 0 < p, q, s < ∞ such that s > q− p, ω ∈ D̂ and let µ, v be positive
Borel measures on D such that µ ({z ∈ D : v(T(z)) = 0}) = 0 = µ({0}). Then the
following assertions hold:

(i) µω
v is a q-Carleson measure for Ap

ω if and only if Gv
µ,s : Ap

ω → L
ps

p+s−q
ω (D) is bounded.

Moreover,
‖Gv

µ,s‖s

Ap
ω→L

ps
p+s−q

ω (D)

� ‖Id‖
q
Ap

ω→Lq
µω

v
(D)

.

(ii) Id : Ap
ω → Lq

µω
v
(D) is compact if and only if Gv

µ,s : Ap
ω → L

ps
p+s−q
ω (D) is compact.

In order to prove the previous theorems we need to estimate the norm of the
identity operator Id : Ap

ω → Lq
µ(D). The equivalence between the conditions of the

following theorem was proven by Peláez and Rättyä in [55, Theorem 1].

Theorem 5.1.3. Let 0 < p, q < ∞, ω ∈ D̂ and let µ be a positive Borel measure on D.
Further, let dh(z) = dA(z)/(1− |z|2)2 denote the hyperbolic measure.

(i) If p ≤ q, then µ is a q-Carleson measure for Ap
ω if and only if supa∈D

µ(S(a))

ω(S(a))
q
p
< ∞.

Moreover,

‖Id‖
q
Ap

ω→Lq
µ(D)

� sup
a∈D

µ(S(a))

ω(S(a))
q
p

.

(ii) If p ≤ q, then Id : Ap
ω → Lq

µ(D) is compact if and only if

lim
|a|→1−

µ(S(a))

(ω(S(a)))q/p = 0. (5.2)

(iii) If q < p, then the following conditions are equivalent:

(a) Id : Ap
ω → Lq

µ(D) is compact;

(b) Id : Ap
ω → Lq

µ(D) is bounded;

(c) The function

Bω
µ (z) =

∫
Γ(z)

dµ(ζ)

ω(T(ζ))
, z ∈ D \ {0},

belongs to L
p

p−q
ω (D);

(d) For each fixed r ∈ (0, 1), the function

Φω
µ (z) = Φω

µ,r(z) =
∫

Γ(z)

µ (∆(ζ, r))
ω(T(ζ))

dh(ζ), z ∈ D \ {0},

belongs to L
p

p−q
ω (D);
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(e) For each sufficiently large λ = λ(ω) > 1, the function

Ψω
µ (z) = Ψω

µ,λ(z) =
∫

D

(
1− |ζ|
|1− zζ|

)λ dµ(ζ)

ω(T(ζ))
, z ∈ D,

belongs to L
p

p−q
ω (D).

Moreover,

‖Id‖
q
Ap

ω→Lq
µ(D)

� ‖Mω(µ)‖
L

p
p−q

ω (D)
� ‖Bω

µ ‖
L

p
p−q

ω (D)
+ µ({0})

� ‖Ψω
µ ‖

L
p

p−q
ω (D)

� ‖Φω
µ ‖

L
p

p−q
ω (D)

+ µ({0}).
(5.3)

To prove the compactness of these operators, we use the following lemma, the
proof of which can be obtained by adapting the proof in [25, Lemma 1 p. 21]

Lemma 5.1.4. Let ν be a positive Borel measure on D and 0 < p < ∞. If {ϕn}∞
n=0 ⊂

Lp
ν(D) and ϕ ∈ Lp

ν(D) satisfy limn→∞ ‖ϕn‖Lp
ν (D) = ‖ϕ‖Lp

ν (D) and limn→∞ ϕn(z) =

ϕ(z) ν-a.e. on D, then limn→∞ ‖ϕn − ϕ‖Lp
ν (D) = 0.

We can use Theorem 5.1.2 to study the boundedness of other operators such
as the following integral operators, also called Volterra type operators. Given g ∈
H(D) we define the integral operator

Tg( f )(z) =
∫ z

0
g′(ζ) f (ζ) dζ, z ∈ D,

acting on H(D). Some results of this operator in the context of Hardy spaces are
due to Aleman and Cima [2] and Aleman and Siskakis [3], while in the context of
Bergman spaces we find the results given by Aleman and Siskakis in [4]. This type
of integral operators have been extensively studied during recent decades and have
interesting connections with other areas of mathematical analysis, see [51, 54] and
the references therein.

Theorem 5.1.5. Let 0 < p, q < ∞ such that q > 2p
2+p and ω ∈ D̂. Let g ∈ H(D) and

denote dµg(z) = |g′(z)|2ω?(z) dA(z). Then Tg : Ap
ω → Aq

ω is bounded (resp. compact) if

and only if Id : Ap
ω → L

p+2− 2p
q

µg (D) is bounded (resp. compact).

This result is a direct consequence of Theorem 5.1.2 with ν = ωdA, µ = µg, and
s = 2 together with the equivalent norm given in (2.10).

5.2 SUMMARY OF PAPER II

In this paper we work with weights ω which belong to either R or D̂. The Bergman
projection Pω is given by

Pω( f )(z) =
∫

D
f (ζ)Bω

z (ζ)ω(ζ) dA(ζ), z ∈ D,

where Bω
z are the reproducing kernels stated in (4.17). Recently, those regular

weights ω and ν for which Pω : Lp
ν(D) → Lp

ν(D) is bounded were characterized
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in terms of Bekollé-Bonami type conditions [57]. In this paper we consider opera-
tors which are natural extensions of the projection Pω. For a positive Borel measure
µ on D, the Toeplitz operator associated with µ is

Tµ( f )(z) =
∫

D
f (ζ)Bω

z (ζ) dµ(ζ).

If dµ = ΦωdA for a non-negative function Φ, then write Tµ = TΦ so that TΦ( f ) =
Pω( f Φ). The operator TΦ has been extensively studied since the seventies [14,44,68].
Luecking was probably the one who introduced Toeplitz operators Tµ with measures
as symbols in [39], where he provides, among other things, a description of Schatten
class Toeplitz operators Tµ : A2

α → A2
α in terms of an `p-condition involving a

hyperbolic lattice of D.
Before presenting our main results we will need some additional results on the

reproducing kernels Bω
z , apart from those given in Theorem 4.3.9. First we will

estimate the norm in the Bloch space and H∞.

Lemma 5.2.1. Let ω ∈ D̂. Then

‖Bω
z ‖B �

1
ω(S(z))

� ‖Bω
z ‖H∞ , z ∈ D.

Here the Bloch norm is given by ‖ f ‖B = | f (0)|+ supz∈D(1− |z|)| f ′(z)|. Addi-
tionally to prove the main result of this section we will need the following pointwise
estimates of the reproducing Bergman kernels Bω

a in certain sets induced by a point
a ∈ D.

Lemma 5.2.2. Let ω ∈ D̂. Then there exists r = r(ω) ∈ (0, 1) such that |Bω
a (z)| � Bω

a (a)
for all a ∈ D and z ∈ ∆(a, r).

In this first result we used the definition of Bω
a in terms of a basis and the norm

estimates ‖Bω
a ‖A2

ω
from Theorem 4.3.9.

Lemma 5.2.3. Let ω ∈ D̂. Then there exists constants c = c(ω) > 0 and δ = δ(ω) ∈
(0, 1] such that

|Bω
a (z)| ≥

c
ω(S(a))

, z ∈ S(aδ), a ∈ D \ {0}. (5.4)

To prove this result we use estimates of the derivative of Bω
a , the fact that Bω

a (aδ) =

Bω√
|aaδ |

(
√
|aaδ|) and Lemma E.

These pointwise estimates will allow us to avoid some of the issues of weighted
reproducing Bergman kernels Bω

a such as the possible existence of zeros in D.

Theorem 5.2.4. Let 1 < p ≤ q < ∞, ω ∈ R and µ be a positive Borel measure on D.
Then the following statements are equivalent:

(i) Tµ : Ap
ω → Aq

ω is bounded;

(ii) T̃µ(·)

ω(S(·))
1
p + 1

q′ −1
∈ L∞(D);

(iii) µ is a s(p+q′)
pq′ -Carleson measure for As

ω for some (equivalently for all) 0 < s < ∞;
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(iv) µ(S(·))

ω(S(·))
1
p + 1

q′
∈ L∞(D).

Moreover,

∥∥Tµ

∥∥
Ap

ω→Aq
ω
�

∥∥∥∥∥∥ T̃µ(·)

ω(S(·))
1
p +

1
q′ −1

∥∥∥∥∥∥
L∞(D)

� ‖Id‖
s(p+q′)

pq′

As
ω→L

s(p+q′)
pq′

µ (D)

�

∥∥∥∥∥∥ µ(S(·))

ω(S(·))
1
p +

1
q′

∥∥∥∥∥∥
L∞(D)

.

In order to prove this result we use the norm estimates given in Theorem 4.3.9,
the pointwise estimate Lemma 3 and the duality of the space Aq

ω given in Corollary
4.3.10.

Theorem 5.2.5. Let 1 < p ≤ q < ∞, ω ∈ R and µ be a positive Borel measure on D.
Then the following statements are equivalent:

(i) Tµ : Ap
ω → Aq

ω is compact;

(ii) lim|z|→1−
T̃µ(z)

ω(S(z))
1
p + 1

q′ −1
= 0;

(iii) Id : As
ω → L

s(p+q′)
pq′

µ (D) is compact for some (equivalently for all) 0 < s < ∞;

(iv) lim|I|→0
µ(S(I))

ω(S(I))
1
p + 1

q′
= 0.

To prove this result we proceed in a similar fashion as in Theorem 11, together
with common techniques usually employed to study the compactness of concrete
operators, and the weak convergence of Bω

z
‖Bω

z ‖Ap
ω

→ 0 in Ap
ω as |z| → 1−.

Proposition 5.2.6. Let 1 < p < ∞, ω ∈ R and {zj}∞
j=1 ⊂ D \ {0} be a separated

sequence. Then

F =
∞

∑
j=1

cj
Bω

zj

‖Bω
zj
‖Ap

ω

∈ Ap
ω (5.5)

with ‖F‖Ap
ω
. ‖{cj}∞

j=1‖`p for all {cj}∞
j=1 ∈ `p.

For us to prove the reverse case when 1 < q < p < ∞, we will need the test
functions F given by the result above, which is obtained using Theorem 4.3.10, the
reproducing formula for Bω

zj
and the subharmonicity of these functions.

Theorem 5.2.7. Let 1 < q < p < ∞, 0 < r < 1, ω ∈ R and µ be a positive Borel measure
on D. Then the following statements are equivalent:

(i) Tµ : Ap
ω → Aq

ω is compact;

(ii) Tµ : Ap
ω → Aq

ω is bounded;

(iii) µ̂r(·) = µ(∆(·,r))
ω(∆(·,r)) ∈ L

pq
p−q
ω (D);

(iv) µ is a
(

p + 1− p
q

)
-Carleson measure for Ap

ω;
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(v) Id : Ap
ω → L

p+1− p
q

µ (D) is compact;

(vi) T̃µ ∈ L
pq

p−q
ω (D).

Moreover,

‖Tµ‖Ap
ω→Aq

ω
� ‖µ̂r‖

L
qp

p−q
ω (D)

� ‖Id‖
p+1− p

q

Ap
ω→L

p+1− p
q

µ

� ‖T̃µ‖
L

qp
p−q

ω (D)
.

The tools used to prove this result, are the characterization of Carleson mea-
sures for Ap

ω given by Theorem 4.1.6, the test functions given by Proposition 3,
Rademacher functions and Khinchine’s inequality and the boundedness of the sub-
linear operator P+

ω given by Theorem 4.3.8.

Theorem 5.2.8. Let 0 < p < ∞, ω ∈ D̂ and µ be a positive Borel measure on D. Then the
following statements are equivalent:

(i) Tµ ∈ Sp(A2
ω);

(ii) ∑Rj∈Υ

(
µ(Rj)

ω?(zj)

)p
< ∞;

(iii) µ(∆(·,r))
ω?(·) belongs to Lp

(
dA

(1−|·|)2

)
for some 0 < r < 1.

Moreover, if ω ∈ R such that (ω?(z))p

(1−|z|)2 is also a regular weight, then Tµ ∈ Sp(A2
ω) if and

only if T̃µ ∈ Lp
ω/ω?(D).

This final result is an extension of [56, Theorem 1], with the additional character-
ization in terms of the Berezin transform when ω ∈ R. The condition (ω?(z))p

(1−|z|)2 ∈ R is

not a restriction when p ≥ 1, and equates to the condition p > 1
2+α from [69, Corol-

lary 7.17] when working with the standard Bergman weights.

5.3 SUMMARY OF PAPER III

In this article we give an atomic decomposition of the weighted mixed norm spaces
Ap,q

ω , with ω in the doubling class D. As we saw in Proposition 3, all the functions
given by a series as in (5.5) belong to the space Ap

ω, but in order to get an atomic
decomposition for Ap

ω we need the reverse implication, that every function in Ap
ω

could be expressed as in (5.5). This first theorem proves an analogue to Proposition
3, for the more general spaces Ap,q

ω with different atoms.

Theorem 5.3.1. Let 0 < p ≤ ∞, 0 < q < ∞, ω ∈ D, and {zk}∞
k=0 a separated sequence

in D. Let β = β(ω) > 0 and γ = γ(ω) > 0 be those of Lemma E(ii) and (iii). If

M > 1 +
1
p
+

β + γ

q
(5.6)

and λ = {λj,l} ∈ `p,q, then

F(z) = ∑
j,l

λj,l
(1− |zj,l |)

M− 1
p ω̂(zj,l)

− 1
q(

1− zj,lz
)M ∈ H(D) (5.7)
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and there exists a constant C = C(M, ω, p, q) > 0 such that

‖F‖Ap,q
ω
≤ C ‖λ‖`p,q . (5.8)

To prove this result we use the properties of the weights in D given in Lemma E
and Lemma 8.7, together with the results of Muckenhoupt in [45]. The next theorem
proves the reverse of the previous result, that is it is proved that every function in
Ap,q

ω can be expressed as a series of the form (5.7). In order to prove this result we
shall introduce the appropriate dyadic polar rectangles induced by K ∈ N \ {1},
K > 1.

For each K ∈ N \ {1}, j ∈ N ∪ {0} and l = 0, 1, . . . , K j+3 − 1, the dyadic polar
rectangle is defined as

Qj,l =

{
z ∈ D : rj ≤ |z| < rj+1, arg z ∈

[
2π

l
K j+3 , 2π

l + 1
K j+3

)}
,

where rj = rj(K) = 1− K−j as before, and its center is denoted by ζ j,l . For each
M ∈ N and k = 1, . . . , M2, the rectangle Qk

j,l is defined as the result of dividing

Qj,l into M2 pairwise disjoint rectangles of equal Euclidean area, and the centres of
these squares are denoted by ζk

j,l . It is worth noticing that the cubes Qj,l and Qk
j,l as

well as their centres ζk
j,l depend on the value of K.

Theorem 5.3.2. Let 0 < p ≤ ∞, 0 < q < ∞, ω ∈ D and K ∈ N \ {1} such that
(8.1) holds. Then, for each f ∈ Ap,q

ω there exists λ( f ) = {λ( f )k
j,l} ∈ `p,q and M =

M(p, q, ω) > 0 such that

f (z) = ∑
j,l,k

λ( f )k
j,l

(1− |ζk
j,l |

2)
M− 1

p ω̂(rj)
− 1

q

(1− ζk
j,lz)

M
, z ∈ D, (5.9)

and ∥∥∥{λ( f )k
j,l}
∥∥∥
`p,q
. ‖ f ‖Ap,q

ω
. (5.10)

To prove Theorem 18 some definitions and lemmas are needed. For f ∈ H(D),

define f j,l = supz∈Qj,l
| f (z)| and write λ( f ) = {λ( f )j,l}, where λ( f )j,l = K−

j
p ω̂(rj)

1
q f j,l

for all j ∈N∪ {0} and l = 0, 1, . . . , K j+3 − 1.

Lemma 5.3.3. Let 0 < p, q < ∞, ω ∈ D and K ∈ N \ {1} such that (8.1) holds. Then
‖ f ‖Ap,q

ω
� ‖λ( f )‖`p,q for all f ∈ H(D).

This equivalent norm plays a key role in the proof of Theorem 18 as it gives us a
discretization of the Ap,q

ω -norm.

Lemma 5.3.4. Let 0 < p ≤ ∞, 0 < q < ∞ and ω ∈ D̂, and let β = β(ω) > 0 be that of
Lemma E(ii). Then Ap,q

ω ⊂ A1
η for all η > β

q + 1
p − 1.

In order to demonstrate Theorem 18, this lemma allows us to represent each
f ∈ Ap,q

ω as Pη( f ) which help us to estimate
∣∣ f − Sη( f )

∣∣ = ∣∣Pη( f )− Sη( f )
∣∣, where

Sη( f )(z) = (η + 1) ∑
j,l,k

f (ζk
j,l)

(1− |ζk
j,l |

2)η(
1− ζk

j,lz
)η+2

∣∣∣Qk
j,l

∣∣∣ .
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By dividing the dyadic squares Qj,l in sufficiently small pieces, we can obtain
‖Id − Sη‖Ap,q

ω →Ap,q
ω
≤ 1

2 . Furthermore, we define the sequence f1 = Sη( f ) and

fn = Sη

(
f −∑n−1

m=1 fm

)
for n ∈N \ {1} and from the estimate∥∥∥∥∥ f −

n

∑
m=1

fm

∥∥∥∥∥
Ap,q

ω

≤ 1
2n ‖ f ‖Ap,q

ω
, (5.11)

we reach the equality f = ∑∞
n=1 fn.

Finally we will characterize the Carleson measures for the spaces Ap,q
ω , together

with the boundedness of the differentiation operator D(n) : Ap,q
ω → Ls

µ(D) defined
by D(n)( f ) = f (n). We introduce the function

Tr,u,v(z) =
µ(∆(z, r))

(1− |z|)uω̂(z)v , z ∈ D,

where 0 < r < 1 and 0 < u, v < ∞.

Theorem 5.3.5. Let 0 < p, q, s < ∞, n ∈N∪ {0}, 0 < r < 1, µ a positive Borel measure
on D, ω ∈ D and let K = K(ω) ∈ N \ {1} such that (8.1) holds. Then the following
statements are equivalent:

(i) D(n) : Ap,q
ω → Ls

µ(D) is bounded;

(ii) The sequence
{

µ(Qj,l)K
sj
(

n+ 1
p

)
ω̂(rj)

− s
q

}
j,l

belongs to `(
p
s )
′
,( q

s )
′
;

(iii) The function Tr,u,v belongs to L(
p
s )
′
,( q

s )
′

ω (D), where

(a) u = sn + 1 and v = 1 if s < min{p, q};
(b) u = sn + 1

p and v = 1 if p ≤ s < q;

(c) u = sn + 1 and v = s
q if q ≤ s < p;

(d) u = sn + 1
p and v = s

q if s ≥ max{p, q}.

Moreover,

‖D(n)‖s
Ap,q

ω →Ls
µ
�
∥∥∥∥∥
{

µ(Qj,l)2
sj
(

n+ 1
p

)
ω̂(rj)

− s
q

}
j,l

∥∥∥∥∥
`(

p
s )
′
,( q

s )
′ � ‖Tr,u,v‖

L
( p

s )
′
,( q

s )
′

ω (D)

.

In order to prove this theorem we use Theorem 5.3.1, Rademacher functions and
Khinchine’s inequality (2.12) and the equivalent norm given by Theorem 5.3.3.
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6 Paper I

6.1 INTRODUCTION AND MAIN RESULTS

The theory of tent spaces introduced by Coifman, Meyer and Stein [17], and further
studied by Cohn and Verbitsky [16] among others, shows the importance of maximal
and square area functions and other objects from harmonic analysis [27] in the study
of Hardy spaces in the unit disc D = {z : |z| < 1} [25,30]. The recent studies [54,55]
show that tent spaces have natural analogues for Bergman spaces, and they may play
a role in the theory of weighted Bergman spaces similar to that of the original tent
spaces in the Hardy space case. The tent space Tq

s (ν, ω) consists of ν-equivalence
classes of ν-measurable functions f : D→ C such that

‖ f ‖q
Tq

s (ν,ω)
= ‖As,ν( f )‖q

Lq
ω
=
∫

D

(∫
Γ(ζ)
| f (z)|s dν(z)

) q
s

ω(ζ) dA(ζ) < ∞, 0 < q, s < ∞.

Here ν is assumed to be a positive Borel measure on D, finite on compact sets,
and ω ∈ D̂, that is, ω is radial and ω̂(r) =

∫ 1
r ω(s) ds has the doubling property

sup0≤r<1 ω̂(r)/ω̂( 1+r
2 ) < ∞. Moreover,

Γ(z) =
{

ξ ∈ D : |θ − arg(ξ)| < 1
2

(
1− |ξ|

r

)}
, z = reiθ ∈ D \ {0},

are non-tangential approach regions with vertexes inside the disc, and the related
tents are defined by T(ζ) = {z ∈ D : ζ ∈ Γ(z)} for all ζ ∈ D \ {0}. We also set
ω(T(0)) = limr→0+ ω(T(r)) to deal with the origin.

The purpose of this paper is three fold. First, we are interested in the question of
when the weighted Bergman space Ap

ω, consisting of analytic functions in the unit
disc D such that

‖ f ‖p
Ap

ω
=
∫

D
| f (z)|pω(z) dA(z) < ∞, 0 < p < ∞,

is continuously or compactly embedded into the tent space Tq
s (ν, ω). Analogous

problems for Hardy and Hardy-Sobolev spaces have been considered in [12, 15, 31].
It turns out that the containment Ap

ω ⊂ Tq
s (ν, ω) is naturally described in terms of

Carleson measures for Ap
ω. For 0 < p, q < ∞, a positive Borel measure µ on D is a q-

Carleson measure for Ap
ω if there exists a constant C > 0 such that ‖ f ‖Lq

µ
≤ C‖ f ‖Ap

ω

for all f ∈ Ap
ω.

Theorem 1. Let 0 < p, q, s < ∞ such that 1 + s
p −

s
q > 0, ω ∈ D̂ and ν a positive Borel

measure on D, finite on compact sets, such that ν({0}) = 0. Write νω(ζ) = ω(T(ζ)) dν(ζ)
for all ζ ∈ D. Then the following assertions hold:

(i) Id : Ap
ω → Tq

s (ν, ω) is bounded if and only if νω is a (p + s− ps
q )-Carleson measure

for Ap
ω. Moreover,

‖Id‖s
Ap

ω→Tq
s (ν,ω)

� ‖Id‖
p+s− ps

q

Ap
ω→L

p+s− ps
q

νω

.
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(ii) Id : Ap
ω → Tq

s (ν, ω) is compact if and only if Id : Ap
ω → L

p+s− ps
q

νω is compact.

The requirement ν({0}) = 0, which does not carry any real restriction, is a
technical hypotheses caused by the geometry of the tents Γ(z).

Theorem 1 can be interpret as a characterization of Carleson measures. This
is the second aim of our study and becomes more apparent when an operator is
extracted from Theorem 1. For 0 < s < ∞, the generalized area operator induced by
positive measures µ and v on D is defined by

Gv
µ,s( f )(z) =

(∫
Γ(z)
| f (ζ)|s dµ(ζ)

v(T(ζ))

) 1
s

, z ∈ D \ {0}.

Minkowski’s inequality shows that Gv
µ,s is sublinear if s ≥ 1. This not the case

for 0 < s < 1, but instead we have
(

Gv
µ,s( f + g)

)s
≤
(

Gv
µ,s( f )

)s
+
(

Gv
µ,s(g)

)s
.

Anyway, we say that Gv
µ,s : Ap

ω → Lq
ω is bounded if there exists C > 0 such that

‖Gv
µ,s( f )‖Lq

ω
≤ C‖ f ‖Ap

ω
for all f ∈ Ap

ω. Write µω
v for the positive measure such that

dµω
v (z) =

ω(T(z))
v(T(z))

dµ(z)

for µ-almost every z ∈ D. Fubini’s theorem shows that

‖Gv
µ,s( f )‖s

Ls
ω
=
∫

D

(∫
Γ(z)
| f (ζ)|s dµ(ζ)

v(T(ζ))

)
ω(z) dA(z)

=
∫

D

(∫
Γ(z)
| f (ζ)|s dµω

v (ζ)

ω(T(ζ))

)
ω(z) dA(z)

=
∫

D\{0}
| f (ζ)|s

(
1

ω(T(ζ))

∫
T(ζ)

ω(z) dA(z)
)

dµω
v (ζ)

=
∫

D\{0}
| f (ζ)|s dµω

v (ζ) = ‖ f ‖s
Ls

µω
v
− | f (0)|sµω

v ({0}),

(6.1)

and hence Gv
µ,s : Ap

ω → Ls
ω is bounded if and only if µω

v is an s-Carleson measure
for Ap

ω. For any s > 0, we say that Gv
µ,s : Ap

ω → Lq
µ is compact if for every bounded

sequence { fn} in Ap
ω there exists a subsequence { fnk} such that Gv

µ,s( fnk ) converges
in Lq(µ).

The next theorem gives a characterization of Carleson measures for Bergman
spaces by using the generalized area operator Gv

µ,s. Theorem 1 is a special case of
this result, see also Theorem 4 in Section 6.3.

Theorem 2. Let 0 < p, q, s < ∞ such that s > q− p, ω ∈ D̂ and let µ, v be positive Borel
measures on D such that µ ({z ∈ D : v(T(z)) = 0}) = 0 = µ({0}). Then the following
assertions hold:

(i) µω
v is a q-Carleson measure for Ap

ω if and only if Gv
µ,s : Ap

ω → L
ps

p+s−q
ω is bounded.

Moreover,
‖Gv

µ,s‖s

Ap
ω→L

ps
p+s−q

ω

� ‖Id‖
q
Ap

ω→Lq
µω

v

.
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(ii) Id : Ap
ω → Lq

µω
v

is compact if and only if Gv
µ,s : Ap

ω → L
ps

p+s−q
ω is compact.

The third motivation of this study comes from the equivalent Ap
ω-norm involving

square functions, given by

‖ f ‖p
Ap

ω
�
∫

D

(∫
Γ(ζ)
|Dα f (z)|2

(
1−

∣∣∣∣ zζ
∣∣∣∣)2α−2

dA(z)

) p
2

ω(ζ) dA(ζ) +
[α]−1

∑
j=0
| f (j)(0)|p.

Here 0 < α, p < ∞, ω is a radial weight, Dα f denotes the fractional derivative of
order α and [α] is the integer such that [α] ≤ α < [α] + 1 [54, Theorem 4.2]. This
comparability shows that the operator

Fα( f )(ζ) =

(∫
Γ(ζ)
|Dα f (z)|2

(
1−

∣∣∣∣ zζ
∣∣∣∣)2α−2

dA(z)

) 1
2

, ζ ∈ D \ {0},

is bounded from Ap
ω to Lp

ω for each α > 0. This is no longer true when α = 0,
and therefore the definition of Gv

µ,s is also motivated by the study of this limit case.
This was the starting point in the study by Cohn on the area operator Gµ( f )(z) =∫

Γ(z) | f (ζ)|
dµ(ζ)
1−|ζ| , defined for z on the boundary T of D, acting from the Hardy

space Hp to Lp(T) [15, Theorem 1]. The approach by Cohn relies on ideas by John
and Nirenberg [30, Theorem 2.1] and Calderon-Zygmund decompositions. More
recently, similar ideas together the classical factorization of Hardy spaces Hp =

Hp1 · Hp2 , p−1 = p−1
1 + p−1

2 , were used in [31] to study the case Gµ : Hp → Lq(T).
We do not employ these techniques in the proof of Theorem 2 but instead we use a
description of the boundedness of a weighted maximal function of Hörmander-type.
To give the precise statement we need to introduce some notation. The Carleson
square S(I) based on an interval I ⊂ T is the set S(I) = {reit ∈ D : eit ∈ I, 1− |I| ≤
r < 1}, where |E| denotes the Lebesgue measure of E ⊂ T. We associate to each
a ∈ D \ {0} the interval Ia = {eiθ : | arg(ae−iθ)| ≤ 1−|a|

2 }, and denote S(a) = S(Ia).
For a positive Borel measure µ on D and α > 0, define the weighted maximal
function

Mω,α(µ)(z) = sup
z∈S(a)

µ(S(a))
(ω (S(a)))α , z ∈ D.

In the case α = 1 simply write Mω(µ), and if µ is of the form ϕω dA, then Mω,α(µ)
is the weighted maximal function Mω,α(ϕ) of ϕ. The following result is [55, Theo-
rem 3].

Theorem A. Let 0 < p ≤ q < ∞ and 0 < γ < ∞ such that pγ > 1. Let ω ∈ D̂ and µ be

a positive Borel measure on D. Then [Mω((·)
1
γ )]γ : Lp

ω → Lq(µ) is bounded if and only if
Mω,q/p(µ) ∈ L∞. Moreover,

‖[Mω((·)
1
γ )]γ‖q

(Lp
ω ,Lq(µ))

� ‖Mω,q/p(µ)‖L∞ .

Another maximal operator we will face is defined by N( f )(z) = supζ∈Γ(z) | f (ζ)|.
It is known that N : Ap

ω → Lp
ω is bounded for each radial weight ω and ‖N( f )‖Lp

ω
�

‖ f ‖Ap
ω

by [54, Lemma 4.4].
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Theorems 1 and 2 would perhaps not be of much significance if we did not
understand the q-Carleson measures for Ap

ω sufficiently well. In fact, another im-
portant ingredient in the proof of our main results is the following refinement of
the characterizations of Carleson measures for Bergman spaces given in [55, Theo-
rem 1]. The estimates for the norm of the identity operator Id : Ap

ω → Lq
µ are of

special importance for us.

Theorem 3. Let 0 < p, q < ∞, ω ∈ D̂ and let µ be a positive Borel measure on D. Further,
let dh(z) = dA(z)/(1− |z|2)2 denote the hyperbolic measure.

(i) If p ≤ q, then µ is a q-Carleson measure for Ap
ω if and only if supa∈D

µ(S(a))

ω(S(a))
q
p
< ∞.

Moreover,

‖Id‖
q
Ap

ω→Lq
µ
� sup

a∈D

µ(S(a))

ω(S(a))
q
p

.

(ii) If p ≤ q, then Id : Ap
ω → Lq

µ is compact if and only if

lim
|a|→1−

µ(S(a))

(ω(S(a)))q/p = 0. (6.2)

(iii) If q < p, then the following conditions are equivalent:

(a) Id : Ap
ω → Lq

µ is compact;

(b) Id : Ap
ω → Lq

µ is bounded;
(c) The function

Bω
µ (z) =

∫
Γ(z)

dµ(ζ)

ω(T(ζ))
, z ∈ D \ {0},

belongs to L
p

p−q
ω ;

(d) For each fixed r ∈ (0, 1), the function

Φω
µ (z) = Φω

µ,r(z) =
∫

Γ(z)

µ (∆(ζ, r))
ω(T(ζ))

dh(ζ), z ∈ D \ {0},

belongs to L
p

p−q
ω ;

(e) For each sufficiently large λ = λ(ω) > 1, the function

Ψω
µ (z) = Ψω

µ,λ(z) =
∫

D

(
1− |ζ|
|1− zζ|

)λ dµ(ζ)

ω(T(ζ))
, z ∈ D,

belongs to L
p

p−q
ω .

Moreover,

‖Id‖
q
Ap

ω→Lq
µ
� ‖Mω(µ)‖

L
p

p−q
ω

� ‖Bω
µ ‖

L
p

p−q
ω

+µ({0}) � ‖Ψω
µ ‖

L
p

p−q
ω

� ‖Φω
µ ‖

L
p

p−q
ω

+µ({0}).

An analogue of the above result for Hardy spaces is essentially known. It can
be obtained by using [40, Section 7] and [52]. Going further, the implications of the
techniques used in this paper can be employed to extend the known results on the
area operator on Hardy spaces [15,31] as well as to the study of the integral operator
Tg( f )(z) =

∫ z
0 f (ζ)g′(ζ) dζ acting on Hardy and Bergman spaces. These results are

briefly discussed in Section 6.5.
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6.2 CARLESON MEASURES

In this section we prove Theorem 3. For this aim we need some preliminary results
and definitions. The following lemma provides useful characterizations of weights
in D̂. For a proof, see [51, 58].

Lemma A. Let ω be a radial weight. Then the following conditions are equivalent:

(i) ω ∈ D̂;

(ii) There exist C = C(ω) > 0 and β = β(ω) > 0 such that

ω̂(r) ≤ C
(

1− r
1− t

)β

ω̂(t), 0 ≤ r ≤ t < 1; (6.3)

(iii) There exist C = C(ω) > 0 and γ = γ(ω) > 0 such that∫ t

0

(
1− t
1− s

)γ

ω(s) ds ≤ Cω̂(t), 0 ≤ t < 1; (6.4)

(iv) There exists λ = λ(ω) ≥ 0 such that∫
D

ω(z)
|1− ζz|λ+1

dA(z) � ω̂(ζ)

(1− |ζ|)λ
, ζ ∈ D;

(v) The associated weight

ω?(z) =
∫ 1

|z|
ω(s) log

s
|z| s ds, z ∈ D \ {0}.

satisfies
ω(S(z)) � ω(T(z)) � ω?(z), |z| → 1−.

If ω ∈ D̂, then Lemma A shows that for each a ∈ D and γ = γ(ω) > 0 large
enough, the function

Fa,p(z) =
(

1− |a|2
1− az

) γ+1
p

, z ∈ D,

belongs to Ap
ω and satisfies ‖Fa,p‖p

Ap
ω
� ω(S(a)) and |Fa,p(z)| � 1 for all z ∈ S(a).

This family of test functions will be frequently used in the sequel.
Apart from the tent spaces Tq

s (ν, ω), 0 < q, s < ∞, defined in the introduction,
we will need to consider the case q = ∞. For 0 < s < ∞, define

Cs
s,ν( f )(ζ) = sup

a∈Γ(ζ)

1
ω(T(a))

∫
T(a)
| f (z)|sω(T(z)) dν(z).

A quasi-norm in the tent space T∞
s (ν, ω) is defined by ‖ f ‖T∞

s (ν,ω) = ‖Cs,ν( f )‖L∞ .

The pseudohyperbolic distance from z to w is defined by $(z, w) =
∣∣∣ 1−w

1−z̄w

∣∣∣, and
the pseudohyperbolic disc of center a ∈ D and radius r ∈ (0, 1) is denoted by
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∆(a, r) = {z : $(a, z) < r}. The Euclidean discs are denoted by D(a, r) = {z ∈ C :
|a − z| < r}. Recall that Z = {zk}∞

k=0 ⊂ D is called a separated sequence if it is
separated in the pseudohyperbolic metric, it is an ε-net if D =

⋃∞
k=0 ∆(zk, ε), and

finally it is a δ-lattice if it is a 5δ-net and separated with constant γ = δ/5. If we
have a discrete measure ν = ∑k δzk , where {zk} is a separated sequence, then we
write Tp

q (ν, ω) = Tp
q ({zk}, ω).

Recall that Id : Ap
ω → Lq(µ) is compact if it maps bounded sets of Ap

ω to relatively
compact (precompact) sets of Lq(µ). Equivalently, Id : Ap

ω → Lq(µ) is compact if
and only if for every bounded sequence { fn} in Ap

ω there exists a subsequence that
converges in Lq(µ).

Proof of Theorem 3. (i). There are several ways to bound the operator norm of
Id : Ap

ω → Lq
µ from above by the claimed supremum. See [55, Theorem 9] or [51,

Theorem 3.3], and also [55, (11)] for the particular case q = p. The lower bound
is obtained by using test functions, for details, see either [55, Lemma 8] or [51,
Theorem 3.3].

(ii). This case can be done by following the proof of [54, Theorem 2.1(ii)], with
Lemma A in hand.

(iii). We first show that

‖Id‖
q
Ap

ω→Lq
µ
≤ ‖Bω

µ ‖
L

p
p−q

ω

+µ({0}) � ‖Ψω
µ ‖

L
p

p−q
ω

� ‖Φω
µ ‖

L
p

p−q
ω

+µ({0}) . ‖Mω(µ)‖
L

p
p−q

ω

. ‖Id‖
q
Ap

ω→Lq
µ
.

Fubini’s theorem, Hölder’s inequality and [54, Lemma 4.4] yield

‖ f ‖q
Lq

µ
=
∫

D

(∫
Γ(z)
| f (ζ)|q dµ(ζ)

ω(T(ζ))

)
ω(z) dA(z) + µ({0})| f (0)|q

≤
∫

D
N( f )q(z)

∫
Γ(z)

dµ(ζ)

ω(T(ζ))
ω(z) dA(z) + µ({0})| f (0)|q

. ‖N( f )‖q
Lp

ω
‖Bω

µ ‖
L

p
p−q

ω

+ µ({0})‖ f ‖q
Ap

ω
� ‖ f ‖q

Ap
ω

(
‖Bω

µ ‖
L

p
p−q

ω

+ µ({0}
)

,

and hence ‖Id‖
q
Ap

ω→Lq
µ
. ‖Bω

µ ‖
L

p
p−q

ω

+ µ({0}). Moreover, ‖Bω
µ ‖

L
p

p−q
ω

+ µ({0}) �

‖Ψω
µ ‖

L
p

p−q
ω

by [55, Lemma 4].

Now write dν(z) = dµ(z)
ω(T(z)) and hλ(ζ, z) =

(
1−|ζ|
|1−ζz|

)λ
for short. Then Fubini’s

theorem, [55, Lemma 4] and the fact ω(T(ζ)) � ω(T(u)) and hλ(ζ, z) � hλ(u, z) for
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ζ ∈ ∆(u, r), r ∈ (0, 1), yield

‖Ψω
µ ‖

p
p−q

L
p

p−q
ω

=
∫

D

(∫
D

hλ(ζ, z)
|∆(ζ, r)| |∆(ζ, r)| dν(ζ)

) p
p−q

ω(z) dA(z)

�
∫

D

(∫
D

hλ(u, z)ν(∆(u, r)) dh(u)
) p

p−q
ω(z) dA(z)

�
∫

D

(∫
Γ(z)

ν(∆(u, r)) dh(u)
) p

p−q
ω(z) dA(z) + µ({0})

�
∫

D

(∫
Γ(z)

µ(∆(u, r))
ω(T(u))

dh(u)
) p

p−q
ω(z) dA(z) + µ({0})

= ‖Φω
µ ‖

p
p−q

L
p

p−q
ω

+ µ({0}) = ‖g‖
p

p−q

T
p

p−q
1 (h,ω)

+ µ({0}),

(6.5)

where g(u) = µ(∆(u,r))
ω(T(u)) . Now [55, Lemma 7] implies

‖g‖
T

p
p−q

1 (h,ω)
� ‖C1,h(g)‖

L
p

p−q
ω

. (6.6)

Fubini’s theorem gives

C1,h(g)(ζ) = sup
a∈Γ(ζ)

1
ω(T(a))

∫
T(a)

µ(∆(z, r)) dh(z)

= sup
ζ∈T(a)

1
ω(T(a))

∫
D

(∫
T(a)∩∆(u,r)

dh(z)
)

dµ(u).

The points u ∈ D for which T(a) ∩ ∆(u, r) 6= ∅ are contained in some tent T(a′),
where arg a′ = arg a and 1− |a′| � 1− |a|, for all a ∈ D \ D(0, ρ), where ρ = ρ(r) ∈
(0, 1). Therefore

1
ω(T(a))

∫
D

(∫
T(a)∩∆(u,r)

dh(z)
)

dµ(u) =
1

ω(T(a))

∫
T(a′)

(∫
T(a)∩∆(u,r)

dh(z)
)

dµ(u)

.
µ(T(a′))
ω(T(a))

� µ(T(a′))
ω(T(a′))

, a ∈ D \ D(0, ρ),

and it follows that

C1,h(g)(ζ) � sup
ζ∈T(a)

µ(T(a))
ω(T(a))

. Mω(µ)(ζ), ζ ∈ D \ {0}. (6.7)

By combining (6.5), (6.6) and (6.7), we deduce

‖Ψω
µ ‖

L
p

p−q
ω

� ‖Φω
µ ‖

L
p

p−q
ω

+ µ({0}) = ‖g‖
T

p
p−q

1 (h,ω)
+ µ({0})

� ‖C1,h(g)‖
L

p
p−q

ω

+ µ({0}) . ‖Mω(µ)‖
L

p
p−q

ω

.

It remains to prove ‖Mω(µ)‖
L

p
p−q

ω

. ‖Id‖
q
Ap

ω→Lq
µ
. To do this, we will show that

Mω(µ) is pointwise equivalent to the sum of two dyadic maximal functions.
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Let In,k+l = {eiθ : π(k+l)
2n+2 ≤ θ < π(k+l+1)

2n+2 }, and denote Υl = {In,k+l : n ∈N∪ {0},
k = 0, 1, . . . , 2n+2 − 1} and l ∈ {0, 1

2}. Define the dyadic maximal functions

M̃d
ω,l(µ)(z) = max

{
sup

z∈T(I),I∈Υl

µ(T(I))
ω(T(I))

,
µ(D)

ω(D)

}
, z ∈ D, l ∈

{
0,

1
2

}
,

and set
M̃d

ω(µ)(z) = M̃d
ω,0(µ)(z) + M̃d

ω, 1
2
(µ)(z), z ∈ D.

If ω ∈ D̂, then M̃d
ω(µ)(z) . Mω(µ)(z) for all z ∈ D because supI⊂T

ω(S(I))
ω(T(I)) < ∞ by

Lemma A. For the converse inequality, given I ⊂ T such that z ∈ S(I) there exist
intervals In,k, In,k+1 (if k = 2n+2, take In,k = In,0) such that |In+1,0| < |I| ≤ |In,0|,
In,k ∩ I 6= ∅ and In,k−1 ∩ I = ∅. We may assume that n ≥ 3, for otherwise the
inequality we are searching for is immediate. Then I ⊂ In,k ∪ In,k+1, and there exists
In−3,m ∈ Υ0 ∪ Υ 1

2
such that

⋃k+3
i=k−2 In,i ⊂ In−3,m and S(I) ⊂ T(In−3,m). Therefore

Lemma A yields

µ(S(I))
ω(S(I))

≤ µ(T(In−3,m))

ω(T(I))
≤ µ(T(In−3,m))

ω(T(In+1,0))
� µ(T(In−3,m))

ω(T(In−3,m))
≤ M̃d

ω(µ)(z), z ∈ S(I).

It follows that Mω(µ)(z) . M̃d
ω(µ)(z), for all z ∈ D, and hence

Mω(µ)(z) � M̃d
ω(µ)(z), z ∈ D. (6.8)

To estimate the norm of M̃d
ω(µ) upwards, let choose {zk} be a separated sequence

and define

Sλ( f )(z) = ∑
k

f (zk)

(
1− |zk|
1− zkz

)λ

, z ∈ D.

By [55, Lemma 6] there exists λ = λ(ω) > 1 such that Sλ : Tp
2 ({zk}, ω) → Ap

ω is
bounded. By denoting {bk} = { f (zk)}, this implies

∫
D

∣∣∣∣∣∑k
bkhλ(zk, z)

∣∣∣∣∣
q

dµ(z) = ‖Sλ( f )‖q
Lq(µ)

. ‖Id‖
q
Ap

ω→Lq
µ
‖Sλ‖

q
Tp

2 ({zk},ω)→Ap
ω
‖{bk}‖

q
Tp

2 ({zk},ω)
.

By replacing bk by rk(t)bk, where rk denotes the kth Rademacher function, using the
fact that |hλ(zk, z)| & χT(zk)

(z) for z ∈ T(zk), and applying Khinchine’s inequality,
we deduce

∫
D

(
∑
k
|bk|2χT(zk)

(z)

) q
2

dµ(z) . ‖Id‖
q
Ap

ω→Lq
µ
‖Sλ‖

q
Tp

2 ({zk},ω)→Ap
ω
‖{bk}‖

q
Tp

2 ({zk},ω)
.

(6.9)

Let l ∈ {0, 1
2} be fixed. For each k ∈ Z, let Ek denote the collection of maximal

dyadic tents T ∈ {T(I) : I ∈ Υl} ∪ {D} with respect to inclusion such that µ(T) >
2kω(T), and let Ek = ∪T∈Ek T. Then 2k < M̃d

ω,l(µ)(z) ≤ 2k+1 for z ∈ Ek \ Ek+1. Let
now {bT} be a sequence indexed by T ∈ E = ∪kEk. Assume for a moment that µ has
compact support. Then {bT} is a finite sequence. For T ∈ E , let G(T) = T−∪{T′ ∈
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E : T′ ( T}, and hence G(T) = T −∪{T′ ∈ Ek+1 : T′ ( T} for T ∈ Ek. If T1, T2 ∈ E
are different (either one is strictly included in the other or they are disjoint), the sets
G(T1) and G(T2) are disjoint, and hence(

∑
T∈E
|bT |2χT(z)

) q
2

≥
(

∑
T∈E
|bT |2χG(T)(z)

) q
2

= ∑
T∈E
|bT |qχG(T)(z). (6.10)

Index the tents in E according to which Ek with maximal index they belong to, by
writing Ek \ ∪m<kEm = {Tk

j : j ∈ N}. Further, denote bk,j = bTk
j

and let zk,j denote

the vertex of Tk
j i.e. Tk

j = T(zk,j) (with the convenience that the vertex of D is the
origin). The estimates (8.14) and (8.26) yield

∑
k,j

bq
k,j

µ(Tk
j )− ∑

Tk+1
i ⊂Tk

j

µ(Tk+1
i )

 . ‖Id‖
q
Ap

ω→Lq
µ
‖{bk,j}‖

q
Tp

2 ({zk,j},ω)

= ‖Id‖
q
Ap

ω→Lq
µ

∫
D

(
∑
k,j
|bk,j|2χTk

j
(z)

) p
2

ω(z) dA(z)


q
p

.

(6.11)

Write r = p
q for short, and choose bq

k,j = 2k(r′−1) for each k and j. Then, by using the

inequality 2k < M̃d
ω,l(µ)(z) ≤ 2k+1 for z ∈ Ek \ Ek+1, the left hand side of (8.16) can

be estimated as

∑
k,j

bq
k,j

µ(Tk
j )− ∑

Tk+1
i ⊂Tk

j

µ(Tk+1
i )

 = ∑
k

2k(r′−1)µ(Ek)−∑
k

2k(r′−1) ∑
j

µ(Tk
j ∩ Ek+1)

= ∑
k
(2k(r′−1) − 2(k−1)(r′−1))µ(Ek) =

(
1− 1

2r′−1

)
∑
k

2kr′2−k ∑
j

µ(Tk
j )

ω(Tk
j )

ω(Tk
j )

&∑
k

2kr′ω(Ek) &∑
k

∫
Ek\Ek+1

(
M̃d

ω,l(µ)(z)
)r′

ω(z) dA(z) = ‖M̃d
ω,l(µ)‖

r′

Lr′
ω

,

while the integral on the right hand side of (8.16) with the notation η = 2(r
′−1) 2

q

becomes∫
D

(
∑
k,j
|bk,j|2χTk

j
(z)

) p
2

ω(z) dA(z) =
∫

D

(
∑
k,j

ηkχTk
j
(z)

) p
2

ω(z) dA(z)

=
∫

D

(
∑
k

ηkχEk (z)

) p
2

ω(z) dA(z) =
∫

D

(
η

η − 1 ∑
k

(
ηk − ηk−1

)
χEk (z)

) p
2

ω(z) dA(z)

�
∫

D

(
∑
k

ηk (χEk (z)− χEk+1(z)
)) p

2

ω(z) dA(z) =
∫

D

(
∑
k

ηkχEk\Ek+1
(z)

) p
2

ω(z) dA(z)

=
∫

D
∑
k

η
kp
2 χEk\Ek+1

(z)ω(z) dA(z) =
∫

D
∑
k

2r′kχEk\Ek+1
(z)ω(z) dA(z)

�∑
k

∫
Ek\Ek+1

(
M̃d

ω,l(µ)(z)
)r′

ω(z) dA(z) = ‖M̃d
ω,l(µ)‖

r′

Lr′
ω

.
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Consequently, ‖M̃d
ω,l(µ)‖

r′

Lr′
ω
. ‖Id‖

q
Ap

ω→Lq
µ
‖M̃d

ω,l(µ)‖
r′
r

Lr′
ω

, and thus ‖M̃d
ω,l(µ)‖

L
p

p−q
ω

.

‖Id‖
q
Ap

ω→Lq
µ

because r′ =
(

p
q

)′
= p

p−q . Since this is valid for l ∈ {0, 1
2}, using

Minkowski’s inequality and (6.8) we get

‖Mω(µ)‖
L

p
p−q

ω

� ‖M̃d
ω(µ)‖

L
p

p−q
ω

≤ ‖M̃d
ω,0(µ)‖

L
p

p−q
ω

+ ‖M̃d
ω, 1

2
(µ)‖

L
p

p−q
ω

. ‖Id‖
q
Ap

ω→Lq
µ

for µ with compact support. If µ is positive, then the above estimate, applied to the
compactly supported µr = χD(0,r)µ, and the standard limiting argument with mono-
tone convergence theorem gives ‖Mω(µ)‖

L
p

p−q
ω

. ‖Id‖
q
Ap

ω→Lq
µ
. Hence the claimed

operator norm estimates are valid and, in particular, (b)-(e) are equivalent.
To complete the proof of (iii), it suffices to show that Id : Ap

ω → Lq
µ is compact if

(e) is satisfied. By the hypothesis (e), (6.5) and the dominated convergence theorem,

0 = lim
R→1−

∫
D

(∫
{R<|z|<1}

(
1− |z|
|1− ζz|

)λ dµ(z)
ω(T(z))

) p
p−q

ω(ζ) dA(ζ)

& lim
R→1−

∫
D

(∫
Γ(ζ)\D(0,R)

dµ(z)
ω(T(z))

) p
p−q

ω(ζ) dA(ζ).

(6.12)

Let { fn} be a bounded sequence in Ap
ω. Then { fn} is locally bounded and thus con-

stitutes a normal family. Hence we may extract a subsequence { fnk} that converges
uniformly on compact subsets of D to f ∈ Ap

ω. Write gk = fnk − f . For ε > 0, by
(6.12), there exists R0 = R0 ∈ (0, 1) such that

∫
D

(∫
Γ(ζ)\D(0,R0)

dµ(z)
ω(T(z))

) p
p−q

ω(ζ) dA(ζ) < ε
p

p−q .

By the uniform convergence, we may choose k0 ∈ N such that |gk(z)| < ε1/q for
all k ≥ k0 and z ∈ D(0, R0). Then Fubini’s theorem, Hölder’s inequality and [54,
Lemma 4.4] yield

‖gk‖
q
Lq

µ
=
∫

D(0,R0)
|gk(ζ)|q dµ(ζ) +

∫
D\D(0,R0)

|gk(ζ)|q dµ(ζ)

≤ εµ(D) +
∫

D

(∫
Γ(z)\D(0,R0)

|gk(ζ)|q
dµ(ζ)

ω(T(ζ))

)
ω(z) dA(z)

≤ εµ(D) +
∫

D
N(gk)

q(z)
(∫

Γ(z)\D(0,R0)

dµ(ζ)

ω(T(ζ))

)
ω(z) dA(z)

≤ εµ(D) + ‖N(gk)‖
q
Lp

ω
ε � εµ(D) + ‖gk‖

q
Ap

ω
ε . ε,

and thus Id : Ap
ω → Lq

µ is compact. �

6.3 BOUNDED OPERATOR

Theorem 2 is equivalent to the following result.
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Theorem 4. Let 0 < p, q, s < ∞ such that 1 + s
p −

s
q > 0, ω ∈ D̂ and let µ, v be positive

Borel measures on D such that µ ({z ∈ D : v(T(z)) = 0}) = 0 = µ({0}). Then the
following assertions hold:

(i) Gv
µ,s : Ap

ω → Lq
ω is bounded if and only if µω

v is a
(

p + s− ps
q

)
-Carleson measure

for Ap
ω. Moreover,

‖Gv
µ,s‖s

Ap
ω→Lq

ω
� ‖Id‖

p+s− ps
q

Ap
ω→L

p+s− ps
q

µω
v

.

(ii) Gv
µ,s : Ap

ω → Lq
ω is compact if and only if Id : Ap

ω → L
p+s− ps

q
µω

v
is compact.

Theorem 4(i) will be proved in two parts. We first deal with the case q ≥ p.

Theorem 5. Let 0 < p ≤ q < ∞, 0 < s < ∞ and ω ∈ D̂, and let µ, v be positive Borel
measures on D such that µ ({z ∈ D : v(T(z)) = 0}) = 0 = µ({0}). Then Gv

µ,s : Ap
ω →

Lq
ω is bounded if and only if µω

v is a
(

p + s− ps
q

)
-Carleson measure for Ap

ω. Moreover,

‖Gv
µ,s‖s

Ap
ω→Lq

ω
� ‖Id‖

p+s− ps
q

Ap
ω→L

p+s− ps
q

µω
v

� sup
a∈D

µω
v (S(a))

ω(S(a))1+ s
p−

s
q

.

Proof. Let first q > s. Assume that Gv
µ,s : Ap

ω → Lq
ω is bounded. Let a ∈ D and

choose γ = γ(p, q, s) sufficiently large so that ‖Fa,p‖p
Ap

ω
� ω(S(a)) and ‖Fa,( q

s )
′‖

(
q
s )
′

A
(

q
s )
′

ω

�

ω(S(a)). Then Fubini’s theorem and Hölder’s inequality yield

µω
v (S(a)) �

∫
S(a)
|Fa,p(z)|s dµω

v (z)

�
∫

S(a)
|Fa,p(z)|s

(
1

v(T(z))

∫
T(z)
|Fa,( q

s )
′(ζ)|ω(ζ) dA(ζ)

)
dµ(z)

.
∫

D
|Fa,( q

s )
′(ζ)|

(∫
Γ(ζ)
|Fa,p(z)|s

dµ(z)
v(T(z))

)
ω(ζ) dA(ζ)

≤ ‖Fa,( q
s )
′‖

A
(

q
s )
′

ω

‖Gv
µ,s(Fa,p)‖s

Lq
ω
≤ ‖Fa,( q

s )
′‖

A
(

q
s )
′

ω

‖Gv
µ,s‖s

Ap
ω→Lq

ω
‖Fa,p‖s

Ap
ω

� ‖Gv
µ,s‖s

Ap
ω→Lq

ω
ω(S(a))

1
(

q
s )
′ ω(S(a))

s
p � ‖Gv

µ,s‖s
Ap

ω→Lq
ω

ω(S(a))1+ s
p−

s
q .

Hence supa∈D
µω

v (S(a))

ω(S(a))1+ s
p−

s
q
. ‖Gv

µ,s‖s
Ap

ω→Lq
ω

and µω
v is a

(
p + s− ps

q

)
-Carleson mea-

sure for Ap
ω by Theorem 3.

Conversely, let q > s and µω
v be a

(
p + s− ps

q

)
-Carleson measure for Ap

ω. Write

t = t(p, q, s) = p + s− ps
q > s for short. Since t

p = ( t
s )
′/( q

s )
′, [55, Theorem 3] shows

that Mω : L(
q
s )
′

ω → L( t
s )
′

µω
v

is bounded with ‖Mω‖
( t

s )
′

L
(

q
s )
′

ω →L
( t

s )
′

µω
v

� supa∈D
µω

v (S(a))
ω(S(a))t/p . This
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together with Theorem 3, Fubini’s theorem and Hölder’s inequality give

‖Gv
µ,s( f )‖s

Lq
ω
= sup
‖h‖

L
(

q
s )
′

ω

≤1

∫
D
|h(z)|

(∫
Γ(z)
| f (ζ)|s dµω

v (ζ)

ω(T(ζ))

)
ω(z) dA(z)

= sup
‖h‖

L
(

q
s )
′

ω

≤1

∫
D
| f (ζ)|s

(
1

ω(T(ζ))

∫
T(ζ)
|h(z)|ω(z) dA(z)

)
dµω

v (ζ)

. sup
‖h‖

L
(

q
s )
′

ω

≤1

∫
D
| f (ζ)|s Mω(h)(ζ) dµω

v (ζ) ≤ sup
‖h‖

L
(

q
s )
′

ω

≤1
‖ f ‖s

Lt
µω

v

‖Mω(h)‖
L
( t

s )
′

µω
v

≤ sup
‖h‖

L
(

q
s )
′

ω

≤1
‖Id‖s

Ap
ω→Lt

µω
v

‖ f ‖s
Ap

ω
‖Mω‖

L
(

q
s )
′

ω →L
( t

s )
′

µω
v

‖h‖
L
(

q
s )
′

ω

�
(

sup
a∈D

µω
v (S(a))

ω(S(a))1+ s
p−

s
q

) s
t +

1
( t

s )
′

‖ f ‖s
Ap

ω
,

and hence Gv
µ,s : Ap

ω → Lq
ω is bounded and ‖Gv

µ,s( f )‖s
Lq

ω
. supa∈D

µω
v (S(a))

ω(S(a))1+ s
p−

s
q

.

Since the assertion is valid for q = s by (6.1), it remains to consider the case q < s.
Let first µω

v be a
(

p + s− ps
q

)
-Carleson measure for Ap

ω, and let 0 < x < s. Hölder’s
inequality and Fubini’s theorem yield

‖Gv
µ,s( f )‖q

Lq
ω
=
∫

D

(∫
Γ(z)
| f (ζ)|x+s−x dµω

v (ζ)

ω(T(ζ))

) q
s

ω(z) dA(z)

≤
∫

D
N( f )(z)

qx
s

(∫
Γ(z)
| f (ζ)|s−x dµω

v (ζ)

ω(T(ζ))

) q
s

ω(z) dA(z)

≤
(∫

D
N( f )(z)

qx
s−q ω(z) dA(z)

)1− q
s
(∫

D

∫
Γ(z)
| f (ζ)|s−x dµω

v (ζ)

ω(T(ζ))
ω(z) dA(z)

) q
s

. ‖N( f )‖
qx
s

L
qx

s−q
ω

(∫
D
| f (ζ)|s−x dµω

v (ζ)

) q
s
� ‖N( f )‖

qx
s

L
qx

s−q
ω

‖ f ‖
q(s−x)

s

L(s−x)
µω

v

.

Take x = p(s−q)
q < s so that s− x = s + p− ps

q . Then the estimates above together
with [54, Lemma 4.4] and Theorem 3 give

‖Gv
µ,s( f )‖q

Lq
ω
. ‖ f ‖

qx
s

Ap
ω
‖Id‖

q(s−x)
s

Ap
ω→L

s+p− ps
q

µω
v

‖ f ‖
q(s−x)

s
Ap

ω
�
(

sup
a∈D

µω
v (S(a))

ω(S(a))1+ s
p−

s
q

) q
s

‖ f ‖q
Ap

ω
,

and hence Gv
µ,s : Ap

ω → Lq
ω is bounded with ‖Gv

µ‖s
Ap

ω→Lq
ω
. supa∈D

µω
v (S(a))

ω(S(a))1+ s
p−

s
q

.

Conversely, let q < s and Gv
µ,s : Ap

ω → Lq
ω be bounded. Choose α > β > 1 such
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that β
α = q

s . Fubini’s theorem and Hölder’s inequality yield

µω
v (S(a)) =

∫
D

χS(a)(z) dµω
v (z) �

∫
D

χS(a)(z)|Fa,p(z)|s
1

v(T(z))

∫
T(z)

ω(ζ) dA(ζ) dµ(z)

=
∫

D

(∫
Γ(ζ)

χS(a)(z)|Fa,p(z)|s
dµ(z)

v(T(z))

) 1
α +

1
α′

ω(ζ) dA(ζ)

≤

∫
D

(∫
Γ(ζ)
|Fa,p(z)|s

dµ(z)
v(T(z))

) β
α

ω(ζ) dA(ζ)

 1
β

·

∫
D

(∫
Γ(ζ)

χS(a)(z)
dµ(z)

v(T(z))

) β′
α′

ω(ζ) dA(ζ)


1
β′

= ‖Gv
µ,s(Fa,p)‖

q
β

Lq
ω
‖Gv

µ,1(χS(a))‖
1
α′

L
β′
α′
ω

.

(6.13)

Now β′

α′ > 1 because β < α, and hence ‖Gv
µ,1(χS(a))‖

L
β′
α′
ω

can be estimated by duality

arguments. Namely, since
(

β′

α′

)′
= β(α−1)

α−β , Fubini’s theorem, Hölder’s inequality
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and [55, Theorem 3] give

‖Gv
µ,1(χS(a))‖

L
β′
α′
ω

= sup
‖h‖

L

β(α−1)
α−β

ω

≤1

∫
D
|h(ζ)|Gv

µ,1(χS(a))(ζ)ω(ζ) dA(ζ)

= sup
‖h‖

L

β(α−1)
α−β

ω

≤1

∫
D
|h(ζ)|

(∫
Γ(ζ)

χS(a)(z)
dµ(z)

v(T(z))

)
ω(ζ) dA(ζ)

= sup
‖h‖

L

β(α−1)
α−β

ω

≤1

∫
D

χS(a)(z)
(

1
v(T(z))

∫
T(z)
|h(ζ)|ω(ζ) dA(ζ)

)
dµ(z)

= sup
‖h‖

L

β(α−1)
α−β

ω

≤1

∫
D

χS(a)(z)
(

1
ω(T(z))

∫
T(z)
|h(ζ)|ω(ζ) dA(ζ)

)
dµω

v (z)

. sup
‖h‖

L

β(α−1)
α−β

ω

≤1

∫
D

χS(a)(z)Mω(h)(z) dµω
v (z)

≤ sup
‖h‖

L

β(α−1)
α−β

ω

≤1

(∫
D

χS(a)(z) dµω
v (z)

) α′
β′

·
(∫

D
Mω(h)(z)

β(α−1)
α−β χS(a)(z) dµω

v (z)
)1− α′

β′

. µω
v (S(a))

α′
β′

(
sup
z∈D

µω
v (S(z) ∩ S(a))

ω(S(z))

)1− α′
β′

, a ∈ D.

(6.14)

By combining this with (6.13) and using the norm estimate ‖Fa,p‖p
Ap

ω
� ω(S(a)), we

deduce

µω
v (S(a)) . ‖Gv

µ,s(Fa,p)‖
q
β

Lq
ω
‖Gv

µ,1(χS(a))‖
1
α′

L
β′
α′
ω

. ‖Gv
µ,s‖

q
β

Ap
ω→Lq

ω
ω(S(a))

q
pβ µω

v (S(a))
1
β′

(
sup
z∈D

µω
v (S(z) ∩ S(a))

ω(S(z))

) 1
α′ −

1
β′

,

which yields

µω
v (S(a))

1
β ω(S(a))−

q
pβ . ‖Gv

µ,s‖
q
β

Ap
ω→Lq

ω

(
sup
z∈D

µω
v (S(z) ∩ S(a))

ω(S(z))

) 1
α′ −

1
β′

, a ∈ D.

(6.15)
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Define dµr(z) = χD(0,r)(z)dµ(z) for 0 < r < 1. Then(
Gv

µr ,s( f )(z)
)s

=
∫

Γ(z)
| f (ζ)|s dµr(ζ)

v(T(ζ))
=
∫

Γ(z)∩D(0,r)
| f (ζ)|s dµ(ζ)

v(T(ζ))

≤
∫

Γ(z)
| f (ζ)|s dµ(ζ)

v(T(ζ))
=
(

Gv
µ,s( f )(z)

)s
, z ∈ D \ {0},

(6.16)

and hence ‖Gv
µr ,s‖Ap

ω→Lq
ω
≤ ‖Gv

µ,s‖Ap
ω→Lq

ω
for all 0 < r < 1.

If q = p, then (6.15) applied to µr implies

(µω
v )r(S(a))

1
β ω(S(a))−

1
β . ‖Gv

µr ,s‖
p
β

Ap
ω→Lp

ω

(
sup
z∈D

(µω
v )r(S(z))
ω(S(z))

) 1
α′ −

1
β′

, a ∈ D,

and hence(
sup
z∈D

(µω
v )r(S(z))
ω(S(z))

) 1
β

. ‖Gv
µ,s‖

p
β

Ap
ω→Lp

ω

(
sup
z∈D

(µω
v )r(S(z))
ω(S(z))

) 1
α′ −

1
β′

.

Consequently,

sup
z∈D,r∈(0,1)

(µω
v )r(S(z))
ω(S(z))

. ‖Gv
µ,s‖s

Ap
ω→Lp

ω
.

So Fatou’s lemma and Theorem 3 show that µω
v is a p-Carleson measure for Ap

ω with

‖Id‖
p
Ap

ω→Lp
µω

v

� sup
a∈D

µω
v (S(a))

ω(S(a))
. ‖Gv

µ,s‖s
Ap

ω→Lp
ω

.

If q > p, then applying (6.15) to µr and bearing in mind that ω is radial

(µω
v )r(S(a))

ω(S(a))1+ s
p−

s
q
. ‖Gv

µr ,s‖
q
Ap

ω→Lq
ω

ω(S(a))
q
p−1− s

p +
s
q

(
sup
z∈D

(µω
v )r(S(z) ∩ S(a))

ω(S(z))

) β

α′ −
β

β′

= ‖Gv
µr ,s‖

q
Ap

ω→Lq
ω

ω(S(a))
−(q−p)(s−q)

pq

(
sup

z:S(z)⊂S(a)

(µω
v )r(S(z) ∩ S(a))

ω(S(z))

)1− q
s

= ‖Gv
µr ,s‖

q
Ap

ω→Lq
ω

 sup
z:S(z)⊂S(a)

(µω
v )r(S(z) ∩ S(a))

ω(S(a))s q−p
pq ω(S(z))

1− q
s

≤ ‖Gv
µr ,s‖

q
Ap

ω→Lq
ω

(
sup

z:S(z)⊂S(a)

(µω
v )r(S(z))

ω(S(z))1+ s
p−

s
q

)1− q
s

, a ∈ D.

Consequently,

sup
a∈D

(
(µω

v )r(S(a))

ω(S(a))1+ s
p−

s
q

)
. ‖Gv

µ,s‖
q
Ap

ω→Lq
ω

(
sup
a∈D

sup
z:S(z)⊂S(a)

(µω
v )r(S(z))

ω(S(z))1+ s
p−

s
q

)1− q
s

= ‖Gv
µ,s‖

q
Ap

ω→Lq
ω

(
sup
a∈D

(µω
v )r(S(a))

ω(S(a))1+ s
p−

s
q

)1− q
s

,
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and thus

sup
a∈D, r∈(0,1)

(µω
v )r(S(a))

ω(S(a))1+ s
p−

s
q
. ‖Gv

µ,s‖s
Ap

ω→Lq
ω

.

Fatou’s lemma and Theorem 3 show that µω
v is a

(
p + s− ps

q

)
-Carleson measure

for Ap
ω with the corresponding inequality of norms.

Theorem 6. Let 0 < q < p < ∞ and 0 < s < ∞ such that 1 + s
p −

s
q > 0, ω ∈ D̂ and let

µ, v be positive Borel measures on D such that µ ({z ∈ D : v(T(z)) = 0}) = 0 = µ({0}).
Then Gv

µ,s : Ap
ω → Lq

ω is bounded if and only if µω
v is a p

(
1 + s

p −
s
q

)
-Carleson measure

for Ap
ω. Moreover,

‖Gv
µ,s‖s

Ap
ω→Lq

ω
� ‖Id‖

p+s− ps
q

Ap
ω→L

p+s− ps
q

µω
v

� ‖Bv
µ‖

L
qp

s(p−q)
ω

.

Proof. The equivalence ‖Id‖
p+s− ps

q

Ap
ω→L

p+s− ps
q

µω
v

� ‖Bv
µ‖

L
qp

s(p−q)
ω

follows from Theorem 3.

If Bv
µ ∈ L

qp
s(p−q)
ω , then Hölder’s inequality and [54, Lemma 4.4] give

‖Gv
µ,s( f )‖q

Lq
ω
=
∫

D

(∫
Γ(z)
| f (ζ)|s dµ(ζ)

v(T(ζ))

) q
s

ω(z) dA(z)

≤
∫

D
N( f )q(z)

(∫
Γ(z)

dµ(ζ)

v(T(ζ))

) q
s

ω(z) dA(z)

≤ ‖N( f )‖q
Lp

ω
‖Bv

µ‖
q
s

L
qp

s(p−q)
ω

� ‖ f ‖q
Ap

ω
‖Bv

µ‖
q
s

L
qp

s(p−q)
ω

,

and hence Gv
µ,s : Ap

ω → Lq
ω is bounded and ‖Gv

µ,s‖s
Ap

ω→Lq
ω
. ‖Bv

µ‖
L

qp
p−q

ω

.

Assume now that Gv
µ,s : Ap

ω → Lq
ω is bounded, and let first q > s and write

t = t(p, q, s) = (p+ s− ps
q ) = s+ p(1− s

q ). It suffices to show that µω
v is a t-Carleson

measure for Ap
ω. Fubini’s theorem, Hölder’s inequality and [54, Lemma 4.4] yield

‖ f ‖t
Lt

µω
v

=
∫

D
| f (z)|t

(∫
T(z)

ω(ζ) dA(ζ)

)
dµ(z)

v(T(z))

=
∫

D

(∫
Γ(ζ)
| f (z)|s+p(1− s

q )
dµ(z)

v(T(z))

)
ω(ζ) dA(ζ)

≤
∫

D
N( f )p(1− s

q )(ζ)

(∫
Γ(ζ)
| f (z)|s dµ(z)

v(T(z))

)
ω(ζ) dA(ζ)

. ‖N( f )‖
p(1− s

q )

Lp
ω

‖Gv
µ,s( f )‖s

Lq
ω
� ‖ f ‖

p(1− s
q )

Ap
ω

‖Gv
µ,s( f )‖s

Lq
ω

≤ ‖Gv
µ‖s

Ap
ω→Lq

ω
‖ f ‖t

Ap
ω

and hence Id : Ap
ω → Lt

µω
v

is bounded with ‖Id‖t
Ap

ω→Lt
µω

v

. ‖Gv
µ‖s

Ap
ω→Lq

ω
.
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If q = s, then t = s and the result follows from (6.1).
If q < s, then t = p + s − ps

q < s and q
t > 1 because min{p, s} > q. Hence

Hölder’s inequality gives

‖ f ‖t
Lt

µω
v

=
∫

D

(∫
Γ(ζ)
| f (z)|t dµ(z)

v(T(z))

)
ω(ζ) dA(ζ)

.
∫

D

(∫
Γ(ζ)
| f (z)|s dµ(z)

v(T(z))

) t
s
(∫

Γ(ζ)

dµ(z)
v(T(z))

)1− t
s

ω(ζ) dA(ζ)

≤
(∫

D

(∫
Γ(ζ)
| f (z)|s dµ(z)

v(T(z))

) q
s

ω(ζ) dA(ζ)

) t
q

·
(∫

D

(∫
Γ(ζ)

dµ(z)
v(T(z))

) s−t
s

q
q−t

ω(ζ) dA(ζ)

) q−t
q

= ‖Gv
µ,s( f )‖t

Lq
ω
‖Bv

µ‖
1− t

s

L
qp

s(p−q)
ω

≤ ‖Gv
µ,s‖t

Ap
ω→Lq

ω
‖Bv

µ,s‖
1− t

s

L
qp

s(p−q)
ω

‖ f ‖t
Ap

ω
.

This applied to µr yields

‖ f ‖Lt
(µω

v )r

‖ f ‖Ap
ω

t

. ‖Gv
µr ,s‖t

Ap
ω→Lq

ω
‖Bv

µr‖
1− t

s

L
qp

s(p−q)
ω

, f ∈ Ap
ω, f 6≡ 0,

and hence

‖Id‖t
Ap

ω→Lt
(µω

v )r
≤ ‖Gv

µr ,s‖t
Ap

ω→Lq
ω
‖Bv

µr‖
1− t

s

L
qp

s(p−q)
ω

.

Since ‖Id‖t
Ap

ω→Lt
(µω

v )r

� ‖Bv
µr‖

L
qp

s(p−q)
ω

by Theorem 3, we deduce

‖Bv
µr‖

L
qp

s(p−q)
ω

. ‖Gv
µr ,s‖t

Ap
ω→Lq

ω
‖Bv

µr‖
1− t

s

L
qp

s(p−q)
ω

,

and hence

‖Bv
µr‖

L
qp

s(p−q)
ω

. ‖Gv
µr ,s‖s

Ap
ω→Lq

ω
≤ ‖Gv

µ,s‖s
Ap

ω→Lq
ω

,

which together with Fatou’s lemma gives

‖Bv
µ‖

L
qp

s(p−q)
ω

≤ lim inf
r→1

‖Bv
µr‖

L
qp

s(p−q)
ω

. ‖Gv
µ,s‖s

Ap
ω→Lq

ω
.

This finishes the proof.
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6.4 COMPACT OPERATOR

In this section we prove Theorem 4(ii).

Lemma 1. Let ν be a finite positive Borel measure on D and 0 < p < ∞. If {ϕn}∞
n=0 ⊂ Lp

ν

and ϕ ∈ Lp
ν satisfy limn→∞ ‖ϕn‖Lp

ν
= ‖ϕ‖Lp

ν
and limn→∞ ϕn(z) = ϕ(z) ν-a.e. on D,

then limn→∞ ‖ϕn − ϕ‖Lp
ν
= 0.

Proof. See the proof of [25, Lemma 1 p. 21].

Theorem 7. Let 0 < p ≤ q < ∞, 0 < s < ∞ and ω ∈ D̂, and let µ, v be positive Borel
measures on D such that µ ({z ∈ D : v(T(z)) = 0}) = 0 = µ({0}). Then Gv

µ,s : Ap
ω →

Lq
ω is compact if and only if Id : Ap

ω → L
p+s− ps

q
µω

v
is compact.

Proof. Let first q > s. Assume that Gv
µ,s : Ap

ω → Lq
ω is compact. For each a ∈ D,

let fa,p(z) = (ω(S(a)))−
1
p Fa,p(z) = (ω(S(a)))−

1
p
(

1−|a|2
1−az

) γ+1
p

. By Lemma A we

may choose γ = γ(p, q, s, ω) sufficiently large such that supa∈D ‖ fa,p‖p
Ap

ω
� 1,

supa∈D ‖ fa,( q
s )
′‖

(
q
s )
′

A
(

q
s )
′

ω

� 1 and fa,p converges uniformly to zero on compact subsets

of D as |a| → 1−. A standard argument shows that

lim
|a|→1−

‖Gv
µ,s( fa,p)‖Lq

ω
= 0. (6.17)

Fubini’s theorem and Hölder’s inequality yield

µω
v (S(a))

ω(S(a))1+ s
p−

s
q
� 1

ω(S(a))1− s
q

∫
S(a)
| fa,p(z)|s dµω

v (z)

�
∫

S(a)
| fa,p(z)|s

(
1

v(T(z))

∫
T(z)
| fa,( q

s )
′(ζ)|ω(ζ) dA(ζ)

)
dµ(z)

.
∫

D
| fa,( q

s )
′(ζ)|

(∫
Γ(ζ)
| fa,p(z)|s

dµ(z)
v(T(z))

)
ω(ζ) dA(ζ)

≤ ‖ fa,( q
s )
′‖

A
(

q
s )
′

ω

‖Gv
µ,s( fa,p)‖s

Lq
ω
. ‖Gv

µ,s( fa,p)‖s
Lq

ω
.

This together with (6.17) gives lim|a|→1−
µω

v (S(a))

ω(S(a))1+ s
p−

s
q

= 0 and hence Id : Ap
ω →

L
p+s− ps

q
µω

v
is compact by Theorem 3.

Conversely, let q > s and assume that Id : Ap
ω → L

p+s− ps
q

µω
v

is compact. Write

t = t(p, q, s) = p + s − ps
q > s for short. Let { fn} be a bounded sequence in Ap

ω.
Then, we may extract a subsequence { fnk} that converges in Lt

µω
v

and uniformly on

compact subsets to some f ∈ Ap
ω. Write gnk = fnk − f . By Fubini’s theorem, [55,

Theorem 3] and Hölder’s inequality,

‖Gv
µ,s(gnk )‖

s
Lq

ω
= sup
‖h‖

L
(

q
s )
′

ω

≤1

∫
D
|h(z)|

(∫
Γ(z)
|gnk (ζ)|

s dµω
v (ζ)

ω(T(ζ))

)
ω(z) dA(z) . ‖gnk‖

s
Lt

µω
v
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and hence
lim
k→∞
‖Gv

µ,s(gnk )‖
s
Lq

ω
= 0.

If s ≥ 1, two applications of Minkowski’s inequality gives∣∣∣‖Gv
µ,s( fnk )‖Lq

ω
− ‖Gv

µ,s( f )‖Lq
ω

∣∣∣ ≤ ‖Gv
µ,s(gnk )‖Lq

ω
→ 0, k→ ∞.

Moreover, since { fnk} converges uniformly on compact subsets of D to f , then

ϕk(z) =
(∫

Γ(z) | fnk (ζ)|s
dµω

v (ζ)
ω(T(ζ))

)1/s
converges to ϕ(z) =

(∫
Γ(z) | f (ζ)|

s dµω
v (ζ)

ω(T(ζ))

)1/s
for

each z ∈ D. Therefore Lemma 1 yields

lim
k→∞
‖Gv

µ,s( fnk )− Gv
µ,s( f )‖Lq

ω
= lim

k→∞
‖ϕk − ϕ‖Lq

ω
= 0,

and thus Gv
µ,s : Ap

ω → Lq
ω is compact.

If 0 < s ≤ 1,∫
Γ(z)
| fnk (ζ)|

s dµω
v (ζ)

ω(T(ζ))
≤
∫

Γ(z)
|gnk (ζ)|

s dµω
v (ζ)

ω(T(ζ))
+
∫

Γ(z)
| f (ζ)|s dµω

v (ζ)

ω(T(ζ))
,

which together with Minkowski’s inequality yields∣∣∣‖Gv
µ,s( fnk )‖

s
Lq

ω
− ‖Gv

µ,s( f )‖s
Lq

ω

∣∣∣ ≤ ‖Gv
µ,s(gnk )‖

s
Lq

ω
.

Now, by arguing as in the previous case we see that Gv
µ,s : Ap

ω → Lq
ω is compact. In

view of (6.1), a similar reasoning also applies in the case q = s.

It remains to consider the case q < s. Assume first that Id : Ap
ω → L

p+s− ps
q

µω
v

is

compact. Let { fn} be a bounded sequence in Ap
ω. Then we may extract a subse-

quence { fnk} that converges on L
p+s− ps

q
µω

v
and uniformly on compact subsets of D to

some f ∈ Ap
ω. Write gnk = fnk − f , and let 0 < x < s. Hölder’s inequality and

Fubini’s theorem yield

‖Gv
µ,s(gnk )‖

q
Lq

ω
≤
∫

D
N(gnk )(z)

qx
s

(∫
Γ(z)
|gnk (ζ)|

s−x dµω
v (ζ)

ω(T(ζ))

) q
s

ω(z) dA(z)

. ‖N(gnk )‖
qx
s

L
qx

s−q
ω

‖gnk‖
q(s−x)

s

L(s−x)
µω

v

.

Take x = p(s−q)
q < s so that s− x = s + p− ps

q . Then the estimates above together
with [54, Lemma 4.4] give

‖Gv
µ,s(gnk )‖

q
Lq

ω
. ‖gnk‖

qx
s

Ap
ω
‖gnk‖

q(s−x)
s

L
s+p− ps

q
µω

v

. ‖gnk‖
q(s−x)

s

L
s+p− ps

q
µω

v

,

and hence
lim
k→∞
‖Gv

µ,s(gnk )‖Lq
ω
= 0.

Now, by using Lemma 1 and arguing as in the case q > s, we conclude that
limk→∞ ‖Gv

µ,s( fnk )− Gv
µ,s( f )‖Lq

ω
= 0, that is, Gv

µ,s : Ap
ω → Lq

ω is compact.
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Conversely, let q < s and assume that Gv
µ,s : Ap

ω → Lq
ω is bounded. Choose

α > β > 1 such that β
α = q

s . By arguing as in (6.13) and (6.14), we get

µω
v (S(a))

ω (S(a))s/p . ‖G
v
µ,s( fa,p)‖

q
β

Lq
ω
‖Gv

µ,1( f s
a,p(z)χS(a))‖

1
α′

L
β′
α′
ω

and

‖Gv
µ,1( f s

a,p(z)χS(a))‖
L

β′
α′
ω

.
µω

v (S(a))
α′
β′

ω (S(a))s/p

(
sup
z∈D

µω
v (S(z) ∩ S(a))

ω(S(z))

)1− α′
β′

, a ∈ D,

respectively. These estimates yield

µω
v (S(a))

ω (S(a))s/p . ‖G
v
µ,s( fa,p)‖

q
β

Lq
ω

µω
v (S(a))

1
β′

ω (S(a))
s

pα′

(
sup
z∈D

µω
v (S(z) ∩ S(a))

ω(S(z))

) 1
α′ −

1
β′

, a ∈ D,

and thus

µω
v (S(a))

ω(S(a))
q
p
. ‖Gv

µ,s( fa,p)‖q
Lq

ω

(
sup
z∈D

µω
v (S(z) ∩ S(a))

ω(S(z))

) β

α′ −
β

β′

, a ∈ D. (6.18)

If q = p, we may use lim|a|→1− ‖Gv
µ,s( fa,p)‖Lp

ω
= 0 and Theorem 5 to deduce that

the right-hand side of (6.18) tends to zero as a approaches the boundary. Therefore
Id : Ap

ω → Lp
µω

v
is compact by Theorem 3(ii).

If q > p, by using (6.18) and arguing as in the corresponding part of the proof of
Theorem 5, we get

µω
v (S(a))

ω(S(a))1+ s
p−

s
q
≤ ‖Gv

µ,s( fa,p)‖q
Lq

ω

(
sup
b∈D

µω
v (S(b))

ω(S(b))1+ s
p−

s
q

)1− q
s

, a ∈ D.

from which arguments similar to those applied in the previous paragraph show that

Id : Ap
ω → L

p+s− ps
q

µω
v

is compact. This finishes the proof.

Theorem 8. Let 0 < q < p < ∞ and 0 < s < ∞ such that 1 + s
p −

s
q > 0, ω ∈ D̂ and let

µ, v be positive Borel measures on D such that µ ({z ∈ D : v(T(z)) = 0}) = 0 = µ({0}).
Then the following conditions are equivalent:

(i) Gv
µ,s : Ap

ω → Lq
ω is compact;

(ii) Gv
µ,s : Ap

ω → Lq
ω is bounded;

(iii) Id : Ap
ω → L

p
(

1+ s
p−

s
q

)
µω

v
is compact;

(iv) Id : Ap
ω → L

p
(

1+ s
p−

s
q

)
µω

v
is bounded.
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Proof. The conditions (ii)–(iv) are equivalent by Theorems 4(i) and 3(iii). To complete

the proof, it suffices to show that Gv
µ,s : Ap

ω → Lq
ω is compact if Id : Ap

ω → L
p
(

1+ s
p−

s
q

)
µω

v

is bounded. To see this, let { fn} be a bounded sequence in Ap
ω, let { fnk} be a sub-

sequence that converges uniformly on compact subsets of D to f ∈ Ap
ω. Write

gk = fnk − f as before. By using Theorem 3 and the last part of the proof of Theo-
rem 3(iii), we deduce

lim
R→1−

∫
D

(∫
Γ(ζ)\D(0,R)

dµ(z)
ω(T(z))

) pq
s(p−q)

ω(ζ) dA(ζ) = 0.

Therefore, for a fixed ε > 0, there exists R0 ∈ (0, 1) such that

∫
D

(∫
Γ(ζ)\D(0,R0)

dµ(z)
ω(T(z))

) pq
s(p−q)

ω(ζ) dA(ζ) < ε
p

p−q .

Choose k0 ∈ N such that |gk(z)| < ε1/q for all k ≥ k0 and z ∈ D(0, R0). Then
Hölder’s inequality and [54, Lemma 4.4] give

‖Gv
µ,s(gk)‖

q
Lq

ω
.
∫

D

(∫
Γ(z)∩D(0,R0)

|gk(ζ)|s
dµ(ζ)

v(T(ζ))

) q
s

ω(z) dA(z)

+
∫

D

(∫
Γ(z)\D(0,R0)

|gk(ζ)|s
dµ(ζ)

v(T(ζ))

) q
s

ω(z) dA(z)

. ε +
∫

D
N(gk)

q(z)
(∫

Γ(z)\D(0,R0)

dµ(ζ)

v(T(ζ))

) q
s

ω(z) dA(z)

≤ ε + ‖N(gk)‖
q
Lp

ω

(∫
D

(∫
Γ(z)\D(0,R0)

dµ(ζ)

v(T(ζ))

) pq
(p−q)s

ω(z) dA(z)

) p−q
p

. ε,

and consequently, limk→∞ ‖Gv
µ,s(gk)‖

q
Lq

ω
= 0. Finally, by using Lemma 1 and arguing

as in the proof of Theorem 7, we deduce limk→∞ ‖Gv
µ,s( fk)− Gv

µ,s( f )‖q
Lq

ω
= 0, that is,

Gv
µ,s : Ap

ω → Lq
ω is compact.

6.5 APPLICATIONS AND FURTHER COMMENTS

6.5.1 Area operators in Hardy spaces

For 0 < s < ∞, define

Gµ,s( f )(z) =
(∫

Γ(z)
| f (ζ)|s dµ(ζ)

1− |ζ|

) 1
s

, z ∈ T.

The method of proof of Theorem 4, combined with the results in [40, Section 7]
and [52], can be used to obtain the following result. The details of the proof does
not reveal anything new, and are therefore omitted. Here Lq(T) refers to the classical
Lq-space on T.
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Theorem 9. Let 0 < p, q < ∞ such that 1 + s
p −

s
q > 0, and let µ be a positive Borel

measure on D such that µ({0}) = 0. Then Gµ,s : Hp → Lq(T) is bounded (resp. compact)

if and only if Id : Hp → L
p+s− ps

q
µ is bounded (resp. compact). Moreover,

‖Gµ,s‖s
Hp→Lq(T) � ‖Id‖

p+s− ps
q

Hp→L
p+s− ps

q
µ

� sup
a∈D

µ(S(a))

(1− |a|)1+ s
p−

s
q

, p ≤ q,

and

‖Gµ,s‖s
Hp→Lq(T) � ‖Id‖

p+s− ps
q

Hp→L
p+s− ps

q
µ

� ‖Bµ‖
L

qp
s(p−q)

, q < p,

where

Bµ(ζ) =
∫

Γ(ζ)

dµ(z)
1− |z| , ζ ∈ T.

In particular, this result proves the conjecture in [31, p. 365] in the case 1 + 1
p −

1
q > 0.

6.5.2 Integral operator Tg on Bergman and Hardy spaces

Each g ∈ H(D) induces the integral operator

Tg( f )(z) =
∫ z

0
g′(ζ) f (ζ) dζ, z ∈ D,

acting on H(D). This type of integral operators have been extensively studied dur-
ing the last decades and have interesting connections with other areas of mathemat-
ical analysis, see [51, 54] and the references therein. In particular, the symbols g for
which Tg is bounded or compact from Ap

ω to Aq
ω can be described in terms of the

following spaces of analytic functions when q ≥ p.
We say that g ∈ H(D) belongs to Cq,p(ω?), 0 < p, q < ∞, if the measure

|g′(z)|2ω?(z) dA(z) is a q-Carleson measure for Ap
ω. Moreover, g ∈ Cq,p

0 (ω?) if the
identity operator Id : Ap

ω → Lq(|g′|2ω?dA) is compact. If q ≥ p and ω ∈ D̂, then
Theorem 3 shows that these spaces only depend on the quotient q

p . Consequently,

for q ≥ p and ω ∈ D̂, we simply write Cq/p(ω?) instead of Cq,p(ω?). Thus, if α ≥ 1
and ω ∈ D̂, then Cα(ω?) consists of those g ∈ H(D) such that

‖g‖2
Cα(ω?) = |g(0)|

2 + sup
I⊂T

∫
S(I) |g

′(z)|2ω?(z) dA(z)

(ω (S(I)))α < ∞. (6.19)

An analogue of this identity is valid for the little space Cα
0 (ω

?). We refer to [54,
Chapter 5] for further information about these spaces.

Theorem 10. Let 0 < p, q < ∞ such that q > 2p
2+p and ω ∈ D̂. Let g ∈ H(D) and denote

dµg(z) = |g′(z)|2ω?(z) dA(z). Then Tg : Ap
ω → Aq

ω is bounded (resp. compact) if and

only if Id : Ap
ω → L

p+2− 2p
q

µg is bounded (resp. compact).
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Proof. By [54, Theorem 4.2], Tg : Ap
ω → Lq

ω is bounded (resp. compact) if and only
if Gω

µg ,2 : Ap
ω → Lq

ω is bounded (resp. compact), and ‖Tg‖Ap
ω→Lq

ω
� ‖Gω

µg ,2‖Ap
ω→Lq

ω
.

Theorem 4 implies

‖Gω
µg ,2‖2

Ap
ω→Lq

ω
� ‖Id‖

p+2− 2p
q

Ap
ω→L

p+2− 2p
q

µg

,

and this finishes the proof.

It is worth mentioning that Theorem 3 yields

‖Tg‖2
Ap

ω→Lq
ω
� sup

a∈D

µg(S(a))

ω(S(a))2( 1
p−

1
q )+1

, q ≥ p

Thus Tg : Ap
ω → Lq

ω is bounded if and only if g ∈ C2( 1
p−

1
q )+1

(ω?). If p > q,
Theorem 3 also gives

‖Tg‖2
Ap

ω→Lq
ω
�
∫

D

(∫
Γ(ζ)
|g′(z)|2 dA(z)

) qp
2(p−q)

ω(ζ) dA(ζ),

and thus Tg : Ap
ω → Lq

ω is bounded if and only if g ∈ A
qp

p−q
ω by [54, Theorem 4.2].

Consequently, whenever q > 2p
2+p Theorem 10 improves [54, Theorem 4.1] be-

cause the hypothesis on ω are stronger in the original result. In particular, if q < p,
the weight ω is assumed to be continuous and strictly positive with the local regu-
larity

ω(t) � ω(r), 1− t � 1− r.

This hypothesis allows one to use the strong factorization Ap
ω = Ap1

ω · Ap2
ω , p−1 =

p−1
1 + p−1

2 , [54, Theorem 3.1], which is a principal ingredient in the proof of [54,
Theorem 4.1].

However, the defect of Theorem 10 is the extra hypothesis q > 2p
2+p which is a

restriction only in the case p > q. This condition is inherited from Theorem 4 and
appears there because Carleson measures are finite measures. This is not true in

general for µg when g ∈ A
qp

p−q
ω and q < 2p

2+p . The case of compact operators can be
analyzed in the same way.

If q > 2p
2+p one may characterize bounded and compact operators Tg : Hp → Hq

by using Section 6.5.1. In order to avoid unnecessary repetition, we omit the details.
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7 Paper II

7.1 INTRODUCTION AND MAIN RESULTS

Let H(D) denote the space of analytic functions in the unit disc D = {z ∈ C : |z| <
1}. For 0 < p < ∞ and a nonnegative integrable function ω on D, the weighted
Bergman space Ap

ω consists of f ∈ H(D) such that

‖ f ‖p
Ap

ω
=
∫

D
| f (z)|pω(z) dA(z) < ∞,

where dA(z) = dx dy
π is the normalized Lebesgue area measure on D. As usual,

Ap
α denotes the weighted Bergman space induced by the standard radial weight

(1− |z|2)α.
A radial weight ω belongs to the class D̂ if ω̂(z) =

∫ 1
|z| ω(s) ds satisfies the dou-

bling condition ω̂(r) ≤ Cω̂( 1+r
2 ). Further, a radial weight ω ∈ D̂ is regular, denoted

by ω ∈ R, if ω(r) behaves as its integral average over (r, 1), that is,

ω(r) �
∫ 1

r ω(s) ds
1− r

, 0 ≤ r < 1.

Every standard weight as well as those given in [4, (4.4)–(4.6)] are regular. It is
easy to see that for each radial weight ω, the norm convergence in A2

ω implies the
uniform convergence on compact subsets of D, and hence the Hilbert space A2

ω is a
closed subspace of L2

ω and the orthogonal Bergman projection Pω from L2
ω to A2

ω is
given by

Pω( f )(z) =
∫

D
f (ζ)Bω

z (ζ)ω(ζ) dA(ζ),

where Bω
z are the reproducing kernels of A2

ω. Recently, those regular weights ω

and ν for which Pω : Lp
ν → Lp

ν is bounded were characterized in terms of Bekollé-
Bonami type conditions [57]. In this paper we consider operators which are natural
extensions of the orthogonal projection Pω. For a positive Borel measure µ on D,
the Toeplitz operator associated with µ is

Tµ( f )(z) =
∫

D
f (ζ)Bω

z (ζ) dµ(ζ).

If dµ = ΦωdA for a non-negative function Φ, then write Tµ = TΦ so that TΦ( f ) =
Pω( f Φ). The operator TΦ has been extensively studied since the seventies [14,44,68].
Luecking was probably the one who introduced Toeplitz operators Tµ with measures
as symbols in [39], where he provides, among other things, a description of Schatten
class Toeplitz operators Tµ : A2

α → A2
α in terms of an `p-condition involving a

hyperbolic lattice of D. More recently, Zhu [71] gave an alternative characterization
in terms of Lp

(
dA

(1−|·|)2

)
-integrability of the Berezin transform of Tµ in the widest

possible range of the paremeters p and α. We refer to [69, Chapter 7] for the theory
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of Toeplitz operators Tµ acting on A2
α and to [13, 49] for descriptions in terms of

Carleson measures and the Berezin transform of bounded and compact Toeplitz
operators Tµ : Ap

α → Aq
α, 1 < p, q < ∞. The Berezin transform of a bounded linear

operator T : A2
ω → A2

ω is

T̃(z) = 〈T(bω
z ), bω

z 〉A2
ω

, (7.1)

where bω
z = Bω

z
‖Bω

z ‖A2
ω

are the normalized reproducing kernels of A2
ω. Given 0 < p, q <

∞ and a positive Borel measure µ on D, we say that µ is a q-Carleson measure
for Ap

ω if the identity operator Id : Ap
ω → Lq

µ is bounded. A description of q-
Carleson measures for Ap

ω induced by doubling weights was recently given in [55],
see also [60].

One of the main purposes of this study is to characterize, in terms of Carleson
measures and the Berezin transform T̃µ, those positive Borel measures µ such that
the Toeplitz operator Tµ : Ap

ω → Aq
ω, where 1 < p, q < ∞ and ω ∈ R, is bounded or

compact. We also describe Schatten class Toeplitz operators Tµ : A2
ω → A2

ω in terms
of their Berezin transforms and show how this result can be used to study Schatten
class composition operators induced by symbols of bounded valence.

A simple fact that is repeatedly used in the study of Toeplitz operators on stan-
dard Bergman spaces Ap

α is the closed formula (1− zζ)−(2+α) of the Bergman repro-
ducing kernel of A2

α. This shows that the kernels never vanish, and allows one to
easily establish useful pointwise and norm estimates. However, the situation in the
case of A2

ω with ω ∈ R is more complicated because of the lack of such an explicit
expression for Bω

z . In fact a little perturbation in the weight, that does not change
the space itself, might introduce zeros to the kernel functions [67]. This difference
causes severe difficulties in the study related to Toeplitz operators on Ap

ω, and forces
us to circumvent several obstacles in a different manner. We will shortly indicate
the main tools used in the proofs after each result is stated.

We need a bit more of notation to state our first result. For each 1 < p < ∞
we write p′ for its conjugate exponent, that is, 1

p + 1
p′ = 1. The Carleson square

S(I) based on an interval I on the boundary T of D is the set S(I) = {reit ∈ D :
eit ∈ I, 1− |I| ≤ r < 1}, where |E| denotes the Lebesgue measure of E ⊂ T. We
associate to each a ∈ D \ {0} the interval Ia = {eiθ : | arg(ae−iθ)| ≤ 1−|a|

2 }, and
denote S(a) = S(Ia).

Theorem 11. Let 1 < p ≤ q < ∞, ω ∈ R and µ be a positive Borel measure on D. Then
the following statements are equivalent:

(i) Tµ : Ap
ω → Aq

ω is bounded;

(ii) T̃µ(·)

ω(S(·))
1
p + 1

q′ −1
∈ L∞;

(iii) µ is a s(p+q′)
pq′ -Carleson measure for As

ω for some (equivalently for all) 0 < s < ∞;

(iv) µ(S(·))

ω(S(·))
1
p + 1

q′
∈ L∞.
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Moreover,

∥∥Tµ

∥∥
Ap

ω→Aq
ω
�

∥∥∥∥∥∥ T̃µ(·)

ω(S(·))
1
p +

1
q′ −1

∥∥∥∥∥∥
L∞

� ‖Id‖
s(p+q′)

pq′

As
ω→L

s(p+q′)
pq′

µ

�

∥∥∥∥∥∥ µ(S(·))

ω(S(·))
1
p +

1
q′

∥∥∥∥∥∥
L∞

.

The equivalence between (ii) and (iv) shows that the Berezin transform T̃µ be-
haves asymptotically as the average µ(S(·))/ω(S(·)). By using Fubini’s theorem
and the reproducing formula

Lz( f ) = f (z) = 〈 f , Bω
z 〉A2

ω
=
∫

D
f (ζ) Bω

z (ζ)ω(ζ) dA(ζ), f ∈ A1
ω, (7.2)

we deduce
〈Tµ( f ), g〉A2

ω
= 〈 f , g〉L2

µ
(7.3)

for each compactly supported positive Borel measure µ and all f , g ∈ A2
ω. This iden-

tity shows that Carleson measures and Toeplitz operators are intimately connected,
and thus the use of Carleson measures in the proof of Theorem 11 does not come
as a surprise. Another key tools in the proof are the Lp-estimates of the kernels
Bω

z , obtained in [57, Theorem 1], and a pointwise estimate for Bω
z in a sufficiently

small Carleson square contained in S(z), given in Lemma 3 below. We also prove
a counterpart of Theorem 11 for compact Toeplitz operators. This result is stated
as Theorem 15 and its proof relies, among other things, on the duality relation

(Ap
ω)

? ' Ap′
ω under the pairing 〈·, ·〉A2

ω
, valid for all ω ∈ R [57, Corollary 7].

To describe the positive Borel measures such that Tµ : Ap
ω → Aq

ω is bounded
on the range 1 < q < p < ∞, we write $(a, z) = |ϕa(z)| =

∣∣ a−z
1−az

∣∣, for the pseu-
dohyperbolic distance between z and a, and ∆(a, r) = {z : $(a, z) < r} for the
pseudohyperbolic disc of center a ∈ D and radius r ∈ (0, 1).

Theorem 12. Let 1 < q < p < ∞, 0 < r < 1, ω ∈ R and µ be a positive Borel measure
on D. Then the following statements are equivalent:

(i) Tµ : Ap
ω → Aq

ω is compact;

(ii) Tµ : Ap
ω → Aq

ω is bounded;

(iii) µ̂r(·) = µ(∆(·,r))
ω(∆(·,r)) ∈ L

pq
p−q
ω ;

(iv) µ is a
(

p + 1− p
q

)
-Carleson measure for Ap

ω;

(v) Id : Ap
ω → L

p+1− p
q

µ is compact;

(vi) T̃µ ∈ L
pq

p−q
ω .

Moreover,

‖Tµ‖Ap
ω→Aq

ω
� ‖µ̂r‖

L
qp

p−q
ω

� ‖Id‖
p+1− p

q

Ap
ω→L

p+1− p
q

µ

� ‖T̃µ‖
L

qp
p−q

ω

.
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Apart from standard techniques, such as a duality relation for Bergman spaces
and the use of Rademacher functions along with Khinchine’s inequality, the bound-
edness of the maximal Bergman projection

P+
ω ( f )(z) =

∫
D
| f (ζ)||Bω

z (ζ)|ω(ζ)dA(ζ)

on Lp
ω for p ∈ (1, ∞) and ω ∈ R [57, Theorem 5] plays a crucial role in the proof of

Theorem 12. Another important fact employed is that, even if the kernels may van-
ish, by Lemma 4 for each ω ∈ D̂ they obey the relation |Bω

a | � Bω
a (a) on sufficiently

small pseudohyperbolic discs centered at a. This is used when (iii) is considered,
but (iii) involves pseudohyperbolic discs of all sizes, and therefore a suitably chosen
covering of D will be used to deal with this technical obstacle.

As for the statements of our results on Schatten classes, some notation are in
order. The polar rectangle associated with an arc I ⊂ T is

R(I) =
{

z ∈ D :
z
|z| ∈ I, 1− |I|

2π
≤ |z| < 1− |I|

4π

}
.

Write zI = (1− |I|/2π)ξ, where ξ ∈ T is the midpoint of I. Let Υ denote the family
of all dyadic arcs of T. Every arc I ∈ Υ is of the form

In,k =

{
eiθ :

2πk
2n ≤ θ <

2π(k + 1)
2n

}
,

where k = 0, 1, 2, . . . , 2n − 1 and n = N∪ {0}. The family {R(I) : I ∈ Υ} consists of
pairwise disjoint rectangles whose union covers D. For Ij ∈ Υ \ {I0,0}, we will write
zj = zIj . For convenience, we associate the arc I0,0 with the point 1/2. Given a radial
weight ω, we write

ω?(z) =
∫ 1

|z|
ω(s) log

s
|z| s ds, z ∈ D \ {0}.

Theorem 13. Let 0 < p < ∞, ω ∈ D̂ and µ be a positive Borel measure on D. Then the
following statements are equivalent:

(i) Tµ belongs to the Schatten p-class Sp(A2
ω);

(ii) ∑Rj∈Υ

(
µ(Rj)

ω?(zj)

)p
< ∞;

(iii) µ(∆(·,r))
ω?(·) belongs to Lp

(
dA

(1−|·|)2

)
for some (equivalently for all) 0 < r < 1.

Moreover,

|Tµ|pp � ∑
Rj∈Υ

(
µ(Rj)

ω?(zj)

)p

�
∫

D

(
µ (∆(z, r))

ω?(z)

)p dA(z)
(1− |z|)2 .

If ω ∈ R such that (ω?(·))p

(1−|·|)2 is also a regular weight, then Tµ ∈ Sp(A2
ω) if and only if

T̃µ ∈ Lp
ω/ω? , and |Tµ|p � ‖T̃µ‖Lp

ω/ω?
.
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The equivalence of the first three statements were proved in [56, Theorem 1],
and hence the novelty of Theorem 13 stems from the last part involving the Berezin
transform. The hypothesis ω?(·)p

(1−|·|)2 ∈ R is not a restriction for p ≥ 1, and for ω(z) =

(1− |z|2)α it reduces to the inequality p(2 + α) > 1. Therefore Theorem 13 is an
extension of [69, Theorem 7.18], see also [71]. Since each standard weight is regular,
the cut-off condition ω?(·)p

(1−|·|)2 ∈ R is in a sense the best possible.
The proof of the last statement of Theorem 13 for p ≥ 1 follows by standard

techniques once the pointwise kernel estimate given in Lemma 4 is available. How-
ever, the proof for 0 < p < 1 is more involved because the reproducing kernels
of A2

ω with ω ∈ R do not necessarily remain essentially constant in hyperbolically
bounded regions, a property which the standard kernels (1− zζ)2+α trivially admit
and is used in the proof of [69, Theorem 7.18] concerning the weighted Bergman
spaces Ap

α . This obstacle is circumvent by using subharmonicity and estimates for
the Ap

ν -norm of Bω
z for doubling weights ω, ν ∈ D̂, obtained in [57, Theorem 1].

Theorem 13 can be applied to study Schatten class composition operators when
the inducing symbol ϕ is of finite valence. To state the result, some more notation
and motivation are in order. For an analytic self-map ϕ of D, let ζ ∈ ϕ−1(z) denote
the set of the points {ζn} in D, organized by increasing moduli and repeated ac-
cording to their multiplicities, such that ϕ(ζn) = z for all n. For a radial weight ω
and ϕ as above, the generalized Nevanlinna counting function is

Nϕ,ω?(z) = ∑
ζ∈ϕ−1(z),

ω? (ζ) , z ∈ D \ {ϕ(0)}.

In [56, Theorem 3] it was shown that, for each ω ∈ D̂, the composition operator
Cϕ belongs to the Schatten p-class Sp(A2

ω) if and only if Nϕ,ω? ∈ Lp
(

dA
(1−|·|)2

)
.

This condition might be difficult to test in praxis because of the counting function
Nϕ,ω? . Therefore it is natural to look for more workable descriptions. As for this, we
observe that by using [57, Theorem 1] one can show that the Berezin transform of
CϕC?

ϕ behaves asymptotically as ω?(·)
ω?(ϕ(·)) , and moreover, the condition ω?(z)

ω?(ϕ(z)) → 0,

|z| → 1−, characterizes compact operators Cϕ : A2
ω → A2

ω when ω ∈ R by [56,
Theorem 20 and Lemma 23]. Therefore one may ask how close is the condition

∫
D

(
ω?(z)

ω?(ϕ(z))

) p
2 ω(z)

ω?(z)
dA(z) < ∞ (7.4)

to describe Schatten class composition operators? The next result shows that this is
a description in the case p > 2 under the hypothesis of ϕ being of bounded valence.

Theorem 14. Let 2 < p < ∞ and ω ∈ R, and let ϕ be a bounded valent analytic self-map
of D. Then Cϕ ∈ Sp(A2

ω) if and only if (7.4) holds.

Theorem 14 is an extension of [70, Theorem 1.1] to the setting of regular weights.
If ω(z) = (1− |z|2)α, then the statement in Theorem 14 is not valid for p(α + 2) ≤
2 because in this case the condition (7.4) fails for all analytic self-maps ϕ. More
generally, by using [54, p. 10 (ii)] one can show that if ω ∈ R and p is small enough,
then (7.4) fails for each ϕ. Moreover, [66, Theorem 3] shows that the statement in
Theorem 14 does not remain valid for ω ≡ 1 without the additional hypothesis
regarding the valence of ϕ.
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It is easy to see that each regular weight ω satisfies ω(r) � ω(t) whenever
1− r � 1− t. This asymptotic relation shows that ω ∈ R must be essentially con-
stant in each hyperbolically bounded region, and hence, in particular, ω may not
have zeros. This apparently severe requirement does not cause too much loss of
generality in our study. This because in the next section we will show that if ω ∈ D̂
satisfies the reverse doubling property ω̂(r) ≥ Cω̂

(
1− 1−r

K

)
for some K > 1 and

C > 1, a condition that is satisfied for each ω ∈ R, then there exists a differentiable
strictly positive weight W ∈ R such that ‖ · ‖Ap

ω
and ‖ · ‖Ap

W
are comparable. In Sec-

tion 7.2 we also discuss the kernel estimates and other auxiliary results. Section 8.3
is devoted to the study of bounded and compact Toeplitz operators. Schatten class
Toeplitz and composition operators are discussed in Sections 7.4 and 7.5, respec-
tively.

7.2 POINTWISE AND NORM ESTIMATES OF BERGMAN REPRO-
DUCING KERNELS

We begin with considering the classes of weights appearing in this study and their
basic properties. Then we will prove several pointwise and norm estimates for
the reproducing kernels, and finally an auxiliary result on weak convergence of
normalized kernels is established.

The first auxiliary lemma contains several characterizations of doubling weights
and will be repeatedly used throughout the rest of the paper. For a proof, see
[51, Lemma 2.1]. All along we will assume ω̂(r) > 0 for all 0 ≤ r < 1 without
mentioning it, for otherwise Ap

ω = H(D).

Lemma B. Let ω be a radial weight. Then the following conditions are equivalent:

(i) ω ∈ D̂;

(ii) There exist C = C(ω) > 0 and β = β(ω) > 0 such that

ω̂(r) ≤ C
(

1− r
1− t

)β

ω̂(t), 0 ≤ r ≤ t < 1;

(iii) There exist C = C(ω) > 0 and γ = γ(ω) > 0 such that∫ t

0

(
1− t
1− s

)γ

ω(s) ds ≤ Cω̂(t), 0 ≤ t < 1;

(iv) The asymptotic equality∫ 1

0
sxω(s) ds � ω̂

(
1− 1

x

)
, x ∈ [1, ∞),

is valid;

(v) ω?(z) � ω̂(z)(1− |z|), |z| → 1−;

(vi) There exists λ = λ(ω) ≥ 0 such that∫
D

ω(z)
|1− ζz|λ+1

dA(z) � ω̂(ζ)

(1− |ζ|)λ
, ζ ∈ D;
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(vii) There exists C = C(ω) > 0 such that the moments ωn =
∫ 1

0 rnω(r) dr satisfy the
condition ωn ≤ Cω2n.

We next briefly discuss radial weights having a kind of reversed doubling prop-
erty, and then show how this is related to the pointwise condition that defines the
class R of regular weights. More precisely, we show that if ω ∈ D̂ satisfies the
reverse doubling condition appearing in part (i) of Lemma 8.7 below, then one can
find a strictly positive n times differentiable weight which belongs to R and induces
the same Bergman space as ω. The next lemma can be find in [59].

Lemma C. Let ω be a radial weight. For each K > 1, let ρn = ρn(ω, K) be the sequence
defined by ω̂(ρn) = ω̂(0)K−n, and for each β ∈ R, write ω[β](z) = ω(z)(1− |z|)β. Then
the following statements are equivalent:

(i) There exist K = K(ω) > 1 and C = C(ω) > 1 such that ω̂(r) ≥ Cω̂
(

1− 1−r
K

)
for

all 0 ≤ r < 1;

(ii) There exist C = C(ω) > 0 and β = β(ω) > 0 such that

ω̂(t) ≤ C
(

1− t
1− r

)β

ω̂(r), 0 ≤ r ≤ t < 1;

(iii) For some (equivalently for each) β ∈ (0, ∞), there exists C = C(β, ω) ∈ (0, 1) such
that ∫ 1

r ω̂(t)β(1− t)β−1 dt
(1− r)β

≤ Cω̂(r), 0 < r < 1.

By Lemma 8.7 and [54, Lemma 1.1] each ω ∈ R satisfies the reverse doubling
condition.The next result shows that if ω ∈ D̂ satisfies the reverse doubling condi-
tion, then there exists a continuous and locally smooth weight W that induces the
same Bergman space as ω.

Proposition 1. Let 0 < p < ∞ and ω ∈ D̂, and write W(r) = Wω(r) = ω̂(r)/(1− r)
for all 0 ≤ r < 1. Then ‖ f ‖Ap

W
� ‖ f ‖Ap

ω
for all f ∈ H(D) if and only if ω satisfies the

reverse doubling condition appearing in part (i) of Lemma 8.7.

Proof. Since ω belongs to D̂ by the hypothesis, so does W. Therefore ‖ f ‖Ap
W
�

‖ f ‖Ap
ω

for all f ∈ H(D) by [55, Theorem 1] if W(S(a)) � ω(S(a)) for all a ∈ D \ {0}.
Since ω and W are radial, this is the case if

Ŵ(r) = ω̂(r)
∫ 1

r

ω̂(t)
ω̂(r)

1
1− t

dt � ω̂(r), 0 ≤ r < 1.

If now ω ∈ D̂ satisfies the reverse doubling condition, then Lemma E(ii) and
Lemma 8.7(ii) applied to the middle term above imply the asymptotic equality we
are after.

Conversely, assume that ω ∈ D̂ and ‖ f ‖Ap
W
� ‖ f ‖Ap

ω
for all f ∈ H(D). Write

fa(z) = (1− az)−
λ+1

p for all a ∈ D. By Lemma E(vi) there exists λ = λ(ω) ≥ 0 such
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that

ω̂(a)
(1− |a|)λ

�
∫

D

ω(z)
|1− az|λ+1 dA(z) = ‖ fa‖p

Ap
ω
� ‖ fa‖p

Ap
W
�
∫ 1

0

ω̂(r)
(1− |a|r)λ(1− r)

dr

≥
∫ 1

|a|

ω̂(r)
(1− |a|r)λ(1− r)

dr &
̂̂ω(r)

(1− |a|)λ+1 ,

and thus ω satisfies the Lemma 8.7(iii) with β = 1.

Consider now ω ∈ D̂ satisfying the reverse doubling condition. Then Ap
ω = Ap

Wω
and Wω ∈ R by the first part of the proof of Proposition 1. The weight Wω is
continuous and strictly positive. Further, the differentiable weight Ŵω(r)/(1− r)
belongs to R and induces the same Bergman space as ω. Therefore, by repeating
the process, for a given ω ∈ D̂ satisfying the reverse doubling condition, we can
always find a strictly positive n times differentiable weight that induces the same
Bergman space as the original weight ω. Therefore assuming ω ∈ R instead of the
two doubling conditions is not a severe restriction in our study.

The true advantage of the class R is the local smoothness of its weights. It is
clear that if ω ∈ R, then for each s ∈ [0, 1) there exists a constant C = C(s, ω) > 1
such that

C−1ω(t) ≤ ω(r) ≤ Cω(t), 0 ≤ r ≤ t ≤ r + s(1− r) < 1. (7.5)

Therefore, for ω ∈ R and r ∈ (0, 1),

ω (S(z)) � ω̂(z)(1− |z|) � ω(z)(1− |z|)2 � ω (∆(z, r)) , z ∈ D, (7.6)

where the constants of comparison depend on ω and also on r in the last case.
This observation finishes our discussion on basic properties of different classes of
weights.

We next turn to kernel estimates. In order to prove our main results, and in
particular to deal with the Berezin transform of a Toeplitz operator, we will need
asymptotic estimates for the norm of the Bergman reproducing kernel in several
spaces of analytic functions in D. The next result follows by [57, Theorem 1] (see
also [54, Lemma 6.2]), Lemma E and (7.6).

Theorem B. Let ω, ν ∈ D̂, 0 < p < ∞ and n ∈N∪ {0}. Then

‖(Bω
z )

(n)‖p
Ap

ν
�
∫ |z|

0

ν̂(t)
ω̂(t)p(1− t)p(n+1)

dt, |z| → 1−. (7.7)

In particular, if 1 < p < ∞, ω ∈ R and r ∈ (0, 1), then

‖Bω
z ‖

p
Ap

ω
� 1

ω(S(z))p−1 �
1

ω(∆(z, r))p−1 , z ∈ D. (7.8)

As usual, we write H∞ for the space of bounded analytic functions in D, and
B stands for the Bloch functions, that is, the space of f ∈ H(D) such that ‖ f ‖B =
supz∈D | f ′(z)|(1− |z|) + | f (0)| < ∞.

Lemma 2. Let ω ∈ D̂. Then

‖Bω
z ‖B �

1
ω(S(z))

� ‖Bω
z ‖H∞ , z ∈ D.

64



Proof. Since

Bω
z (ζ) =

∞

∑
n=0

(ζz)n

2ωn
, (Bω

z )
′(ζ) =

∞

∑
n=1

nζn−1zn

2ωn
, z, ζ ∈ D,

the estimate [57, (20)], with p = 1, N = 2 and r = |z|2, together with Lemma E
yields

∣∣(Bω
z )
′(z)

∣∣ � ∞

∑
n=1

n|z|2(n−1)

ωn
�
∫ |z|2

0

1
ω̂(t)(1− t)3 dt

� 1
ω̂(z2)(1− |z|2)2 �

1
ω(S(z))(1− |z|) , |z| → 1−,

(7.9)

and hence
1

ω(S(z))
. ‖Bω

z ‖B , |z| → 1−.

Since ‖Bω
z ‖B ≤ 2 ‖Bω

z ‖H∞ , it remains to establish the desired upper estimate for the
H∞-norm. To see this, observe first that

|Bω
z (ζ)| ≤

∞

∑
n=0

|z|n
2ωn

, z, ζ ∈ D.

Then, by using again the estimate [57, (20)], but now with p = 1, N = 1 and r = |z|,
it follows that

‖Bω
z ‖H∞ ≤

∞

∑
n=0

|z|n
2ωn

�
∫ |z|

0

dt
ω̂(t)(1− t)2 �

1
ω(S(z))

, |z| → 1−.

This finishes the proof.

We next establish two local pointwise estimates for the Bergman reproducing
kernels. To do this, for each δ ∈ (0, 1] and a ∈ D \ {0}, write aδ = (1 − δ(1 −
|a|))ei arg a. Then a1 = a, |aδ| > |a| for all δ ∈ (0, 1), and limδ→0+ aδ = a/|a|.

Lemma 3. Let ω ∈ D̂. Then there exist constants c = c(ω) > 0 and δ = δ(ω) ∈ (0, 1]
such that

|Bω
a (z)| ≥

c
ω(S(a))

, z ∈ S(aδ), a ∈ D \ {0}. (7.10)

Proof. By Theorem B there exists a constant C1 = C1(ω) > 0 such that ‖Bω
a ‖2

A2
ω
≥

C1/ω(S(a)) for all a ∈ D \ {0}, and hence

|Bω
a (z)| ≥ |Bω

a (aδ)| − |Bω
a (aδ)− Bω

a (z)| = |Bω√
|aaδ |

(
√
|aaδ|)| − |Bω

a (aδ)− Bω
a (z)|

=

∥∥∥∥Bω√
|aaδ |

∥∥∥∥2

A2
ω

− |Bω
a (aδ)− Bω

a (z)| ≥
C1

ω(S(
√
|aaδ|)

− |Bω
a (aδ)− Bω

a (z)|

≥ C1

ω(S(a))
− |Bω

a (aδ)− Bω
a (z)|, z ∈ D.

(7.11)

65



Moreover, by (7.9) and Lemma E,

|Bω
a (aδ)− Bω

a (z)| ≤ sup
ζ∈[aδ ,z]

|(Bω
a )
′(ζ)||z− aδ| ≤ 2δ(1− |a|) sup

ζ∈[aδ ,z]
|(Bω

a )
′(ζ)|

≤ δ(1− |a|)
∞

∑
n=1

n|a|n
ω2n+1

≤ δC2

ω(S(a))
.

By combining this with (7.11), and choosing δ = C1/2C2 we deduce the assertion
for c = C1/2.

Lemma 4. Let ω ∈ D̂. Then there exists r = r(ω) ∈ (0, 1) such that |Bω
a (z)| � Bω

a (a)
for all a ∈ D and z ∈ ∆(a, r).

Proof. The proof is similar to that of [54, Lemma 6.4]. First, use the Cauchy-Schwarz
inequality, Theorem B and Lemma E to obtain

|Bω
a (z)| ≤∑

n

|az|n
2ω2n+1

≤
(

∑
n

|z|2n

2ω2n+1

) 1
2
(

∑
n

|a|2n

2ω2n+1

) 1
2

= |Bω
a (a)|

1
2 |Bω

z (z)|
1
2

� |Bω
a (a)| 12√

ω̂(z)(1− |z|)
� |Bω

a (a)| 12√
ω̂(a)(1− |a|)

� |Bω
a (a)|, z ∈ ∆(a, r),

(7.12)

for all a ∈ D. This gives the claimed upper bound. To obtain the same lower bound,
let r ∈ (0, 1) and note first that

|Bω
a (z)| ≥ |Bω

a (a)| − max
ζ∈[a,z]

|(Bω
a )
′(ζ)||z− a|

≥ |Bω
a (a)| − max

ζ∈[a,z]
|(Bω

a )
′(ζ)|rC(1− |a|),

where C = C(r) > 0 is a constant for which sup0<r<r0
C(r) < ∞ for each r0 ∈ (0, 1).

Now the Cauchy integral formula and a reasoning similar to that in (7.12) yield

max
ζ∈[a,z]

|(Bω
a )
′(ζ)| . |B

ω
a (a)|

1− |a| , a ∈ D,

and the desired lower bound follows by choosing r sufficiently small.

The last aim of this section is to show that for each ω ∈ R, the normalized
reproducing kernels bω

p,z = Bω
z /‖Bω

z ‖Ap
ω

converge weakly to zero in Ap
ω, as |z| → 1−.

To do this, the following growth estimate is used.

Lemma 5. Let 0 < p < ∞ and ω ∈ D̂. Then

| f (z)| = o

 1

(ω̂(z)(1− |z|))
1
p

 , |z| → 1−,

for all f ∈ Ap
ω.
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Proof. Let f ∈ Ap
ω and ε > 0. Then there exists r ∈ (0, 1) such that

ε >
∫ 1

r
Mp

p(s, f )sω(s) ds ≥ Mp
p(r, f )rω̂(r),

which together with the well-known estimate

M∞(r, f ) .
Mp

(
1+r

2 , f
)

(1− r)
1
p

, 0 < r < 1,

and the hypothesis ω ∈ D̂ yields the assertion.

The proof of the weak convergence we are after relies on the following known
duality relation [57, Corollary 7].

Theorem C. Let 1 < p < ∞ and ω ∈ R. Then (Ap
ω)

? ' Ap′
ω , with equivalence of norms,

under the pairing

〈 f , g〉A2
ω
=
∫

D
f (z)g(z)ω(z) dA(z). (7.13)

With these preparations we can prove the last result of the section.

Lemma 6. Let 1 < p < ∞ and ω ∈ R. Then bω
p,z → 0 weakly in Ap

ω, as |z| → 1−.

Proof. Let 1 < p < ∞ and ω ∈ R. By Theorem C it suffices to show that∣∣∣∣〈bω
p,z, g

〉
A2

ω

∣∣∣∣ = |g(z)|
‖Bω

z ‖Ap
ω

→ 0, |z| → 1−,

for all g ∈ Ap′
ω . But since ‖Bω

z ‖
p
Ap

ω
� (ω̂(z)(1− |z|))1−p by Theorem B, and 1− p =

−p/p′, the assertion follows by Lemma 5.

7.3 BOUNDED AND COMPACT TOEPLITZ OPERATORS

The main objective of this section is to prove Theorems 11 and 12, stated in the
introduction, and establish a characterization analogous to Theorem 11 for compact
operators Tµ : Ap

ω → Aq
ω, given as Theorem 15 below. We begin with the following

technical result.

Lemma 7. Let µ be a finite positive Borel measure on D. Then (7.3) is satisfied for all
f (z) = ∑∞

n=0 f̂ (n)zn and g(z) = ∑∞
n=0 ĝ(n)zn such that f ∈ H∞ and ∑∞

n=0 |ĝ(n)| < ∞.

Proof. Fubini’s theorem and the dominated convergence theorem yield

〈Tµ( f ), g〉 = lim
s→1−

∫
|u|<s

(∫
D

f (ζ)Bω
ζ (u) dµ(ζ)

)
g(u)ω(u) dA(u)

= lim
s→1−

∫
D

f (ζ)
(∫
|u|<s

g(u)Bω
ζ (u)ω(u) dA(u)

)
dµ(ζ)

= lim
s→1−

∫
D

f (ζ)

(
∞

∑
n=0

ĝ(n)ζn
∫ s

0 x2n+1ω(x) dx
ω2n+1

)
dµ(ζ) =

∫
D

f (ζ)g(ζ) dµ(ζ),

and the assertion is proved.
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Recall that bω
z = Bω

z /‖Bω
z ‖A2

ω
for all z ∈ D. If µ is a finite positive Borel measure

on D and ω ∈ D̂, then by using the definition (7.1) of Berezin transform, Lemma 7
and Theorem B, we deduce

T̃µ(z) = 〈Tµ(bω
z ), bω

z 〉A2
ω
=
‖Bω

z ‖2
L2

µ

‖Bω
z ‖2

A2
ω

� ω (S(z)) ‖Bω
z ‖2

L2
µ
, z ∈ D. (7.14)

We now embark on the proofs by considering the cases p ≤ q and p > q sepa-
rately.

7.3.1 Case 1 < p ≤ q < ∞

We first consider bounded Toeplitz operators.

Proof of Theorem 11. Since p+q′
pq′ ≥ 1 by the hypothesis q ≥ p, the equivalence (iii)⇔(iv)

and the estimate

‖Id‖
s(p+q′)

pq′

As
ω→L

s(p+q′)
pq′

µ

� sup
I⊂T

µ(S(I))

ω(S(I))
1
p +

1
q′

follow by [55, Theorem 1], see also [60, Theorem 3] and [54, Theorem 2.1].
If Tµ : Ap

ω → Aq
ω is bounded, then Hölder’s inequality and Theorem B yield∣∣∣T̃µ(z)

∣∣∣ = ∣∣∣〈Tµ(bω
z ), bω

z 〉A2
ω

∣∣∣ ≤ ∥∥Tµ(bω
z )
∥∥

Aq
ω
‖bω

z ‖Aq′
ω
≤
∥∥Tµ

∥∥
Ap

ω→Aq
ω
‖bω

z ‖Ap
ω
‖bω

z ‖Aq′
ω

=
∥∥Tµ

∥∥
Ap

ω→Aq
ω

‖Bω
z ‖Ap

ω
‖Bω

z ‖Aq′
ω

‖Bω
z ‖

2
A2

ω

�
∥∥Tµ

∥∥
Ap

ω→Aq
ω

ω(S(z))

ω(S(z))1− 1
p ω(S(z))

1− 1
q′

.
∥∥Tµ

∥∥
Ap

ω→Aq
ω

1

ω(S(z))
1− 1

p−
1
q′

, z ∈ D,

and hence

∥∥∥∥∥ T̃µ(·)

ω(S(·))
1
p + 1

q′ −1

∥∥∥∥∥
L∞

.
∥∥Tµ

∥∥
Ap

ω→Aq
ω

.

Assume next T̃µ(·)

ω(S(·))
1
p + 1

q′ −1
∈ L∞, and let δ = δ(ω) and c = c(ω) be those of

Lemma 3. Then Theorem B and (7.14) give

T̃µ(z)
ω(S(z))

� ‖Bω
z ‖2

A2
ω
T̃µ(z) = ‖Bω

z ‖2
L2

µ

≥
∫

S(zδ)
|Bω

z (ζ)|2 dµ(ζ) ≥ c2 µ(S(zδ))

ω(S(z))2 , z ∈ D \ {0},

and hence µ(S(zδ)) . T̃µ(z)ω(S(z)) for all z ∈ D \ {0}. It follows from Lemma E
that

sup
I

µ(S(I))

ω(S(I))
1
p +

1
q′
.

∥∥∥∥∥∥ T̃µ(·)

ω(S(·))
1
p +

1
q′ −1

∥∥∥∥∥∥
L∞

,

and hence (ii)⇒(iv).
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If now µ is a s(p+q′)
pq′ -Carleson measure for As

ω, that is, µ is a 1-Carleson measure

for A
pq′

p+q′
ω by [55, Theorem 1], then Lemma 7, [60, Theorem 3] and Hölder’s inequality

yield

∣∣∣〈Tµ( f ), g〉A2
ω

∣∣∣ ≤ ∫
D
| f (z)g(z)| dµ(z) . ‖Id‖

A

pq′
p+q′

ω →L1
µ

(∫
D
| f (z)g(z)|

pq′
p+q′ ω(z) dA(z)

) p+q′
pq′

. ‖Id‖
A

pq′
p+q′

ω →L1
µ

‖ f ‖Ap
ω
‖g‖

Aq′
ω

for all polynomials f and g. Since polynomials are dense in both Ap
ω and Aq′

ω ,

and (Aq
ω)

? ' Aq′
ω by Theorem C, it follows that Tµ : Ap

ω → Aq
ω is bounded and

‖Tµ‖Ap
ω→Aq

ω
. ‖Id‖

A

pq′
p+q′

ω →L1
µ

. This is the right upper bound for s = pq′
p+q′ , and the

general case follows by an application of [60, Theorem 3]. �

Now we turn to compact Toeplitz operators.

Proposition 2. Let 1 < p ≤ q < ∞ and ω ∈ R. If T : Ap
ω → Aq

ω is a compact linear
operator, then

lim
|z|→1−

T̃(z)

ω(S(z))
1
p +

1
q′ −1

= 0.

Proof. Since bω
p,z → 0 weakly in Ap

ω, as |z| → 1−, by Lemma 6, and T : Ap
ω → Aq

ω is
compact, and in particular completely continuous, by the hypothesis, we deduce∥∥∥T

(
bω

p,z

)∥∥∥
Aq

ω

→ 0, |z| → 1−.

By Hölder’s inequality this implies∣∣∣∣〈T
(

bω
p,z

)
, bω

q′ ,z

〉
A2

ω

∣∣∣∣→ 0, |z| → 1−.

Moreover, by Theorem B,

‖Bω
z ‖Ap

ω
‖Bω

z ‖Aq′
ω
� 1

ω̂(z)1− 1
p (1− |z|)1− 1

p

1

ω̂(z)
1− 1

q′ (1− |z|)1− 1
q′

� ‖Bω
z ‖2

A2
ω

1

ω̂(z)
1− 1

p−
1
q′ (1− |z|)1− 1

p−
1
q′
� ‖Bω

z ‖2
A2

ω

1

ω(S(z))
1− 1

p−
1
q′

,

and hence ∣∣∣T̃(z)∣∣∣ω(S(z))
1− 1

p−
1
q′ =

∣∣∣〈T (bω
z ) , bω

z 〉A2
ω

∣∣∣ω(S(z))
1− 1

p−
1
q′

�
∣∣∣∣〈T

(
bω

p,z

)
, bω

q′ ,z

〉
A2

ω

∣∣∣∣→ 0, |z| → 1−,

and the assertion is proved.
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The following result is the analogue of Theorem 11 for compact Toeplitz opera-
tors.

Theorem 15. Let 1 < p ≤ q < ∞, ω ∈ R and µ be a positive Borel measure on D. Then
the following statements are equivalent:

(i) Tµ : Ap
ω → Aq

ω is compact;

(ii) lim|z|→1−
T̃µ(z)

ω(S(z))
1
p + 1

q′ −1
= 0;

(iii) Id : As
ω → L

s(p+q′)
pq′

µ is compact for some (equivalently for all) 0 < s < ∞;

(iv) lim|I|→0
µ(S(I))

ω(S(I))
1
p + 1

q′
= 0.

Proof. The equivalence (iii)⇔(iv) follows from [60, Theorem 3], see also [54, Theo-

rem 2.1]. If Tµ : Ap
ω → Aq

ω is compact, then lim|z|→1−
T̃µ(z)

ω(S(z))
1
p + 1

q′ −1
= 0 by Propo-

sition 2. Assume next that (ii) is satisfied, and let δ = δ(ω) ∈ (0, 1) be that of
Lemma 3. By the proof of Theorem 11, there exists a constant C = C(ω) > 0 such
that µ(S(zδ)) ≤ CT̃µ(z)ω(S(z)) for all z ∈ D \ {0}. By applying Lemma E, and

letting |z| → 1−, it follows by the assumption (ii) that lim|z|→1−
µ(S(z))

ω(S(z))
p+q′
pq′

= 0, and

thus Id : As
ω → L

s(p+q′)
pq′

µ is compact by [60, Theorem 3].

Assume now that Id : As
ω → L

s(p+q′)
pq′

µ is compact for some (equivalently for all)

0 < s < ∞. Then, by [60, Theorem 3], Id : Ap
ω → L

p+q′
q′

µ and Id : Aq′
ω → L

p+q′
p

µ

are compact. Let { fn} be a bounded sequence in Ap
ω. Then the proof of [54,

Theorem 2.1] shows that there exists a subsequence { fnk} and f ∈ Ap
ω such that

limk→∞ ‖ fnk − f ‖
L

p+q′
q′

µ

= 0. Write µr = χD(0,r)µ for 0 < r < 1. Then Theorem 11

yields

‖Tµ( fnk − f )‖Aq
ω
≤ ‖Tµr ( fnk − f )‖Aq

ω
+ ‖(Tµ − Tµr )( fnk − f )‖Aq

ω

. ‖Tµr ( fnk − f )‖Aq
ω
+ ‖Tµ − Tµr‖Ap

ω→Aq
ω

,

where

‖Tµ − Tµr‖Ap
ω→Aq

ω
. sup

I

µ(S(I) \ D(0, r))

ω(S(I))
1
p +

1
q′
. sup
|I|≤1−r

µ(S(I))

ω(S(I))
1
p +

1
q′
→ 0, r → 1−,
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by Theorem 11 and [60, Theorem 3], because Id : A1
ω → L

p+q′
pq′

µ is compact by the
hypothesis. Moreover, (7.3), Theorem 11 and Hölder’s inequality yield∣∣∣〈Tµr ( fnk − f ), g〉A2

ω

∣∣∣ ≤ ∫
D
|( fnk − f )(z)g(z)| dµr(z) ≤ ‖ fnk − f ‖

L

p+q′
q′

µr

‖g‖
L

p+q′
p

µr

≤ ‖ fnk − f ‖
L

p+q′
q′

µr

‖Id‖
Aq′

ω→L
p+q′

p
µr

‖g‖
Aq′

ω

≤ ‖ fnk − f ‖
L

p+q′
q′

µ

‖Id‖
Aq′

ω→L
p+q′

p
µ

‖g‖
Aq′

ω
.

Since (Aq
ω)

? ' Aq′
ω by Theorem C, we obtain

‖Tµr ( fnk − f )‖Aq
ω
� sup{

g:‖g‖
Aq′

ω

≤1
}
∣∣∣〈Tµr ( fnk − f ), g〉A2

ω

∣∣∣
≤ ‖Id‖

Aq′
ω→L

p+q′
p

µ

‖ fnk − f ‖
L

p+q′
q′

µ

→ 0, k→ ∞.

Thus Tµ : Ap
ω → Aq

ω is compact, and the proof is complete.

7.3.2 Case 1 < q < p < ∞

We begin with constructing appropriate test functions to be used in the proof of
Theorem 12. To do this, some notation is needed. The Euclidean discs are denoted
by D(a, r) = {z ∈ C : |a − z| < r}. A sequence Z = {zk}∞

k=0 ⊂ D is called
separated if it is separated in the pseudohyperbolic metric, it is an ε-net for ε ∈ (0, 1)
if D =

⋃∞
k=0 ∆(zk, ε), and finally it is a δ-lattice if it is a 5δ-net and separated with

constant δ/5.

Proposition 3. Let 1 < p < ∞, ω ∈ R and {zj}∞
j=1 ⊂ D \ {0} be a separated sequence.

Then F = ∑∞
j=1 cjbω

p,zj
∈ Ap

ω with ‖F‖Ap
ω
. ‖{cj}∞

j=1‖`p for all {cj}∞
j=1 ∈ `p.

Proof. Let {cj}∞
j=1 ∈ `p, 0 < r < 1 and z ∈ D(0, ρ) with 0 < ρ < 1. Then Hölder’s

inequality and Theorem B yield∣∣∣∣∣ ∞

∑
j=1

cjbω
p,zj

(z)

∣∣∣∣∣ . ‖{cj}∞
j=1‖`p

(
∞

∑
j=1

ω(∆(zj, r))|Bω
zj
(z)|p′

)1/p′

≤ C(ω, ρ)‖{cj}∞
j=1‖`p ω(D),

and hence F ∈ H(D). Moreover, by Hölder’s inequality, Theorem B, (7.6), the
subharmonicity of |g|p′ and (7.5),∣∣∣〈g, F〉A2

ω

∣∣∣ = ∣∣∣∣∣ ∞

∑
j=1

cj
g(zj)

‖Bω
z ‖Ap

ω

∣∣∣∣∣ . ‖{cj}∞
j=1‖`p

(
∞

∑
j=1

ω(∆(zj, r))|g(zj)|p
′
)1/p′

. ‖{cj}∞
j=1‖`p

(
∞

∑
j=1

ω(zj)
∫

∆(zj ,r)
|g(z)|p′ dA(z)

)1/p′

� ‖{cj}∞
j=1‖`p

(
∞

∑
j=1

∫
∆(zj ,r)

|g(z)|p′ω(z) dA(z)

)1/p′

. ‖{cj}∞
j=1‖`p‖g‖

Ap′
ω

,
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where in the last step the fact that each z ∈ D belongs to at most N of the discs

∆(zj, r) is also used. Therefore F defines a bounded linear functional on Ap′
ω with

norm bounded by a constant times ‖{cj}∞
j=1‖`p . Since (Ap′

ω )? ' Ap
ω by Theorem C,

this implies F ∈ Ap
ω with ‖F‖Ap

ω
. ‖{cj}∞

j=1‖`p .

Proof of Theorem 12. Write x = x(p, q) = p + 1− p
q for short. Assume first (ii). Take

{aj}∞
j=1 ⊂ D \ {0} a separated sequence. Then Proposition 3 gives∥∥∥∥∥Tµ

(
∞

∑
j=1

cjbω
p,aj

)∥∥∥∥∥
q

Aq
ω

. ‖Tµ‖q
Ap

ω→Aq
ω
‖{cj}∞

j=1‖
q
`p .

By replacing ck by rk(t)ck, where rk denotes the kth Rademacher function, and ap-
plying Khinchine’s inequality, we deduce

‖Tµ‖q
Ap

ω→Aq
ω
‖{cj}∞

j=1‖
q
`p &

∫
D

(
∞

∑
j=1
|cj|2||Tµ(bω

p,aj
)(z)|2

)q/2

ω(z) dA(z)

&
∞

∑
j=1
|cj|q

∫
∆(aj ,s)

|Tµ(bω
p,aj

)(z)|qω(z) dA(z), 0 < s < 1,

(7.15)

where in the last step the fact that each z ∈ D belongs to at most N = N(s) of the
discs ∆(aj, s) is also used. By using the subharmonicity of |Tµ(bω

p,aj
)|q together with

(7.5) and (7.6), and then applying Lemma 4 and Theorem B, we obtain∫
∆(aj ,s)

|Tµ(bω
p,aj

)(z)|qω(z) dA(z) & ω
(
∆(aj, s)

)
|Tµ(bω

p,aj
)(aj)|q

=
ω
(
∆(aj, s)

)
‖Bω

aj
‖q

Ap
ω

(∫
D
|Bω

aj
(ζ)|2 dµ(ζ)

)q

≥
ω
(
∆(aj, s)

)
‖Bω

aj
‖q

Ap
ω

(∫
∆(aj ,s)

|Bω
aj
(ζ)|2 dµ(ζ)

)q

&
ω
(
∆(aj, s)

)
‖Bω

aj
‖q

Ap
ω

µ
(
∆(aj, s)

)q |Bω
aj
(aj)|2q

�

 µ
(
∆(aj, s)

)
ω
(
∆(aj, s)

)1+ 1
p−

1
q

q

, 0 < s ≤ r(ω),

where r(ω) is that of Lemma 4. This together with (7.15) yields

∞

∑
j=1
|cj|q

 µ
(
∆(aj, s)

)
ω
(
∆(aj, s)

)1+ 1
p−

1
q

q

. ‖Tµ‖q
Ap

ω→Aq
ω
‖{cj}∞

j=1‖
q
`p , 0 < s ≤ r(ω). (7.16)

Let now s ∈ (r(ω), 1) and Z = {zj}∞
j=1 ⊂ D \ {0} a δ-lattice with 5δ ≤ r(ω). For

each zj choose N = N(s, r(ω)) points zk,j of the δ-lattice Z such that ∆(zj, s) ⊂
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∪N
k=1∆(zk,j, r(ω)). Then, by (7.5), (7.6) and (7.16),

∞

∑
j=1
|cj|q

 µ
(
∆(zj, s)

)
ω
(
∆(zj, s)

)1+ 1
p−

1
q

q

.
∞

∑
j=1

N

∑
k=1
|cj|q

 µ
(

∆(zk,j, r(ω))
)

ω
(

∆(zk,j, r(ω))
)1+ 1

p−
1
q


q

=
N

∑
k=1

∞

∑
j=1
|cj|q

 µ
(

∆(zk,j, r(ω))
)

ω
(

∆(zk,j, r(ω))
)1+ 1

p−
1
q


q

. ‖Tµ‖q
Ap

ω→Aq
ω
‖{cj}∞

j=1‖
q
`p .

Therefore (7.16) holds for each 0 < s < 1 and any δ-lattice {zj}∞
j=1 ⊂ D \ {0} with

5δ ≤ r(ω). The classical duality relation
(
`p/q

)?
' `

p
p−q now implies

∞

∑
j=1

(
µ
(
∆(zj, s)

)
ω
(
∆(zj, s)

)) qp
p−q

ω
(
∆(zj, s)

)
=

∞

∑
j=1

 µ
(
∆(zj, s)

)
ω
(
∆(zj, s)

)1+ 1
p−

1
q


qp

p−q

. ‖Tµ‖
pq

p−q

Ap
ω→Aq

ω
.

Let 0 < r < 1, and choose s = s(r, δ) ∈ (0, 1) such that ∆(z, r) ⊂ ∆(zj, s) for all
z ∈ ∆(zj, 5δ) and j ∈N. Then (7.5) and (7.6) imply

‖µ̂r‖
qp

p−q

L
qp

p−q
ω

≤
∞

∑
j=1

∫
∆(zj ,5δ)

µ̂r(z)
qp

p−q ω(z) dA(z)

�
∞

∑
j=1

ω(zj)

(ω(zj)(1− |zj|)2)
qp

p−q

∫
∆(zj ,5δ)

µ(∆(z, r))
qp

p−q dA(z)

�
∞

∑
j=1

µ(∆(zj, s))
qp

p−q

(ω(zj)(1− |zj|)2)
qp

p−q−1
�

∞

∑
j=1

 µ
(
∆(zj, s)

)
ω
(
∆(zj, s)

)1+ 1
p−

1
q


qp

p−q

.

(7.17)

Thus (iii) is satisfied and ‖µ̂r‖
L

qp
p−q

ω

. ‖Tµ‖Ap
ω→Aq

ω
for each fixed 0 < r < 1.

Assume next (iii). By using the subharmonicity of | f |x together with (7.5) and
(7.6), and then Fubini’s theorem and Hölder’s inequality we deduce

∫
D
| f (z)|x dµ(z) .

∫
D

∫
∆(z,r) | f (ζ)|

xω(ζ) dA(ζ)

ω (∆(z, r))
dµ(z)

�
∫

D

µ (∆(ζ, r))
ω (∆(ζ, r))

| f (ζ)|xω(ζ) dA(ζ) ≤ ‖ f ‖x
Ap

ω
‖µ̂r‖

L
qp

p−q
ω

.

Therefore µ is a
(

p + 1− p
q

)
-Carleson measure for Ap

ω, that is, (iv) is satisfied,
and ‖Id‖x

Ap
ω→Lq

µ
. ‖µ̂r‖

L
qp

p−q
ω

. In fact, it follows from [21, Theorem 3.2] and [54,

Lemma 1.4] that Id : Ap
ω → Lx

µ is bounded if and only if (iii) is satisfied.
The equivalence (iv)⇔(v) follows from [60, Theorem 3].
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Let us now prove (iv)⇒(ii). Since µ is an x-Carleson measure for Ap
ω by the

hypothesis (iv), Lemma 7, Hölder’s inequality and [60, Theorem 3] together with
the equality x

p = x′
q′ give

∣∣∣〈Tµ( f ), g〉A2
ω

∣∣∣ ≤ ∫
D
| f (z)g(z)| dµ(z) ≤ ‖ f ‖Lx

µ
‖g‖Lx′

µ

≤ ‖Id‖Ap
ω→Lx

µ
‖Id‖

Aq′
ω→Lx′

µ
‖ f ‖Ap

ω
‖g‖

Aq′
ω

. ‖Id‖x
Ap

ω→Lx
µ
‖ f ‖Ap

ω
‖g‖

Aq′
ω

(7.18)

for polynomials f and g. Since polynomials are dense in both Aq′
ω and Ap

ω, and

(Aq
ω)

? ' Aq′
ω by Theorem C, it follows that Tµ : Ap

ω → Aq
ω is bounded and

‖Tµ‖Ap
ω→Aq

ω
. ‖Id‖x

Ap
ω→Lx

µ
.

The implication (ii)⇒(i) follows by a general argument. Namely, for 1 < p < ∞,
Ap

ω is isomorphic to `p by [43, Corollary 2.6] and Lemma B. Moreover, each bounded
linear operator L : `p → `q, 0 < q < p < ∞, is compact by [38, Theorem I. 2.7, p. 31].
Thus Tµ : Ap

ω → Aq
ω is compact.

It remains to prove (iii)⇔(vi) and the equivalence of norms ‖µ̂r‖
L

qp
p−q

ω

� ‖T̃µ‖
L

qp
p−q

ω

for each fixed r ∈ (0, 1). Assume T̃µ ∈ L
pq

p−q
ω , and let first r ∈ (0, r(ω)], where r(ω) is

that of Lemma 4. Then Lemma 7 and Theorem B give

T̃µ(z) =
∫

D
|bω

z (ζ)|2 dµ(ζ) ≥
∫

∆(z,r)
|bω

z (ζ)|2 dµ(ζ) � |bω
z (z)|2µ(∆(z, r)) � µ̂r(z).

(7.19)

Hence µ̂r ∈ L
pq

p−q
ω and ‖µ̂r‖

L
qp

p−q
ω

. ‖T̃µ‖
L

qp
p−q

ω

. Let now r ∈ (r(ω), 1), and let {zj}

be a δ-lattice. Further, let s = s(r, δ) be that of (7.17), and choose r′ = r′(r(ω))
such that ∆(z, r′) ⊂ ∆(w, r(ω)) for all z ∈ ∆(w, r′) and w ∈ D. Furthermore,
choose zn

j ∈ ∆(zj, s), n = 1, . . . , N, such that ∆(zj, s) ⊂ ∪N
n=1∆(zn

j , r′) for all j and
infj minn 6=m $(zn

j , zm
j ) > 0. Then (7.17), Lemma E, Lemma 4, Theorem B and (7.14)

yield

‖µ̂r‖
qp

p−q

L
qp

p−q
ω

.
∞

∑
j=1

µ(∆(zj, s))
qp

p−q

ω(∆(zj, s))
qp

p−q−1
.

∞

∑
j=1

N

∑
n=1

ω(∆(zj, s))

(
µ(∆(zn

j , r′))

ω(∆(zj, s))

) qp
p−q

�
∞

∑
j=1

N

∑
n=1

ω(∆(zn
j , r′))µ̂r′(z

n
j )

qp
p−q

�
∞

∑
j=1

N

∑
n=1

∫
∆(zn

j ,r′)

(∫
∆(zn

j ,r′)
|bω

z (ζ)|2 dµ(ζ)

) qp
p−q

ω(z) dA(z)

≤
∞

∑
j=1

N

∑
n=1

∫
∆(zn

j ,r′)

(
T̃µ(z)

) qp
p−q

ω(z) dA(z) � ‖T̃µ‖
qp

p−q

L
qp

p−q
ω

.
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Now assume (iii), and let h be a positive subharmonic function in D. Then (7.5),
(7.6) and Fubini’s theorem yield∫

D
h(z) dµ(z) .

∫
D

(
1

(1− |z|)2

∫
∆(z,r)

h(ζ) dA(ζ)

)
dµ(z)

�
∫

D

(∫
∆(z,r)

h(ζ)
ω(ζ)

ω(∆(ζ, r))
dA(ζ)

)
dµ(z) =

∫
D

h(ζ)µ̂r(ζ)ω(ζ) dA(ζ).

This together with (7.14), Theorem B, and Lemma 2 yield

T̃µ(z) =
∫

D
|bω

z (ζ)|2 dµ(ζ) .
∫

D
|bω

z (ζ)|2µ̂r(ζ)ω(ζ) dA(ζ)

=
∫

D
|Bω

z (ζ)|
|Bω

z (ζ)|
‖Bω

z ‖2
A2

ω

µ̂r(ζ)ω(ζ) dA(ζ)

≤ ‖B
ω
z ‖H∞

‖Bω
z ‖2

A2
ω

∫
D
|Bω

z (ζ)|µ̂r(ζ)ω(ζ) dA(ζ) � P+
ω (µ̂r)(z).

But P+
ω : L

pq
p−q
ω → L

pq
p−q
ω is bounded by [57, Theorem 5] because pq

p−q > 1 and ω ∈ R,
and hence

‖T̃µ‖
L

pq
p−q

ω

. ‖P+
ω (µ̂r)‖

L
pq

p−q
ω

. ‖µ̂r‖
L

pq
p−q

ω

< ∞.

This finishes the proof. �

7.4 SCHATTEN CLASS TOEPLITZ OPERATORS

The purpose of this section is to prove Theorem 13, or more precisely, the last part
of it, and then show that it can not be extended to the whole class D̂ of doubling
weights. We begin with some necessary notation and definitions, and preliminary
results which are well-known in the setting of standard weights [69].

Let H be a separable Hilbert space. For any non-negative integer n, the n:th
singular value of a bounded operator T : H → H is defined by

λn(T) = inf {‖T − R‖ : rank(R) ≤ n} ,

where ‖ · ‖ denotes the operator norm. It is clear that

‖T‖ = λ0(T) ≥ λ1(T) ≥ λ2(T) ≥ · · · ≥ 0.

For 0 < p < ∞, the Schatten p-class Sp(H) consists of those compact operators
T : H → H whose sequence of singular values {λn}∞

n=0 belongs to the space `p of p-
summable sequences. For 1 ≤ p < ∞, the Schatten p-class Sp(H) is a Banach space
with respect to the norm |T|p = ‖{λn}∞

n=0‖`p . Therefore all finite rank operators
belong to every Sp(H), and the membership of an operator in Sp(H) measures in
some sense the size of the operator. We refer to [23] and [69, Chapter 1] for more
information about Sp(H).

The first auxiliary result is well known and its proof is straightforward, so the
details are omitted.

Lemma D. Let H be a separable Hilbert space and T : H → H a bounded linear operator
such that ∑n |〈T(en), en〉H | < ∞ for every orthonormal basis {en}. Then T : H → H is
compact.
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The next result characterizes positive operators in the trace class S1(A2
ω) in terms

of their Berezin transforms.

Theorem 16. Let ω ∈ D̂ and T : A2
ω → A2

ω a positive operator. Then T ∈ S1(A2
ω) if and

only if T̃ ∈ L1
ω/ω? . Moreover, the trace of T satisfies

tr(T) =
∫

D
T̃(z)‖Bω

z ‖2
A2

ω
ω(z) dA(z) �

∫
D

T̃(z)
ω(z)
ω?(z)

dA(z).

Proof. The proof is similar to that of [69, Theorem 6.4], and is included for the
convenience of the reader. Fix an orthonormal basis {en}∞

n=1 for A2
ω. Since T is

positive, [69, Theorem 1.23] and Lemma D show that T ∈ S1(A2
ω) if and only if

∑∞
n=1〈T(en), en〉A2

ω
< ∞, and further, tr(T) = ∑∞

n=1〈T(en), en〉A2
ω

. Let S =
√

T. By
the reproducing formula (7.2) and Parseval’s identity, Theorem B and Lemma E, we
have

tr(T) =
∞

∑
n=1
〈T(en), en〉A2

ω
=

∞

∑
n=1
‖S(en)‖2

A2
ω

=
∞

∑
n=1

∫
D
|S(en)(z)|2ω(z) dA(z) =

∫
D

(
∞

∑
n=1
|S(en)(z)|2

)
ω(z) dA(z)

=
∫

D

(
∞

∑
n=1

∣∣∣〈S(en), Bω
z 〉A2

ω

∣∣∣2)ω(z) dA(z)

=
∫

D

(
∞

∑
n=1

∣∣∣〈en, S(Bω
z )〉A2

ω

∣∣∣2)ω(z) dA(z)

=
∫

D
‖S(Bω

z )‖2
A2

ω
ω(z) dA(z) =

∫
D
〈T(Bω

z ), Bω
z 〉A2

ω
ω(z) dA(z)

=
∫

D
T̃(z)‖Bω

z ‖2
A2

ω
ω(z) dA(z) �

∫
D

T̃(z)
ω(z)
ω?(z)

dA(z),

and the assertion is proved.

By combining Theorem 16 with [69, Proposition 1.31] we obtain the following
result.

Lemma 8. Let ω ∈ D̂ and T : A2
ω → A2

ω a positive operator.

(i) If 1 ≤ p < ∞ and T ∈ Sp(A2
ω), then T̃ ∈ Lp

ω/ω? with ‖T̃‖Lp
ω/ω?
. |T|pp.

(ii) If 0 < p ≤ 1 and T̃ ∈ Lp
ω/ω? , then T ∈ Sp(A2

ω) with |T|pp . ‖T̃‖Lp
ω/ω?

.

Recall that

TΦ( f )(z) = Pω( f Φ)(z) =
∫

D
f (ζ)Bω

z (ζ)Φ(ζ)ω(ζ)dA(ζ), f ∈ A2
ω,

for each non-negative function Φ on D. We next establish a sufficient condition for
TΦ to belong to Sp(A2

ω) for 1 ≤ p < ∞.

Proposition 4. Let 1 ≤ p < ∞, ω ∈ D̂ and Φ ∈ Lp
ω/ω? positive. Then TΦ ∈ Sp(A2

ω)

with |TΦ|p . ‖Φ‖Lp
ω/ω?

.
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Proof. We will follow the proof of [69, Proposition 7.11]. Assume first that Φ has
compact support in D. Then TΦ is a positive compact operator with canonical
decomposition

TΦ( f ) =
∞

∑
n=1

λn〈 f , en〉A2
ω

en,

where {λn} is the sequence of eigenvalues of TΦ, and {en} is an orthonormal set of
A2

ω. Therefore

λn = 〈TΦ(en), en〉A2
ω
=
∫

D
|en(z)|2Φ(z)ω(z) dA(z), n ∈N,

by (7.3). Since p ≥ 1, the Hölder’s inequality yields

λ
p
n ≤

∫
D
|en(z)|2Φ(z)pω(z) dA(z),

and hence
∞

∑
n=1

λ
p
n ≤

∫
D

∞

∑
n=1
|en(z)|2Φ(z)pω(z), dA(z)

≤
∫

D
Bω

z (z)Φ(z)pω(z) dA(z) �
∫

D
Φ(z)p ω(z)

ω?(z)
dA(z)

(7.20)

by Theorem B. Thus TΦ ∈ Sp(A2
ω).

To prove the general case, assume Φ ∈ Lp
ω/ω? . Then Hölder’s inequality and

Lemma E yield

lim
|a|→1−

∫
S(a) Φ(z)ω(z) dA(z)

ω(S(a))
≤ lim
|a|→1−

(∫
S(a) Φ(z)pω(z) dA(z)

ω(S(a))

) 1
p

. lim
|a|→1−

(∫
S(a)

Φ(z)p ω(z)
ω?(z)

dA(z)
) 1

p
= 0,

and hence TΦ : A2
ω → A2

ω is compact by Theorem 15.
Now write Φr = ΦχD(0,r), where χD(0,r) is the characteristic function of D(0, r).

Arguing as in (7.20) it follows that {TΦr}r∈(0,1) is Cauchy in the Banach space(
Sp(A2

ω), | · |p
)
. Hence there exists T ∈ Sp(A2

ω) such that limr→1− |TΦr − T|p = 0.
On the other hand, if f is a polynomial and z ∈ D, then Lemma 7 and Hölder’s
inequality yield

|(TΦr − TΦ)( f )(z)| = |〈(TΦr − TΦ)( f ), Bω
z 〉A2

ω
|

=

∣∣∣∣∫r<|ζ|<1
f (ζ)Bω

ζ (z)Φ(ζ)ω(ζ) dA(ζ)

∣∣∣∣
≤ C‖ f ‖H∞

∫
r<|ζ|<1

Φ(ζ)ω(ζ) dA(ζ)

≤ C‖ f ‖H∞

(∫
r<|ζ|<1

Φ(ζ)p ω(ζ)

ω?(ζ)
dA(ζ)

) 1
p

·
(∫

D
ω?(ζ)p′−1ω(ζ) dA(ζ)

) 1
p′
→ 0, r → 1−,
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where C = C(z) is a constant. Thus TΦr ( f ) → TΦ( f ) pointwise for any polynomial
f . Since TΦr and TΦ are bounded on A2

ω, and polynomials are dense in A2
ω, we

deduce that TΦr ( f ) → TΦ( f ) pointwise for all f ∈ A2
ω. Therefore TΦ = T ∈

Sp(A2
ω).

We will need one more auxiliary result in the proof of Theorem 13.

Proposition 5. Let ω ∈ R, 0 < r < 1 and µ be a finite positive Borel measure on D

such that Tµ̂r : A2
ω → A2

ω is bounded. Then Tµ : A2
ω → A2

ω is bounded, and there exists
C = C(ω, r) > 0 such that 〈Tµ( f ), f 〉A2

ω
≤ C〈Tµ̂r ( f ), f 〉A2

ω
for all f ∈ A2

ω.

Proof. Note first that Tµ : A2
ω → A2

ω is bounded by Theorem 11 and [55, Theorem 1],
see also [21, Theorem 3.1 and Theorem 4.1]. Let f be a polynomial. Then

| f (ζ)|2 . 1
(1− |ζ|)2

∫
∆(ζ,r)

| f (z)|2 dA(z) �
∫

∆(ζ,r)

| f (z)|2
(1− |z|)2 dA(z), ζ ∈ D,

and hence Fubini’s theorem, Lemma 7, Lemma E and (7.6) yield

〈Tµ( f ), f 〉A2
ω
=
∫

D
| f (ζ)|2 dµ(ζ) .

∫
D

(∫
∆(ζ,r)

| f (z)|2
(1− |z|)2 dA(z)

)
dµ(ζ)

=
∫

D

| f (z)|2
(1− |z|)2ω(z)

(∫
∆(z,r)

dµ(ζ)

)
ω(z) dA(z)

�
∫

D

| f (z)|2
ω(∆(z, r))

(∫
∆(z,r)

dµ(ζ)

)
ω(z) dA(z) = 〈Tµ̂r ( f ), f 〉A2

ω
.

Since Tµ̂r : A2
ω → A2

ω and Tµ : A2
ω → A2

ω are bounded, and polynomials are dense
in A2

ω, it follows that

〈Tµ( f ), f 〉A2
ω
. 〈Tµ̂r ( f ), f 〉A2

ω
, f ∈ A2

ω,

and the proof is complete.

Proof of Theorem 13. The conditions (i)–(iii) are equivalent by [56, Theorem 1], so it
suffices to prove the last claim which concerns the Berezin transform.

The assertion is valid for p = 1 and ω ∈ D̂ by Theorem 16. For 1 < p < ∞,
Lemma 8 shows that Tµ ∈ Sp(A2

ω) implies T̃µ ∈ Lp
ω/ω? with ‖T̃µ‖Lp

ω/ω?
. |Tµ|p.

To see the converse implication, let r ∈ (0, r(ω)), where r(ω) is that of Lemma 4.
If T̃µ ∈ Lp

ω/ω? , then µ̂r ∈ Lp
ω/ω? with ‖µ̂r‖Lp

ω/ω?
. ‖T̃µ‖Lp

ω/ω?
by (7.19). Therefore

Tµ̂r ∈ Sp(A2
ω) by Proposition 4, which in turn implies Tµ ∈ Sp(A2

ω) with |Tµ|p .
‖T̃µ‖Lp

ω/ω?
by Proposition 5 and [69, Theorem 1.27].

Let now 0 < p < 1. If T̃µ ∈ Lp
ω/ω? , then Tµ ∈ Sp(A2

ω) with |Tµ|p . ‖T̃µ‖Lp
ω/ω?

by

Lemma 8. Conversely, assume that Tµ ∈ Sp(A2
ω). Then (7.14) yields

(T̃µ(z))p � (ω?(z))p‖Bω
z ‖

2p
L2

µ
= (ω?(z))p

 ∑
Rj∈Υ

∫
Rj

|Bω
z (ζ)|2 dµ(ζ)

p

≤ (ω?(z))p ∑
Rj∈Υ

(
µ(Rj)

ω?(zj)

)p

|Bω
z (z̃j,z)|2p(ω?(zj))

p, |z| ≥ 1
2

,
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where z̃j,z ∈ Rj such that supζ∈Rj
|Bω

z (ζ)| = |Bω
z (z̃j,z)|. Consequently,

‖T̃µ‖p
Lp

ω/ω?
≤ ∑

Rj∈Υ

(
µ(Rj)

ω?(zj)

)p

(ω?(zj))
p
∫

D
|Bω

z (z̃j,z)|2p(ω?(z))p−1ω(z) dA(z)

� ∑
Rj∈Υ

(
µ(Rj)

ω?(zj)

)p

(ω?(zj))
p
∫

D
|Bω

z (z̃j,z)|2p ω?(z))p

(1− |z|)2 dA(z)

(7.21)

because ω ∈ R. Now, fix 0 < r < 1 and δ = δ(r) ∈ (0, 1) such that ∆(z, r) ⊂ ∆(zj, δ)

for all z ∈ Rj. Then, by the subharmonicity of |Bω
z |2p and Fubini’s theorem,∫

D
|Bω

z (z̃j,z)|2p ω?(z)p

(1− |z|)2 dA(z)

.
∫

D

1
(1− |z̃j,z|)2

(∫
∆(z̃j,z ,r)

|Bω
z (ζ)|2p dA(ζ)

)
ω?(z)p

(1− |z|)2 dA(z)

.
1

(1− |zj|)2

∫
D

(∫
∆(zj ,δ)

|Bω
ζ (z)|2p dA(ζ)

)
ω?(z)p

(1− |z|)2 dA(z)

=
1

(1− |zj|)2

∫
∆(zj ,δ)

(∫
D
|Bω

ζ (z)|2p ω?(z)p

(1− |z|)2 dA(z)
)

dA(ζ).

An application of Theorem B together with Lemma E and the hypothesis that
ω?(·)/(1 − | · |)2 is a regular weight show that the inner integral above is domi-
nated by a constant times

∫ |ζ|
0

∫ 1
t

ω?(s)p

(1−s)2 ds

ω̂(t)2p(1− t)2p dt �
∫ |ζ|

0

1
ω̂(t)p(1− t)p+1 dt � 1

ω̂(ζ)p(1− |ζ|)p ,

and hence∫
D
|Bω

z (z̃j,z)|2p ω?(z))p

(1− |z|)2 dA(z) .
1

ω̂(zj)p(1− |zj|)p �
1

ω?(zj)p , |zj| → 1−,

by Lemma E. This combined with (7.21) and the equivalence (i)⇔(iii), proved in [56,
Theorem 1], gives the assertion. �

In view of Theorems 13 and 16 it is natural to ask whether or not the condition
T̃µ ∈ Lp

ω/ω? characterizes the Schatten class Toeplitz operators for the whole class D̂
of doubling weights. The next result answers this question in negative.

Proposition 6. For each 1 < p < ∞ there exist ω ∈ D̂ and a positive Borel measure µ on
D such that T̃µ ∈ Lp

ω/ω? but Tµ /∈ Sp(A2
ω).

Proof. Let ω(z) =
[
(1− |z|)

(
log e

1−|z|

)α]−1
, where α > −1, and let dµ(z) = v(z) dA(z),

where v(z) = (1− |z|)−1+ 1
p
(

log e
1−|z|

)−α+1−β
and 0 < β < 1

p . Then (7.14), Theo-
rem B and Lemma E yield

T̃µ(z) � ω?(z)
∫

D
|Bω

z (ζ)|2 v(ζ) dA(ζ) � v̂(z)
ω̂(z)

� (1−|z|)
1
p

(
log

e
1− |z|

)−β

, |z| ≥ 1
2

.
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Therefore ∫
D\D(0, 1

2 )

(
T̃µ(z)

)p ω(z)
ω?(z)

dA(z)

�
∫

D\D(0, 1
2 )

(
(1− |z|)

1
p

(
log

e
1− |z|

)−β
)p

dA(z)
(1− |z|)2 log e

1−|z|

=
∫

D\D(0, 1
2 )

dA(z)

(1− |z|)
(

log e
1−|z|

)βp+1 < ∞,

and thus T̃µ ∈ Lp
ω/ω? . However, for each r ∈ (0, 1),

µ̈r(z) =
µ(∆(z, r))

ω?(z)
� (1− |z|)2v(z)

ω?(z)
� (1− |z|)

1
p

(
log

e
1− |z|

)−β

, |z| ≥ 1
2

,

and hence

‖µ̈r‖p

Lp
(

dA(z)
(1−|z|)2

) & ∫
D\D(0, 1

2 )

(
(1− |z|)

1
p

(
log

e
1− |z|

)−β
)p

dA(z)
(1− |z|)2

=
∫

D\D(0, 1
2 )

dA(z)

(1− |z|)
(

log e
1−|z|

)pβ
= ∞.

Consequently, Tµ /∈ Sp(A2
ω) by Theorem 13.

The asymptotic relation ω(z)/ω?(z) � (1− |z|)−2, valid for each ω ∈ R and
z ∈ D uniformly bounded away from the origin, has been repeatedly used in this
paper. This relation fails for ω ∈ D̂ \ R and, for example, the doubling weight

ω(z) =
[
(1− |z|)

(
log e

1−|z|

)α]−1
, where α > −1, satisfies ω(z)(1− |z|)2/ω?(z) �(

log e
1−|z|

)−1
→ 0, as |z| → 1−. The last result of this section shows that this in-

nocent looking difference is significant concerning the conditions T̃µ ∈ L1
(

dA
(1−|·|)2

)
and T̃µ ∈ L1

ω/ω? . Therefore one may not replace L1
ω/ω? by L1

(
dA

(1−|·|)2

)
in the state-

ment of Theorem 16.

Proposition 7. There exists ω ∈ D̂ and a positive Borel measure µ on D such that Tµ ∈
S1(A2

ω) and T̃µ /∈ L1
(

dA
(1−|·|)2

)
.

Proof. Choose ω(z) =
[
(1− |z|)

(
log e

1−|z|

)α]−1
, where α > 2, and dµ(z) = u(z) dA(z),

where u(z) =
(

log e
1−|z|

)−β−α
and 0 < β < min{1, α− 2}. Then, by Lemma E,

‖Bω
z ‖2

L2
µ
=

∞

∑
n=0

|z|2n[
(vα)2n+1

]2 un �
∞

∑
n=1

|z|2n

(n + 1)
(log n)α−β−2 �

(
log

e
1− |z|

)α−β−1
,
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and hence

T̃µ(z) � ω?(z)‖Bω
z ‖2

L2
µ
� (1− |z|)

(
log

e
1− |z|

)−β

, |z| ≥ 1
2

,

by (7.14). It follows that T̃µ /∈ L1
(

dA
(1−|·|)2

)
. However,

∫
D\D(0, 1

2 )
T̃µ(z)

ω(z)
ω?(z)

dA(z) �
∫

D

dA(z)

(1− |z|)
(

log e
1−|z|

)β+1 < ∞,

and hence Tµ ∈ S1(A2
ω) by Theorem 16.

7.5 SCHATTEN CLASS COMPOSITION OPERATORS

The main purpose of this section is to prove Theorem 14. The following result of its
own interest plays a role in the proof.

Proposition 8. Let 0 < p < ∞ and ω ∈ D̂, and let ϕ be an analytic self-map of D. Then
the condition (7.4) is sufficient if 0 < p ≤ 2 and necessary if 2 ≤ p < ∞ for Cϕ to belong
to Sp(A2

ω).

Proof. First observe that

〈 f , C?
ϕ(b

ω
z )〉A2

ω
= 〈Cϕ( f ), bω

z 〉A2
ω
= ‖Bω

z ‖−1
A2

ω
〈Cϕ( f ), Bω

z 〉A2
ω
= ‖Bω

z ‖−1
A2

ω
f (ϕ(z)),

(7.22)
and hence C?

ϕ(bω
z ) = ‖Bω

z ‖−1
A2

ω
Bω

ϕ(z). Consequently,

‖C?
ϕ(b

ω
z )‖2

A2
ω
=
‖Bω

ϕ(z)‖
2
A2

ω

‖Bω
z ‖2

A2
ω

� ω(S(z))
ω((S(ϕ(z))))

, z ∈ D, (7.23)

by Theorem B. This and Lemma E yield

∫
D

(
ω?(z)

ω?(ϕ(z))

) p
2 ω(z)

ω?(z)
dA(z) �

∫
D
‖C?

ϕ(b
ω
z )‖

p
A2

ω

ω(z)
ω?(z)

dA(z) =
∫

D
‖T̃(z)‖

p
2
A2

ω

ω(z)
ω?(z)

dA(z),

where T = CϕC?
ϕ. The assertion follows from [69, Theorem 1.26] and Lemma 8.

An alternative way to establish the assertions is to follow the reasoning in [42,
p. 1143].

Proof of Theorem 14. Since C?
ϕ can be formally computed as

C?
ϕ( f )(z) = 〈C?

ϕ f , Bω
z 〉A2

ω
= 〈 f , Cϕ(Bω

z )〉A2
ω
= 〈 f , Bω

z (ϕ)〉A2
ω

=
∫

D
f (ζ)Bω

z (ϕ(ζ))ω(ζ) dA(ζ),

it follows that

C?
ϕCϕ( f )(z) =

∫
D

f (ϕ(ζ))Bω
z (ϕ(ζ))ω(ζ) dA(ζ).
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Let µ be the pull-back measure defined by µ(E) = ω
(

ϕ−1(E)
)
. Then

C?
ϕCϕ( f )(z) =

∫
D

f (u)Bω
z (u) dµ(u) = Tµ( f )(z),

and hence Cϕ ∈ Sp(A2
ω) if and only if Tµ ∈ Sp/2(A2

ω) by [69, Theorem 1.26]. There-

fore, by Theorems 13 and 8, it suffices to show that (7.4) implies T̃µ ∈ L
p
2
ω/ω? . To see

this, we use Theorem B to write

T̃µ(z) = 〈Tµ(bω
z ), bω

z 〉A2
ω
=
∫

D

|Bω
z (ζ)|2

‖Bω
z ‖2

A2
ω

dµ(ζ) � ω(S(z))
∫

D
|Bω

z (ϕ(ζ))|2ω(ζ) dA(ζ).

We will now argue as in [70, p. 180]. Note first that [54, Theorem 4.2] gives

T̃µ(z) � ω(S(z))|Bω
z (ϕ(0))|2 + ω(S(z))

∫
D
|(Bω

z )
′(ϕ(ζ))|2|ϕ′(ζ)|2ω?(ζ) dA(ζ).

Hence it suffices to show that

Φ(z) = ω(S(z))
∫

D
|(Bω

z )
′(ϕ(ζ))|2|ϕ′(ζ)|2ω?(ζ) dA(ζ)

belongs to Lp/2
ω/ω? . To do this we will use Shur’s test with two measures [69, Theo-

rem 3.8]. Let

ψ(ζ) =
ω?(ζ)

ω?(ϕ(ζ))
, dν(ζ) =

ω(ϕ(ζ))

ω?(ϕ(ζ))
|ϕ′(ζ)|2 dA(ζ)

and

H(z, ζ) =
|(Bω

z )
′(ϕ(ζ))|2ω(S(z))ω?(ϕ(ζ))2

ω(ϕ(ζ))
,

so that the operator

T( f ) =
∫

D
H(z, ζ) f (ζ) dν(ζ)

satisfies T(ψ) = Φ. Since ϕ is of bounded valence, we obtain∫
D

H(z, ζ) dν(ζ) = ω(S(z))
∫

D
|(Bω

z )
′(ϕ(ζ))|2ω?(ϕ(ζ))|ϕ′(ζ)|2 dA(ζ)

� ω(S(z))
∫

D
|(Bω

z )
′(ξ)|2ω?(ξ) dA(ξ) � 1

by Theorem B. Moreover, by Theorem B,∫
D

H(z, ζ)
ω(z)
ω?(z)

dA(z) � ω?(ϕ(ζ))2

ω(ϕ(ζ))

∫
D
|(Bω

z )
′(ϕ(ζ))|2ω(z) dA(z)

=
ω?(ϕ(ζ))2

ω(ϕ(ζ))

∫
D
|(Bω

ϕ(ζ))
′(z)|2ω(z) dA(z) . 1,

because ω ∈ R. Now ψ ∈ Lp/2
ω/ω? by the assumption (7.4), and ν . ω/ω? by

the Schwarz-Pick lemma and the assumption ω ∈ R, so ψ ∈ Lp/2
ν . Therefore we

may apply Schur’s test (with both test functions equal to 1) to deduce that T is a
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bounded operator from Lp/2
ν into Lp/2

ω/ω? , and thus, in particular, T(ψ) = Φ ∈ Lp/2
ω/ω? .

Therefore T̃µ ∈ Lp/2
ω/ω? as desired. �

The following result is parallel to Proposition 8. By the Schwarz-Pick lemma,
(7.4) implies (7.24) for all 0 < p < ∞ and ω ∈ R, and therefore the case 0 < p < 2 is
of particular interest.

Proposition 9. Let 0 < p < ∞ and ω ∈ D̂, and let ϕ be an analytic self-map of D. Then
the condition ∫

D

(
ω?(z)

ω?(ϕ(z))

) p
2 |ϕ′(z)|p(1− |z|2)p−2

(1− |ϕ(z)|2)p dA(z) < ∞ (7.24)

is sufficient if 0 < p ≤ 2 and necessary if 2 ≤ p < ∞ for Cϕ to belong to Sp(A2
ω).

Proof. Let first p ≥ 2. The Schwarz-Pick lemma, a change of variable and a standard
inequality yield

∫
D

(
ω?(z)

ω?(ϕ(z))

) p
2 |ϕ′(z)|p(1− |z|2)p−2

(1− |ϕ(z)|2)p dA(z)

≤
∫

D

(
ω?(z)

ω?(ϕ(z))

) p
2 |ϕ′(z)|2
(1− |ϕ(z)|2)2 dA(z)

=
∫

D

Nϕ,(ω?)p/2(ζ)

ω?(ζ)
p
2

dA(ζ)

(1− |ζ|2)2 ≤
∫

D

(
Nϕ,ω?(ζ)

ω?(ζ)

) p
2 dA(ζ)

(1− |ζ|)2 ,

and hence the assertion follows by [56, Theorem 3]. A similar reasoning shows the
case p < 2.
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8 Paper III

8.1 INTRODUCTION AND MAIN RESULTS

Let H(D) denote the space of all analytic functions in the open unit disc D = {z ∈
C : |z| < 1} of the complex plane C. Further, let T stand for the boundary of D and
D(a, r) = {z : |z− a| < r} for the Euclidean disc of center a ∈ C and radius r > 0.
For 0 < r < 1 and f ∈ H(D), set

Mp(r, f ) =
(

1
2π

∫ 2π

0
| f (reit)|p dt

)1/p
, 0 < p < ∞,

M∞(r, f ) = sup
|z|=r
| f (z)|.

An integrable function ω : D→ [0, ∞) is called a weight. It is radial if ω(z) = ω(|z|)
for all z ∈ D. For a radial weight ω, write ω̂(z) =

∫ 1
|z| ω(s) ds for all z ∈ D.

For 0 < p ≤ ∞, 0 < q < ∞ and a radial weight ω, the weighted mixed norm
space Ap,q

ω consists of f ∈ H(D) such that

‖ f ‖q
Ap,q

ω
=
∫ 1

0
Mq

p(r, f )ω(r) dr < ∞.

If q = p, then Ap,q
ω coincides with the Bergman space Ap

ω induced by the weight
ω. As usual, Ap

α denotes the weighted Bergman space induced by the standard
radial weight (1− |z|2)α. Weighted mixed norm spaces arise naturally in operator
and function theory, for example, in the study of the boundedness, compactness
and Schatten classes of the generalized Hilbert operator Hg( f )(z) =

∫ 1
0 f (t)g′(tz) dt

acting on Bergman spaces [53, 61].
A weight ω belongs to the class D̂ if there exists a constant C = C(ω) ≥ 1 such

that ω̂(r) ≤ Cω̂( 1+r
2 ) for all 0 ≤ r < 1. Moreover, if there exist K = K(ω) > 1 and

C = C(ω) > 1 such that

ω̂(r) ≥ Cω̂

(
1− 1− r

K

)
, 0 ≤ r < 1, (8.1)

then we write ω ∈ Ď. Weights ω belonging to D = D̂ ∩ Ď are called doubling.
The classes of weights D̂ and D emerge from fundamental questions in operator
theory: recently the first two authors showed that the weighted Bergman projection
Pω, induced by a radial weight ω, is bounded from L∞ to the Bloch space B = { f ∈
H(D) : supz∈D | f ′(z)|(1− |z|) < ∞} if and only if ω ∈ D̂, and further, it is bounded
and onto if and only if ω ∈ D [59].

The primary aim of this study is to establish a representation theorem, commonly
known as an atomic decomposition, for functions in Ap,q

ω in the sense of Coifman and
Rochberg [18]. This last-mentioned celebrated result concerning classical weighted
Bergman spaces has been extended to the vector-valued Bergman spaces [20], the
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Bergman spaces induced by exponential weights [7], the classical Dirichlet spaces
[29], the Fock spaces [72] and the classical mixed norm spaces on the upper half
plane [63]. In concrete means we will prove that each function in the mixed norm
space Ap,q

ω with ω ∈ D can be written as an adequate sum of normalized translates
and dilates of powers of the Cauchy kernel in such a way that the coefficients belong
to the doubled indexed complex-valued sequence space `p,q. For 0 < p, q ≤ ∞, the
space `p,q consists sequences λ = {λj,l}j,l such that

‖λ‖`p,q =

∥∥∥∥{∥∥∥{λj,l

}
l

∥∥∥
`p

}
j

∥∥∥∥
`q
< ∞,

where ‖{an}n‖`∞ = supn |an| and ‖{an}n‖s
`s = ∑n |an|s for all 0 < s < ∞.

In order to state our main results we need to introduce some notation and recall
that the class D̂ can be described by the equivalent conditions given in the following
lemma [51, Lemma 2.1].

Lemma E. Let ω be a radial weight. Then the following conditions are equivalent:

(i) ω ∈ D̂;

(ii) There exist C = C(ω) > 0 and β = β(ω) > 0 such that

ω̂(r) ≤ C
(

1− r
1− t

)β

ω̂(t), 0 ≤ r ≤ t < 1;

(iii) There exist C = C(ω) > 0 and γ = γ(ω) > 0 such that∫ t

0

(
1− t
1− s

)γ

ω(s) ds ≤ Cω̂(t), 0 ≤ t < 1.

We write $(a, z) = |ϕa(z)| =
∣∣ a−z

1−az

∣∣ for the pseudohyperbolic distance between z
and a, and ∆(a, r) = {z : $(a, z) < r} for the pseudohyperbolic disc of center a ∈ D

and radius r ∈ (0, 1). A sequence {zk}∞
k=0 in D is called separated if infk 6=j $(zk, zj) >

0. Now for each K > 1, a sequence {zk} in D, is re-indexed in the following way
depending on K: For each j ∈ N ∪ {0}, let {zj,l}l denote the points of the sequence
{zk} in the annulus Aj = Aj(K) = {z : rj ≤ |z| < rj+1}, where rj = rj(K) = 1− K−j.
The following result contains a half of the aforementioned atomic decomposition for
functions in Ap,q

ω .

Theorem 17. Let 0 < p ≤ ∞, 0 < q < ∞, 1 < K < ∞, ω ∈ D, and {zk}∞
k=0 a separated

sequence in D. Let β = β(ω) > 0 and γ = γ(ω) > 0 be those of Lemma E(ii) and (iii). If

M > 1 +
1
p
+

β + γ

q
(8.2)

and λ = {λj,l} ∈ `p,q, then the function F defined by

F(z) = ∑
j,l

λj,l
(1− |zj,l |)

M− 1
p ω̂(zj,l)

− 1
q(

1− zj,lz
)M

belongs to H(D), and there exists a constant C = C(K, M, ω, p, q) > 0 such that

‖F‖Ap,q
ω
≤ C ‖λ‖`p,q . (8.3)
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One important tool in the proof of Theorem 5.3.1, to be given in Section 7.2,
is the description due to Muckenhoupt [45] of the weights U and V such that the
Hardy operators

∫ x
0 f (t) dt and

∫ ∞
x f (t) dt are bounded from the Lebesgue space

Ls(Us, (0, ∞)) to Ls(Vs, (0, ∞)).
To complete the atomic decomposition we are after, for each K ∈ N \ {1}, j ∈

N∪ {0} and l = 0, 1, . . . , K j+3 − 1, define the dyadic polar rectangle as

Qj,l =

{
z ∈ D : rj ≤ |z| < rj+1, arg z ∈

[
2π

l
K j+3 , 2π

l + 1
K j+3

)}
, (8.4)

where rj = rj(K) = 1− K−j as before, and denote its center by ζ j,l . For each M ∈N

and k = 1, . . . , M2, the rectangle Qk
j,l is defined as the result of dividing Qj,l into M2

pairwise disjoint rectangles of equal Euclidean area, and the centers of these squares
are denoted by ζk

j,l , respectively. Write λ = {λj,l,k} ∈ `p,q if

‖λ‖`p,q =

 ∞

∑
j=0

(
K j+3−1

∑
l=0

M2

∑
k=1
|λj,l,k|p

) q
p


1
q

< ∞.

The representation part of our result reads as follows and will be proven in Sec-
tion 8.3.

Theorem 18. Let 0 < p ≤ ∞, 0 < q < ∞, K ∈N \ {1} and ω ∈ D such that (8.1) holds.
Then there exists M = M(p, q, ω) > 0 such that Ap,q

ω consists of functions of the form

f (z) = ∑
j,l,k

λ( f )k
j,l

(1− |ζk
j,l |

2)
M− 1

p ω̂(rj)
− 1

q

(1− ζk
j,lz)

M
, z ∈ D, (8.5)

where λ( f ) = {λ( f )k
j,l} ∈ `p,q and∥∥∥{λ( f )k

j,l}
∥∥∥
`p,q
� ‖ f ‖Ap,q

ω
. (8.6)

Atomic decompositions, and even partial results of the same fashion, for func-
tions in spaces of analytic functions are very useful in operator theory. In particular,
they can be used to describe dual spaces [63] or to study basic questions such as the
boundedness, the compactness or the Schatten class membership of concrete opera-
tors [5, 7, 21, 29, 48, 54, 55, 69, 72]. In this study we will use Theorem 5.3.1 to describe
those positive Borel measures µ on D such that the differentiation operator defined
by D(n)( f ) = f (n) for n ∈ N ∪ {0} is bounded from Ap,q

ω to the Lebesgue space
Ls

µ. The special case n = 0 gives a description of the s-Carleson measures for Ap,q
ω .

Carleson measures have attracted a lot of attention during the last decades because
of their numerous applications in the operator theory and elsewhere, and descrip-
tions of these measures have been obtained for many spaces of analytic functions
such as the Hardy spaces [10, 11, 24, 25, 40], the classical Bergman spaces [41, 69],
the Bergman spaces induced by Bekollé-Bonami, rapidly decreasing or doubling
weights [21,48,54,55], the Fock spaces [72] and the classical mixed norm spaces [41],
to name a few instances.
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To state our result on the differentiation operator, write

Tr,u,v(z) =
µ(∆(z, r))

(1− |z|)uω̂(z)v , z ∈ D,

for a positive Borel measure µ on D, 0 < r < 1 and 0 < u, v < ∞.

Theorem 19. Let 0 < p, q, s < ∞, n ∈ N ∪ {0}, ω ∈ D, 0 < r < 1, µ a positive Borel
measure on D, and let K = K(ω) ∈ N \ {1} such that (8.1) holds. Then the following
statements are equivalent:

(i) D(n) : Ap,q
ω → Ls

µ is bounded;

(ii)
{

µ(Qj,l)K
sj
(

n+ 1
p

)
ω̂(rj)

− s
q

}
j,l
∈ `(

p
s )
′
,( q

s )
′
;

(iii) Tr,u,v ∈ L(
p
s )
′
,( q

s )
′

ω , where

(a) u = sn + 1 and v = 1 if s < min{p, q};
(b) u = sn + 1

p and v = 1 if p ≤ s < q;

(c) u = sn + 1 and v = s
q if q ≤ s < p;

(d) u = s(n + 1
p ) and v = s

q if s ≥ max{p, q}.

Moreover,

‖D(n)‖s
Ap,q

ω →Ls
µ
�
∥∥∥∥∥
{

µ(Qj,l)K
sj
(

n+ 1
p

)
ω̂(rj)

− s
q

}
j,l

∥∥∥∥∥
`(

p
s )
′
,( q

s )
′ � ‖Tr,u,v‖

L
( p

s )
′
,( q

s )
′

ω

.

Theorem 19 will be proven in Section 8.4.

8.2 PROOF OF THEOREM 17

Throughout the proof and in several other occasions in this work we will use the
fact that a radial weight ω belongs to Ď if and only if there exist C = C(ω) > 0 and
α = α(ω) > 0 such that

ω̂(t) ≤ C
(

1− t
1− r

)α

ω̂(r), 0 ≤ r ≤ t < 1. (8.7)

This equivalence can be proved by following the ideas used in the proof of [51,
Lemma 2.1].

To see that the function F defined in Theorem 5.3.1 is analytic, observe first that
#{zk ∈ Aj} . K j for all j ∈ N ∪ {0} since {zk} is a separated sequence by the
hypothesis. This together with Lemma E(ii) and the hypothesis (8.2) yields

|F(z)| ≤∑
j,l
|λj,l |

(1− |zj,l |)
M− 1

p ω̂(zj,l)
− 1

q

|1− zj,lz|M
.
‖λ‖`∞

(1− r)M

∞

∑
j=0

K−j
(

M− 1
p−1

)
ω̂(rj)

− 1
q

.
‖λ‖`∞

ω̂(0)
1
q (1− r)M

∞

∑
j=0

K−j
(

M− 1
p−1− β

q

)
� ‖λ‖`∞

(1− r)M , |z| < r < 1,
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and hence F ∈ H(D).
From now on we write cp

j = ∑l |λj,l |p. By following the idea used in the half
plane case [63, (1.5) Theorem], we will split the proof into six cases according to the
values of p and q:

Case 1.1: 0 < p ≤ 1 and q ≤ p;

Case 1.2: 0 < p ≤ 1 and p < q;

Case 2.1: 1 < p < ∞ and q ≤ p;

Case 2.2: 1 < p < ∞ and p < q;

Case 3.1: p = ∞ and 0 < q ≤ 1;

Case 3.2: p = ∞ and 1 < q < ∞.

Assume first 0 < p ≤ 1. Then

|F(z)|p ≤∑
j,l
|λj,l |p

(1− |zj,l |)pM−1ω̂(zj,l)
− p

q∣∣∣1− zj,lz
∣∣∣pM , z ∈ D.

By using pM > 1, which follows from the hypothesis (8.2), and Lemma E(ii) we
obtain

Mp
p(r, F) .∑

j,l
|λj,l |p

(1− |zj,l |)pM−1ω̂(zj,l)
− p

q(
1− |zj,l |r

)pM−1 �
∞

∑
j=0

cp
j

(1− rj)
pM−1(

1− rjr
)pM−1

ω̂(rj)
p
q

. (8.8)

Case 1.1: 0 < q ≤ p ≤ 1. Observe first that M > γ
q + 1

p by the hypothesis (8.2),

and hence qM− q
p > γ. By using (8.8) and Lemma E(iii) we deduce

‖F‖q
Ap,q

ω
.
∫ 1

0

 ∞

∑
j=0

cp
j

(1− rj)
pM−1(

1− rjr
)pM−1

ω̂(rj)
p
q


q
p

ω(r) dr

.
∞

∑
j=0

cq
j
(1− rj)

qM− q
p

ω̂(rj)

∫ 1

0

ω(r)(
1− rjr

)qM− q
p

dr

�
∞

∑
j=0

cq
j + ∑

j
cq

j
(1− rj)

qM− q
p

ω̂(rj)

∫ rj

0

ω(r)(
1− rjr

)qM− q
p

dr �
∞

∑
j=0

cq
j ,

and thus (8.3) is satisfied.
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Case 1.2: 0 < p ≤ 1 and p < q. By (8.8) and standard estimates

‖F‖q
Ap,q

ω
.
∫ 1

0

 ∞

∑
j=0

cp
j

(1− rj)
pM−1(

1− rjr
)pM−1

ω̂(rj)
p
q


q
p

ω(r) dr

=
∞

∑
k=0

∫ rk+1

rk

 ∞

∑
j=0

cp
j

(1− rj)
pM−1(

1− rjr
)pM−1

ω̂(rj)
p
q


q
p

ω(r) dr

�
∞

∑
k=0

∫ rk+1

rk

 ∞

∑
j=0

cp
j

(1− rj)
pM−1(

1− rjrk
)pM−1

ω̂(rj)
p
q


q
p

ω(r) dr

≤
∞

∑
k=0

 ∞

∑
j=0

cp
j

(1− rj)
pM−1(

1− rjrk
)pM−1

ω̂(rj)
p
q


q
p

ω̂(rk)

.
∞

∑
k=0

 ∞

∑
j=k+1

cp
j

(1− rj)
pM−1(

1− rjrk
)pM−1

ω̂(rj)
p
q


q
p

ω̂(rk)

+
∞

∑
k=0

 k

∑
j=0

cp
j

(1− rj)
pM−1(

1− rjrk
)pM−1

ω̂(rj)
p
q


q
p

ω̂(rk)

≤
∞

∑
k=0

 ∞

∑
j=k+1

cp
j

(1− rj)
pM−1(

1− rjrk
)pM−1

ω̂(rj)
p
q


q
p

ω̂(rk)

+
∞

∑
k=0

 k

∑
j=0

cp
j

ω̂(rj)
p
q


q
p

ω̂(rk) = S1(F) + S2(F).

To prove the estimate Sl(F) . ‖λ‖q
`p,q for l = 1, 2 we will use the characterization,

obtained by Muckenhoupt [45], of the weights U and V such that the Hardy op-
erators

∫ x
0 f (t) dt and

∫ ∞
x f (t) dt are bounded from Ls(Us, (0, ∞)) to Ls(Vs, (0, ∞)),

where s = q
p > 1. To do this, consider first the step functions

U(x) =
ω̂(rk)

p
q

(1− rk)
pM−1 , x ∈ [k, k + 1), k ∈N∪ {0};

f (x) = cp
k
(1− rk)

pM−1

ω̂(rk)
p
q

, x ∈ [k, k + 1), k ∈N∪ {0};

V(x) =
ω̂(rk)

p
q

(1− rk)
pM−1 , x ∈ [k, k + 1), k ∈N∪ {0}.

With this notation

‖λ‖q
`p,q =

∞

∑
k=0

cq
k =

∫ ∞

0
(V(x) f (x))

q
p dx
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and

∫ ∞

0

(
U(x)

∫ ∞

x
f (y) dy

) q
p

dx ≥
∞

∑
k=0

 ∞

∑
j=k+1

cp
j

(1− rj)
pM−1(

1− rjrk
)pM−1

ω̂(rj)
p
q


q
p

ω̂(rk) = S1(F).

Therefore the estimate S1(F) . ‖λ‖q
`p,q follows by [45, Theorem 2] once it is shown

that

sup
x≥0

(∫ x

0
U(y)

q
p dy

) p
q
(∫ ∞

x
V(y)−

(
q
p

)′
dy

) 1

( q
p )
′

< ∞. (8.9)

To see this, let x ≥ 0, and take N = N(x) ∈N∪ {0} such that N ≤ x < N + 1. Then
Lemma E(ii) and the inequality M > 1

p + β
q , which follows by the hypothesis (8.2),

imply

(∫ x

0
U(y)

q
p dy

) p
q
≤
(

N

∑
k=0

∫ k+1

k
U(y)

q
p dy

) p
q

=

(
N

∑
k=0

U(k)
q
p

) p
q

=

(
N

∑
k=0

ω̂(rk)

(1− rk)
qM− q

p

) p
q

.

(
ω̂(rN)

(1− rN)β

N

∑
k=0

1

(1− rk)
qM− q

p−β

) p
q

�
(

ω̂(rN)

(1− rN)
qM− q

p

) p
q

=
ω̂(rN)

p
q

(1− rN)pM−1 .

(8.10)

Another application of Lemma E(ii) and M > 1
p + β

q give

(∫ ∞

x
V(y)−

(
q
p

)′
dy

) 1

( q
p )
′

≤
(

∞

∑
k=N

V(k)−
(

q
q−p

)) q−p
q

=

 ∞

∑
k=N

(
ω̂(rk)

p
q

(1− rk)
pM−1

)− q
q−p


q−p

q

.

 (1− rN)
pβ

q−p

ω̂(rN)
p

q−p

∞

∑
k=N

1

(1− rk)
p

q−p

(
β−q

(
M− 1

p

))


q−p
q

� (1− rN)
pM−1

ω̂(rN)
p
q

,

which together with (8.10) gives (8.9).
We next establish S2(F) . ‖λ‖q

`p,q . Define

U(x) = ω̂(rk)
p
q , x ∈ [k, k + 1), k ∈N∪ {0};

f (x) =
cp

k

ω̂(rk)
p
q

, x ∈ [k, k + 1), k ∈N∪ {0};

V(x) = ω̂(rk)
p
q , x ∈ [k, k + 1), k ∈N∪ {0}.
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Then

‖λ‖q
`p,q =

∞

∑
k=0

cq
k =

∫ ∞

0
(V(x) f (x))

q
p dx

and

∫ ∞

0

(
U(x)

∫ x

0
f (y) dy

) q
p

dx ≥
∞

∑
k=0

k−1

∑
j=0

cp
j

ω̂(rj)
p
q


q
p

ω̂(rk),

and thus

S2(F) .
∞

∑
k=0

k−1

∑
j=0

cp
j

ω̂(rj)
p
q


q
p

ω̂(rk) +
∞

∑
k=0

cq
k ≤

∫ ∞

0

(
U(x)

∫ x

0
f (y) dy

) q
p

dx + ‖λ‖q
`p,q .

Therefore the estimate S2(F) . ‖λ‖q
`p,q we are after, follows by [45, Theorem 1] if

sup
x≥0

(∫ ∞

x
U(y)

q
p dy

) p
q
(∫ x

0
V(y)−

(
q
p

)′
dy

) 1

( q
p )
′

< ∞. (8.11)

To prove this, let x ≥ 0 and choose N = N(x) ∈ N ∪ {0} such that N ≤ x < N + 1.
Then (8.7) yields

(∫ ∞

x
U(y)

q
p dy
) p

q
≤
(

∞

∑
k=N

U(k)
q
p

) p
q

=

(
∞

∑
k=N

ω̂(rk)

) p
q

.

(
∞

∑
k=N

(
1− rk
1− rN

)α

ω̂(rN)

) p
q

� ω̂(rN)
p
q

and (∫ x

0
V(y)−

(
q
p

)′
dy

) 1

( q
p )
′

≤
(

N

∑
k=0

V(k)−
(

q
p

)′) 1

( q
p )
′

=

(
N

∑
k=0

1

ω̂(rk)
p

q−p

) 1

( q
p )
′

.

(
N

∑
k=0

(
1− rN
1− rk

) pα
q−p 1

ω̂(rN)
p

q−p

) q−p
q

� 1

ω̂(rN)
p
q

,

from which (8.11) follows. Case 1.2 is now proved.
Assume next 1 < p < ∞. Before dealing with Cases 2.1 and 2.2, we will estimate

Mp(r, F). We claim that there exist η, θ ∈ (0, 1) such that

M(1− θ)p′ > 1,

M(η − θ) +
1− η

p
> 0,

p′(1− η)(M− 1
p
− β

q
) > 1,

pMθ > 1,

qη(M− 1
p
) > γ,

M(η − θ) +
1− η

p
<

αη

q
,

(8.12)
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where α is that of (8.7) and M, β, γ are those in the statement of the theorem. We
postpone the proof of this fact for a moment and estimate Mp(r, F) first. By Hölder’s
inequality,

|F(z)|p ≤∑
j,l
|λj,l |p

(1− |zj,l |)(pM−1)η∣∣∣1− zj,lz
∣∣∣pMθ

ω̂(zj,l)
pη
q

∑
j,l

(1− |zj,l |)
p′
(

M− 1
p

)
(1−η)∣∣∣1− zj,lz

∣∣∣p′M(1−θ)
ω̂(zj,l)

p′(1−η)
q


p
p′

(8.13)

for all z ∈ D. Since {zk} is separated by the hypothesis, there exists δ = δ(K) >
0 such that ∆(zj,l , δ) ⊂ {rj−1 ≤ |w| < rj+2} for all l with the convenience that
r−1 = r0 = 0, and ∆(zj,l1 , δ) ∩ ∆(zj,l2 , δ) = ∅ if l1 6= l2. Therefore by using the
subharmonicity and the first case in (8.12) we obtain

∑
l

1∣∣∣1− zj,lz
∣∣∣p′M(1−θ)

. K2j ∑
l

∫
∆(zj,l ,δ)

dA(w)

|1− wz|p′M(1−θ)

≤ K2j
∫

D(0,rj+2)\D(0,rj−1)

dA(w)

|1− wz|p′M(1−θ)

.
K j(

1− rj+2|z|
)p′M(1−θ)−1

� K j(
1− rj|z|

)p′M(1−θ)−1
,

(8.14)

and hence

∑
j,l

(1− |zj,l |)
p′
(

M− 1
p

)
(1−η)∣∣∣1− zj,lz

∣∣∣p′M(1−θ)
ω̂(zj,l)

p′(1−η)
q

.∑
j

(1− rj)
p′
(

M− 1
p

)
(1−η)−1

(
1− rj|z|

)p′M(1−θ)−1
ω̂(rj)

p′(1−η)
q

� ∑
rj≤|z|

(1− rj)
p′
(

M− 1
p

)
(1−η)−1

(
1− rj|z|

)p′M(1−θ)−1
ω̂(rj)

p′(1−η)
q

+ ∑
rj>|z|

(1− rj)
p′
(

M− 1
p

)
(1−η)−1

(
1− rj|z|

)p′M(1−θ)−1
ω̂(rj)

p′(1−η)
q

≤ 1

ω̂(z)
p′(1−η)

q
∑

rj≤|z|
(1− rj)

p′
(

M− 1
p

)
(1−η)−p′M(1−θ)

+
1

(1− |z|)p′M(1−θ)−1 ∑
rj>|z|

(1− rj)
p′
(

M− 1
p

)
(1−η)−1

ω̂(rj)
p′(1−η)

q

= S3(F) + S4(F).
(8.15)

Since M(η − θ) + 1−η
p > 0 by the second case in (8.12),

S3(F) ≤ 1

ω̂(z)
p′(1−η)

q
∑

rj≤|z|

1

(1− rj)
p′
(

M(η−θ)+
1−η

p

) � 1

ω̂(z)
p′(1−η)

q (1− |z|)p′
(

M(η−θ)+
1−η

p

) .

(8.16)
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Now, by using Lemma E(ii) and the third case of (8.12), we deduce

S4(F) .
(1− |z|)

βp′(1−η)
q −(p′M(1−θ)−1)

ω̂(z)
p′(1−η)

q
∑

rj>|z|
(1− rj)

p′
(

M− 1
p

)
(1−η)−1− βp′(1−η)

q

� 1

ω̂(z)
p′(1−η)

q (1− |z|)p′
(

M(η−θ)+
1−η

p

) .

(8.17)

Consequently, by combining the estimates (8.13)–(8.17) we deduce

|F(z)|p . ω̂(z)−
p(1−η)

q

(1− |z|)p
(

M(η−θ)+
1−η

p

) ∑
j,l
|λj,l |p

(1− |zj,l |)(pM−1)η∣∣∣1− zj,lz
∣∣∣pMθ

ω̂(zj,l)
pη
q

, z ∈ D,

and hence the fourth case of (8.12) gives

Mp
p(r, F) .

ω̂(r)−
p(1−η)

q

(1− r)p
(

M(η−θ)+
1−η

p

) ∑
j,l
|λj,l |p

(1− rj)
(pM−1)η

ω̂(rj)
pη
q

∫ 2π

0

dt∣∣∣1− zj,lreit
∣∣∣pMθ

.
ω̂(r)−

p(1−η)
q

(1− r)p
(

M(η−θ)+
1−η

p

) ∑
j

cp
j

(1− rj)
(pM−1)η(

1− rjr
)pMθ−1

ω̂(rj)
pη
q

.

(8.18)

By using this estimate we will deal with Cases 2.1 and 2.2.
Case 2.1: p > 1 and 0 < q ≤ p. By (8.18),

‖F‖q
Ap,q

ω
.
∫ 1

0

ω̂(r)−(1−η)

(1− r)q
(

M(η−θ)+
1−η

p

) ∑
j

cq
j
(1− rj)

q
(

M− 1
p

)
η
ω̂(rj)

−η(
1− rjr

)qMθ− q
p

ω(r) dr

= ∑
j

cq
j (1− rj)

q
(

M− 1
p

)
η
ω̂(rj)

−η
∫ 1

0

ω̂(r)−(1−η)(
1− rjr

)qMθ− q
p (1− r)q

(
M(η−θ)+

1−η
p

)ω(r) dr.

(8.19)

Lemma E(iii) together with the fifth case of (8.12) yields∫ rj

0

ω̂(r)−(1−η)ω(r)(
1− rjr

)qMθ− q
p (1− r)q

(
M(η−θ)+

1−η
p

) dr ≤
∫ rj

0

ω̂(r)−(1−η)ω(r)

(1− r)q
(

M(η−θ)+
1−η

p

)
+qMθ− q

p

dr

≤ 1
ω̂(rj)1−η

∫ rj

0

ω(r)

(1− r)qη
(

M− 1
p

) dr

.
ω̂(rj)

η(
1− rj

)qη
(

M− 1
p

) ,

(8.20)

while the fourth case of (8.12) implies∫ 1

rj

ω̂(r)−(1−η)ω(r)(
1− rjr

)qMθ− q
p (1− r)q

(
M(η−θ)+

1−η
p

) dr ≤ 1

(1− rj)
Mqθ− q

p

∫ 1

rj

ω̂(r)−(1−η)ω(r)

(1− r)q
(

M(η−θ)+
1−η

p

) dr,
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where, by an integration by parts and (8.7) together with the sixth case of (8.12),

∫ 1

rj

ω̂(r)−(1−η)

(1− r)q
(

M(η−θ)+
1−η

p

)ω(r) dr

=
ω̂(rj)

η

η(1− rj)
q
(

M(η−θ)+
1−η

p

) +
1

ηq(M(η − θ) + 1−η
p )

∫ 1

rj

ω̂(r)η

(1− r)q
(

M(η−θ)+
1−η

p

)
+1

dr

.
ω̂(rj)

η

(1− rj)
q
(

M(η−θ)+
1−η

p

) +
ω̂(rj)

η

(1− rj)αη

∫ 1

rj

dr

(1− r)q
(

M(η−θ)+
1−η

p

)
+1−αη

�
ω̂(rj)

η

(1− rj)
q
(

M(η−θ)+
1−η

p

) ,

and thus

∫ 1

rj

ω̂(r)−(1−η)ω(r)(
1− rjr

)qMθ− q
p (1− r)q

(
M(η−θ)+

1−η
p

) dr .
ω̂(rj)

η(
1− rj

)qη
(

M− 1
p

) .

This together with (8.19) and (8.20) gives (8.3).
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Case 2.2: p > 1 and 0 < p < q. By (8.18) and the fourth case of (8.12),

‖F‖q
Ap,q

ω
.
∫ 1

0

 ω̂(r)−
p(1−η)

q

(1− r)p
(

M(η−θ)+
1−η

p

) ∞

∑
j=0

cp
j
(1− rj)

(pM−1)ηω̂(rj)
− pη

q(
1− rjr

)pMθ−1


q
p

ω(r) dr

=
∞

∑
k=0

∫ rk+1

rk

 ω̂(r)−
p(1−η)

q

(1− r)p
(

M(η−θ)+
1−η

p

) ∞

∑
j=0

cp
j
(1− rj)

(pM−1)ηω̂(rj)
− pη

q(
1− rjr

)pMθ−1


q
p

ω(r) dr

.
∞

∑
k=0

 ω̂(rk)
− p(1−η)

q

(1− rk)
p
(

M(η−θ)+
1−η

p

) ∞

∑
j=0

cp
j
(1− rj)

(pM−1)ηω̂(rj)
− pη

q(
1− rjrk

)pMθ−1


q
p

(ω̂(rk)− ω̂(rk+1))

≤
∞

∑
k=0

 ω̂(rk)
pη
q

(1− rk)
p
(

M(η−θ)+
1−η

p

) ∞

∑
j=0

cp
j

(1− rj)
(pM−1)η(

1− rjrk
)pMθ−1

ω̂(rj)
pη
q


q
p

.
∞

∑
k=0

 ω̂(rk)
pη
q

(1− rk)
p
(

M(η−θ)+
1−η

p

) ∞

∑
j=k+1

cp
j

(1− rj)
(pM−1)η(

1− rjrk
)pMθ−1

ω̂(rj)
pη
q


q
p

+
∞

∑
k=0

 ω̂(rk)
pη
q

(1− rk)
p
(

M(η−θ)+
1−η

p

) k

∑
j=0

cp
j

(1− rj)
(pM−1)η(

1− rjrk
)pMθ−1

ω̂(rj)
pη
q


q
p

.
∞

∑
k=0

 ω̂(rk)
pη
q

(1− rk)
η(pM−1)

∞

∑
j=k+1

cp
j
(1− rj)

(pM−1)η

ω̂(rj)
pη
q


q
p

+
∞

∑
k=0

 ω̂(rk)
pη
q

(1− rk)
p
(

M(η−θ)+
1−η

p

) k

∑
j=0

cp
j
(1− rj)

pM(η−θ)+(1−η)

ω̂(rj)
pη
q


q
p

= S5(F) + S6(F).

To prove the estimate S5(F) . ‖λ‖q
`p,q , define the step functions

U(x) =
ω̂(rk)

pη
q

(1− rk)
η(pM−1)

, x ∈ [k, k + 1), k ∈N∪ {0};

f (x) = cp
k
(1− rk)

η(pM−1)

ω̂(rk)
pη
q

, x ∈ [k, k + 1), k ∈N∪ {0};

V(x) =
ω̂(rk)

pη
q

(1− rk)
η(pM−1)

, x ∈ [k, k + 1), k ∈N∪ {0}.

Then

‖λ‖q
`p,q =

∞

∑
k

cq
k =

∫ ∞

0
(V(x) f (x))

q
p dx

and

∫ ∞

0

(
U(x)

∫ ∞

x
f (y) dy

) q
p

dx ≥
∞

∑
k=0

 ω̂(rk)
pη
q

(1− rk)
η(pM−1)

∞

∑
j=k+1

cp
j
(1− rj)

η(pM−1)

ω̂(rj)
pη
q


q
p

= S5(F).
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Therefore S5(F) . ‖λ‖q
`p,q follows by [45, Theorem 2] if

sup
x≥0

(∫ x

0
U(y)

q
p dy
) p

q
(∫ ∞

x
V(y)−

(
q
p

)′
dy

) 1

( q
p )
′

< ∞. (8.21)

To prove this, let x ≥ 0 and take N = N(x) ∈ N ∪ {0} such that N ≤ x < N + 1.
Then Lemma E(ii) and the hypothesis (8.2) yield

(∫ x

0
U(y)

q
p dy

) p
q
≤
(

N+1

∑
k=0
|U(k)|

q
p

) p
q

=

 N

∑
k=0

(
ω̂(rk)

pη
q

(1− rk)
η(pM−1)

) q
p


p
q

=

 N

∑
k=0

ω̂(rk)
η

(1− rk)
η
(

qM− q
p

)


p
q

.

 ω̂(rN)
η

(1− rN)βη

N

∑
k=0

1

(1− rk)
η
(

qM− q
p−β

)


p
q

�

 ω̂(rN)
η

(1− rN)
η
(

qM− q
p

)


p
q

=
ω̂(rN)

pη
q

(1− rN)η(pM−1)
.

(8.22)

Another application of Lemma E(ii) and the hypothesis (8.2) give

(∫ ∞

x
V(y)−

(
q
p

)′
dy

) 1

( q
p )
′

≤

 ∞

∑
k=N

(
ω̂(rk)

pη
q

(1− rk)
η(pM−1)

)− q
q−p


q−p

q

.

 (1− rN)
pβη
q−p

ω̂(rN)
pη

q−p

∞

∑
k=N

1

(1− rk)
pη

q−p (β−q(M− 1
p ))


q−p

q

� (1− rN)
η(pM−1)

ω̂(rN)
pη
q

,

which together with (8.22) implies (8.21).
We next prove S6(F) . ‖λ‖q

`p,q . Define

U(x) =
ω̂(rk)

pη
q

(1− rk)
p(M(η−θ)+

1−η
p )

, x ∈ [k, k + 1), k ∈N∪ {0};

f (x) = cp
k
(1− rk)

pM(η−θ)+1−η

ω̂(rk)
pη
q

, x ∈ [k, k + 1), k ∈N∪ {0};

V(x) =
ω̂(rk)

pη
q

(1− rk)
pM(η−θ)+1−η

, x ∈ [k, k + 1), k ∈N∪ {0}.

Then

‖λ‖q
`p,q =

∞

∑
k=0

cq
k =

∫ ∞

0
(V(x) f (x))

q
p dx
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and

∫ ∞

0

(
U(x)

∫ x

0
f (y) dy

) q
p

dx ≥
∞

∑
k=0

(
U(k)

k−1

∑
j=0

f (j)

) q
p

=
∞

∑
k=0

 ω̂(rk)
pη
q

(1− rk)
p
(

M(η−θ)+
1−η

p

) k−1

∑
j=0

cp
j
(1− rj)

pM(η−θ)+(1−η)

ω̂(rj)
pη
q


q
p

,

and hence

S6(F) .
∫ ∞

0

(
U(x)

∫ x

0
f (y) dy

) q
p

dx + ‖λ‖q
`p,q .

Therefore S6(F) . ‖λ‖q
`p,q follows by [45, Theorem 1] once we have shown that

sup
x≥0

(∫ ∞

x
U(y)

q
p dy
) p

q
(∫ x

0
V(y)−

(
q
p

)′
dy

) 1

( q
p )
′

< ∞. (8.23)

To see this, let x ≥ 0 and choose N = N(x) ∈ N ∪ {0} such that N ≤ x < N + 1.
Then, by (8.7) and the sixth case of (8.12) we deduce

(∫ ∞

x
U(y)

q
p dy

) p
q
≤

 ∞

∑
k=N

ω̂(rk)
η

(1− rk)
q
(

M(η−θ)+
1−η

p

)


p
q

.

 ω̂(rN)
η

(1− rN)ηα

∞

∑
k=N

1

(1− rk)
q
(

M(η−θ)+
1−η

p

)
−ηα


p
q

� ω̂(rN)
pη
q

(1− rN)
p
(

M(η−θ)+
1−η

p

)
and(∫ x

0
V(y)−

(
q
p

)′
dy

) 1

( q
p )
′

≤

 N

∑
k=0

(
(1− rk)

pM(η−θ)+1−η

ω̂(rk)
pη
q

) q
q−p


q−p
q

.

(
(1− rN)

pαη
q−p

ω̂(rN)
pη

q−p

N

∑
k=0

(1− rk)
q

q−p

(
pM(η−θ)+1−η− pηα

q

)) q−p
q

.
(1− rN)

p
(

M(η−θ)+
1−η

p

)
ω̂(rN)

pη
q

,

from which (8.23) follows. This finishes the proof of Case 2.2.
Finally, let us prove that there exist η, θ satisfying (8.12). By (8.2), the third and

fifth cases in (8.12) are equivalent to

η ∈

 γ

q
(

M− 1
p

) , 1− 1

p′
(

M− 1
p −

β
q

)
 ,
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where the inequality γ

q
(

M− 1
p

) < 1− 1
p′
(

M− 1
p−

β
q

) follows from (8.2). Let us observe

that (8.2) also implies γ

q
(

M− 1
p

) < M−1
M− 1

p
. Therefore we may choose an η satisfying

η ∈

 γ

q
(

M− 1
p

) , min

1− 1

p′
(

M− 1
p −

β
q

) ,
M− 1
M− 1

p


 . (8.24)

Next, observe that the first and the fourth cases in (8.12) are equivalent to

θ ∈
(

1
Mp

, 1− 1
Mp′

)
,

where 1
Mp < 1− 1

Mp′ by (8.2). Further, by (8.2), the second and the sixth conditions
in (8.12) are equivalent to

θ ∈


(

M− 1
p −

α
q

)
η + 1

p

M
,

(
M− 1

p

)
η + 1

p

M

 , (8.25)

where trivially

(
M− 1

p−
α
q

)
η+ 1

p
M <

(
M− 1

p

)
η+ 1

p
M . It is clear that 1

Mp <

(
M− 1

p−
α
q

)
η+ 1

p
M as

α ≤ β, and

(
M− 1

p

)
η+ 1

p
M < 1 − 1

Mp′ by (8.24). Therefore it is enough to choose θ

satisfying (8.25). This finishes the proof of (8.12).
Case 3.1: p = ∞ and 0 < q ≤ 1. For this we set λ(j) = supl |λj,l |. Then the

estimates in (8.14) imply

|F(z)| .
∞

∑
j=0

λ(j)
(1− rj)

M−1(
1− rj|z|

)M−1
ω̂(rj)

1
q

, z ∈ D, (8.26)

for each M > 1. Since 0 < q ≤ 1 and q(M − 1) > γ by the hypothesis (8.2),
Lemma E(iii) yields

‖F‖q
A∞,q

ω
.

∞

∑
j=0

λ(j)q
∫ 1

0

(1− rj)
q(M−1)(

1− rjr
)q(M−1)

ω̂(rj)
ω(r) dr .

∞

∑
j=0

λ(j)q = ‖λ‖q
`∞,q ,

and thus this case is proved.
Case 3.2: p = ∞ and 1 < q < ∞. By using (8.26) we deduce

‖F‖q
A∞,q

ω
.
∫ 1

0

 ∞

∑
j=0

λ(j)
(1− |zj,l |)M−1(

1− rjr
)M−1

ω̂(zj,l)
1
q

q

ω(r) dr

.
∞

∑
k=0

 ∞

∑
j=0

λ(j)

(
1− rj

1− rjrk

)M−1(
ω̂(rk)

ω̂(rj)

) 1
q
q

.
∞

∑
k=0

 ∞

∑
j=k+1

λ(j)
(

1− rj

1− rk

)M−1
(

ω̂(rk)

ω̂(rj)

) 1
q
q

+
∞

∑
k=0

 k

∑
j=0

λ(j)

(
ω̂(rk)

ω̂(rj)

) 1
q
q

= S7(F) + S8(F).
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To prove S7(F) . ‖λ‖q
`∞,q , define the step functions

U(x) =
ω̂(rk)

1
q

(1− rk)M−1 , x ∈ [k, k + 1), k ∈N∪ {0};

f (x) = λ(k)
(1− rk)

M−1

ω̂(rk)
1
q

, x ∈ [k, k + 1), k ∈N∪ {0};

V(x) =
ω̂(rk)

1
q

(1− rk)M−1 , x ∈ [k, k + 1), k ∈N∪ {0}.

Then

‖λ‖q
`∞,q =

∞

∑
k=0

λ(k)q =
∫ ∞

0
(V(x) f (x))q dx

and

∫ ∞

0

(
U(x)

∫ ∞

x
f (y) dy

)q
dx ≥

∞

∑
k=0

 ∞

∑
j=k+1

λ(j)
(

1− rj

1− rk

)M−1
(

ω̂(rk)

ω̂(rj)

) 1
q
q

= S7(F).

Therefore S7(F) . ‖λ‖q
`∞,q follows by [45, Theorem 2], if

sup
x≥0

(∫ x

0
U(y)q dy

) 1
q
(∫ ∞

x
V(y)−q′ dy

) 1
q′
< ∞. (8.27)

To prove this, let x ≥ 0 and N ∈ N ∪ {0} such that N ≤ x < N + 1. Then
Lemma E(ii) and the hypothesis (8.2) imply∫ x

0
U(y)q dy ≤

N

∑
k=0

ω̂(rk)

(1− rk)
q(M−1)

.
ω̂(rN)

(1− rN)β

N

∑
k=0

1
(1− rk)

q(M−1)−β
� ω̂(rN)

(1− rN)q(M−1)

and

∫ ∞

x
V(y)−q′ dy ≤

∞

∑
k=N

(1− rk)
q′(M−1)

ω̂(rk)
q′
q

.
(1− rN)

q′β
q

ω̂(rN)
q′
q

∞

∑
k=N

(1− rk)
q′
(

M−1− β
q

)

� (1− rN)
q′(M−1)

ω̂(rN)
q′
q

,

from which (8.27) follows. Thus S7(F) . ‖λ‖q
`∞,q .

To obtain S8(F) . ‖λ‖q
`∞,q , define

U(x) = ω̂(rk)
1
q , x ∈ [k, k + 1), k ∈N∪ {0};

f (x) =
λ(k)

ω̂(rk)
1
q

, x ∈ [k, k + 1), k ∈N∪ {0};

V(x) = ω̂(rk)
1
q , x ∈ [k, k + 1), k ∈N∪ {0}.
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Then

‖λ‖q
`∞,q =

∞

∑
k=0

λ(k)q =
∫ ∞

0
(V(x) f (x))q dx

and

∫ ∞

0

(
U(x)

∫ x

0
f (y) dy

)q
dx ≥

∞

∑
k=0

k−1

∑
j=0

λ(j)

(
ω̂(rk)

ω̂(rj)

) 1
q
q

,

and hence

S8(F) .
∫ ∞

0

(
U(x)

∫ x

0
f (y) dy

)q
dx + ‖λ‖q

`∞,q .

Therefore S8(F) . ‖λ‖q
`∞,q holds by [45, Theorem 1], once we have shown that

sup
x≥0

(∫ ∞

x
U(y)q dy

) 1
q
(∫ x

0
V(y)−q′ dy

) 1
q′
< ∞. (8.28)

To see this, let x ≥ 0 and N ∈ N ∪ {0} such that N ≤ x < N + 1. By using (8.7) we
deduce ∫ ∞

x
U(y)q dy ≤

∞

∑
k=N

ω̂(rk) .
ω̂(rN)

(1− rN)α

∞

∑
k=N

(1− rk)
α � ω̂(rN)

and

∫ x

0
V(y)−q′ dy =

N

∑
k=0

ω̂(rk)
−q′

q .
(1− rN)

αq′
q

ω̂(rN)
q′
q

N

∑
k=0

(1− rk)
−α

q′
q � ω̂(rN)

− q′
q ,

from which (8.28) follows. Thus S8(F) . ‖λ‖q
`∞,q . This finishes the proof of Case 3.2

and the proof of the theorem as well.

8.3 A REPRESENTATION THEOREM FOR FUNCTIONS IN AP,Q
ω

To prove Theorem 18 some definitions and lemmas are needed. For each dyadic
polar rectangle Qj,l defined in (8.4), consider the set of indexes

Uj,l =

{
(i, m) : dist(Qi,m, Qj,l) ≤

1
K j+1

(
1− 1

K

)}
, j ∈N∪{0}, l = 0, 1, . . . , K j+3− 1,

and denote
Q̂j,l =

⋃
(i,m)∈Uj,l

Qi,m. (8.29)

For f ∈ H(D), define f j,l = supz∈Qj,l
| f (z)| and f̂ j,l = supζ∈Q̂j,l

| f (ζ)|. Then

f̂ j,l ≤ ∑
(i,m)∈Uj,l

fi,m . f̂ j,l , j ∈N∪ {0}, l = 0, 1, . . . , K j+3 − 1, (8.30)
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because #Uj,l has a finite uniform bound independent of j, l and K. For f ∈ H(D),
write λ( f ) = {λ( f )j,l}, where

λ( f )j,l = K−
j
p ω̂(rj)

1
q f j,l (8.31)

for all j ∈N∪ {0} and l = 0, 1, . . . , K j+3 − 1.

Lemma 9. Let 0 < p, q < ∞, ω ∈ D and K ∈ N \ {1} such that (8.1) holds. Then
‖ f ‖Ap,q

ω
� ‖λ( f )‖`p,q for all f ∈ H(D).

Proof. Lemma E(ii) implies

‖ f ‖q
Ap,q

ω
=

∞

∑
j=0

∫ rj+1

rj

Mq
p(r, f )ω(r) dr ≤

∞

∑
j=0

Mq
p(rj+1, f )ω̂(rj) .

∞

∑
j=1

Mq
p(rj, f )ω̂(rj),

where

Mp
p(rj, f ) =

∫ 2π

0

∣∣∣ f (rjeiθ)
∣∣∣p dθ =

K j+3−1

∑
l=0

∫ 2π(l+1)
Kj+3

2πl
Kj+3

∣∣∣ f (rjeiθ)
∣∣∣p dθ . K−j

K j+3−1

∑
l=0

f p
j,l ,

and hence

‖ f ‖q
Ap,q

ω
.

∞

∑
j=1

(
K−j

K j+3−1

∑
l=0

f p
j,l

) q
p

ω̂(rj) =
∞

∑
j=1

(
K j+3−1

∑
l=0

(
K−

j
p ω̂(rj)

1
q f j,l

)p
) q

p

≤ ‖λ( f )‖q
`p,q .

To prove the reverse inequality, choose z?j,l ∈ Qj,l such that f j,l = | f (z?j,l)|, and
n0 ∈N such that

rj−1 ≤ rj −
diamQj,l

Kn0
< rj+1 +

diamQj,l

Kn0
≤ rj+2

for all j and l. Then the subharmonicity of | f |p gives

K j+3−1

∑
l=0

f p
j,l .

K j+3−1

∑
l=0

1

|D(z?j,l ,
diamQj,l

Kn0 )|

∫
D
(

z?j,l ,
diamQj,l

Kn0

) | f (ζ)|p dA(ζ)

. K2j
∫

Aj−1∪Aj∪Aj+1

| f (ζ)|pdA(ζ) . K j Mp
p(rj+2, f ), j ∈N∪ {0},

with the convenience that A−1 = ∅. Moreover, (8.1) implies ω̂(rj) ≤ C
C−1

∫ rj+1
rj

ω(r) dr

for all j ∈N∪ {0}. These two estimates together with Lemma E(ii) now yield

‖λ( f )‖q
`p,q =

∞

∑
j=0

(
K j+3−1

∑
l=0

(
K−

j
p ω̂(rj)

1
q f j,l

)p
) q

p

.
∞

∑
j=0

(
K−jω̂(rj)

p
q K j Mp

p(rj+2, f )
) q

p

.
∞

∑
j=2

ω̂(rj)Mq
p(rj, f ) .

∞

∑
j=0

∫ rj+1

rj

Mq
p(r, f )ω(r) dr = ‖ f ‖q

Ap,q
ω

,

(8.32)

and therefore the assertion is proved.
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Lemma 10. Let 0 < p ≤ ∞, 0 < q < ∞ and ω ∈ D̂, and let β = β(ω) > 0 be that of
Lemma E(ii). Then Ap,q

ω ⊂ A1
η for all η > β

q + 1
p − 1.

Proof. If f ∈ H(D) and ω ∈ D̂, then the well known inequality M∞(r, f ) .
Mp(

1+r
2 , f )(1− r)−1/p gives

‖ f ‖q
Ap,q

ω
≥
∫ 1

1+r
2

Mq
p(s, f )ω(s) ds ≥ Mq

p

(
1 + r

2
, f
)

ω̂

(
1 + r

2

)
& Mq

∞(r, f )ω̂(r)(1− r)
q
p ,

from which Lemma E(ii) yields

‖ f ‖A1
η
. ‖ f ‖Ap,q

ω

∫ 1

0

(1− r)η− 1
p

ω̂(r)
1
q

dr .
‖ f ‖Ap,q

ω

ω̂(0)
1
q

∫ 1

0
(1− r)η− 1

p−
β
q dr � ‖ f ‖Ap,q

ω
,

and the assertion follows.

Proof of Theorem 18. The fact that the functions of the form (8.5) with λ( f ) =

{λ( f )k
j,l} ∈ `p,q belong to Ap,q

ω and the inequality
∥∥∥{λ( f )k

j,l}
∥∥∥
`p,q
. ‖ f ‖Ap,q

ω
follow

from Theorem 5.3.1.
Let us now prove that each function in Ap,q

ω is of the form (8.5), where λ( f ) =

{λ( f )k
j,l} ∈ `p,q, and ‖ f ‖Ap,q

ω
.
∥∥∥{λ( f )k

j,l}
∥∥∥
`p,q

. To do this we use ideas from [63, (1.5)

Theorem]. Let η = η(p, q, ω) > 1+ 1
p +

β+γ
q , where β = β(ω) > 0 and γ = γ(ω) > 0

are those of Lemma E(ii)(iii). Then η satisfies the condition (8.2) assumed on M in
Theorem 5.3.1, and Ap,q

ω ⊂ A1
η by Lemma 10. Therefore, in particular,

Pη( f )(z) = (η + 1)
∫

D

f (ζ)
(1− ζz)2+η

(1− |ζ|2)ηdA(ζ) = f (z), z ∈ D, f ∈ Ap,q
ω .

Consider the operator Sη defined by

Sη( f )(z) = (η + 1) ∑
j,l,k

f (ζk
j,l)

(1− |ζk
j,l |

2)η(
1− ζk

j,lz
)η+2

∣∣∣Qk
j,l

∣∣∣
= (η + 1) ∑

j,l,k
f (ζk

j,l)(1− |ζ
k
j,l |

2)
1
p ω̂(rj)

1
q
(1− |ζk

j,l |
2)

η− 1
p ω̂(rj)

− 1
q(

1− ζk
j,lz
)η+2

∣∣∣Qk
j,l

∣∣∣
= (η + 1) ∑

j,l,k
aj,l,k( f )

(1− |ζk
j,l |

2)
η− 1

p ω̂(rj)
− 1

q(
1− ζk

j,lz
)η+2

∣∣∣Qk
j,l

∣∣∣ , z ∈ D,

where

a( f )j,l,k = f (ζk
j,l)(1−|ζ

k
j,l |

2)
1
p ω̂(rj)

1
q , j ∈N∪{0}, l = 0, . . . , K j− 1, k = 1, . . . , M2.

(8.33)

The estimate M∞(r, f ) . ‖ f ‖Ap,q
ω

ω̂(r)−
1
q (1− r)−

1
p , obtained in the proof of Lemma 10,

ensures that Sη( f ) is well defined for each f ∈ Ap,q
ω . Write a( f ) = {a( f )j,l,k} and

observe that
‖a( f )‖`p,q . ‖λ( f )‖`p,q � ‖ f ‖Ap,q

ω
(8.34)
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by Lemma 9. It is shown next that for M large enough, Sη satisfies

‖ f − Sη( f )‖Ap,q
ω
≤ 1

2
‖ f ‖Ap,q

ω
. (8.35)

To see this, note first that

f (z)− Sη( f )(z) = Pη( f )(z)− Sη( f )(z)

= (η + 1)

( ∫
D

f (ζ)
(1− ζz)2+η

(1− |ζ|2)ηdA(ζ)

−∑
j,l,k

f (ζk
j,l)

(
1− |ζk

j,l |
2
)η

(
1− ζk

j,lz
)η+2

∣∣∣Qk
j,l

∣∣∣ )

= (η + 1) ∑
j,l,k

∫
Qk

j,l

(
Hz(ζ)− Hz(ζ

k
j,l)
)

dA(ζ), z ∈ D,

(8.36)

where Hz(ζ) = f (ζ) (1−|ζ|2)η

(1−ζz)η+2 for all z, ζ ∈ D. It is clear that Hz satisfies

∣∣∣Hz(ζ)− Hz(ζ
k
j,l)
∣∣∣ ≤ diam Qk

j,l sup
w∈Qk

j,l

|∇Hz(w)| , ζ ∈ Qk
j,l , (8.37)

and also

∂

∂ζ
Hz(ζ) =

(
f ′(ζ)(1− |ζ|2)− f (ζ)ηζ

) (1− |ζ|2)η−1

(1− ζz)η+2
, ζ ∈ D, (8.38)

and

∂

∂ζ
Hz(ζ) = f (ζ)

(1− |ζ|2)η−1

(1− ζz)η+2

(
(η + 2)z

1− |ζ|2

1− ζz
− ηζ

)
, ζ ∈ D. (8.39)

Moreover, the Cauchy integral formula implies

| f (n)(ζ)| .
∫
|ξ−ζ|= 1

Kj+1(1− 1
K )

| f (ξ)|
|ξ − ζ|n+1 |dξ| . K jn f̂ j,l , ζ ∈ Qj,l , n ∈N∪ {0}.

(8.40)

The identities (8.38) and (8.39) together with the estimate (8.40) now give

sup
w∈Qk

j,l

|∇Hz(w)| .
(1− |ζk

j,l |
2)η−1∣∣∣1− zζk

j,l

∣∣∣η+2 sup
w∈Q̂j,l

| f (w)| =
(1− |ζk

j,l |
2)η−1∣∣∣1− zζk

j,l

∣∣∣η+2 f̂ j,l . (8.41)
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The identity (8.36) together with the estimates (8.37), (8.41) and (8.30) give

| f (z)− Sη( f )(z)| . ∑
j,l,k

∫
Qk

j,l

diam Qk
j,l

(1− |ζk
j,l |

2)η−1∣∣∣1− zζk
j,l

∣∣∣η+2 sup
w∈Q̂j,l

| f (w)|

 dA(ζ)


.∑

j,l

M2

∑
k=1

∣∣∣Qk
j,l

∣∣∣diam Qk
j,l

(1− |ζk
j,l |

2)η−1∣∣∣1− zζk
j,l

∣∣∣η+2 f̂ j,l


.∑

j,l

1
M3

(1− |ζ j,l |2)η+2∣∣∣1− zζ j,l

∣∣∣η+2 f̂ j,l

M2

∑
k=1

1

≤ 1
M ∑

j,l

(1− |ζ j,l |2)η+2∣∣∣1− zζ j,l

∣∣∣η+2 ∑
(i,m)∈Uk,j

fi,m

.
1
M ∑

j,l
λ( f )j,l

(1− |ζ j,l |2)
η+2− 1

p ω̂(rj)
− 1

q∣∣∣1− zζ j,l

∣∣∣η+2 ,

where {λj,l} is that of (8.31). Then, by combining the above estimate with Theo-
rem 5.3.1, with M = η + 2, and Lemma 9 it follows that

‖ f − Sη( f )‖Ap,q
ω
.

1
M
‖λ( f )‖`p,q � 1

M
‖ f ‖Ap,q

ω
.

The inequality (8.35) follows by choosing M large enough.

Let { fn}∞
n=1 be defined by f1 = Sη( f ) and fn = Sη

(
f −∑n−1

m=1 fm

)
for n ∈ N \

{1}. Further, let a( f )(1)j,l,k = a( f )j,l,k, where {a( f )j,l,k} are those defined in (8.33), and

a( f )(n)j,l,k =

(
f −

n−1

∑
m=1

fm

)
(ζk

j,l)(1− |ζ
k
j,l |

2)
1
p ω̂(rj)

1
q , n ∈N \ {1}.

With this notation

fn(z) = (η + 1) ∑
j,l,k

a( f )(n)j,l,k

(1− |ζk
j,l |

2)
η− 1

p ω̂(rj)
− 1

q(
1− ζk

j,lz
)η+2

∣∣∣Qk
j,l

∣∣∣ , n ∈N, (8.42)

by the definition of Sη . Moreover, n applications of (8.35) give∥∥∥∥∥ f −
n

∑
m=1

fm

∥∥∥∥∥
Ap,q

ω

=

∥∥∥∥∥ f −
n−1

∑
m=1

fm − fn

∥∥∥∥∥
Ap,q

ω

=

∥∥∥∥∥(Id− Sη

) (
f −

n−1

∑
m=1

fm

)∥∥∥∥∥
Ap,q

ω

≤ 1
2

∥∥∥∥∥
(

f −
n−1

∑
m=1

fm

)∥∥∥∥∥
Ap,q

ω

≤ · · · ≤ 1
2n ‖ f ‖Ap,q

ω
.

(8.43)

Therefore, by denoting a( f )(n) = {a( f )(n)j,l,k}, and applying (8.34) to f − ∑n−1
m=1 fm

yields

‖a( f )(n)‖`p,q .

∥∥∥∥∥ f −
n−1

∑
m=1

fm

∥∥∥∥∥
Ap,q

ω

≤ 2−n+1‖ f ‖Ap,q
ω

, n ∈N. (8.44)
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Finally, set b( f )j,l,k = ∑∞
n=1 a( f )(n)j,l,k and

g(z) = (η + 1) ∑
j,l,k

b( f )j,l,k
(1− |ζk

j,l |
2)

η− 1
p ω̂(rj)

− 1
q

(1− ζk
j,lz)

η+2

∣∣∣Qk
j,l

∣∣∣ , z ∈ D.

Then (8.42) yields

g(z)−
n

∑
m=1

fm = (η + 1) ∑
j,l,k

(
b( f )j,l,k −

n

∑
m=1

a( f )(m)
j,l,k

)
(1− |ζk

j,l |
2)

η− 1
p ω̂(rj)

− 1
q

(1− ζk
j,lz)

η+2

∣∣∣Qk
j,l

∣∣∣
= ∑

j,l,k

(
∞

∑
m=n+1

a( f )(m)
j,l,k

)
(1− |ζk

j,l |
2)

η− 1
p ω̂(rj)

− 1
q

(1− ζk
j,lz)

η+2

∣∣∣Qk
j,l

∣∣∣ ,

from which Theorem 5.3.1 and (8.44) give

∥∥∥∥∥g−
n

∑
m=1

fm

∥∥∥∥∥
Ap,q

ω

.

∥∥∥∥∥∥
{

∞

∑
m=n+1

a(m)
j,l,k

}
j,l,k

∥∥∥∥∥∥
`p,q

. ‖ f ‖Ap,q
ω

(
∞

∑
m=n+1

2−m min{1,p,q}
) 1

min{1,p,q}

� 2−n ‖ f ‖Ap,q
ω

, n ∈N.

By combining this with (8.43) we deduce

‖ f − g‖Ap,q
ω
≤
∥∥∥∥∥ f −

n

∑
m=1

fm +
n

∑
m=1

fm − g

∥∥∥∥∥
Ap,q

ω

.

∥∥∥∥∥ f −
n

∑
m=1

fm

∥∥∥∥∥
Ap,q

ω

+

∥∥∥∥∥g−
n

∑
m=1

fm

∥∥∥∥∥
Ap,q

ω

. 2−n ‖ f ‖Ap,q
ω

, n ∈N \ {1},

(8.45)

and it follows that f = g. The assertion of the theorem follows for M = η + 2 and

λ( f )k
j,l = (η + 1)b( f )j,l,k

|Qk
j,l |

(1− |ζk
j,l |2)2

,

because ‖{λ( f )k
j,l}‖`p,q . ‖ f ‖Ap,q

ω
by (8.44). This finishes the proof. �

8.4 DIFFERENTIATION OPERATORS FROM AP,Q
ω TO LS

µ

We recall that the spaces `p,q obey the basic inclusion relations `p,q ⊂ `r,q for p ≤ r,
and `p,q ⊂ `p,s if q ≤ s. Moreover, it is known that by denoting

p′ =


∞, 0 < p ≤ 1,
p

p−1 , 1 < p < ∞,
1, p = ∞,
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we have

‖b‖
`p′ ,q′ = sup

{∣∣∣∣∣∑j,l cj,lbj,l

∣∣∣∣∣ : ‖c‖`p,q = 1

}
by [46, Theorem 1]. The following proof uses ideas form the proof of [41, Theo-
rem 2].

Proof of Theorem 19. Assume first that D(n) : Ap,q
ω → Ls

µ is bounded. Let

Ft(z) = ∑
j,l

aj,l(t)λj,l
(1− |zj,l |)

M− 1
p ω̂(zj,l)

− 1
q(

1− zj,lz
)M , z ∈ D,

where {zk} is a separated sequence and aj,l are the Rademacher functions [25, Ap-
pendix A] and M satisfies the hypothesis (8.2) of Theorem 5.3.1. Then

‖F(n)
t ‖Ls

µ
≤ ‖D(n)‖Ap,q

ω →Ls
µ
‖Ft‖Ap,q

ω
. ‖D(n)‖Ap,q

ω →Ls
µ
‖λ‖`p,q . (8.46)

Moreover, Khinchine’s inequality [25, Appendix A] yields∫ 1

0
‖F(n)

t ‖
s
Ls

µ
dt

=
∫

D

∫ 1

0

∣∣∣∣∣∣∣M(M + 1) · · · (M + n− 1)∑
j,l

aj,l(t)λj,lzj,l
n (1− |zj,l |)

M− 1
p ω̂(zj,l)

− 1
q(

1− zj,lz
)M+n

∣∣∣∣∣∣∣
s

dt dµ(z)

&
∫

D

∑
j,l

∣∣∣∣∣∣∣λj,l
(1− |zj,l |)

M− 1
p ω̂(zj,l)

− 1
q(

1− zj,lz
)M+n

∣∣∣∣∣∣∣
2

s
2

dµ(z)

&
∫

D

(
∑
j,l

∣∣∣∣χQj,l (z)λj,l(1− |zj,l |)
−n− 1

p ω̂(zj,l)
− 1

q

∣∣∣∣2
) s

2

dµ(z)

= ∑
j,l
|λj,l |sµ(Qj,l)(1− |zj,l |)

−s
(

n+ 1
p

)
ω̂(zj,l)

− s
q

�∑
j,l
|λj,l |sµ(Qj,l)K

js
(

n+ 1
p

)
ω̂(rj)

− s
q .

(8.47)

By integrating (8.46) with respect to t, using (8.47) and writing b = {bj,l} = {|λj,l |s}
we obtain

∑
j,l

bj,lµ(Qj,l)K
js
(

n+ 1
p

)
ω̂(rj)

− s
q . ‖D(n)‖s

Ap,q
ω →Ls

µ
‖b‖

`(
p
s ),( q

s )

for all b ∈ `(
p
s ),( q

s ) with bj,l ≥ 0. It follows that{
µ(Qj,l)K

sj(n+ 1
p )ω̂(rj)

−s
q

}
j,l
∈ `(

p
s )
′
,( q

s )
′
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with norm bounded by a constant times ‖D(n)‖s
Ap,q

ω →Ls
µ

by [46, Theorem 1]. Thus (ii)

is satisfied.
To see the converse implication, note first that the estimate (8.40) implies f (n)j,l .

K jn f̂ j,l . This together with the fact that #Uj,l has a finite uniform bound independent
of j, l and K, and Lemma 9 give∥∥∥∥∥
{

f (n)j,l K−j
(

n+ 1
p

)
ω̂(rj)

1
q

}
j,l

∥∥∥∥∥
`p,q

.

∥∥∥∥∥
{

f̂ j,lK
− j

p ω̂(rj)
1
q

}
j,l

∥∥∥∥∥
`p,q

.

∥∥∥∥∥
{

f j,lK
− j

p ω̂(rj)
1
q

}
j,l

∥∥∥∥∥
`p,q

= ‖λ( f )‖`p,q � ‖ f ‖Ap,q
ω

.

By applying [46, Theorem 1] and the estimate just established, we deduce

∫
D
| f (n)(z)|s dµ(z) = ∑

j,l

∫
Qj,l

| f (n)(z)|s dµ(z) ≤∑
j,l

(
f (n)j,l

)s
µ(Qj,l)

= ∑
j,l

(
f (n)j,l

)s
K−js

(
n+ 1

p

)
ω̂(rj)

s
q µ(Qj,l)K

js
(

n+ 1
p

)
ω̂(rj)

− s
q

≤
∥∥∥∥∥
{(

f (n)j,l

)s
K−js

(
n+ 1

p

)
ω̂(rj)

s
q

}
j,l

∥∥∥∥∥
`

p
s , q

s

·
∥∥∥∥∥
{

µ(Qj,l)K
js
(

n+ 1
p

)
ω̂(rj)

− s
q

}
j,l

∥∥∥∥∥
`(

p
s )
′
,( q

s )
′

=

∥∥∥∥∥
{

f (n)j,l K−j
(

n+ 1
p

)
ω̂(rj)

1
q

}
j,l

∥∥∥∥∥
s

`p,q

·
∥∥∥∥∥
{

µ(Qj,l)K
js
(

n+ 1
p

)
ω̂(rj)

− s
q

}
j,l

∥∥∥∥∥
`(

p
s )
′
,( q

s )
′

. ‖ f ‖s
Ap,q

ω

∥∥∥∥∥
{

µ(Qj,l)K
js
(

n+ 1
p

)
ω̂(rj)

− s
q

}
j,l

∥∥∥∥∥
`(

p
s )
′
,( q

s )
′ ,

and hence

‖D(n)‖s
Ap,q

ω →Ls
µ
.

∥∥∥∥∥
{

µ(Qj,l)2
sj
(

n+ 1
p

)
ω̂(rj)

− s
q

}
j,l

∥∥∥∥∥
`(

p
s )
′
,( q

s )
′ .

It remains to show that (ii) is equivalent to its continuous counterpart (iii). To
do this, first define Ur

j,l =
{
(i, m) : $(Qj,l , Qi,m) < r

}
, and note that supj,l #Ur

j,l ≤
C(r) < ∞. Further, set Q̂r

j,l = ∪(i,m)∈Ur
j,l

Qi,m and write Tr = Tr,u,v for short. Assume

first s < min{p, q}. Then, by choosing r = r(K) > 0 sufficiently large we have

Sr(z) = ∑
j

∑
l

µ(Qj,l)

K−j(sn+1)ω̂(rj)
χQj,l (z) . Tr(z) .∑

j
∑

l

µ(Q̂r
j,l)

K−j(sn+1)ω̂(rj)
χQj,l (z) = Br(z)
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for all z ∈ D. By using supj,l #Ur
j,l < ∞ we deduce

‖Br‖
q

q−s

L
p

p−s , q
q−s

ω

=
∫ 1

0

(∫ 2π

0
Br(teiθ)

p
p−s dθ

) q(p−s)
p(q−s)

ω(t) dt

�
∞

∑
k=0

∫ rk+1

rk

(
Kk+3−1

∑
i=0

µ(Q̂r
k,i)

p
p−s Kk p

p−s (1+sn)K−kω̂(rk)
− p

p−s

) q(p−s)
p(q−s)

ω(t) dt

�
∞

∑
k=0

(
Kk+3−1

∑
i=0

(
µ(Q̂r

k,i)K
ks(n+ 1

p )ω̂(rk)
− s

q

) p
p−s
) q(p−s)

p(q−s)

.
∞

∑
k=0

(
Kk+3−1

∑
i=0

(
µ(Qk,i)K

ks(n+ 1
p )ω̂(rk)

− s
q

) p
p−s
) q(p−s)

p(q−s)

,

and an essentially identical reasoning gives

‖Sr‖
q

q−s

L
p

p−s , q
q−s

ω

�
∞

∑
k=0

(
Kk+3−1

∑
i=0

(
µ(Qk,i)K

ks(n+ 1
p )ω(rk)

− s
q

) p
p−s
) q(p−s)

p(q−s)

.

This finishes the proof of the case s < min{p, q} for r > 0 large enough.
In the case p ≤ s < q, we have

Sr(z) = ∑
j

∑
l

µ(Qj,l)

K−js(n+ 1
p )ω̂(rj)

χQj,l (z) . Tr(z) .∑
j

∑
l

µ(Q̂r
j,l)

K−js(n+ 1
p )ω̂(rj)

χQj,l (z) = Br(z)

for all z ∈ D. By using again supj,l #Ur
j,l < ∞ we deduce

‖Br‖
L

∞, q
q−s

ω

=

(∫ 1

0
(M∞(Br, t))

q
q−s ω(t) dt

) q−s
q

�

 ∞

∑
k=0

∫ rk+1

rk

(
Kks(n+ 1

p )ω̂(rk)
−1 sup

i
µ(Q̂r

k,i)

) q
q−s

ω(t) dt


q−s

q

�

 ∞

∑
k=0

(
sup

i
µ(Q̂r

j,i)K
ks(n+ 1

p )ω̂(rk)
− s

q

) q
q−s


q−s
q

.

 ∞

∑
k=0

(
sup

i
µ(Qj,i)K

ks(n+ 1
p )ω(rk)

− s
q

) q
q−s


q−s
q

,

and similarly

‖Sr‖
L

∞, q
q−s

ω

�

 ∞

∑
k=0

(
sup

i
µ(Qj,i)K

ks(n+ 1
p )ω(rk)

− s
q

) q
q−s


q−s
q

.
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Hence the case p ≤ s < q is proved for r > 0 large enough.
In the case q ≤ s < p we have

Sr(z) = ∑
j

∑
l

µ(Qj,l)

K−j(sn+1)ω̂(rj)
s
q

χQj,l (z) . Tr(z) .∑
j

∑
l

µ(Q̂r
j,l)

K−j(sn+1)ω̂(rj)
s
q

χQj,l (z) = Br(z)

for all z ∈ D. By using again supj,l #Ur
j,l < ∞ we deduce

‖Br‖
L

p
p−s ,∞

ω

= sup
0<t<1

(∫ 2π

0
Br(teiθ)

p
p−s dθ

) p−s
p

� sup
j

(
Kk+3−1

∑
i=0

µ(Q̂r
j,i)

p
p−s K j p

p−s (sn+1)K−jω̂(rj)
− sp

q(p−s)

) p−s
p

� sup
j

(
Kk+3−1

∑
i=0

(
µ(Q̂r

j,i)K
js(n+ 1

p )ω̂(rj)
− s

q

) p
p−s
) p−s

p

. sup
j

(
Kk+3−1

∑
i=0

(
µ(Qj,i)K

js(n+ 1
p )ω(rj)

− s
q

) p
p−s
) p−s

p

� ‖Sr‖
L

p
p−s ,∞

ω

,

completing the proof of the case q ≤ s < p for r > 0 large enough.
The remaining case s ≥ max{p, q} is the simplest one of all because now

Sr(z) = ∑
j

∑
l

µ(Qj,l)

K−js(n+ 1
p )ω̂(rj)

s
q

χQj,l (z) . Tr(z) .∑
j

∑
l

µ(Q̂r
j,l)

K−js(n+ 1
p )ω̂(rj)

s
q

χQj,l (z) = Br(z),

and hence∥∥∥∥∥∥∥
 µ(Qj,l)

K−js(n+ 1
p )ω̂(rj)

s
q


j,l

∥∥∥∥∥∥∥
`∞

. ‖Tr‖L∞ .

∥∥∥∥∥∥∥
 µ(Q̂r

j,l)

K−js(n+ 1
p )ω̂(rj)

s
q


j,l

∥∥∥∥∥∥∥
`∞

.

∥∥∥∥∥∥∥
 µ(Qj,l)

K−js(n+ 1
p )ω̂(rj)

s
q


j,l

∥∥∥∥∥∥∥
`∞

.

This completes the proof of the theorem in the case in which r > 0 is sufficiently
large, say r ≥ r0 = r0(K). If r ∈ (0, r0), then dividing Qj,l into M2 rectangles of
equal area as in the proof of Theorem 18, and then slightly modifying the proof just
presented, the assertion easily follows. The details of this deduction do not offer us
anything new and are therefore omitted. �
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[35] M. Jevtić, An embedding theorem for mixed normed spaces, Rocky Mountain J. Math. 19 (1989), 1059-
1068.

[36] N. J. Kalton, Convexity, type and the three space problem, Studia Math. 69 (1980/81), no. 3, 247-287.

[37] A. Khintchine, Über dyadische Brüche, Math. Z. 18 (1923), no. 1, 109-116.

[38] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, Lecture Notes in Math. 338, Springer-Verlag,
Berlin-New York, 1973.

[39] D. H. Luecking, Trace ideal criteria for Toeplitz operators, J. Funct. Anal. 73 (1987), no. 2, 345-368.

[40] D. H. Luecking, Embedding derivatives of Hardy spaces into Lebesgue spaces, Proc. London Math. Soc.
3(63) (1991), no. 3, 595-619.

[41] D. H. Luecking, Embedding theorems for spaces of analytic functions via Khinchine’s inequality, Michigan
Math. J. 40 (1993), no. 2, 333-358.

[42] D. H. Luecking and K. Zhu, Composition operators belonging to the Schatten ideals, Amer. J. Math. 114
(1992), no. 5, 1127-1145.

[43] W. Lusky, On generalized Bergman spaces, Studia Math. 119 (1996), no. 1, 77–95.

[44] G. McDonald and C. Sundberg, Toeplitz operators on the disc, Indiana Univ. Math. J. 28 (1979), no. 4,
595-611.

[45] B. Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44 (1972), 31-38.

[46] A. Nakamura, Dual Spaces and Some Properties of lq(p), 0 < p, q ≤ ∞, Proc. Fac. Sci. Tokai Univ. 22
(1987), 11-20.

112



[47] V. L. Oleinik, , and B. S. Pavlov, Imbedding theorems for weighted classes of harmonic and analytic
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