

1

2

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA

GRADO EN INGENIERÍA INFORMÁTICA (COMPUTACIÓN) 

Flujo de trabajo para el rastreo de bloques computacionales de sintenia a

través de distintas especies
A workflow-based algorithm for tracing Computational Synteny Blocks

along different species

Realizado por
Ricardo Holthausen Bermejo

Tutorizado por
Oswaldo Trelles Salazar

Cotutorizado por
Esteban Pérez Wohlfeil

Departamento
Departamento de Arquitectura de Computadores

UNIVERSIDAD DE MÁLAGA
MÁLAGA, junio 2019

Fecha defensa:
El Secretario del Tribunal

3

4

6

Resumen
La comparación de secuencias de textos es un área de notable relevancia dentro de las

Ciencias de la Computación. Existen varios problemas clásicos representativos del

área, como el problema de la Subsecuencia Común de mayor Longitud, consistente en

encontrar información compartida por diferentes cadenas de texto. Sus aplicaciones

van desde la Lingüística Computacional hasta la Bioinformática, entre otras. Al respecto

de esta última, el área de la comparación de secuencias de genomas ha recibido

mucha atención durante los últimos años, lo que ha llevado a un crecimiento

destacado. Esto, junto a las mejoras técnicas en el rendimiento computacional, está

contribuyendo a ampliar el conocimiento sobre quiénes somos. En particular, la

evolución de las especies, a pesar de haber sido extensamente estudiada, sigue

necesitando ser analizada, debido a su complejidad, tanto analítica como

computacional. Nuevas herramientas para el estudio de Eventos Evolutivos pueden

proveernos de información relevante sobre rasgos y enfermedades, además de una

mayor comprensión de los mecanismos que subyacen a la evolución (que tienen un

impacto directo en la salud). El flujo de trabajo presentado “BlockTracer” es una

herramienta que permite a los investigadores/as seleccionar una serie de cromosomas

de distintas especies y buscar bloques de información directamente relacionados entre

ellos. Para conseguir esto, varios programas independientes han sido creados y

orquestados. Este flujo de trabajo se presenta en la plataforma Galaxy, que permite

computación en la nube manteniendo una interfaz de uso amigable para el usuario.

Palabras clave: Bioinformática; Flujo de trabajo; Bloques de sintenia computacionales;

Eventos Evolutivos; Comparación de secuencias

7

Abstract
Sequences and texts comparison is a rather relevant area within Computer Science.

Several classic problems, such as the Longest Common Subsequence problem, which

relates to finding shared information between different text sequences, are related to

this area. Its applications range from Computational Linguistics to Bioinformatics.

Regarding the latter, the area of pairwise genomic sequences comparison has received

a huge amount of attention during the last years, and therefore it has suffered a relevant

growth. This, altogether with the technical improvements in computational performance,

is helping us to acquire a better understanding of the world we live in. Within this area

we find the evolution of species, which, yet thoroughly studied, needs more grasp due

to its vast nature. New tools for studying Evolutionary Events could provide us with

relevant information about traits and diseases, besides a better comprehension of

evolution underpinnings (which have a direct impact on health). The BlockTracer

workflow is a way for the researchers to select a certain set of species chromosomes,

and search for directly linked pieces of information between them. In order to achieve

this, several loose-coupled tools have been created and arranged, obtaining an efficient

computational pipeline capable of reporting those shared blocks between species. This

workflow is presented on a usability-centered online platform such as Galaxy, which

allows cloud computing while keeping a user-friendly interface.

Keywords: Bioinformatics; Workflow; Computational Synteny Blocks; Evolutionary

Events; Sequence Comparison

8

9

Table of contents

Introduction 13
Motivation 13
Project objectives 16

Background 19
Introduction 19
The Longest Common Subsequence Problem 19
A Bioinformatics primer 22
Maximum subarray problem 23
Workflows 23

Taverna 24
The Galaxy Project 25
Pegasus Workflow Management System 27
Selection of Galaxy for the project 28

Analysis and design 31
General considerations 31
Workflow specifications 32

Implementation 35
BlockTracer 36

Tracing method 37
Implementation 38

Obtaining CSBs from HSPs: getCSB 39
Workflow creation in a Galaxy instance 42

Tool registration in Galaxy 43
Workflow creation 45
The Galaxy-based BlockTracer workflow 46

Results and use case validation 49
Case of use 1: Tracing of mammalian chromosomes 49
Case of use 2: Studying BlockTracer computational performance 55

Conclusions 57
Conclusions of the developed work 57
Conclusiones del trabajo desarrollado 58

Bibliography 61

10

11

12

1.Introduction

Motivation

Matching subsequences between different sources of text, known as the “Longest

Common Subsequence Problem” (LCS) is an important and well known problem in

Computer Science [1], mainly due to its applications in Computational Linguistics [2]

and also Bioinformatics [3]. As its name explains, this problem consists on finding the

longest common subsequence given a set of sequences. Depending on the application

domain, the definition of “common” sequence can be more or less stringent. For

instance, in control version solutions [4], an exact approach is needed (the small

differences between pieces of code are important), whereas in the case of searching

pieces of text in databases, we are mostly interested in the big picture, and using a strict

approach can be counterproductive (​i.e.: useful information could remain hidden). When

the number of input sequences is part of the problem (​i.e.: when there is an arbitrary,

non-fixed number of input sequences), the LCS problem belongs to the NP-Hard class

[5]. Nonetheless, when the number of input sequences is constant, this problem is

solvable in polynomial time by means of Dynamic Programming techniques [6, 7].

A field in which the study of this problem is particularly important is Bioinformatics and in

particular in the field related to the evolution of species. The advancements made in this

area can contribute both to broaden the vision in fields such as Life Sciences, as well as

regarding the development of new techniques in biomedicine, and, ultimately, helping

us to obtain a better grasp of the world we live in [8].

DNA sequences (genomes, particularly) comparison and analysis provide relevant

information regarding the evolution of species. Throughout the years, the genetic

endowment of the organisms has replicated, integrating changes of a variety of sizes

known as mutations, which are themselves heritable, and are part of the theory Darwin

started during the 19th century [9]. Most of these mutations are only one base-pair sized

13

(one letter in the DNA repertoire, known as Single Nucleotide Polymorphism, SNP),

while other mutations represent severe rearrangements of the specie genetic code

(thus, finding them is an instance of the LCS problem), possibly giving rise to new

species. Among these “large scale” changes we find the “segments” relocations,

whether through duplications, changes or translocation of a segment in the same

chromosome, inversions, or even the relocation of segments between chromosomes.

The area of pairwise sequence has received a lot of attention during the last years [10].

This growth has taken place in two main ways, which have also provided feedback to

one another. Firstly, the ability to produce large quantities of data, by means of

improved sequencing techniques and new approaches for well-known issues (Next

Generation Sequencing, NGS) [11] so that the DNA is sequenced in text strings, data

subject be studied from the LCS problem viewpoint. Secondly, computer performance

has been steadily increasing throughout the years [12]. Both elements have opened the

door to the development of new, innovative tools for genetic sequences comparison in

linear time and with a controlled memory consumption [13, 14], thus making feasible

ideas earlier unattainable.

In the present project we address the development of a method for tracing both

non-exact and exact DNA blocks and segments along different species’ genomes. This

can be seen as a specific instance of the LCS problem, where sequences are formed of

DNA letters and we are searching for substrings (DNA blocks). When tackling this kind

of problems, where several species are involved, the respective comparisons between

their genomes are needed. This means a quadratic number of comparisons (given n

sequences, the number of possible comparisons between them is). This 2
n (n−1)*

quadratic complexity, inherent to the study domain can be a challenge regarding the

scalability of the proposed solutions.

Besides, when tracing blocks along different species, the complexity found is

exponential in the number of comparisons involved (worst case scenario), given that, if

a block in a chromosome of a species appears in chromosomes of another species A l

, then it would have to be studied if these blocks in chromosomes () are alsoB l′ ll′ ≤

14

present in another m chromosomes of yet another species , and so forth, resulting C

therefore in a non-balanced tree structure, which is an additional difficulty for the

process.

Additionally, several steps are necessary prior to the block tracing, such as obtaining

the actual blocks from smaller-sized fragments [15]. This not only requires a clustering

of small fragments in larger blocks, but also requires maximising their score. This can

be seen as a modified version of the “Maximum Subarray Problem” [16]. The base task

of this problem consists on finding, given a two-dimensional array, its subarray whose

element-wise sum is maximum. Thus, a naive approach requires an O(n​3​) solution. As

part of this project, a heuristic alternative for this problem will be also studied.

Finally, the organisation of different tools created towards the same target has been

done in the last years by means of computational workflows. This is due to the

characteristics of Bioinformatics research, which requires structuring and organising the

different phases, processes and pieces of software that solutions and experiments are

composed of. In this sense, a workflow can be defined as an orchestrated and

repeatable pattern of an activity enabled by the systematic organization of resources

into operations that process information [17]. Several approaches regarding organising

and making workflows have been developed online and are available for the scientific

community (Galaxy [18], Taverna 2 [19], Pegasus [20], ...). One of the most popular

tools in the last years is Galaxy, a platform that allows researchers to create and share

workflows for them to be utilised by other people interested in it. Nonetheless, prior to

creating this workflow, the development and registering of the different tools that

compose them in a Galaxy instance is needed.

The current project has been developed within the BitLab research group, which is part

of the Departamento de Arquitectura de Computadores at the Universidad de Málaga.

High Performance Computing, Cloud Computing and workflow management systems

are the main lines of research in BitLab. This work benefits from the work done by

several group members during the last years in the field of advanced computing applied

15

to Life Sciences. Thus, this work is part of the software suit produced not only in the

group but with external collaborations, such as the international platform Elixir [21].

Project objectives

The main goal pursued in this work is to develop a workflow capable of tracing

Computational Synteny Blocks (CSBs) throughout a set of species. The workflow

employs heuristic approaches to generalized versions of the LCS and the MSP

problems, while achieving significant performance and a combination of coarse and

fine-grained methodologies. In order to achieve this, our work has to have several

features, which are described below.

● Documentation

○ Documenting not only the code developed, but also the whole

development process allows for a project this size to be studied, replicated

and still be useful in the future. The creation of a thorough and exhaustive

documentation takes part in the set of targets taken into account in the

present project.

● Agile development

○ The methodology approach chosen for this project is based on the Scrum

agile framework. This decision was made mainly because of the

advantages an iterative approach provides for a project that is subject to

changes (​n.b.: originally the executive summary of this proposal included

the waterfall model as the design approach for carrying out the project, but

it was re-evaluated and changed accordingly).

● Individual modules linked by datafiles:

○ The different pieces that form a workflow must be interchangeable and

have to be able to be replaced with upcoming versions, while keeping file

formats, allowing the whole process to keep its original characteristics.

● Efficient, readable, high-level programming for processing data:

16

○ As it is suggested by the Moore’s law [12], computational power rises up

every two years. Besides, there is an increasing trend in the programming

community towards more readable languages, sometimes taking

advantage of the performance that characterises lower-level languages

too [22, 23]. For these reasons, we find it recommendable to make use of

higher level programming languages, which stimulate a more readable

way of coding, while preserving an always desirable efficiency.

● Open workflow to allow easier extensions and/or modifications

○ When the approach followed to develop an application is a monolithic one,

tasks such as feature adding or bug fixing can become difficult to the

extent that, sometimes the whole project is abandoned. One alternative for

avoiding this kind of problems is to organise all the process in a workflow

in which the applications members of it can be fixed or even modified in an

easier manner.

● Parameter customization in order to provide flexible results:

○ There is a wide variety of users for a single application. Normally not all

users pursue the same objectives, and they need to do some parameters

setting and tweaking in order to obtain the desired results. This will be

taken into account in order to provide a broad range of customizable

parameters.

● Both coarse and fine-grained approaches covered:

○ Normally, having a detailed point of view of a certain topic is beneficial.

However, this means, in the field of comparative genomics, to run long

and demanding processes whose results are eventually useless.

Combining this fine-grained approach with a coarse-grained one that

allows the users to grasp the big picture, or even preview information of

interest is important in these fields.

17

18

2.Background

Introduction

In the following chapter we will discuss several topics related to this project’s

development. We will analyse them and review the bibliography related to them,

providing a primer on those subjects that are more theoretical, and discussing the

different approaches available to tackle them in the case of the problems.

We will first visit the Longest Common Subsequence problem, its history, applications,

algorithms created to solve it and the current state of this question. After that, a brief

primer on Bioinformatics will be provided, defining some basic concepts that are needed

to understand both the application of the current project and the next section, the one

devoted to the Maximum Subarray Problem, which, analogously to the first one, will

review different elements regarding this problem and its applications. Finally, a review

on the main tools available for workflows management, publishing and sharing will be

described. In this section it will be also explained which tool was chosen in order to

publish the workflow related to this project and the main reasons for it.

The Longest Common Subsequence Problem

Prior to reviewing the Longest Common Subsequence (LCS) problem, two basic

concepts have to be introduced. Firstly, a string is a chain of symbols or characters over

an alphabet . Secondly, a subsequence of a string is the string resulting from deleting Σ

zero or more symbols from it.

Given strings , finding the longest subsequence that is present in n S , S , ..., S }{ 1 2 n

each of them is called the LCS problem. As mentioned previously, the relevance of this

problem relies on its applications, primarily in the areas of Computational Linguistics [2]

and Bioinformatics [3]. In the latter, and specifically in the field of comparative

genomics, finding a subsequence present in the genetic code of different species

19

means finding a relationship between them, which can ultimately provide us with

information regarding how the species became what they are (​i.e.: what changes did

occur) and what are the underpinnings of the mechanisms that made those changes

possible.

Regarding the complexity of the LCS problem, it is NP-hard when the number of

sequences is part of the problem (​i.e.: for an arbitrary n) [5]. Nonetheless, when n is

fixed, the problem becomes solvable in polynomial time by using dynamic programming

techniques [24].

Given the fact that the LCS problem is interesting regarding both its applications and its

complexity, it has been thoroughly studied throughout the time. This situation originated

a set of algorithms that tackle the problem from different perspectives, always trying to

obtain a more efficient way of solving the LCS, and studying the conditions under which

the tractability of the problem changes. Hereafter, an overview of the different ways this

problem has been tackled is provided, ranging from the first dynamic programming

algorithms to the current metaheuristics approaches [25].

In order to solve the LCS problem for two sequences, the standard method is the usage

of dynamic programming. Thus, the solution is obtained by creating a matrix in which

each cell will be determined by the function in Figure 1.

Figure 1​: Definition of the function that fills the matrix to obtain the LCS of two

sequences.

As can be seen, the cell value will have no value if it is in the first row or in the first

column. For the rest of cells, when the two characters compared are the same, it is

appended to the resulting LCS. When they are not, the LCS is the longest between the

previous element in the same row or in the same column.

20

This approach, while optimal, has a time complexity of , where is the length of (l)O n l

the sequence and is the number of sequences in which to search the LCS. Thus, it n

has a poor scalability.

Several alternative approaches have been used in order to decrease the time and

space complexity of the problem, while still providing good quality solutions. The Hunt

and Szymanski’s algorithm [26], for example, obtains the LCS of two sequences in

 time. However, the worst case time complexity is .(n log(n))O (n log(n))O 2

Other approaches rely on heuristic approximations which try to find near optimal

solutions in reasonable time, being thus a rather practical point. Regarding this problem,

we find three main heuristic approaches:

- The Large Neighborhood Search algorithms, also known as Local Search

Algorithm, which is an improvement algorithm (​i.e.: given a feasible solution for

the problem, iteratively searches for a better solution) that relies in a large

neighborhood structure to find better solutions [27]. The heuristic algorithm

proposed by Easton and Singireddy [28], also called Time Horizon Specialized

Branching (THSB) heuristic, achieves a theoretical runtime both linear in the

length of the sequences and also regarding the number of sequences of the LCS

problem. However, this approach is exponential in the horizon size chosen.

- Deposition and extension approach, presented by Ning in 2010 [29], provides an

alternative whose performance is especially interesting in the case of having

many sequences in which to search for the LCS. As its name suggests, this

heuristic is based on two steps. The deposition step consists on finding a

common subsequence based on fine tuning of search range, and then in a

second step the common subsequence is extended. The time complexity of this

approach is , where is the length of the sequence and is the (l n |Σ|)O 2 2 l n

number of sequences.

- Beam Search approaches are an incomplete derivative of Branch and Bound

techniques. The central idea of this set of approaches is to allow the extension of

partial solutions in several possible manners, calculate an upper bound value for

21

each chosen extension, and, by means of a greedy function, select the best

found complete solution. Regarding the performance of this heuristics, it was

proven to be better than the THSB and the extension algorithm [30].

In this project we will work with sequence comparison algorithms, and therefore we will

need to select the programs based on their algorithm implementation and scalability in

order to enable tracing of blocks from multiple species. The fact that the number of

species is a variable in our project involves facing a NP-hard problem. Therefore, a

proper approach has to be selected in order to obtain a balance between performance

and high quality results.

A Bioinformatics primer

As the domain of application of the present project turned out to be Bioinformatics, in

order to introduce the next section (the one regarding the Maximum Subarray Problem),

it is needed to provide a brief primer on Bioinformatics, where the fundamental concepts

that are involved in our work are explained:

- Nucleotides: They are one of the basic structural elements of DNA and RNA [31].

A nucleotide is composed of a base, which can be represented by one of four

letters (A, C, G or T). Thus, when sequencing genetic code, it is represented by a

string formed by these letters.

- SNP: They are the most common type of genetic variation among people [32]. It

consists on a difference between DNA sequences of just one nucleotide.

- High-scoring Segment Pair (HSP) or fragment: This is a term related to local

alignment tools such as BLAST or Gecko, and represents a portion of genetic

code that is shared by two sequences [33].

- Computational Synteny Block (CSB) [15]: This concept refers to a similar

element to frags, but with larger dimensions. Thus, a CSB is a set of fragments

that conserves both strand and collinearity. Studying shared DNA between

species can be done in several levels of detail. Using CSB allows a better

22

performance compared with HSP (less number of elements to compare), while

keeping a rather fine-grained approach.

Therefore, A CSB is a piece of information composed of HSPs, which in essence are

similar strings of nucleotides that allow SNPs and other forms of DNA mutation. One of

the underlying problems for our current project is to find a proper technique to obtain

CSBs from HSPs, which is addressed in the following section.

Maximum subarray problem

Starting from the Bioinformatics primer from the previous section, and knowing the

necessity of a method to obtain CSBs from HSPs, we arrive at the Maximum Subarray

Problem, whose study provides a broad vision regarding the obtaining of CSBs.

The Maximum Subarray Problem (MSP) consists on, given a matrix of real M × N

numbers, finding a rectangular submatrix such that the sum of the numbers present on

it is maximized [34]. This problem was first published in 1984 and, the main applications

it has are related to image processing, pattern recognition, data mining and biological

sequences analysis [35].

Different solutions have been provided for this problem throughout the years. Firstly,

altogether with the publication in which the problem was firstly explained, a cubic

solution was included. Until 1998, no approach managed to provide a lower complexity

bound. That year, Tamaki and Tokuyama [36] obtained a subcubic algorithm by means

of matrix multiplication. After this, some more improvements were obtained in similar

and constrained cases (small K for the K-MSP, one dimensional arrays, ...) [37].

Workflows

When it comes to workflow management tools, several alternatives have been created

thus far [38]. In the following section we will review several of them, their characteristics

and the elements that differentiate each one from the others, as well as the main

23

reasons for the selection of Galaxy for registering and managing the current project

workflow.

Since the advent of the internet, and especially since its establishment as a general

purpose tool, several initiatives have appeared in order to make easier the research

work. One field in which these initiatives have received a special attention is the

publishing and sharing of workflows [38, 39]. Moreover, as the usability became a

characteristic to be taken into account when developing a digital service, more features

aimed to improve the users’ experience were added, not only for their interaction with

the interface, but also regarding the actual management and edition of workflows. After

a profound and comprehensive analysis and study of the available alternatives for this

task, we highlight three main online tools in which researchers can share their

experiments and processes in order for them to be used by other users, and even be

modified. Before reviewing each one of the tools that are being currently used for this

purpose, it is noteworthy that they are not really “rivals”, in the sense that during the last

years they have been working on their interoperability, rather than competing.

Taverna

The first of the tools to be reviewed in this section is Taverna Workflow System. This

project was born in 2004, with the publication of the Taverna software as a program for

composing and enacting bioinformatics workflows [19]. After several versions, it

eventually evolved to “an open source and domain-independent Workflow Management

System – a suite of tools used to design and execute ​scientific workflows and aid ​in

silico experimentation.”, obtaining a major relevance and, in the last years, even

coupling with the Galaxy project, which will be later discussed. Taverna allows its users

to compose workflows formed by both local tools and distributed Web-Services. These

“complex analysis pipelines” workflows can then be executed locally or in larger-scale

infrastructures (e.g.: supercomputers, Grids or clouds).

Taverna understands workflows as “reusable informatic analysis protocols”. Thus, this

tool aims to be scalable, and able to interact with as many other tools as possible. The

24

Taverna Suite is currently compatible with RESTful web services, Grid services, cloud,

R scripts and also command line interface (CLI) scripts.

Usability is another desirable feature for a tool that will be used by a large number of

users with different levels of skill regarding computer usage. In this sense, Taverna

developers created the “Taverna Player”, an interface available for executing workflows

both through web-browsers and third-party clients.

In order for Taverna to be “social”, in the sense of the possibility for the created

workflows to be published, shared, reused, etc. by other users, its developers rely on

the myExperiment repository. Another interesting feature is the possibility for the users

to keep track of their executions. In this sense, Taverna included the “Taverna

Provenance Suite” as part of the whole tool, allowing users to record workflow

invocations, intermediate and final results.

Finally, as any other tool that aims to be collaborative, the community behind it is a key

factor to take into account when comparing alternatives. In the case of Taverna, it has

been widely used in most fields of Bioinformatics, with the myExperiment [39] repository

as the main site for the people to share their workflows. Regarding Taverna

development, it is an Open Source project, characteristic that has provided a robust

support and a wide range of plugins available until now.

The Galaxy Project

According to the primary Galaxy publication [18], it is a “web-based scientific analysis

platform used by tens of thousands of scientists (...)”. The project started in 2005,

aiming to achieve three main goals: accessibility, reproducibility and an effective

communication between users. As an open-source software, both the Galaxy team and

the open-source community have carried out large advancements in several areas,

namely its core framework, the available tools, tutorials and training material, or the user

interface.

The whole Galaxy Project is composed of four main elements that complement each

other: (1) The main public Galaxy Server, which has been online since 2007, and

25

features a large set of tools for large-scale genomics analyses, besides a huge amount

of data from its usage throughout the years (analysis histories, publication supplements,

complex pipelines, …). (2) The Galaxy framework and software ecosystem, which is an

open-source repository that can be used by everyone in order to run a Galaxy Server.

(3) The Galaxy toolshed; a resource for publishing workflows, tools and visualizations.

In this site, Galaxy administrators can find and share tools to be added to their

instances. (4) The Galaxy Community, created with the goal of addressing issues that

can exist in any field (for users, administrators, developers, educators, ...).

Regarding the last update of Galaxy, the features that have received more attention are:

- The scalability (in two senses: the web-based interface and the server backend

to provide reliable performance in a multiuser environment).

- The user experience and interface enhancements, with elements such as an

interactive workflow editor

- The development of tools, with the Galaxy Toolshed as an important factor for

this, providing the users with a kind of ‘App-store’ for Galaxy instances

- The Interactivity, throughout analyses and visualization. This is achieved with the

Galaxy Interactive Environments, which is an integration of Galaxy with Jupyter.

- Enhancements for the infrastructure: In order to obtain robustness in a

production environment, uWSGI was adopted as the Galaxy’s default web

application server. This decision was made according to the necessity to make

possible concurrent task execution and load-balancing.

Finally, and as it was mentioned at the beginning of this section, the Galaxy community

is an important factor for the success of this project as a tool for Bioinformatics

professionals. The Galaxy main server has more than 120000 users, carrying out up to

245000 analyses per month. Besides, there are more than 7000 scientific publications

referencing Galaxy [40], and there are also in-person events such as the Galaxy

Community Conference (GCC), or the Bioinformatics Open Source Conference

(BOSC), which take place yearly.

26

Pegasus Workflow Management System

The last workflow management tool we will discuss thoroughly is the Pegasus Workflow

Management System. It was first launched in 2001 and it provides ways of composing

and sharing workflows, as well as running, monitoring and debugging them [20]. The

highlighted feature in Pegasus’ system is the portability. By keeping the workflow

description and its execution environment separated, portability across different

infrastructures is achieved, as well as the possibility of carrying out optimizations at both

compile time and runtime.

In order to provide a description of the workflows, Pegasus relies on Direct Acyclic

Graph in XML format (DAX) [41]. This format provides a way of specifying jobs, input

parameters and files, and also dependencies.

Scalability is also a Pegasus concern. In order to achieve this characteristic, not only

the resources used for the execution, but also the size of the workflow can be easily

upgraded. In this sense, it is possible to run workflows that have up to one million

computational tasks. This is feasible thanks to a great extent to the compile time

workflow restructuring (which involves reduction of workflows and data reuse), and also

to the runtime optimizations.

When executing a complex and large pipeline, a number of problems (​v.g.: job

execution errors, data transfer failures) can appear. In order to tackle this issue,

Pegasus has several features that follow providing reliability. Among them we find job

retries, parallel transfers for data movement, recovery for failed workflows and

workflows replanning.

Finally, usability is also a Pegasus matter of interest. In this sense, tools for workflow

composition and monitoring and debugging (​v.g.: Pegasus mapper log, job logs) are

available. Besides, there are also means for the users to provide feedback regarding

the different components of Pegasus, thus making possible fixing bugs or developing

upgrades for this system.

27

Selection of Galaxy for the project

After a thorough study of the main workflow management utilities available online, we

decided to use Galaxy for the workflow developed in the present project. This is due

mainly to the field of study the pipeline relates to: Bioinformatics. Galaxy is a platform

that is capital in data-driven biomedical and bioinformatic science. Therefore, the

availability of useful tools for developing the current workflow will be broader in the case

of Galaxy, besides the future applications the workflow can have, in the sense that the

possibilities for it to be used by the Life Sciences community is larger if it is developed

for this platform. Besides these reasons, it is noteworthy that Galaxy is backed by the

ELIXIR platform [21] through its publicly available portal [42].

Regarding workflow management tools, in this section it was shown the common

features and achievements they pursue, being the scalability a capital characteristic, as

well as a trend towards the enhancement of usability. During the revision of the

bibliography and the study of these tools, we have not found a great difference between

them. The actual disparity appears to be the community behind each one. Galaxy has

the larger community when it comes to Life Sciences.

Finally, another element to take into account is the activity of the BitLab group. This

research team has a Galaxy instance where most of their tools are available. As this

work will use some of these tools, the logical step is to develop the current tool for this

Galaxy instance, as it can become part of the research group ecosystem.

In summary, the tracking of CSBs along species requires the tackling of several

problems whose complexity imposes a computational challenge, particularly (1) to find a

proper technique to obtain sequence comparisons (​i.e.: an accurate, efficient way of

solving the LCS problem). (2) Once the HSPs are obtained, which are rather

fine-grained for our purposes, we need to find a way to subsume them in CSBs. (3)

Regarding the usage of the tool to be developed, a user-friendly, efficient and extended

workflow management tool has to be used. For these purposes we have selected an

instance of the Galaxy Project. In order to overcome these barriers, we have selected

28

different algorithms for particular instances of the problems, which will be combined,

extended and connected with other new software pieces in order to generate a fully

functional workflow that makes block tracing feasible.

29

30

3.Analysis and design

In the following chapter, the main requirements for the proposed method will be

described. This implies studying the inputs and the way they will be processed. Besides

other elements to decide what information is available, how should our method handle

it, the way the whole workflow should be executed and the use of external platforms for

it, and the definition of a format for the output files. In general, the requirements studied

will be high-level related, as the low-level ones will be handled in the implementation

section of this project.

General considerations

- Programming Language: When dealing with the processing of large amounts of

data, a good performance is needed. Besides, as the different elements that

compose a workflow should be able to be modified or maintained, a readable

programming language is advisable. One of the most popular programming

languages for doing data science related activities is Python. The main desirable

characteristic of Python is the code readability it allows, making thus easier both

code development and maintenance. Regarding the performance that can be

obtained by using this language, it would be expected to be somewhat poor,

given the high-level nature of Python. Nonetheless, there are a number of

libraries for data science, which were developed in C, thus providing a rather

adequate performance. Thus, Python programming language has been selected

to develop the main scripts for the current project.

- Platform: When working with Bioinformatics software, most of it is developed to

be used in a UNIX-like environment (Ubuntu/Debian). The main reasons for this

are: (1) the ease of use in the case of system administration, (2) the desirable

characteristics of the command line interface, which is a powerful tool and (3) the

cost of UNIX-like software (it is cheaper than Microsoft or Apple alternatives, or

31

even free). Based on these reasons, for the development of our project, Ubuntu

and Debian were selected for development tasks.

- Workflow Management System: As it was mentioned in the background section,

the Workflow Management tool chosen for the current project was the Galaxy

Platform. After a thorough study of the main alternatives for workflow-related

environments, we decided to use Galaxy due to its relation with Bioinformatics,

as well as the fact that several tools that will be part of the final workflow are

already available in this platform. Besides, the scalability pursued by the Galaxy

developers opens the door to future contributions regarding the visualization of

our workflow results.

- Results format: In order to provide our results with a certain flexibility, the results

obtained in the different parts of our workflow must follow a standard.

Standardisation is capital when dealing with the files associated to a workflow

composed by several programs. If this is not possible, then ad-hoc tools for

pre-process files are needed (​i.e.:​ parsers).

Workflow specifications

Our software will be organised as a workflow. A simplified representation can be seen in

Figure 2. In the current section, the different modules that compose the pipeline will be

analysed. Regarding the low-level details and definitions, they will be given in the next

section (​i.e.:​ Implementation).

Figure 2​: Simplified representation of the workflow.

32

The workflow is composed of mainly three kinds of data-processing tools. Firstly, the

selection of a proper software in order to perform sequence comparisons between

species chromosomes is needed. A number of sequence comparison tools are

available. Among them we can mention BLAST [14], which is one of the most widely

used software for this purpose; and others such as BOWTIE [43], SOAP [44] or LASTZ

[45]. However, given the software ecosystem in which this project will be developed, as

well as several desirable features of the BitLab software (Gecko and Chromeister [46]) 1

such as their compatibility in order to reduce the search space, or the possibility of

avoiding computational starvation with the performance improvement that Chromeister

provides (​i.e.: with other solutions each comparison can have a quadratic runtime), the

sequence comparison tools selected for the current project will be Chromeister (for

coarse-grained comparison) and Gecko (for fine-grained comparison, using the

Chromeister output to reduce the search space, and therefore the workflow runtime).

The second main data processing task is to obtain CSBs from HSPs. In order to do this,

it is required a software that, given an input CSV file containing HSP information

(coordinates in both sequences, score, degree of similarity, length, etc.), merging them

together in larger blocks, while keeping an acceptable score.

Finally, the third task is related to the proper block tracing. Once the CSBs are available

for each comparison, it is needed a tool that traces them and checks if they are

conserved throughout the different comparisons. Therefore, a proper way of assessing

this “conservation” has to be devised. Besides, there are some desirable features for

this part of the workflow, such as the possibility for the users to set the traced block

“depth” (​i.e.: how many species have to share that block in order to be taken into

account).

1 ​https://chirimoyo.ac.uma.es/bitlab/portfolio/

33

https://chirimoyo.ac.uma.es/bitlab/portfolio/

34

4.Implementation

In this section we describe the implementation details regarding the developed

workflow. The two developed tools are analyzed and their code is thoroughly depicted.

After this we describe the process needed in order to register the developed workflow in

a Galaxy instance.

According to Figure 2, Figure 3 depicts a specific version of the developed workflow. In

this case the pipeline works with the Chromeister, Guided-Gecko (or Gecko), getCSB

and BlockTracer tools; however, any other tool that performs a similar task can be used.

Figure 3​: BlockTracer workflow depiction.

The workflow receives as input species chromosomes. The first step is to obtain the n

pairwise comparison between the sequences in the following manner: given n

sequences, , we need the comparisons between them (, s , , ..., s }{ 1 s2 n n − 1 vs ss1 2

35

, …,). In order to perform these comparisons, two different tools are vs ss2 3 vs ssn−1 n

used. The first one, which follows a coarse-grain approach, is Chromeister. Chromeister

is a software that provides a heuristic approach for detecting potential shared segments

between DNA sequences. The interesting point regarding the use of this tool is, besides

its execution speed, its interoperability with the second tool used, Gecko [13]. Gecko is

a software for comparative genomics which focuses on detecting HSPs. In contrast with

Chromeister, the approach is rather fine-grained (one of its main features is its high

accuracy results). Nonetheless, Gecko is prepared to use the output of Chromeister in

order to shrink the search space, thus significantly decreasing the execution time of the

comparisons.

Once the different comparisons have been done we are provided with files n − 1

containing HSPs. These files are then processed by the second developed tool,

getCSB. This software will obtain CSBs from the HSPs provided by Gecko, making thus

easier tracing them between species.

Finally, the BlockTracer tool will be executed in order to trace the blocks obtained by

getCSB. The resulting file will consist of a .csv file with each traced block information

(species and chromosomes related and the block’s coordinates in the species

genomes).

The presence of the Gecko regular version in Figure 3 means there is a fine-grained

way of running our workflow. In this case the results of the comparisons are more

accurate than with the Guide-Gecko version, as the search space is larger.

BlockTracer

This section describes the kernel of our work. We will discuss the main characteristics

of the BlockTracer tool and how was it implemented. Firstly, the general considerations

regarding the tracing method used will be studied. After this, a thorough description of

the BlockTracer script and functionalities will be provided.

36

Tracing method

Regarding the method used in order to trace the blocks between species, we have to

discuss two issues. The first one is, given two blocks, measuring the degree to which

they are related. In order to answer this question, we will study the overlap coefficient

concept. The second one is how to do the actual trace of a block, given several species.

In order to assess overlapping, the overlap coefficient or Szymkiewicz-Simpson

coefficient is used [47]. This method provides a value between 0 and 1, and it is

obtained by dividing the overlapping part length by the length of the smaller sequence:

verlap(X ,) o Y = |X ⋂ Y |
min(|X |, |Y |)

In our case, the overlap between two blocks is determined by the following funcion:

verlap(X ,) overlap(< 1, 2 , 1, 2) o Y = x x > < y y > = min(x2−x1, y2−y1)
min(x2, y2) − max(x1, y1)

Being and the blocks’ starting coordinates and and the blocks’ ending x1 y1 x2 y2

coordinates.

Regarding the actual tracing of blocks, when tracing a block along species n

, we have to check the overlapping coefficient betweens , s , ..., s)(1 2 n n − 1

comparisons:

c {s vs. s }, c {s vs. s }, ..., c {s vs. s })(1 1 2 2 2 3 n−1 n−1 n

In each comparison we can find blocks . When in two ci m c {b , b , ..., b })(i = i1 i2 im

consecutive comparisons and (where) a block is traced (​i.e.: the overlap ci cj ji = − 1

coefficient is larger than a given threshold), two situations can occur:

a) length is equal or greater than : then no action has to be done, as in thebik bjl

next iteration just the coordinates of will be taken in order to trace blocks in bjl

 (with)ck j 1k = +

b) length is less than : Then new coordinates for have to be calculated,bik bjl bjl

so that in the next iteration just the shared part of is taken into account when bjl

tracing blocks in .ck

37

Implementation

The BlockTracer is the last tool that is run in the developed workflow. It receives a CSB

list as input, which was generated from large genetic sequences (such as genomes)

comparisons. The first task that is done is to extract all blocks available in the input file,

and store them in a different data structure (a Python list) per comparison. This step

would yield lists of blocks (where is the number of comparisons performed). The n n

code developed for this part of the project is available at its GitHub repository . 2

The next step would be to iterate over this list, doing comparisons between each n − 1

pair of lists of blocks, looking for overlapping blocks. All overlapping blocks will be

stored in new lists, thus yielding lists. This step is repeated until only one list is n − 1

obtained, which will contain the blocks shared between all the species.

Finally, a linked list for each traced block will be created. All the lists obtained in the

previous step will be iterated, looking for the relations discovered between blocks and

adding the blocks to a linked list accordingly. Figure 4 shows the pseudo-code for the

BlockTracer programme.

2 ​https://github.com/eseuteo/BlockTracer

38

https://github.com/eseuteo/BlockTracer

Figure 4​: Pseudocode for the BlockTracer programme.

Obtaining CSBs from HSPs: getCSB

Our workflow includes getCSB, a program that receives a .csv file containing

information regarding HSPs, such as their location in both species (starting and ending

coordinates), score, length, strand, etc., and returns a similar .csv file, where the

suitable HSPs are merged and turned into CSBs. The code developed for this part of

the project is available at its GitHub repository . The data obtained with the getCSB 3

software can, once the workflow execution has finished, be accessed in the Galaxy

interface.

For the implementation of this tool we have relied on the following Python libraries:

- Pandas [48], for all the data-processing tasks related to dataframes, as it allows

writing efficient, readable code for this purpose.

- Numpy [23], for all the auxiliary processes related to mathematical operations.

3 ​https://github.com/eseuteo/getCSB

39

https://github.com/eseuteo/getCSB

The getCSB programme works by carrying out the following steps (the corresponding

pseudocode can be found in Figure 5):

1) It loads the input HSP file into a dataframe

2) Afterwards, it obtains the diagonal value of each HSP by subtracting the starting

coordinates of the HSP on each axis ().iagonal yStart xStartd = −

3) Then, the HSPs are sorted regarding two values: the diagonal value obtained in

step 2 and the starting coordinate on the X axis (the reference species

sequence). Sorting the HSPs by their diagonal provides a straightforward way of

pre-clustering them. Most of the time all the HSPs that compose a CSB are

located in a similar diagonal. Regarding the usage of the starting coordinate on

the X axis, it was selected in order to not to provide an excessive weight to the

diagonal value, as otherwise, two HSPs in the same diagonal but far from each

other in the X axis could be considered as part of the same CSB.

4) Finally, the current dataframe containing the sorted HSPs is iterated and the

CSBs are created. In order to assess if a HSP can be put into a CSB, it is

checked whether their combined score, minus a penalty based on the distance

between them (​i.e.: it grows linearly regarding the gap between HSPs), is greater

than zero. In the case that 5 consecutive HSPs cannot be part of the current

CSB, no more HSPs will be taken into consideration, starting thus the search of a

new CSB.

40

Figure 5​: Pseudocode for the get_CSB programme.

Figure 6 shows a simple example of the getCSB programme functioning. The input

comparison (left), containing a huge number of HSPs is processed and a file containing

considerably fewer CSBs is generated (right).

41

Figure 6​: Example of the result provided by getCSB (right), given a HSP input file (left).

Workflow creation in a Galaxy instance

In the following section, the main steps that have to be done in order to create and

register the workflow in a Galaxy instance will be described. This step is crucial

regarding the future usage of our workflow in two main ways. Firstly, the creation of the

workflow in a Galaxy instance will allow people interested in using the workflow to do it

without tedious procedures such as run each part of the workflow, setting each tool’s

inputs, etc. Secondly, a thorough description of the steps needed to create and register

this workflow in Galaxy will allow administrators to make our workflow available in their

Galaxy instances, thus making the tool accessible in any Galaxy server.

The first requirement in order to register this workflow in a Galaxy instance is to ensure

the availability of all the tools that compose it. Hereafter, the tools needed in order to run

our workflow, as well as a brief description of them is available.

- Chromeister: A coarse-grained pairwise comparison approach

- Guided-Gecko: A fine-grained pairwise comparison approach that relies on

Chromeister results.

42

- getCSB: A software for obtaining CSBs from HSPs.

- BlockTracer: A tool for tracing related CSBs between several species.

Besides these tools, a number of auxiliary scripts for file-management are also needed:

- File adapter: A tool for adapting Gecko’s output files to BlockTracer’s input files.

- File concatenator: A simple tool for concatenating files.

Tool registration in Galaxy

The basic process to perform a custom tool registration in Galaxy is available at the

official tutorial . Nonetheless, some special steps have to be taken into account and 4

therefore, in the following section, they will be thoroughly described.

In order to register a tool in a Galaxy instance, the first step is to install the tool. In order

to do this, the standard process is to clone the tool repository under the

$GALAXYPATH/galaxy/tools/ directory and follow the corresponding instructions of

each tool installation.

Once this is done, the tool definition file has to be created. This is an XML file containing

the details regarding the execution of the tool, and has to be located in the same folder

as the actual tool. Figure 7 shows the regular structure of this XML file.

4 ​https://galaxyproject.org/admin/tools/add-tool-tutorial/

43

https://galaxyproject.org/admin/tools/add-tool-tutorial/

Figure 7​: Tool descriptor for the BlockTracer tool.

As can be seen, the elements that have to be available are:

- Description: A brief description regarding the tool, which will be shown in the

Galaxy interface.

- Zero or more parameters: Indicated by the <param> label, they will contain

information regarding the tool input parameters, such as their name, type, etc.

- Command: This will be the actual command that will run the tool.

- Outputs: Analogously to the parameters section, this provide information

regarding the tool outputs, if any (name, format, etc.).

- Other fields: Some other fields can be set, such as a help section for making

easier the use of the tool, or citations.

Finally, we have to make our Galaxy instance aware of the existence of the new tool. In

order to do this, we have to modify the tool_conf.xml file under the /galaxy/config

44

directory. Figure 8 depicts the structure of this file, which contains sections in which the

different tool descriptors are listed,

Figure 8​: Part of the Galaxy configuration file.

Workflow creation

Once all the needed tools are available in our Galaxy instance, the actual workflow can

be created. In order to do this, we can make use of the Galaxy workflow editor and use

the drag-and-drop interface available for it. We are also providing the workflow as a

standalone tool at the BitLab group repository . 5

5 http://mango.ac.uma.es/compartir

45

Figure 9​: Galaxy workflow editor interface.

As can be seen in Figure 9, instance tools are available in the left column, and can be

dragged to the editor. Once there, the different processes can be linked throughout their

inputs and outputs.

The Galaxy-based BlockTracer workflow

In this final section of the Implementation and results chapter, the final result of our work

will be described (​i.e.: the workflow available in the galaxy instance after registering the

different tools and creating the pipeline described at the beginning of this chapter). Two

versions of the workflow will be shown; the first one is a 5-species particular exercise

created with the Galaxy interface available in order to illustrate the characteristics of this

platform, while the second one is a user-transparent version, which allows the execution

of the workflow with 3 or more species.

Figures 10 and 11 show the details of the Galaxy Blocktracer workflow for the tracing of

CSBs among 5 species chromosomes. This example intends to be didactic, in the

sense that for the case of species chromosomes, the tool used would be the n

user-transparent version. As it is shown, firstly the 5 input chromosomes are given to

both Chromeister and Guided-Gecko processes. The Chromeister hits output file is

used as input for Guided-Gecko (Figure 11).

46

Figure 10​: Galaxy Blocktracer Workflow (1/2).

After this (Figure 11), the Guided-Gecko output (​i.e.: HSPs) is processed by getCSB,

thus obtaining the CSBs. Then, as the BlockTracer program needs the input files to be

in a different format than the Guided-Gecko one, the format is adapted. Following this,

the four files are concatenated in one final file, which will be used by the BlockTracer

program as the input. The workflow output, thus, will be a CSV containing information

regarding the traced blocks (species and chromosomes that share the block, and

coordinates of the block in their respective chromosomes).

47

Figure 11​: Galaxy Blocktracer Workflow (2/2).

The interface of the general, transparent version of the workflow is depicted in Figure

12. In this case, the input for the workflow is just a .zip file containing a folder with the

sequences in which to trace the blocks and a set of optional parameters.

Figure 12​: BlockTracer general version interface.

48

5.Results and use case validation

In order to assess the suitability of the presented workflow, it is necessary to describe a

use case in which the functionality of our tool is evaluated. In the current section we will

analyse the characteristics of the developed workflow, as well as provide a description

of two use cases. The first one aims to validate the pipeline functionality, whereas the

second one is an analysis on its performance.

Case of use 1: Tracing of mammalian chromosomes

In order to carry out the experiment, two different executions were made. In the first one

the coarse-grained version of our workflow was used, while in the second one the

fine-grained approach was employed. Our goals with this experiment were: (1) compare

the performance and results quality of the fine-grained version against the coarse

grained one, and (2) assess the correctness of both approaches by contrasting their

results with information from other sources.

The current use case consists on the usage of the BlockTracer workflow in order to find

shared blocks between five species. The datasets used for our case of use are five

chromosomes of five different mammal species, which are available at the Ensembl

repository [49], and can be downloaded and used. The chromosomes selected were the

following ones:

- Homo sapiens​ (human), chromosome 6

- Pongo abelii​ (orangutan), chromosome 6

- Mus musculus​ (mouse), chromosome 13

- Equus caballus​ (horse), chromosome 20

- Bos taurus​ (cow), chromosome 23

For the sake of clarity, from now onwards we will use the “HOMSA”, “PONAB”,

“MUSMU”, “EQUCA” and “BOSTA” abbreviations to refer to each of the species listed,

respectively.

49

These five mammals were used mainly due to the broad vision it provides with respect

to the mammalians phylogeny, as they are not all closely related nor excessively

unrelated. The chosen ordering of species is of relevance since more CSBs can be

obtained and studied regarding the following species in the process. Therefore, the

species were sorted regarding their phylogeny [50]. Thus, we took into account their

similarity with the reference (​i.e.: the HOMSA), in order to find DNA blocks that can be

traced throughout all of them. Regarding the selection of the chromosomes, we used

the Chromeister software as a screening tool, which provided insights with respect to

the similarity of the chromosomes, as it informs us about which pairs of sequences are

prone to have shared blocks. Therefore, we performed all-vs-all comparisons between

HOMSA, PONAB, MUSMU, EQUCA and BOSTA chromosomes in order to obtain a set

of sequences that were suitable for our experiment.

The results obtained were, at first glance, rather different (as we can see if the number

of blocks detected are compared in Figure 14 (coarse-grained) and Figures 15, 16, and

17 (fine-grained)). Nonetheless, this behaviour is expected due to the contrast between

both workflows level of detail. The usage of Chromeister in the first one provided a

smaller number of blocks, but a clearer depiction of the big picture, while using Gecko in

the second one yielded a larger number of more specific and accurate blocks.

Besides this fact, we find same-depth blocks traced with both methods. This is, we find

related blocks between the five species. In order to analyse the correspondence of both

results, we need to rely on external information. Thus, in order to assess the suitability

of the solutions found, as well as in order to describe the shared information between

them, we compare our results to a reference study [51]. Figure 13 shows four dotplots

of pairwise chromosome comparisons between the five species of the current use case.

Besides, there are some parts highlighted in red, which will come in hand next in this

section. The blue elements in the images represent coincidences in the sequences (so,

for instance, if both sequences were the same, a perfect blue diagonal would appear in

the dotplot image).

50

Figure 13​: representation of pairwise comparisons between each pair of chromosomes

selected for the experiment (A: HOMSA vs. PONAB; B: PONAB vs. MUSMU; C:

MUSMU vs. EQUCA; D: EQUCA vs. BOSTA). The blue lines represent synteny blocks,

whereas red lines represent traced blocks throughout the experiment described in the

main body of the manuscript.

If we compare Figure 13 with the results obtained by the coarse-grained approach

(Figure 14), we can see clear correspondence between them. HOMSA and PONAB

share most of their 6th chromosomes (​i.e.: a large block between them would be found),

PONAB and MUSMU share two small blocks at the beginning of the 6th chromosome of

the former and around the first ⅓ of the 13th chromosome of the latter, which is then

related to a block at the beginning of the 20th EQUCA chromosome, which is finally

found to be related to the ending part of the BOSTA 23rd chromosome.

51

Figure 14​: Depiction of the results obtained in the coarse-grained version of the

BlockTracer workflow. Same colour lines represent shared regions.

When trying to find correspondence between chromosomes comparisons and the

results of the fine-grained version of the BlockTracer workflow, it can be harder, as large

blocks such as the one found between HOMSA and PONAB are rather “broken down

into pieces”, and trying to represent them analogously to Figure 14 can be impractical.

Therefore, a new way of assessing the location of the blocks found by the fine-grained

version have to be found. One option is to represent the blocks’ starting coordinates in a

histogram. In this way, we can find more blocks’ starting points along the same places

where the blocks are placed in the coarse-grained version. Figure 15 gives an account

of this phenomenon.

Figure 15 (left) shows that the blocks can be found all along the human’s 6th

chromosome. This coincides with Figure 13A, as both chromosomes are closely related

and almost all of it is shared between both species’ chromosomes.

52

Figure 15​: Histogram showing the 6th human chromosome blocks that are shared with

the 6th orangutan chromosome (left). Histogram showing the 6th orangutan

chromosome blocks that are shared with the 13th mouse chromosome (right).

Regarding Figure 15 (right), we find a different result from the previous figure.

Nonetheless, the meaning is rather similar. In this case, the blocks shared between

orangutan’s 6th chromosome and mouse’s 13th chromosome are mainly located at the

beginning of the orangutan’s chromosome (Figure 13B). Hence the histogram; we can

see how the vast majority of the blocks starting coordinates are located in the

mentioned region.

The next sequence in the experiment is the mouse 13th chromosome. In this case we

find that all blocks that were found in the orangutan sequence are related to several

blocks near the center of the chromosome. Figure 16 depicts this phenomenon. The

blocks found correspond to the one highlighted in red in Figure 13C.

53

Figure 16​: Histogram showing the 13th mouse chromosome blocks that are shared with

the 20th horse chromosome.

Our experiment finally brings us to Figure 17. It shows two histograms, each one

corresponding to one of the chromosomes involved (horse’s 20th chromosome and

cow’s 23rd chromosome). An alternative depiction for this phenomenon is available in

Figure 13 D.

Figure 17​: Histograms showing the 13th mouse chromosome blocks that are shared

with the 20th horse chromosome.

54

Case of use 2: Studying BlockTracer computational performance

Our second case of use is aimed at assessing the capabilities of our workflow when

facing different kinds of inputs and search spaces. The scalability of the proposed

software is tested as well. In this sense, we carried out two experiments. The first

experiment performed consisted on selecting 16 ​Mycoplasma pneumoniae bacteria

sequences in order to obtain execution statistics. Afterwards, a similar experiment was

carried out using the X chromosome from 16 species, in order to analyze the behaviour

of the workflow in a demanding scenario. Besides measuring time and memory

consumption results, both experiments were analyzed in order to study which input

parameter had the largest impact on the performance.

The species selected were the following 16 mammalians, and in the following order: (1)

Homo sapiens​, (2) ​Pan troglodytes​, (3) ​Pan paniscus​, (4) ​Gorilla gorilla​, (5) ​Pongo

abelii​, (6) ​Papio anubis​, (7) ​Macaca mulatta​, (8) ​Macaca fascicularis​, (9) ​Callithrix

jacchus​, (10) ​Rattus norvegicus​, (11) ​Mus musculus​, (12) ​Oryctolagus cuniculus​, (13)

Canis familiaris​, (14) ​Felis catus​, (15) ​Equus caballus​, (16) ​Bos taurus​. All of them are

available at the Ensembl repository [49]. These were selected due to (1) their

evolutionary distance and (2) their X chromosomes were fully assembled.

Regarding the ​Mycoplasma pneumoniae sequences used, they were obtained from the

NCBI repository , namely: ​M129, FH, 309, PO1, PI 1428, M129-B7, 19294, M29, 39443, 6

51494, 54089, 54524, 85084, 85138, FH ​and​ M1139​.

The parameters selected in the previous steps to the execution of the BlockTracer

software were changed in order for the number of blocks traced to be balanced between

comparisons (the number of blocks between ​Homo sapiens and ​Pan troglodytes is quite

larger than that between ​Mus musculus and ​Oryctolagus cuniculus​). Therefore, the

Gecko parameters referring to the minimum similarity and size of a HSP to be reported

had to be set accordingly, increasing them when the species were closely related and

relaxing them in the opposite case.

6 ​https://www.ncbi.nlm.nih.gov/

55

https://www.ncbi.nlm.nih.gov/

Number of
sequences

Execution time
for bacteria
(seconds)

Execution time
for mammalians

(seconds)

Memory usage
for bacteria
(megabytes)

Memory usage
for mammalians

(megabytes)

4 0.670 1.081 12.990 37.603

8 2.415 18.774 15.974 77.185

16 3.771 113.313 19.615 481.486
Table 1: ​BlockTracer average time and memory consumption for bacteria and

mammalians experiments.

Table 1 shows the time and memory consumption for both experiments. It is noteworthy

the difference regarding the sequences lengths; while the bacteria strains sizes were

less than 1Mbp, the mammalians X chromosomes ranged between 80 and 160 Mbp.

There are clear differences between both experiments, as the bacteria time and

memory consumption grows linearly regarding the number of sequences in which the

blocks are traced. On the other side, the time and memory needed for the

chromosomes experiment seem to grow in faster pace. Given the differences in the size

of the sequences in both experiments, we can speculate our approach provides a block

tracing method that scales linearly regarding the number of sequences in which we

want to trace blocks, whereas the scalability with respect to the length of the sequences

involved is different.

56

6.Conclusions

Conclusions of the developed work

In the present manuscript, we have described a methodology for tracing both DNA

blocks and CSBs along different species. Additionally, an implementation of a workflow

that is time and space-efficient has been developed. Several low-coupled modules were

arranged together in a complex pipeline which is able to obtain the location of DNA

blocks that are shared by several species, in a transparent-to-the-user fashion. The

developed workflow is available in a cloud Galaxy instance, and can be executed by

any user, anywhere. The functionality of our workflow is aimed at helping Life Science

researchers to enable genetic blocks tracing, effectively enlarging their grasp regarding

the evolution underpinnings by studying the chromosomes structure and ultimately their

relevance with respect to diseases and other health issues. Our work aims to be a step

further regarding unveiling the conundrum that is the origin of life, and understanding

the development of phenotypic traits (​v.g.: behavioral traits, diseases, etc.), which can

be ultimately utilised for the benefit of humankind. Among others, the developed

workflow enables researchers to perform several studies, such as:

- Quantifying the rates of evolutionary events in species.

- Incorporating information regarding evolutionary events into other methods for

generating species phylogenies.

- Analysing the underlying distributions that govern sequence mutation in order to

predict future evolutionary events.

- Studying the consequences of evolutionary events in the species divergence.

- Validating evolutionary models.

The development of this work has thus provided a space and time-efficient method for

tracing related blocks throughout genetic sequences, which could be also generalizable

to large text files. In this sense, the potential applications of our work cover issues such

57

as (1) obtain information regarding the quantity of shared blocks between texts, (2)

provide, with an adjustable accuracy, the location coordinates of those blocks and (3)

assess the quality (​i.e.: ​the rate of similarity between related blocks) of the blocks.

Besides, a heuristic method for enlarging HSPs found in pairwise genomic comparisons

into larger pieces of information (CSBs) has also been provided, allowing the users to

have a broader vision regarding relations between sequences, as larger-sized blocks

mean the possibility of a coarse-grained approach.

Regarding the future work, our project opens the door to different studies of evolution

underpinnings. It can be used in order to study the border regions of Evolutionary

Events, where some key factors of genetic rearrangements could remain hidden.

Besides, our work can enhance the research of other kinds of shared blocks, such as

Segmental Duplications or Long Interspersed Nuclear Elements. Regarding the actual

workflow, the design decisions made during the development process allows the

modification and extension of our pipeline. Our work is thus open to enhancements, not

only regarding the actual functionalities, but also with respect to its integration with

alternative platforms and interfaces (apart from the current one, Galaxy). Besides, our

workflow was developed within the BitLab research group environment, which takes

part of the ELIXIR organisation, a european consortium devoted to Life Sciences

research throughout collaboration between different countries. Thus, ongoing and future

work in this area is guaranteed.

Conclusiones del trabajo desarrollado

En el presente trabajo se ha descrito una metodología para rastrear tanto bloques de

ADN como bloques de sintenia computacionales a través de distintas especies.

Adicionalmente, se ha llevado a cabo una implementación eficiente en tiempo y espacio

de un flujo de trabajo. Varios módulos independientes han sido organizados en un

proceso complejo que es capaz de obtener bloques de ADN compartidos por varias

especies de forma transparente para el usuario. El flujo de trabajo desarrollado está

disponible en una instancia de la plataforma Galaxy y puede ser ejecutado por

58

cualquier usuario independientemente de dónde se encuentre. La funcionalidad del

flujo de trabajo desarrollado pretende ayudar a los investigadores de las ciencias de la

vida en la tarea del rastreo de bloques, consiguiendo así aumentar los conocimientos

disponibles acerca de los mecanismos subyacentes a la evolución por medio del

estudio de la estructura de los cromosomas, información que puede contribuir a la

obtención de descubrimientos en cuanto a enfermedades y cuestiones que atañen a la

salud humana. El trabajo desarrollado pretende ser un paso más en el esclarecimiento

del origen de la vida y en la comprensión de los mecanismos de rasgos fenotípicos

(desde rasgos comportamentales hasta enfermedades), lo que puede, ulteriormente,

ser empleado en beneficio de la humanidad. Entre otros elementos, el presente trabajo

permite a investigadores/as a realizar estudios en áreas como:

- Cuantificación de los ratios de eventos evolutivos en las especies.

- Incorporación de la información sobre eventos evolutivos en otros métodos para

llevar a cabo filogenias.

- Analizar el funcionamiento de las mutaciones para predecir futuros eventos

evolutivos.

- Estudiar las consecuencias de los eventos evolutivos en la divergencias entre

especies.

- Validar modelos evolutivos.

El desarrollo de este trabajo, pues, proporciona un método eficiente en tiempo y

espacio para rastrear bloques relacionados a lo largo de secuencias genéticas. Esto

puede ser generalizable a ficheros de texto de gran envergadura. En este sentido, las

potenciales aplicaciones que cubre el trabajo desarrollado son (1) la obtención de

información acerca de la cantidad de bloques compartidos entre textos, (2) proveer, con

una precisión ajustable, la localización de estos bloques y (3) evaluar la calidad (​i.e.: el

ratio de similaridad entre bloques relacionados) de los bloques.

Además se ha desarrollado un método heurístico para la ampliación de los HSPs

hallados en comparaciones de genomas en bloques de información de mayor tamaño

(CSBs), lo que permite a los usuarios a obtener una visión más amplia en cuanto a las

59

relaciones entre secuencias, debido a que bloques de mayor tamaño significan la

posibilidad de utilizar un enfoque de grano grueso.

Con respecto al trabajo futuro, el proyecto abre la puerta a diferentes estudios sobre los

mecanismos en que se basa la evolución. Puede ser empleado para estudiar las

regiones localizadas en los bordes de los eventos evolutivos, donde, al parecer,

algunos factores claves de las reorganizaciones y mutaciones genéticas podrían

encontrarse. Por otro lado, el trabajo desarrollado puede potenciar la investigación de

otros tipos de bloques compartidos entre especies, como son las Segmental

Duplications o las Long Interspersed Nuclear Elements. En cuanto al flujo de trabajo en

sí, las decisiones de diseño tomadas durante el proceso de desarrollo permite la

modificación y extensión de nuestro trabajo. Se trata de una herramienta abierta a

mejoras, no sólo al respecto de las funcionalidades actuales, sino también en cuanto a

la integración con otras plataformas e interfaces (aparte de la actual, Galaxy). Además,

el flujo de trabajo ha sido desarrollado dentro del grupo de investigación BitLab, que

forma parte de la organización Elixir, un consorcio europeo dedicado a la investigación

en ciencias de la vida a través de la colaboración entre distintos países. Por lo tanto, el

trabajo futuro en este área está garantizado.

60

7.Bibliography

1. Hirschberg, Daniel S. "Algorithms for the longest common subsequence problem."

Journal of the ACM (JACM)​ 24.4 (1977): 664-675.

2. Heckel, Paul. "A technique for isolating differences between files." ​Communications

of the ACM​ 21.4 (1978): 264-268.

3. Ullman, J. D., A. V. Aho, and D. S. Hirschberg. "Bounds on the complexity of the

longest common subsequence problem." ​Journal of the ACM (JACM)​ 23.1 (1976): 1-12.

4. Rönnau, Sebastian, Geraint Philipp, and Uwe M. Borghoff. "Efficient change control

of XML documents." ​Proceedings of the 9th ACM symposium on Document

engineering​. ACM, 2009.

5. Maier, David. "The complexity of some problems on subsequences and

supersequences." ​Journal of the ACM (JACM)​ 25.2 (1978): 322-336.

6. Tsai, Yin-Te. "The constrained longest common subsequence problem." ​Information

Processing Letters​ 88.4 (2003): 173-176.

7. Bergroth, Lasse, Harri Hakonen, and Timo Raita. "A survey of longest common

subsequence algorithms." ​Proceedings Seventh International Symposium on String

Processing and Information Retrieval. SPIRE 2000​. IEEE, 2000.

8. Quinn, Alexander J., and Benjamin B. Bederson. "Human computation: a survey and

taxonomy of a growing field." ​Proceedings of the SIGCHI conference on human factors

in computing systems​. ACM, 2011.

9. Darwin, Charles (1872). “The Origin of Species by Means of Natural Selection, or the

Preservation of Favoured Races in the Struggle for Life​” (6th ed.). London: John

Murray.​ OCLC​ ​1185571​.

10. Wooley, John C., Adam Godzik, and Iddo Friedberg. "A primer on metagenomics."

PLoS computational biology​ 6.2 (2010): e1000667.

11. Schuster, Stephan C. "Next-generation sequencing transforms today's biology."

Nature methods​ 5.1 (2007): 16

61

http://darwin-online.org.uk/content/frameset?pageseq=1&itemID=F391&viewtype=side
http://darwin-online.org.uk/content/frameset?pageseq=1&itemID=F391&viewtype=side
https://en.wikipedia.org/wiki/OCLC
https://www.worldcat.org/oclc/1185571

12. Schaller, Robert R. "Moore's law: past, present and future." ​IEEE spectrum 34.6

(1997): 52-59.

13. Torreno, Oscar, and Oswaldo Trelles. "Breaking the computational barriers of

pairwise genome comparison." BMC bioinformatics 16, no. 1 (2015): 250.

14. Altschul, Stephen F., et al. "Basic local alignment search tool." ​Journal of molecular

biology​ 215.3 (1990): 403-410.

15. Arjona-Medina, Jose A., and Oswaldo Trelles. "Computational Synteny Block: A

framework to identify evolutionary events." ​IEEE transactions on nanobioscience 15.4

(2016): 343-353.

16. Takaoka, Tadao. "Efficient algorithms for the maximum subarray problem by

distance matrix multiplication." ​Electronic Notes in Theoretical Computer Science 61

(2002): 191-200

17. ​https://www.businessprocessglossary.com/7002/workflow (Last accessed April,

2019)

18. Afgan, Enis, et al. "The Galaxy platform for accessible, reproducible and

collaborative biomedical analyses: 2016 update." ​Nucleic acids research 44.W1 (2016):

W3-W10.

19. Wolstencroft, Katherine, et al. "The Taverna workflow suite: designing and executing

workflows of Web Services on the desktop, web or in the cloud." ​Nucleic acids research

41.W1 (2013): W557-W561.

20. Deelman, Ewa, et al. "Pegasus, a workflow management system for science

automation." ​Future Generation Computer Systems​ 46 (2015): 17-35.

21. ​https://elixir-europe.org/​ (Last accessed June, 2019)

22. McKinney, Wes. "Data structures for statistical computing in python." ​Proceedings of

the 9th Python in Science Conference​. Vol. 445. 2010.

23. Oliphant, Travis E. ​A guide to NumPy​. Vol. 1. USA: Trelgol Publishing, 2006.

24. Gusfield, Dan. Algorithms on strings, trees, and sequences: computer science and

computational biology. Cambridge university press, 1997.

62

https://www.businessprocessglossary.com/7002/workflow
https://elixir-europe.org/

25. Blum, Christian, and Maria J. Blesa. "A comprehensive comparison of

metaheuristics for the repetition-free longest common subsequence problem." ​Journal

of Heuristics​ (2018): 1-29.

26. Hunt, James W., and Thomas G. Szymanski. "A fast algorithm for computing

longest common subsequences." ​Communications of the ACM​ 20.5 (1977): 350-353.

27. Ahuja, Ravindra K., et al. "A survey of very large-scale neighborhood search

techniques." ​Discrete Applied Mathematics​ 123.1-3 (2002): 75-102.

28. Easton, Todd, and Abhilash Singireddy. "A large neighborhood search heuristic for

the longest common subsequence problem." ​Journal of Heuristics​ 14.3 (2008): 271-283.

29. Ning, Kang. "Deposition and extension approach to find longest common

subsequence for thousands of long sequences." ​Computational biology and chemistry

34.3 (2010): 149-157.

30. Blum, Christian, Maria J. Blesa, and Manuel López-Ibáñez. "Beam search for the

longest common subsequence problem." ​Computers & Operations Research 36.12

(2009): 3178-3186.

31.

https://www.ncbi.nlm.nih.gov/Class/MLACourse/Original8Hour/Genetics/nucleotide.html

(last accessed May, 2019)

32. ​https://ghr.nlm.nih.gov/primer/genomicresearch/snp​ (last accessed May, 2019)

33. ​https://www.ncbi.nlm.nih.gov/books/NBK62051/​ (last accessed May, 2019)

34. Bentley, Jon. "Programming pearls: perspective on performance." ​Communications

of the ACM​ 27.11 (1984): 1087-1092.

35. Bae, Sung Eun, and Tadao Takaoka. "Algorithms for the problem of k maximum

sums and a VLSI algorithm for the k maximum subarrays problem." ​7th International

Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.​.

IEEE, 2004.

36. Tamaki, Hisao, and Takeshi Tokuyama. "Algorithms for the Maxium Subarray

Problem Based on Matrix Multiplication." ​SODA​. Vol. 1998. 1998.

63

https://www.ncbi.nlm.nih.gov/Class/MLACourse/Original8Hour/Genetics/nucleotide.html
https://ghr.nlm.nih.gov/primer/genomicresearch/snp
https://www.ncbi.nlm.nih.gov/books/NBK62051/

37. Bae, Sung E., and Tadao Takaoka. "Improved algorithms for the k-maximum

subarray problem for small k." ​International Computing and Combinatorics Conference​.

Springer, Berlin, Heidelberg, 2005.

37. Piccolo, Stephen R., and Michael B. Frampton. "Tools and techniques for

computational reproducibility." ​GigaScience​ 5.1 (2016): 30.

38. Liu, Ji, et al. "A survey of data-intensive scientific workflow management." ​Journal of

Grid Computing​ 13.4 (2015): 457-493.

39. De Roure, David, et al. "Towards open science: the myExperiment approach."

Concurrency and Computation: Practice and Experience​ 22.17 (2010): 2335-2353.

40. ​https://galaxyproject.org/galaxy-project/statistics/​ (Last accessed April, 2019)

41. ​https://pegasus.isi.edu/documentation/tutorial_wf_generation.php (Last accessed

April, 2019)

42. ​https://usegalaxy.eu/​ (Last accessed June, 2019)

43. Langmead, Ben, et al. "Ultrafast and memory-efficient alignment of short DNA

sequences to the human genome." ​Genome biology​ 10.3 (2009): R25.

44. Li, Ruiqiang, et al. "SOAP: short oligonucleotide alignment program." ​Bioinformatics

24.5 (2008): 713-714.

45. Harris, Robert S. "Improved Pairwise Alignmnet of Genomic DNA." (2007).

46. Perez-Wohlfeil, E., Diaz-del-pino, S., Trelles, O. "Ultra-fast genome comparison for

large-scale genomic experiments." Scientific reports (2019) (accepted).

47. Vijaymeena, M. K., and K. Kavitha. "A survey on similarity measures in text mining."

Machine Learning and Applications: An International Journal​ 3.2 (2016): 19-28.

48. McKinney, Wes. "pandas: a Python data analysis library." ​see http://pandas. pydata.

org​ (2015).

49. Zerbino, Daniel R., et al. "Ensembl 2018." ​Nucleic acids research 46.D1 (2017):

D754-D761.

50. Miller, Webb, et al. "28-way vertebrate alignment and conservation track in the

UCSC Genome Browser." ​Genome research​ 17.12 (2007): 1797-1808.

64

https://galaxyproject.org/galaxy-project/statistics/
https://pegasus.isi.edu/documentation/tutorial_wf_generation.php
https://usegalaxy.eu/

51. ​http://narcisse.toulouse.inra.fr/animals/cgi-bin/narcisse.cgi (Last accessed June,

2019)

65

http://narcisse.toulouse.inra.fr/animals/cgi-bin/narcisse.cgi

