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Resumen

En este proyecto se presenta un modelo de aprendizaje profundo ca-

paz de aprender a realizar varias tareas usando el juego de 1993 DOOM

como entorno. El agente es entrenado con los ṕıxeles en crudo de la

pantalla de juego y usa una variante de aprendizaje profundo del algo-

ritmo Q-learning. Varias técnicas de optimización fueron aplicadas para

maximizar el rendimiento y los resultados.

Palabras clave: aprendizaje profundo, Q-learning, inteligencia arti-

ficial, DOOM, Q-learning profundo.

Abstract

This project presents a deep learning model able to learn how to

perform several tasks using the 1993 game DOOM as environment.

The agent is trained using raw pixels from the game screen and uses

a deep learning variant of the Q-learning algorithm. Several optimiza-

tions techniques were applied in order to maximize performance and

results.

Key words: deep learning, Q-learning, artificial intelligence, DOOM,

deep Q-learning.
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Chapter 1

Introduction

1.1. Motivation

Achieving complex behaviours using high-dimensional sensory raw data as

input is one of the main challenges of reinforcement learning (RL). Most RL

algorithms uses a combination of high-level or hand-crafted features, which

makes the system heavily rely on the quality of these features representation.

Deep learning techniques have, on the other hand, shown that it is possible

to extract high-level features from raw data, highly proved by the recent ad-

vances on computer vision and speech recognition, so it seems natural to try

these feature extraction techniques on similar problems with sensory data.

However, most successful deep learning algorithms depend on the previous

labeling of input data, which is not always possible. RL techniques overcome

this issue by learning using a scalar reward signal. Nevertheless, this signal

is often sparse, noisy and delayed in contrast with supervised learning ap-

proaches, in addition to the need of independence between the data samples.

For this project, an agent has been developed using a Deep Q-Network

to successfully maximize the rewards of some tasks using raw video data,

overcoming previous mentioned challenges.
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1.2. General goal

These project goals are the following:

Create an agent that is able to perform several tasks using the 1993 game

DOOM as environment.

Study the results obtained and possible optimizations.

Mention the challenges encountered on this task and their solutions.

1.3. State of the art

Advances in hardware, the boom of Big Data and the development of new

frameworks have put machine learning in the spotlight. New applications are

being discovered rapidly and techniques such as Reinforcement Learning (RL)

begin to gain importance. These algorithms based on RL are able to solve the

difficult problem of correlating immediate actions with delayed returns. They

can be expected to perform well in these environments where it can be difficult

to understand which actions leads to which outcome.

Back in 1995, one of the best-known success of reinforcement learning was

achieved: TD-gammon. It consisted in an agent capable to play backgammon,

achiving a super-human level. This was achieved entirely by a reinforcement

learning algorithm similar to Q-learning which approximated its value function

using a single-hidden layer Neural Network [1].

In January of 2013, the company DeepMind published a paper called ”Play-

ing Atari with Deep Reinforcement Learning” [2]. This publication presented

an agent able to learn to play Atari games using as input just the screen pix-

els. For this, they developed what they called a Deep Q-Network, which is a

variant of the classic Q-learning algorithm.

Later in 2015, this same company developed AlphaGo, an agent capable

of playing the Chinese strategy board game Go. It was the first program to
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defeat a Go world champion [3] and it was trained with thousand of games from

amateur and professional players to learn how to play the game. Recently, they

improved this algorithm into what they call AlphaGo Zero. This new agent

was not trained using human data, but simply by playing games against itself

[4].

In January 2019, DeepMind revealed AlphaStar. This AI system was able

to win a professional player at the game StarCraft II using deep supervised

learning, reinforcement learning and evolutionary computation. This agent

was trained directly from raw game data and was able to show extremely

complex behaviours [5].

1.4. Report structure

This chapter consisted on a brief introduction to this report. Chapter

2 will explain the main techniques used for the development of the agent.

Chapter 3 will discuss the technologies and the actual implementation of the

agent. Chapter 4 will show and discuss the results that it obtained and some

possible improvements that could be made. Finally, Chapter 5 will discuss

some conclusions about the work done. This report will be closed with the

bibliography and Appendix A, where one could find some UML diagrams from

this project.





Chapter 2

Background

2.1. Reinforcement learning

Reinforcement learning is an area of machine learning where the agent

learns to take actions in an environment to maximize a given reward. In

contrast with supervised learning, the desired output for a given input does not

need to be provided. The environment is usually modeled following the Markov

assumption, which implies that the probability of future states depends only

upon the present state and not on the sequence of events that preceded it (i.e.

the process is memoryless).

Considering ξ to be an environment formed by an emulator, a sequence

of actions and rewards and also considering A = {1...K} to be the set of

game legal actions that the agent can perform. When an action is said to be

performed, it means that it is emulated, modifying the internal state and game

score of ξ.

When the agent decides to perform an action, the internal state is not

observed by it though. It observes just an image xt ∈ <d from the emulator,

in this case a matrix of raw pixels from the game screen. In addition, a reward

rt is given to the agent, which may depend on the prior sequence of actions and

observations made by the agent. The agent must interact with its environment
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by selecting actions in a way that maximizes future rewards.

2.2. Q-learning

Let be S and A two finite sets of states and actions. Then a function Q

can be defined such as:

Q : S × A→ <

Before learning begins, Q is initialized arbitrarily. After each step t, the agent

which is in the state st takes an action at and receives a reward rt given by

Qt(st, at) advancing to the next state st+1.

The function Q is updated iteratively using the following policy:

The agent observes its current state st.

It selects an action to perform at.

The agent receives a reward rt and enters the next state st+1.

Adjust Qt values using a learning factor αt and discount factor γt ac-

cording to Bellman’s equation:

Qt+1(s, a) =

(1− αt)Qt(s, a) + αt[rt + γmaxaQ(st+1, a)] if s = st and a = at

Qt(s, a) otherwise

The discount factor γ determines the importance of future rewards. It is

multiplied by the greatest Q-value that can be achieved at st+1. A γ factor of 0

means that the agent will only consider the current reward. As γ approach 1,

actions will be made looking for a long-term high reward, at cost of propagating

error and instabilities [6].

Broadly speaking, what the Q-learning algorithm is doing is a look-up table

where you can see what is the reward for any given action and state. Then, the
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agent can simply perform a greedy approach and always perform the action

with the highest reward for its current state.

2.3. Neural Networks

Neural Networks are computing system made of several processing units

called neurons working in parallel. Neural Networks are used to perform sev-

eral tasks, such as pattern recognition, classification, natural language pro-

cessing, computer vision, etc.

Figure 2.1: Example of Neural Network [7].

If a Neural Network consists in several layers of neurons, structured in

layers forming a mesh where the output of some neurons is the input to others,

it is called it a Deep Neural Network (DNN). Neurons on this networks perform

a nonlinear function on their inputs, feeding forward their outputs until they

reach the output layer [8].

2.3.1. Neuron

The Neural Networks are made up of neurons connected to each other.

Each neuron has a weight value ω associated with each connection that states

the importance of this connection by multiplying it by the input x value of

the neuron. Positive weights activate the neuron while negative ones inhibit
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it. Each neuron also has what its known as its bias value b, which can be seen

as the activation threshold of the neuron.

In addition, each neuron has an activation function ϕ that is normally non-

linear which takes as input the synaptic potential h of the neuron, which is

the sum of the original input x multiplied by ω minus its bias b. This gives as

result the final output of the neuron y [9].

Figure 2.2: Artificial neuron [9].

2.3.2. Learning Process

The learning process of a neural network consists in the progressive mod-

ification of weight values w and biases b to minimize the mean error of the

network. This operation is a iterative process of forward and backward data

propagation.

The first phase, forward propagation, consists in the passing of the input

data x across the network to predict its final output y. When this is done, a loss

function is used to estimate the loss (or error) on the prediction compared to

the expected value (in the case of supervised or reinforcement learning). The

network goal is to minimize that error, which is done by gradually adjusting

each neuron weights and biases.

The second phase, back propagation, consists in the propagation of the
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error from the output layer of the network back to the input layer, adjusting

each neuron weight to minimize the overall network loss. For this, a technique

called gradient descent is used:

∆wj(k) = −η ∂E

∂wj(k)
= η · [zk − y(k)] · g′(h) · xkj

The above expression indicates how each weight wj is going to be updated

at iteration k, where η is the learning rate, zk is the expected output, y(k)

the actual output of the neural network, g′(·) is the derivative of the activa-

tion function, h is the synaptic potential of the neuron and xkj is the neuron

input[10].

2.4. Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a Deep Learning technique

which can take as input a multidimensional matrix (e.g., an RGB image)

instead of a flat vector. This gives the network the property of capture the

spatial and temporal dependencies of elements in an image, such as rotations,

scale and movement (if a series of images is provided as input).

2.4.1. Input data

As previously mentioned, the input data is a multidimensional matrix of

numbers. This allows to the network to recieve data in an RGB format, a

sequence of images, RGB-D images, etc. The role of CNN is to transform the

input image into a form easier to process for the network without losing any

critical features [11].
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Figure 2.3: Structure of a Convolutional Neural Network [11].

2.4.2. Filter

The main operation involved in CNN are convolutions, which consist in

a series of matrix multiplications between a kernel or filter and the incoming

image. The filter has the same depth as the input image and moves along it

making a matrix multiplication for each pixel in the image. All results are

then summed with the bias to generate a new one-depth image.

This process expects to extract the high-level features, such as edges and

shapes, from the input image and since it generates a new image, its output

can be forwarded to the next convolutional layer to try extracting even more

complex features.

2.5. Deep Q-Learning

As previously explained, Q-Learning consist in creating a look-up table

for each pair state-action. Although this technique performs well, it is not

scalable. Luckily, when the state of possibilities S is either continuous or

unfeasible to be stored in a table, it can be successfully modeled by a neural
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Figure 2.4: Example of convolution. Here, the filter has been applied to the
highlighted region of the image. It will move along each row from left to right,
generating a new single-depth image as output [12].

network (DQN). This network will take as input a state st and return a list of

rewards [rt1...rtn], which is the reward for each action a of the set of actions

{a1...an}.

Nevertheless, the fact of using a neural network creates some problems to

be considered. If the network takes as training inputs its current state while

playing, due to the fact that every action affects the next state, the sequence

of inputs generated will have a strong correlation. In addition, states that

have been seen at the beginning of the training can be progressively forgotten.

This issues will be discussed below.

2.5.1. Experience Replay

At any time step t of the simulation, the agent receives a tuple (st, at, rt, st+1)

that is called experience. The agent will learn from this experience and go on

to the next state st+1. This experiences have the problem of being sequential

samples from the interactions of the agent with its environment, which causes

it to overwrite old experiences with new ones.

11



Figure 2.5: Q-Learning vs. Deep Q-Learning [13].

This problem can easily be solved by the use of a replay buffer. This

buffer will store old experience tuples while the agent keeps interacting with

its environment. Each game step the agent will be trained using a small

batch of experiences from the replay buffer. This allows the network to keep

training on old experiences, that way preventing it from forgetting previously

seen tuples.

Another problem to consider is the strong correlation between experiences:

each experience was generated by the previous one, so if the agent is trained

using data from the memory buffer sequentially, it can be influenced by their

correlation. In order to prevent this, training batches should be extracted from

the memory buffer at random, breaking their correlation. This will prevent

the network from oscillating or diverging [14].

This technique allows the agent not to train directly from its environment,

which lets the agent to try different things in order to explore the state space,

saving those experiences in the replay buffer for later usage. This way the

agent avoids being just in one region of the state space, thus having this way

a better set of experiences.
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2.5.2. Learning Process

The network should try to minimize its error for each output predicted.

As previously mentioned, Q-Learning did this using Bellman’s equation. The

DQN will take advantage of the stochastic gradient descent technique and will

update its weight using the following equation:

∆wt = α[(rt + γmaxaQ̂(st+1, at, wt))− Q̂(st, at, wt)]∇wQ̂(st, at, wt)

As it can be seen, in order to calculate the network loss, the difference

between the target Q-value and the estimated Q-value is used, but the real

target is unknown. The Bellman’s equation shows that the target value is the

reward of taking the action at at the state st plus the highest Q-value of the

next state st+1 discounted by some factor.

However, the network is using its parameters for estimating both the target

and the Q-value. This produces a big correlation between the target and the

network weights updated, making both values shift at every training iteration.

This leads to a big oscillation in training and slow convergence.

To prevent this, a technique called fixed Q-targets is used. The agent will

be trained using another network with fixed weights w− that will be used

to estimate the targets value to train the agent network. After a number τ

of training steps, the DQN network weights w will be copied to the target

network.

∆wt = α[(rt + γmaxaQ̂(st+1, a, w
−))− Q̂(st, at, wt)]∇wtQ̂(st, at, wt)

And every τ steps, the DQN weights are copied into the target network:

w− ←− w
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2.6. DOOM (1993 video game)

DOOM (1993) is the first release of the Doom series. It is a first-person

shooter (FPS) developed by id Software for MS-DOS and it is considered one of

the most influential games in its genre and the whole video game history, since

it popularized the FPS, pioneered technologies of immersive 3D graphics, used

the business model of online distribution and promoted networked multiplayer

gaming.

In DOOM, the player is an unnamed space marine who must fight his way

through hordes of monster and demons from Hell. For this purpose, the player

must manage supplies of ammunition, health and armor that can be picked up.

Monsters have very simple behaviours: either they move towards the player

to bite, claw or hit him or just throw fireballs and rockets at him. Levels are

often labyrinthine and contain several traps such as crushing ceilings, fire and

toxic waste pits.

Figure 2.6: Doom gameplay screenshot.

In 1997 the game’s source code was released, leading to multiple fan adap-

tations. The game was ported to countless other platforms and its fan base

grew even more. Recently, some libraries has been created for machine learn-

ing purposes, such as VizDoom, due to the lightweight, low resolution and fast

performance of the game.
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Chapter 3

Implementation

3.1. Technologies

3.1.1. Keras

Keras is a high-level neural networks API written in Python. It provides

a friendly interface that helps fast development and prototyping[15].

Keras is able to run over TensorFlow, CNTK or Theano. For this project,

TensorFlow was finally selected due to its high popularity, maintenance and re-

cently standardizing its high-level APIs to match those on Keras[16]. The fact

that TensorFlow support GPU hardware acceleration also was an important

argument considered.

3.1.2. VizDoom

VizDoom is a library that allows to get the screen buffer information of a

copy of the 1993 game Doom. It is primarily intended for research in machine

visual learning since it allows to easily gather the visual information of the

game (screen buffer). In this project, VizDoom is used as the environment

of the agent. Its API provides ways to perform actions as the player in the

game, access the RGB channels of the screen, gather information of each step
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of simulation, such as the score for a given action and more [17].

It is based on ZDoom, which is currently the most popular modern source-

port of DOOM engine for running on modern operating systems under the

GPL licence [18]. This means that VizDoom is compatible with a range of

tools and resources that can be used to create custom scenarios. In this case,

the agent will use scenarios that were made so that the agent had to fulfill a

task and have a restricted set of movement for those. This two scenarios will

be described in Chapter 4.

3.1.3. scikit-image

In order to preprocess the images extracted from the screen buffer scikit-

image was used, which is a collection of image processing algorithms. In this

case, it was used to reduce the resolution from VizDoom frames and increase

the contrast of those images.

3.2. Hardware specification

As previously mentioned, both Keras and TensorFlow take advantage from

GPU hardware acceleration. For this reason, this agent was trained using a

GTX 1060 6GB, Intel i7-8750H, 16GB DDR4, 256GB NVMe SSD laptop.

3.3. Input processing

Each simulation step, a new frame is added to the screen buffer. This data

consist in a RGB image of 160x120 pixels. Nevertheless, this information alone

is not enough: a single frame image does not provide any information about

motion. One way of solving this issue is using a LSTM neural network [19].

These networks have a recursive structure, allowing information to persist from

one iteration to another. However, a simpler approach can be used: instead
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of using a single image as input, several frames will be stacked together. This

allows to the DQN to infer a sense of where and how fast objects are moving.

Nonetheless, this comes with some drawbacks: just as the input dimension-

ality increases, so too the DQN increases in complexity. In order to prevent

this, the size of the input data must be reduced as much as possible. First, all

the game frames can be converted to gray-scale. This reduces by three times

the input size. In addition, the agent field of view contains some areas with

little to no information or just noise, so those sections can be cropped out and

increase the overall image contrast in order to reduce noisy patterns such as

walls, ceilings, floors, etc. Finally, to further reduce the input size, the image

is scaled down to 42x42 pixels, just enough to still be able to discern the target

enemies.

Figure 3.1: Input processing pipeline.

This processing is vital to the agent training algorithm due to memory

issues. If two stacked frames were considered as the input, each experience

would consist in 2x42x42 unsigned integers. Considering that each unsigned

integer is 1 byte long, if the memory buffer contains 1.000.000 experiences,

regardless processing each frame, it would use almost 3.3GB of RAM memory

and some problems require as much as 10.000.000 experiences [2].

3.4. Agent architecture

The agent consists in a Deep Q-Network of five layers. It takes as input

a 2x42x42 vector representing an experience and outputs a 1xN vector of Q-

values, whereN is the number of possible actions. The agent DQN architecture
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can be divided on two main parts.

Figure 3.2: Model graph.

The first part consist of two convolutional layers in charge of processing the

input vector. Since it is a 2x42x42 vector, it can be interpreted as an image

with two color channels and that is exactly what these convolutional layers do.

These layers try to extract high level information about the image to be later

processed by the second part of the network. The first convolutional layer has

a kernel of 8x8 and uses 32 filters, reducing the input dimensionality to 9x9x32

and the second one uses a kernel size of 4x4 and 64 filters. The final output is

3x3x64, which hopefully contains all the high-level features.

The second part of the DQN is in charge of predicting which will be the Q-

value associated with each action. To do this, the output of the convolutional

layers must be converted to a single dimension vector by a flatten layer. Then,

this vector will go through two densely-connected layers. The first one consist

of 64 neurons and the second one of N output neurons, where N is the number
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of possible actions the agent can perform.

3.5. Populating the Replay Buffer

As previously explained, the agent will not be trained using the current

environment, but instead it will use a small batch of experiences from the

replay buffer. However, when the agent starts learning, the replay buffer does

not contain many experiences and those, although randomly selected, will

probably have a great correlation between them, which may cause the agent

to learn slower.

To solve this problem, the replay buffer is populated with some experiences

gathered by performing random actions. This experience gathering process is

quite fast since the DQN is not trained during this phase.

3.6. DQN parameters

Our DQN approach has multiple parameters to be considered, not only re-

lated to the model architecture but to the Deep Q-Learning algorithm, network

training and replay buffer as well.

In order to explore most of the state space, the agent must try actions that

can lead to a state that it has never been. The simplest way to do this is using

a parameter ε. When the agent needs to know which action to perform, it will

ask the DQN to provide the best action, but it will also have a probability ε of

not taking that action and instead doing a random one. Epsilon should start

high at the beginning and slowly decrease towards zero. This will lead to an

initial exploration of the state space, but also allows the DQN to converge.

This parameter ε is updated every game step t according to the following

function:

εt = εmin + (εmax − εmin)e−tεd
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Where εmax is the initial value of epsilon (1.00), εmin is the minimum value

that epsilon can get (0.01) and εd is a decay value. This function follows

Figure 3.3: Update function of ε.

Another parameter to consider is the discount factor γ. This value is

especially important, because in most of cases, the actual action of the agent

will not reward it with a positive value, but it will lead it to the actual goal.

For this reason, a value of 0.95 is used.

The DQN learning parameters are related to its training. The first one

is the batch size. The batch size determines the number of samples that will

be propagated through the network. The bigger this value, the better will be

the estimated gradient, making the network to fluctuate less. Nevertheless,

a smaller batch size means faster epochs and less required memory as well.

This is especially important due to the size of the dataset [20]. In this case, a

batch size of 32 samples has been used, which seems a good trade-off between

smaller fluctuations and performance.

Regarding the replay buffer, it has a max length of 100.000 experiences,

which may seem a lot but it is not as previously mentioned. It is populated

with 5000 experiences before starting the actual DQN training to minimize

correlation. A higher number of base experiences does not seem to increase

performance since randomly selecting an action does not lead to any complex
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behaviours. In addition it causes the agent to follow a kind of Gaussian series

of actions where it tends to stay in the middle of the screen due to the same

chances of going to the left or right.

3.7. Main structure

The main section of this program consists in the training of the agent. This

is done using an endless loop where the agent keeps exploring the state space,

interacting with the environment and storing experiences in the replay buffer,

while each frame the DQN is trained as well using those stored experiences.

Every time the agent performs an action, its environment emulates it prop-

erly and gives back an new state and reward. This data is what will be stored

in the replay buffer.

Figure 3.4: The agent keeps training endlessly, using ε to explore the states
space.

Furthermore, as previously stated, the replay buffer is being populated with

5000 experiences before starting any learning process. Those experiences are

just gathered performing random actions, which in this diagram is represented

by the fact of ε being 1 at the beginning of the program execution. This
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value will only change when the network actually start training and it will not

happen until the replay buffer has at least 5000 experiences stored.

In order to stop the program without losing any behaviours learned by the

agent, the DQN weights are saved every 10 episodes into a file using the Keras

API. If those weights wanted to be used, it would just be necessary to compile

the DQN and load them using Keras again.
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Chapter 4

Results

As previously stated, the main goal of the agent is to perform a series of

tasks using VizDoom as environment. These tasks were divided in two different

maps that will be called respectively ”Basic” and ”Defend the center”. These

maps are provided as part of the VizDoom library [21].

4.1. Basic

This scenario consist in a rectangular room with gray ceiling and brick

walls. The agent is spawned near one wall and a monster which is spawned

randomly somewhere along the opposite wall. The agent can only perform

three actions: go left, right and shoot. The episode finishes either when the

agent kills the monster or the time is out after 100 steps.The monster takes

just one hit to be killed and does not attack the agent.

The main goal of this scenario is to show if the DQN can develop a complex

behaviour such as determining where the monster is, align itself to aim and

hit it. This might seem a trivial task to do, but remember that the agent is

just using raw pixels from the screen to perform all of this. To encourage this,

several rewards are given to the DQN.

The agent will receive a reward of +101 points for killing the monster. This
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Figure 4.1: Frame from the agent training in the ”Basic” scenario.

is the main incentive to guide the agent. However, other factors will be taken

into account as well. The agent will receive -5 points every time it shoots and

misses the monster. This way, the agent will try to shoot just when it is sure

to hit the monster. In addition, each step in the simulation without hitting its

target, the agent will receive -1 points to encourage it to be as fast as possible

performing its task.

Results where taken after nearly two hours of training, gathering more than

100.000 experiences. To visualize the improvements made by the agent along

its training, four graphs where made. The first one correspond to a totally

random behaviour. The next three ones are the results after 1000, 2000 and

3000 episodes each.

The high scores achieved in some episodes by the totally random behaviour

and the early stages of the agent are caused when the target appears in front of

the agent and it randomly hits it. Nevertheless, it can be seen how the agent

become more consistent after more episodes of training. After 3000 epochs,

the mean score of the agent did not seem to improve, which probably mean

there was not any margin for further improvement.
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Figure 4.2: Results from the ”Basic” scenario. Each graph also shows its mean
score.

4.2. Defend the center

This second task consists in a more complex version of the previous one. It

consists in a large circular room. The agent is spawned in the exact center and

five melee-only monsters are spawned along the walls. Every time the agent

kills one monster, it spawns again after some time in another random location

near the walls. The episode finishes when either when the agent is killed or

the time is out after 500 steps. Ammunition is limited.

The goal of this task is to kill as many monsters as possible, which means

that the agent should not let be killed by allowing the enemies to come too

close and should not waste ammunition unnecessarily.

The agent will receive +1 points every time it kills an enemy by hitting it

with one shot. It will get -1 points if it dies in that episode too. This means
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Figure 4.3: Frame from the agent training in the ”Defend the center” scenario.

that in order to increase its score, it needs to last long enough to the killed

enemies to reappear and have enough ammunition to kill them as well.

New challenges appear as well, since the agent does not have access to

all the information about the environment: enemies can be on its back. This

means that, although no enemies may be in sight, the agent must actively look

for them (without spastically wasting ammunition). Distance to the enemies

must be taken into account as well. Due to the fact that the agent can only

move left or right a discrete amount, sometimes it must wait until the target

comes close enough to correctly aim and shoot it.

Episodes took much longer to complete compared with the previous task,

due to the fact that, opposite to what happened in the ”basic” scenario, as

the agent improved it meant that it would take longer to be killed and thus

to finish. After 250 episodes, almost 150.000 experiences where already stored

and 2 hours had passed.

As previously mentioned, this results took more time to gather than the

previous ones due to the greater length of each episode, which mean that the
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Figure 4.4: Results from the ”Defend the center” scenario. Each graph also
shows its mean score.

network also trained more for each episode. Similar to the previous results,

the first graph shows the score of a totally random approach.

The main problem that the agent had to learn was not to waste ammuni-

tion, since it was able to find and kill the enemies without any troubles. Nev-

ertheless it usually tend to shoot sometimes randomly. This may be caused

by the low resolution of the input data, that makes difficult for the DQN to

difference a far enemy from the background wall. However, it was not vi-

able to increase the resolution without drastically impact the overall training

performance.

4.3. Improvements

Further improvements can be applied to this project. Although these were

not too difficult to implement, they would have meant a significant increase
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in processing power requirements, so that is why they were not considered for

this project. Below are highlighted some of them.

4.3.1. Double DQNs

Introduced by Hado V. Hasselt in 2010 [22], this approach attempts solving

the problem of estimating which is the action with the highest Q-value for the

state st+1 in Bellman’s equation.

This issue is caused by the fact that the agent do not have enough infor-

mation about which is the best action to take and this can lead to a higher

Q-value than the optimal best solution and a difficult learning process.

The solution to this is using two different networks: one that calculates

the best action to take for the state st+1 (the one with a higher Q-value) and

another one to calculate the actual value of taking that action at the state

st+1.

Q(st, at) = r(s, a) + γQ(st+1, argmaxaQ(st+1, a, w), w−)

This helps reducing the overestimation of Q-values and therefore makes

training faster and more stable.

4.3.2. Dueling DQN

According to the Bellman’s equation, the DQN tries to calculate a Q-value

corresponding to how good is an action at given the current state st and how

advantageous is to be at the next state st+1. Thus, Bellman’s equation can be

rewritten as follows:

Q(st, at) = A(st, at) + V (st)

Where A(st, at) is the advantage of taking that action at that state and
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V (st) is the value of being at that state. To estimate this functions, two new

streams will be added to the model architecture and will be combined using

through an aggregation layer. This is what is called a Dueling DQN (DDQN).

Figure 4.5: Model architecture of a DDQN [23].

This will allow the DQN to learn which states are valuables or not without

having to learn the effects of taking an action at that state. This is very useful

for states where actions do not affect the environment in a relevant way [23].

4.3.3. Prioritized Experience Replay

When experiences are stored, some of them may be more important than

others although being less frequent. This is an issue considering that sampling

consist of randomly select a batch out of the replay buffer uniformly, so these

important experiences will hardly ever be selected.

Prioritized Experience Replay (PER) [24] consists in giving each experience

a probability of being selected pt, changing this way the sampling distribution.

This value will depend on the magnitude error of the estimated value since it

means that the network still has to learn that experience and will be saved in

the replay buffer as well.

pt = |δt|+ e

Where |δt| is the magnitude of the error and e is a constant value to assure

that every experience has at least a probability higher than 0 to be chosen.
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An stochastic prioritization should be used to sample the replay buffer:

P (i) =
pai∑
k p

a
k

Where a is an hyperparameter that introduces some randomness in the

experience selection. If a = 0 it would be a pure uniform distribution and if

a = 1 it would only select the experiences with the highest priorities.

Nevertheless, this produces a new problem: the fact of sampling not being

purely random introduces a bias toward high-priority experiences, increasing

the risk of overfitting. To correct this, importance sampling weights can be

used. This weights will be updated every time that the experiences are sam-

pled.

(
1

N
· 1

P (i)
)b

Where N is the size of the replay buffer and b is a parameter that controls

how much these importance weights affects learning. It starts close to 0 at the

beginning and annealed up to 1 over the duration of training.

4.3.4. Higher-level input

The advancements on hardware are making possible the use of deep learn-

ing techniques to solve complex AI problems. However, these approaches still

consume lots of memory and processing power. Although this work shows that

using barely raw unprocessed data, it still needs a large dataset and training

steps to achieve a satisfactory result. This problem could be reduced by feeding

the network with higher-level data.

Currently, new techniques are being studied by companies such as Deep-

Mind to decompose a 3D scene into components or units using just raw pixels

as input [25]. This process is being used now as part of a reinforcement learning

30



approach to play the game StarCraft II to identify the background and units in

the game [26]. This should improve data efficiency and transfer performance

on any deep neural network.

Figure 4.6: Segmentation of units from StarCraft II using a Multi-Object
Network (MONet) [26].





Chapter 5

Conclusions

Through the development of this project, it was explained the implemen-

tation of an agent capable of successfully perform several tasks on the Doom

game using a Deep Q-Network.

Results have shown that this approach was feasible, performing better in

both scenarios as episodes went on. Nevertheless, as previously stated, there

are several ways to theoretically improve these results in exchange of compu-

tational power.

Therefore, although being Deep Q-Learning a feasible technique to work

with this environments and sensory data, it may consume an excessive amount

of resources if it is not optimized through higher-features extraction or similar

techniques.

Future work will tell, as more and more complex agents are being created

using new Deep Reinforcement Learning techniques, such as AlphaStar [5],

and future advances are still before us.

5.1. Technical problems encountered

Several problems were encountered through the development of this project.

They are listed below:
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Firstly, drivers issues were found when installing the Keras library. In

order to take advantage of the GPU, Keras must be able to use the

CUDA library and had the correct driver versions. After installing these

drivers Keras was finally able to use the GPU for hardware acceleration.

Furthermore, memory was always an issue. The fact that the agent

needed such a large amount of experiences meant that it would consume

way more RAM than available. This finally was solved by reducing each

experience from the original planned size of 84x84x4 to a more feasible

one of 42x42x2.

However, this still was not enough since the replay buffer could store too

many experiences. Originally, after some research, an usage of 1.000.000

experiences was planned, but finally it had to be cut down to 150.000.

This experiences contained a lot useless information from the walls, ceil-

ings and floors. After some attempts of training, the agent was not able

to learn how to perform the task. However, after increasing the contrast

of each experience, it succeeded in both scenarios.
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Caṕıtulo 5

Conclusiones

A lo largo del desarrollo de este proyecto, se ha explicado la implementación

de un agente capaz de realizar de manera exitosa varias tareas en el juego Doom

utilizando una Deep Q-Network.

Los resultados han mostrado que esta propuesta es factible, mejorando en

ambos escenarios conforme pasaban más episodios. Sin embargo, como se ha

mencionado anteriormente, teóricamente hay varias formas de mejorar estos

resultados a cambio de un mayor coste computacional.

Por lo tanto, aunque Deep Q-Learning sea una técnica factible para traba-

jar con este tipo de entornos y datos sensoriales, puede consumir una cantidad

excesiva de recursos si no se optimiza mediante la extracción de caracteŕısticas

de alto nivel o técnicas similares.

Los futuros trabajos e investigaciones dirán, ya que agentes más y más

complejos están siendo creados usando nuevas técnicas de Aprendizaje por

Refuerzo Profundo, como AlphaStar [5], y futuros avances están aún por llegar.

5.1. Problemas técnicos encontrados

Varios problemas surgieron a lo largo del desarrollo de este proyecto. Éstos

están listados a continuación:
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En primer lugar, se encontraron problemas relacionados con lo drivers

al instalar la libreŕıa de Keras. Para que pudiera aprovechar el uso de la

GPU, Keras deb́ıa poder usar la libreŕıa de CUDA y tener las versiones

correctas de los drivers. Tras instalarlos Keras finalmente era capaz de

usar la GPU para la acceleración por hardware.

Además, la memoria siempre fue un problema. El hecho de que el agen-

te necesitara una cantidad tan masiva de experiencias significaba que

consumiŕıa mucha más RAM de la disponible. Al final esto fue resuelto

reduciendo cada experiencia desde su tamaño originariamente pensado

de 84x84x4 a un tamaño más factible de 42x42x2.

No obstante, esto segúıa sin ser suficiente ya que el Replay Buffer pod́ıa

almacenar demasiadas experiencias. En un comienzo, tras un poco de

investigación, se planeó el uso de 1.000.000 de experiencias, pero al final

tuvo que reducirse a 150.000.

Estas experiencias conteńıan mucha información inútil para el agente so-

bre las paredes, techos y suelos. Tras algunos intentos de entrenamiento,

el agente no era capaz de aprender cómo realizar la tarea. Sin embargo,

después de incrementar el contraste de cada experiencia, obtuvo éxito en

ambos escenarios.
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Appendix A

UML diagrams

A.1. Class diagram

Figure A.1: Class diagram of the project.

A class Environment was created as an interface for the actual DoomGame

class from VizDoom, reducing this way the complexity of the entity.

The main goal of the class Preprocessor is to isolate all the functions related

to preprocessing each game frame: crop each frame, increase its contrast,

downscale it and add it to the frames stack of each experience.
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The DQN class contains the actual model of the neural network. It also

has all the training parameters related to the Deep Q-Learning algorithm,

methods to store experiences in the buffer and to train itself using a batch

from the replay buffer. There are also a couple of methods to save and load

the weights of the DQN.

Finally, the replay buffer is implemented as a third class, which contains

a queue instance from python that is used as buffer and two methods to both

store and retrieve experiences from it.

Although this last class might seem pointless, it is important to consider

that other implementations Experience Replay might be more complex, such

as Prioritized Experience Replay. These approaches may select experiences

in a non-trivial way, a behaviour that should be conveniently isolated in the

ReplayBuffer class.

A.2. Sequence diagram

In Figure A.2, a sequence diagram of one iteration of the main loop can be

seen.

The agent retrieves the current state of the environment, stack this state

with the previous one and uses the Deep Q-Network predictions to retrieve the

next action. Then, it tells the environment to emulate that action, retrieving

a new state and reward for it. This experience is then stored in the replay

buffer. Next, the DQN is trained using a random batch from the replay buffer.
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Figure A.2: Sequence diagram of one iteration of the main loop. All of this
happens every game step.
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