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Pablo Garćıa Sánchez

Departamento

Lenguajes y Ciencias de la Computación
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Resumen

El objetivo que se persigue con este trabajo es analizar el rendimiento del método Monte Carlo

Tree Search (MCTS), en el entorno del juego de cartas coleccionables Hearthstone: Heroes of

WarcraftTM, buscando maximizar el número de victorias contra distintos oponentes. Para cum-

plir dicha tarea se ha realizado una versión muy parametrizada del método, que nos permitirá

probar distintas versiones y analizar según sus valores de entrada, sus resultados.

Palabras clave: Inteligencia artificial, Monte Carlo Tree Search, parámetros, Hearthstone:Heroes

of WarcraftTM.

Abstract

The objective pursued with this project is to analyse the performance of the method Monte

Carlo Tree Search(MCTS), using the collectible card game Hearthstone:Heroes of WarcraftTM

as environment, maximizing the number of victories against different opponents. To accomplish

this goal a highly parameterized version of the method has been created, which will allow us

to test different versions and to analyse theirs results according to their input values.

Keywords: Artificial intelligence, Monte Carlo Tree Search, parameters, Hearthstone:Heroes

of WarcraftTM.
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Chapter 1

Introduction

This chapter will inform the reader about the contents of this project, its motivation and

how it is structured.

1.1. Motivation

Games are considered to be a great scenario for testing artificial intelligence, as they are

closed and most of them have a huge search space where the performance of complex algorithms

can be analysed.

What’s more, games are also the biggest entertainment industry, generating $ 137.9 billion

per year [1]. It is expected to keep growing for 2020. Also, the number of people playing games

is insane. As a consequence the relevance and impact of games in human’s lives is astounding,

from affecting popular culture to increase the speed of human’s decisions making.

Its researching has also an increasing tendency, as scientists find them really interesting as

a subject of study, because of the complex problems that arise from the creation of engines

that offers unique experiences to the players. [2]
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Furthermore, Monte Carlo Tree Search(MCTS) [3] has succeeded in different types of games

from board games as Chest and Shogi to real-time video games such as Total War: RomeII

campaign AI [4]. In addition, it has also been tested in games where the information was

incomplete like Poker.

This, is the case of HearthstoneTM [5] where the search space is overwhelming and the hand

of the opponent is unknown, the aim of the project is to analyse whether the MCTS has success

in terms of win rate over other algorithms or not.

It is also worth mentioning, this method can be applied to any other type of problem which

search space can be represented as a tree, as a consequence its analysis will allow us to gain

more insight on its usefulness.

1.2. Goals

This project main goal is to create an agent that it is able to play HearthstoneTM ’s games

maximizing the number of victories. To accomplish it, a Monte Carlo Tree Search method will

be implemented as parameterized as possible in order to test some variations of the method

and compare its performance against other versions and algorithms.

1.2.1. Sub-goals

Research information about the State of the art of Artificial Intelligence and Games.

Implement an agent using Monte Carlo Tree Search techniques to play HearthstoneTM .

Create an environment to test the agent against other agents, with different decks.

Analyse those results to gain some insight of why some input values lead to better or

worse results.

Finally, explain problems encountered and future ideas to improve its performance that

have not been feasible.
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1.3. Report structure

Chapter 2 Background:

It will be explained what HearthstoneTM is, how has artificial intelligence been applied

to video games and the functioning of the plain Monte Carlo Tree Search.

Chapter 3 Methodology, design and solution implementation

It will be explained the actual implementation and the techniques used to build the agent.

Chapter 4 Experimentation and results:

It will show the conditions in which the results were made, the results and their analysis.

Chapter 5 Conclusions:

It will be presented problems encountered, future improvements to the project and self

learned contents.

Finally, a bibliography will close the report.
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Chapter 2

Background

In this chapter, concepts and rules necessary to understand the project environment will be

discussed.

2.1. Brief History of Artificial Intelligence and Games

This section aims to accomplish the researching information about AI and Games sub-goal.

Since the beginning of computers, artificial intelligence and games have been closely related,

as games are a great scenario for testing AI [2] . Firstly, with Alan Turing as one of the fathers

of theoretical computer science, (re)invented the Minimax [6] algorithm to play Chess.

Later on, Arthur Samuel invented the form of machine learning, nowadays known as Rein-

forcement Learning [7] and tested it by making it play Chekers against itself. It was thought

board games captured the essence of thought, as with a simple set of rules they were so chal-

lenging for humans.

After several decades researching tree search techniques, in 1994 Chinook [8] an agent who

played Checkers beat the World Checkers Champion Marion Tinsley.

And a few later, Chess also fell in front of computers by IBM’s Deep Blue [9], which was

mainly a minimax with some handcrafted constraints.
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The last milestone was reached in 2016 with the game Go, where an AI managed to win to

the World Champion Ke Jie, it was developed by Google DeepMind and was called AlphaGo

[10], it features a deep reinforcement learning approach mixed with a tree search approach

specifically Monte Carlo Tree Search.

Not only does AI have been applied to board games but also is becoming popular the

problem of procedural content generation [11] which open a huge field of opportunities

for AI to explore. This phenomenon starts with the game Rogue in 1980, and still is far from

disappearing with the latest approaches such as the Chalice Dungeons of Bloodborne (Sony

Computer Entertainment, 2015) or No Man’s Sky (Hello Games, 2016).

There are also other projects related between HearthstoneTM and AI like automated playtest-

ing through evolutionary algorithms [12] or data mining challenges. [13]

2.2. Monte Carlo Tree Search

Monte Carlo Tree Search, known also as MCTS is a best-first search technique that doesn’t

need a evaluation function as priors algorithms such as minimax do.

The core concept of the algorithm revolves around the idea of building a tree of possible

future states of the game, throwing multitude of games simulations and learning from its results.

Figure 2.1: Monte Carlo Tree Search stages

A definition of its behaviour can be understood through its following stages as shown in

Figure 2.1:
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2.2.1. Selection

Only if the state is in the tree, a selection of which child of a certain node should be used

is made. This is usually done by a mixing of exploitation of the best nodes so far, and a factor

of exploration of the less visited nodes.

2.2.2. Expansion

When a leaf is found, meaning the next game state is not found, the tree adds the next

state and starts to simulate.

2.2.3. Simulation

From that point it will simulate the rest of the game assigning random moves to each player

until it ends, then when it reaches the end, it will return if the game was won or lost.

2.2.4. Backpropagation

All the nodes that took part in the process from the beginning of the tree down to the point

where the game started to be simulated updates their values depending on the results of the

simulations and always increasing the number of times each node was visited.

2.2.5. Advantages

One of the main advantages it has is not requiring an evaluation function in order to work

properly as it retrieves this information from the numerous simulations until the end of the

game.

Other interesting fact is, it can be stopped at any time yielding a decision based on the

most promising movement already found. It has not a definite end, so a maximum time should

be given.

Its tree grows asymmetrically as it balances between exploration and exploitation.
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2.3. Hearthstone: Heroes of Warcraft TM

HearthstoneTM is a collectible Card Game released by Blizzard Entertainment in 2014,

available for PC and phone, that had achieved over 100 million players by November 2018.

It is a turn-based card game where the player plays against other player or against an

artificial intelligence, victory is achieved by reducing the health points of the foe to zero.

2.3.1. Collectible Card Games

It is a type of strategic games [14] where sets of cards are released and specifically designed

to be collected and played with.

Usually this type of games first start with a classic/basic set of cards and afterwards new

expansions add new cards, that interacts with the older sets changing the best decks that were

currently discovered by that time.

One if not the most representative game of this type is Magic: The Gathering [15], released

in 1993 by Wizards of the Coast, which lays the foundations of both players having a board

where they could place creatures with attack and health to fight and reduce each players health

points.

Nowadays this design choices can be found in many collectible card games, however at that

time, it was the first of its kind. HearthstoneTM core mechanics are based on Magic’s designs

ideas, but has also done enormous contributions to this genre by adding fresh mechanics, solving

some concepts issues and developing one of the first online and user friendly collectible card

game.
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2.3.2. Rules and Interface

HearthstoneTM consists of two opponents battling in turns until one of theirs health points

decrease to zero or less. A player can only interact with the game while it is its turn.

Figure 2.2: Example of a HearthstoneTM game

Each player has a hand with cards, and a board where minions can be summoned or played

as it can be seen in Figure 2.2. Each card has a mana cost that must be fulfilled in order to

play it, each player is given a maximum mana increase when their turn starts, draw a card and

their previous amount of mana refilled. The maximum amount of mana is 10. [16]

Both players start the game with a deck made of 30 cards. At the beginning, the first player

starts with 3 cards and is able to choose for each card if they want it to be in their hand or

throw it back to the deck and then draw a new card for each one they have returned.

The second player, to equalize the fact they start second, starts with 4 cards plus a coin,

that is a special card that gives an extra mana for the turn it is played.
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If there is a situation where a deck is empty, each time that player draws a card from it,

instead it will receive a point of damage for the first time, the second time it will receive two

and so on.

2.3.3. Possible actions per turn

A HearthstoneTM turn lasts a maximum of 75 seconds, and the player can do whatever

number of actions he wants within the time of the turn, provided they do not break any of

the other rules mentioned before, such as playing a card if they do not have mana enough or

attacking with a minion if it has already attack or was played that turn.

End turn task

Hero power

Each player depending on its class has a different hero power, this is an action that can

only be done once per turn and always costs 2 mana.

Play a card

There are several types of cards:

• Minion: it has attack, health, a cost, and may have also a text that produces an

effect, when played goes into the board and from the turn after is played it can

attack.

• Spell: it produces an instant effect upon playing its mana cost, it doesn’t remain on

the board as minions do.

• Weapons: it is equipped to your hero when the mana cost is paid and only one can

be active at a time, it has an attack value and durability values that stand for the

number of attacks left before it gets destroyed.
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Minion attack

Minions, a turn after being played can attack the enemy hero or the enemy minions. If an

enemy minion has taunt ability it has to be killed first to be able to attack other minions

or the enemy hero. Minions by default can only attack once per turn.

2.4. HearthstoneTM AI Competition

It is a HearthstoneTM competition focused on AI [17] that has been celebrated in 2018 and

will be celebrated again in July 2019, this time it will be part of the IEEE Conference on

Games [18].

Its main purpose is to make a tournament of AI agents that will play against the others

using 3 concrete decks known and other 3 decks that are unknown to the participants, in order

to make an agent that knows how to play with any given deck.

There are several rules as not cheating looking the opponents hand or having a maximum

time to make a decision for each turn.

There is a list in its official web page [19] of the agents resulting from 2018, so to test the

behaviour of the approach followed, those agents will be used to test its quality.
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Chapter 3

Methodology, design and solution

implementation

This chapter aims to explain the environment in which the project has been executed, the

behaviour the crafted agent has and the parameters it receives to change its behaviour.

3.1. Environment and technologies

Right after the idea of creating an AI for HearthstoneTM , a deep research began on how to

connect the agent with the real game and which programming language would suit the project

necessities.

This research ends up with these results:

3.1.1. Simulators

At the end, the only choice was to use a simulator between the following options as the

game’s code was private and could not be accessed.
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Metastone

It is written in Java, and its main focus is for analyzing card values, deck building tools

and performance evaluation. It also allows users to create new custom cards and offers a

fair simulator of the behaviours of HearthstoneTM .

It was an option to be taken as it is reliable as a simulator of the game, and especially

because there are several AI that has been tested in this simulator before. [20]

Brimstone

It is a simulator written in C#, which focuses on being as fast and simple as possible for

developers to build and test AI, card balance, new mechanics etc.

It would definitely be the option to choose if it were not because it is under heavy

development at the moment(June,2019) [21]

Sabberstone

This simulator places all the focus into AI for HearthstoneTM developers, to be easy to

understand, offers great communication with the game states and supports calculating all

the available options for a player and manage the tasks that are available for the agent.

It is written in C# .Net Core.

This was the option taken as its features are a great support to develop and experiment

with the created agent. It is also under development, but at a much later stage of the

process. [22]

3.1.2. Visual Studio

Visual Studio 2017 Community has been used as the Integrated Development Environment

as well as C# [23] as the programming language for the project. It is important to have .Net

core 1.1 installed when installing Visual Studio for a correct functioning of Sabberstone.
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The project its divided in several packages, where SabberstoneCoreAI has all the important

files that may be modified by the developer. Other packages like SabberstoneCore mainly,

contribute to the proper functioning of the HearthstoneTM s mechanics and its simulation.

3.2. Implementation

In this section it will be explained the behaviour of the created agent. The only requirements

to communicate with Sabberstone is to extend a class called Abstract Agent and implement its

methods with the desired behaviour.

3.2.1. Monte Carlo Tree Search adaptation to HearthstoneTM

When applying the Monte Carlo Tree Search technique to HearthstoneTM there are some

aspects to consider.

At first glance, a possible approach would be to perform a MCTS execution for the whole

turn and afterwards return the sequence of actions resulting from it. But, as HearthstoneTM ’s

cards do not have a deterministic behaviour when played, an increase in its performance will be

that, after one MCTS execution an action is made. Then, the turn has not necessarily ended.

Therefore, another MCTS could be launched until an end turn task is performed and the turn

ends.

Following this approach every time an action is going to be made we know the exact state

of the game resulting from previous actions. So, the actions are more accurate to the current

game state. This, was the followed approach. [24]

Another adaptation that has to be done because of HearthstoneTM restrictions happens

while simulating, MCTS is defined to reach the end of the game where whether a player win

or lose is known so, it can backpropagate the results.
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On the contrary, HearthstoneTM does not allow us to simulate random moves from the

opponent, because although we would not look directly at the opponent’s hand, when playing

his cards, its behaviour can be inferred in such a way that at the end it will be cheating. To

avoid that problem an estimator function of the state has been developed to guess on what

percentage a state is a lose or win for a player.

3.2.2. Nodes structure

Figure 3.1: Node structure class view

MCTS algorithm requires a tree made of nodes which have the following attributes as it

can be seen in Figure3.1.

Task

It holds an action represented by the node.

Total value

It represents the number of guessed wins the node would get if its action is made.

Times visited

It represents the number of times that node has been visited.
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Depth

It stores at what depth of the tree the node is. It is information required for the tree

maximum depth parameter to work.

Parent

It stores the node right above the current node. Or null if it is the root node.

Children

It stores a list of the nodes right under the current node.

3.2.3. Main loop

If there is only one possible action, it is directly selected without running the Monte Carlo

Tree Search algorithm.

Firstly, the tree gets initialized by having an empty root with all the possible actions as

children, the information of what actions are allowed, is carried out by the simulator.

Figure 3.2: Main loop diagram

As mentioned in subsection 2.2.5. the MCTS algorithm does not have an end per se. As a

consequence, the different stages of the MCTS will iterate over and over until a maximum time

its reached, as shown in the Figure 3.2. For each iteration of the main loop, the stages simulation

and backpropagation will be repeated depending on the number of simulations parameter.

Finally, a decision of which action is selected is made based on the final decision making

policy parameter. Summarizing it will select the task of one of the root’s children nodes.
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3.2.4. Selection

This method is in charge of iterating the tree selecting the most interesting paths until it

reaches a leaf.

For each child of the root node, a score is calculated to evaluate how interesting each node

is, for this purpose two tree policies has been developed, the node with the maximum score is

used and the task inside of it is simulated to have a copy of what could have happened after

doing the task of the node.

But a decision has not been made yet, only if the selected node is a leaf in the tree we go

to the next stage. If not, it recurs with the selected node as the root of the next recursion.

3.2.5. Expansion

This method is in charge of expanding the tree with available actions after selection.

In case the node coming from selection, has an end turn task, where we could not expand

because it will no longer be our turn if we do so, or the node has been visited zero times or

the tree maximum depth is reached, then expansion would return the current node, given from

selection, to start simulating from it.

If none of those cases occurs then the tree will be expanded with the available options from

the node given by selection. The first node created will be chosen, as no information about

them is known it will not matter which one is chosen, a simulation of the new node’s task will

be done, so the virtual state of the game for future simulations is maintained and the simulation

stage will start from this new node.
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3.2.6. Simulation

Its main purpose is to simulate from the node given until an end turn task is found, meaning

the end of my turn.

While the game do not reach the end or an end turn task is found, it will keep simulating

updating in each of them the virtual state of the game, the selection of which node will be the

next to simulate is done by a simulation policy explained in the parameters below. When the

loop ends by any of the two reasons the estimator function will be called and its value returned.

3.2.7. Backpropagation

It is in charge of backpropagating the results, from the node the simulation started all the

way up to the root of the tree. Updating all the nodes in the path, adding one to the number of

visits of all the nodes traversed and adding the value of the estimation, given from simulation,

to the total value of the nodes traversed.

Figure 3.3: An iteration of the algorithm

To summarize, a more detailed flow diagram as shown above in Figure 3.3 give an idea of

an iteration of the algorithm.
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3.3. Parameters

A way of making variations to the MCTS could have been done in several ways, but the

followed approach was to create a set of parameters that could influence the behaviour of the

MCTS, so different variations could be easily created and it could be analysed which parameters

were the most influential to the agent. After doing so the implementation sub-goal mentioned

in subsection 1.2.1 will be fulfilled.

The followings parameters are the ones used to create variations. Most of them have already

been mentioned above.

We will use this names as an easy way to refer to them:

let total victories of a node be vi

let times visited of a node be ni

let the number of iterations of the main loop be N

let the explore constant be C

let the state of the tree be Si

let the heuristic function be H

3.3.1. Parameters affecting the Main Loop

Max time

It is the maximum time the algorithms is allowed to be running, as mentioned before, it

could stay running forever and also be stopped at any given time. As much time is given

it should get better results because more simulations could be done, therefore the search

tree will be more explored.

The range of values considered was: [1.0, 1000.0] ms for each action the player do.
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Number of simulations

It is the number of times a simulation is done from a node. Plain MCTS would only

do one simulation from a node. But, by doing several simulations there is a lot of time

saving that could be use for more simulations, instead of traversing the tree in order to

do just one simulation at a time as plain MCTS does.

That time saving comes with a cost, as more simulations are done from a single path, if

time runs out to quickly, there will be only a few branches explored, so it is not likely to

get a good result.

The range of values considered was: [1.0, 10.0]

Final decision making

It is in charge of deciding which node of the root’s children should be selected after the

maximum time its reached. This are the approaches considered.

– Maximum victories

The action taken would be the one with the maximum number of total victories.

Action(Si) = max(vi)

– Maximum visited

The action taken would be the one with the maximum number of times visited.

Action(Si) = max(ni)

– Maximum victories and visited

The action taken would be the one with the maximum number of times visited plus

the number of total victories.

Action(Si) = max(ni + vi)
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– Maximum victories over visited

The action taken would be the one with the maximum the number of total victories

over the number of times visited.

Action(Si) = max(
vi

ni
)

– Maximum UCB

The action taken would be the one with the maximum Upper Confidence Bound(UCB).

Action(Si) = max(
vi

ni
+ C ∗

√
lnN

ni
)

3.3.2. Parameters affecting Selection

Tree Selection Policy

When selecting, there should be a policy to decide which paths should be explored so,

two approaches has been developed:

– UCB1

The Upper Confidence Bound(UCB) manages to generate a balance between ex-

ploitation and exploration since the nodes that have never been explored obtain a

boost in its score so, there are no unexplored branches and at the same time the

most promising ones also obtain score from their number of victories, but not as

much as it starts to eclipse the other branches.

Score(Si) =
vi

ni
+ C ∗

√
lnN

ni
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– UCB1 Heuristic

This approach add some specific domain knowledge to the UCB approach, this

knowledge is added with an heuristic that acts as an evaluation function. Such

heuristic owner is Pablo Garćıa Sánchez, co-director of this project, who had pre-

viously made an agent for the mentioned in Section 2.4., and which agent used the

heuristic, I am going to use.

The final score will be as follows:

Score(Si) =
vi

ni
+ C ∗

√
lnN

ni
+ HeuristicImportance ∗ H

ni

The mentioned heuristic used the following parameters, that were optimized by

Pablo Garćıa Sánchez using evolutionary algorithms:

[hero health reduced, Hero attack reduced, minion health reduced, minion attack

reduced, minion killed, minion appeared, secret removed, mana reduced, minion

health, minion attack, minion has charge, minion has deathrattle, minion has divine

shield, minion has inspire, minion has life steal, minion has steal, minion has taunt,

minion has windfury, minion rarity, minion mana cost, minion poisonous]

Importance between Heuristic and UCB1

This parameter balances the importance given to the specific domain knowledge of the

game over the UCB1 scoring system. If it is too high it will almost transform the MCTS in

an algorithm similar to a greedy approach, but even worst because it would be disturbed

by the other stages of the MCTS. On the other hand if it’s too small it will transform

UCB1 Heuristic approach to be almost identical to UCB1 approach.

The range of values considered was: [0.01, 5.0]
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UCB1 Explore constant

It balances how much importance should the exploration factor have over the exploitation.

As much higher this value becomes it will tend to explore all the paths possible but will

not focus enough time into exploiting, the opposite will happen if it is too small.

The range of values considered was: [1.0, 3.0]

3.3.3. Parameters affecting Expansion

Tree maximum depth

It determines how big the tree is allowed to be made. By changing this value it changes

how many far nodes are created from the root node that is the actual node that has to

made the decision at the end. So, if it is too big it may happen that there is information

gathered that is so far away from the actual state of the game that may disturb the

current decision values. In contrary, if it is too small the only information that is going

to be affecting to the decision are the closest nodes to the root.

The range of values considered was: [1, 15]

3.3.4. Parameters affecting Simulation

Tree Simulation Policy

When simulating there are a few possible approaches to select which is the node that

will follow the one that is currently been simulated.

The approaches considered are the following:

– Random policy

It will select a random node between the possible children from the node that is

currently been simulated. It is the approach the plain MCTS uses and it has the

advantage that is really fast.
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– Greedy policy

It uses the score resulting from the score method of the agent created by Pablo

Garćıa Sánchez to select which of the nodes to simulate next seems more appealing

to the MCTS agent.

Node(Si) = max(Hi)

Children considered while simulating

This parameter operates within the Greedy policy and it chooses which percentage of the

possible nodes should be taken into account as the scoring method of the greedy might

be too much time consuming. If it is too small it will lose too much information as only a

few of the children would be taken into consideration, but if it is too large it will consider

every possibility but it may do less iterations of the whole algorithm.

Once a percentage is selected it will get that percentage of the children available at

random rounding up.

The range of values considered was: [0.0, 1.0]

Estimation function

As mentioned in Subsection 3.2.1. an estimation function is required in order to evaluate

how won or lost a game is, as HearthstoneTM rules does not allow us to do anything in

the opponent’s turn.

Firstly, a way of scoring a given state of the game has to be developed and the following

approaches were considered:

The parameters shown in upper case in the following formulas are inputs values that has

not been optimized, but handcrafted.
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– Linear estimation

It will consider all the values as if they have a linear progression.

Score(Si) = heroHealth * HEALTH IMPORTANCE +

heroArmor * HEALTH IMPORTANCE +

(weaponAttack * WEAPON ATTACK IMPORTANCE +

weaponDurability * WEAPON DURABILITY IMPORTANCE) +

statsOnBoard * BOARD STATS IMPORTANCE +

handSize * HAND SIZE IMPORTANCE +

deckRemainingCards * DECK REMAINING IMPORTANCE +

maximumMana * MANA IMPORTANCE +

secretsNumber * SECRET IMPORTANCE -

overloadMana * OVERLOAD IMPORTANCE

– Gradual estimation

It will consider all the values as linear but health, armor, hand size and cards

remaining in the deck.

Score(Si) =
√
heroHealth * HEALTH IMPORTANCE +

√
heroArmor * HEALTH IMPORTANCE +

(weaponAttack * WEAPON ATTACK IMPORTANCE +

weaponDurability * WEAPON DURABILITY IMPORTANCE) +

statsOnBoard * BOARD STATS IMPORTANCE +
√
handSize * HAND SIZE IMPORTANCE +
√
deckRemainingCards * DECK REMAINING IMPORTANCE +

maximumMana * MANA IMPORTANCE +

secretsNumber * SECRET IMPORTANCE -

overloadMana * OVERLOAD IMPORTANCE
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– Value estimation

It will consider, instead of the stats of the cards and minions, the cost of them.

Assuming HearthstoneTM is balanced, the cost of a card should give a fair average

of the value of that card.

Score(Si) = heroHealth * HEALTH IMPORTANCE +

heroArmor * HEALTH IMPORTANCE +

weaponCost * WEAPON COST IMPORTANCE +

minionsOnBoardCost * MINION COST IMPORTANCE +

secretCost * SECRET COST IMPORTANCE +

handCardCost* CARD COST IMPORTANCE +

deckRemainingCards * DECK REMAINING IMPORTANCE +

maximumMana * MANA IMPORTANCE -

overloadMana * OVERLOAD IMPORTANCE

Once the scores of each player has been collected, the following formula created by myself

to try to normalize the differences between the scores of the players, will give us how won

or lost the game is.

Meaning 1, as the result of the estimation, the MCTS agent is absolutely winning with

the state given, provided the game ended at that time, 0 the MCTS agent is definitely

losing the game with the state given and 0.5 the MCTS agent and the opponent have

equal possibilities of winning.

Let Score1 and Score2 be the scores resulted from one of the approaches shown above

for each player.

WinEstimation(Si) =
Score1− Score2

max(Score1, Score2) ∗ 2
+ 0.5
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Chapter 4

Experimentation and results

In this chapter, it will be explained how the results from the experimentation were gathered,

which were the actual results and an analysis of them.

4.1. Experimentation environment

All the experimentation was developed on my personal computer and several scenarios were

created to test the performance of the MCTS agent variations.

4.1.1. Machine characteristics

The machine used to carry out this tests was a laptop-Q80D2RF7 with Windows 10 as its

operative system, an Intel(R) Core(TM) i7-6700HQ 2.6 GHz processor, 8GB of RAM memory.

4.1.2. Decks employed

For this test three different decks were selected according to the best decks in Whisper of

the Old Gods expansion [25]:

Meaning aggro, mid-range and control the pace at which each deck is meant to be played:
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Aggro, really fast it should capitalize on killing the opponent quickly

Mid-range, capitalizing on having a strong enough early plays, but having some cards

with high mana costs.

Control, it capitalize on stalling the game in the early plays, so after a high maximum

mana is reached they have higher costs cards than their opponents.

The decks used were:

Aggro shaman Mid-range hunter Control warrior

Figure 4.1: Decks used for the tests
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4.1.3. Agents employed

The different agents used for the tests were:

Greedy

This was the agent developed by Pablo Garćıa Sánchez, co-director of this project. It

uses a greedy approach having an evaluation function for all the possible actions and

choosing the one who has the biggest score. It finished second in the HearthstoneTM AI

competition of 2018.

Tyche

Kai Bornemann developed this agent and finished third in the HearthstoneTM AI compe-

tition of 2018. It follows a MCTS approach too, with some variants.

The following five agents are variants with different parameters of the MCTS developed in

this project. Some common values for the parameters of this five agents, chosen by my personal

experience are:

– UCB1 Explore constant = 2

– Number of simulations = 1

– The parameters used for the Heuristic of Pablo Garćıa Sánchez used in the Selection tree

policy

– Parameters for Linear estimation were always this:

Weapon Attack = 0.7 , weapon durability = 0.4 , health importance = 0.4 , board stats

importance = 0.9 , hand size importance = 0.4, deck remaining importance = 0.01 , mana

importance = 0.02 , secret importance = 0.4 , overload importance = 0.3

– Parameters for Gradual estimation were always this:

The same values as linear but the followings: health importance = 4.5 , hand size impor-

tance = 2.5 , deck remaining importance = 0.08
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MCTS1

Final decision making = Maximum victories over visited

Importance between Heuristic and UCB1 = 10

Selection tree policy = UCB1

Tree maximum depth = 1

Tree simulation policy = Greedy policy

Estimation function = Linear estimation

MCTS2

Final decision making = Maximum victories over visited

Importance between Heuristic and UCB1 = 0.1

Selection tree policy = UCB1

Tree maximum depth = 1

Tree simulation policy = Greedy policy

Estimation function = Gradual estimation

MCTS3

Final decision making = Maximum victories over visited

Importance between Heuristic and UCB1 = 1

Selection tree policy = UCB1

Tree maximum depth = 3

Tree simulation policy = Random policy

Estimation function = Linear estimation
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MCTS4

Final decision making = Maximum victories

Importance between Heuristic and UCB1 = 0.1

Selection tree policy = UCB1 Heuristic

Tree maximum depth = 1

Tree simulation policy = Greedy policy

Estimation function = Linear estimation

MCTS5

Final decision making = Maximum victories over visited

Importance between Heuristic and UCB1 = 0.35

Selection tree policy = UCB1 Heuristic

Tree maximum depth = 10

Tree simulation policy = Random policy

Estimation function = Linear estimation

4.1.4. Description of the tests

A class called Tournament was created to perform all the competitions depending on the

number of decks and agents involved. After the program finish it will create a .csv file with all

the information related to the games played.

The tests were divided in four stages having the following conditions. And each of the stages

being repeated a number of times to reduce the randomness of the games played, being for this

case 13 repetitions.

Stages one, two and three followed the same pattern of all the players playing two games

against each other, one playing first and one playing second and using the same deck for the

whole stage for all the agents, one deck for each stage.
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In stage four all agents play against all other agents twice one playing first and one playing

second. But this time with all available decks, unless both have the same deck, because this

should have been tested in stage one, two or three depending of the deck.

4.2. Stage one: Aggro shaman

After 546 games have been played using only Aggro shaman deck, the following results were

gathered:

Figure 4.2: Stage one: Aggro shaman results

As it can be seen in Figure 4.2 in average it seems that MCTS3 is the best agent who plays

aggro shaman, this deck is fast and capitalize on doing damage to the enemy hero. For the

longest time 1000ms the winner is MCTS1.
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4.3. Stage two: Mid-range hunter

After 546 games have been played using only Mid-range hunter deck, the following results

were gathered:

Figure 4.3: Stage two: Mid-range hunter results

Figure 4.3 shows that Tyche is the average winner of this stage, the required behaviour to

win with this deck would be a balance a between using their cards in the best moments but

without being to slow. For the longest time the winner is MCTS1 again.
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4.4. Stage three: Control warrior

After 546 games have been played using only Control warrior deck, the following results

were gathered:

Figure 4.4: Stage three: Control warrior results

Figure 4.4 is a match were the agents should optimized their resources available up to the

maximum point. Greedy is the winner in average and another time MCTS1 wins for the longest

time.
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4.5. Stage four: Free-for-all

After 3276 games have been played using all the decks between all agents, the following

results were gathered:

Figure 4.5: Stage four: Free-for-all results

Up to this point it can be seen that although Greedy and Tyche approaches have varied they

results a lot between the different decks the MCTS variants have remain with similar results

independent of the deck being used because they adapt to the deck requirements through the

simulation process.

As it shows the Figure 4.5 the average winner is Greedy because it not depends on the time

used. However the longest time winner is MCTS3 in this case closely followed by MCTS1. My

personal impression of why now MCTS3 have more wins in free for all when MCTS1 has been

winning all the other stages is that MCTS3 uses a bigger Tree Maximum Depth allowing him

to gather more complex information resulting from the battles between different decks.

37



4.6. Final results

This results were obtained by adding up all the stage’s scores, giving the amount of 4914

games been played for each time.

4.6.1. Decision time: 1ms

Figure 4.6: Final results for 1ms

As it can be seen in Figure 4.6 the Monte Carlo Tree Search approaches seems not to work

well with too less time, probably because they do not have time enough to explore the sufficient

amount of tree paths. It seems that the two approaches with a higher Tree maximum depth,

MCTS3 and MCTS5 achieve better results as a consecuence of gathering information faster by

storing it in several nodes of the tree instead of just one, as MCTS1, MCTS2 and MCTS4 does.
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4.6.2. Decision time: 10ms

Figure 4.7: Final results for 10ms

At first glance, Figure 4.7 shows that after having a bit more time the MCTS approaches

starts to explore most of the tree so, they are getting closer results to the reference agents,

Greedy and Tyche. MCTS3 had the highest increase in comparison with 1ms and this happens

because it is using a random policy for simulating which explores more than exploit the best

path, in contraposition with the greedy one that focuses more on the best paths so also requires

more time to get to its full potential exploring the most hidden paths.
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4.6.3. Decision time: 100ms

Figure 4.8: Final results for 100ms

As it can be seen in Figure 4.8 MCTS3 seemed to have reached the point with 10ms to

explore most of the tree and that is why it has not keep increasing its performance at the same

ratio. This, is also the first time that some of the variants wins to the reference agents and not

only one but three of them MCTS1, MCTS2 and MCTS3, being MCTS1 and MCTS2 identical

with the exception of the estimation function. The reasons why these variations have reach so

good results is because by using a greedy policy for simulating and having time enough those

hidden paths mentioned before can now be reached.
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4.6.4. Decision time: 1000ms

Figure 4.9: Final results for 1000ms

Finally the last and most important test, Figure 4.9 shows clearly how MCTS seems to

operate better with the sufficient amount of time. This time all the variants but MCTS5 has

won to the reference agents. MCTS4 due to the use of the heuristic in the selection policy and

in the simulation policy has been the one who has needed more time than anyone else to reach

to a point were the most of the tree its explored.
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4.7. Best average agent and conclusions

This section should not be considered as a reference of the performance of the agents, rather

it is a representation of how fast the MCTS explores their trees or a reminder that the Greedy

approach does not use time to work so they results in all times is the same one, with the

variance of the other agents improving or worsen.

Figure 4.10: Final results average

It can be seen in Figure 4.10 that MCTS1, MCTS2 and MCTS4 until a time of 100ms or

1000ms did not quite explore most of the paths, therefore their average values are not that

good.

4.7.1. Conclusion of results

The winner of this tournament is MCTS1 because it has achieved the most number of

games won at the maximum amount of time. It have to be considered that a HearthstoneTM

turns longs for 75 seconds, and with an average of 4-5 actions per turn in my own expe-

rience playing, means that having 1000ms per action to ”think” it is not an issue.
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It is also worth mentioning what parameters of MCTS1 makes him the winner. One of the

key parameter was the Tree maximum depth = 1, because it seems that if the algorithm

focuses only on the next action to do and gather information with simulations from those

points that information seem to be better for deciding, also having a greedy policy for

simulating did give him some advantage over others similar like MCTS3. However, I do

not think that parameter did too much of a difference for its performance in comparison

with the other possibility, Random policy. I can not assure that the linear estimation

function is better than the gradual one (MCTS1 vs MCTS2) as the parameters of the

gradual one are really complicated to guess them right for a human.

Although being MCTS1 the winner of this tournament, after all this tests it can be

concluded all of the variants, even though working so differently on the inside, reach a

similar results when they get to explore most of their trees but, require different amounts

of time.
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Chapter 5

Conclusions

Through the development of this project, has been explained what is Monte Carlo Tree

Search technique and a parameterized approach to how could an agent play HearthstoneTM .

The obtained results are satisfactory, winning to two well rounded agents that achieved a

great results in the HearthstoneTM AI Copetition means the resulted agent achieve an efficient

performance, and will probably keep getting better if their parameters get optimized.

Therefore, the Monte Carlo Tree Search technique seems to be pretty good for HearthstoneTM

environment due to the inherited randomness of the game. It appears to find the best paths of

the tree quicker than other tree search techniques does, because it relies mainly on simulations

to discover it, instead of an evaluation function.

5.1. Improvements and future development

Some other functions as heuristics to the tree selection policy could be added to see if they

are better than the one used.

Other improvement could be allowing the simulation stage, to go through the opponent’s

turn using only the information that is already known to the MCTS agent, as minions on board

or the number of cards in hand, so the agent will not only take into account its own turn but

also some of the opponents plays and the MCTS agent next turn.
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Without doubts the most important improvement and future development would be to

optimize, by an optimizer, the parameters involved in the current state of the agent, as most

of this parameters have been handcrafted by personal experience.

In addition, it is consider to try to search for other agents that uses different techniques as

evolutionary algorithms or similar to test MCTS performance against other Artificial intelli-

gence techniques that may not have been tested yet in HearthstoneTM environment.

Finally, I will try to submit the resultant agent to the 2019 Hearthstone AI Competition

and a further article might be written when the parameters are optimized.

5.2. Personal learning

I have learnt a whole lot of things by developing this project.

Starting with, using Latex technology to write this report, that I have never used before

and turned out to be pretty handy and powerful.

Secondly by practising my writing English skills, by doing this report.

I have learnt how to develop a whole project from the beginning: researching, reading doc-

uments, implementing and testing as well as organizing myself to fulfilled the milestones

I proposed.

I have learnt the Monte Carlo Tree Search technique and how interesting could it be to

think about possible improvements for a given algorithm.

Finally, I learnt how tedious is to do experimentation of Artificial Intelligence, since it

takes a long time for the tests to finish, and the number of games in this case should not

be smaller or there may be too much variance involved in the results.
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5.3. Technical problems encountered

Firstly, I found quite late in the process of development, I was cheating because I was

simulating the future plays of the opponent without looking directly to his hand, but

in the end using its cards so the information of which cards it is going to play could be

inferred by the MCTS. Afterwards this issue was solved by stopping the simulations when

my turn ends.

A parameter to reuse the tree for all the decisions involved in the same turn was consid-

ered, meaning for the first execution of the MCTS in the same turn a tree is generated

and after an action is selected, the turn does not necessarily have finished, so the next

MCTS to make a decision in the same turn could reuse parts of the previous tree to

require less time to run. This approach, was discarded because playing a HearthstoneTM

’s card do not produce a deterministic effect therefore some information would be lost.

Another problem encountered was to test all the parameters by hand to be able to show

some potentials results of the agent in this report, even though it has not reached its

most potential yet, it had reached a good enough performance.

Understand how an agent could be connected with Sabberstone simulator, how infor-

mation about the state of the game could be gathered and the adaptations that MCTS

would require to be implemented in HearthstoneTM ’s environment were some problems

that required a lot of time to be fully understood.
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Chapter 5

Conclusiones

A lo largo del desarrollo del proyecto, se ha explicado la técnica del ’Monte Carlo Tree

Search’, aśı como se ha creado un agente parametrizado capaz de jugar a HearthstoneTM.

Los resultados obtenidos son muy satisfactorios, el hecho de ganar a dos agentes que obtu-

vieron grandes resultados en la ’HearthstoneTM AI Copetition’ significa que el agente realizado

en el proyecto tiene un gran rendimiento y probablemente mejore una vez sus parámetros sean

optimizados.

También, la técnica del ’Monte Carlo Tree Search’ parece funcionar muy bien para ’HearthstoneTM’

debido a la inherente aleatoriedad del juego. Parece que es capaz de encontrar los mejores

caminos del árbol más rapido que otras técnicas de busqueda en árboles. Ya que, se basa en

realizar muchas simulaciones para descubrirlos, en vez de utilizar una función de evaluación.

5.1. Mejoras y desarrollo futuro

Añadiŕıa otras heuŕısticas a las poĺıticas de selección en el árbol para ver si estas pudiesen

ser mejores que la usada actualmente.
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Otras mejoras podŕıan ser permitir que en la fase de simulación, permitiera al algoritmo

pasar por el turno del oponente utilizando unicamente la información que pudiese ser conocida

en ese instante, como el número de esbirros en mesa, o el número de cartas en mano del

oponente, de esta manera el agente no solo tendra en cuenta su propio turno, sino que también

tendra en cuenta algunas de las posibles jugadas que pudiese hacer su oponente en el siguiente

turno.

Sin duda la mejora más sustancial para el proyecto seŕıa optimizar los valores que se le

pasan como parámetros al agente, a través de un optimizador, ya que los parámetros actuales

se han decidido a mano según mi experiencia personal.

Además, se considerara buscar otros agentes que usen distintas técnicas, como algoritmos

evolutivos o similares para probar el rendimiento del ’Monte Carlo Tree Search’ contra otros

tipos de inteligencias artificiales, que no hayan sido probadas anteriormente en ’HearthstoneTM’.

Finalmente, intentare participar en la competición ’2019 Hearthstone AI Competition’ con

el mejor agente resultante del proyecto y puede que escriba un árticulo futuro cuando los

parámetros ya hayan sido optimizados.

5.2. Aprendizaje personal

He aprendido un monton de cosas a lo largo del desarrollo del projecto.

Empezando por aprender como utilizar la herramienta de Latex para escribir esta memo-

ria. Nunca la hab́ıa utilizado y a resultado ser de gran utilidad.

También, considero que he afianzado mi nivel de inglés al escribir esta memoria.

He aprendido a desarrollar un proyecto completo, de inicio a fin pasando por todas sus

fases desde la investigacion hasta la implementación y prieba de resultados. Aśı como he

aprendido a organizarme para cumplir las metas propuestas en su tiempo.

He aprendido como funciona la técnica del ’Monte Carlo Tree Search’ y como de intere-

sante puede ser buscar posibles formas de mejorar el algoritmo.
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Finalmente, he aprendido como de tedioso puede resultar la experimentación en la in-

teligencia artificial ya que toma grandes cantidades de tiempo para poder probar el

rendimiento de los agentes al tenerse que usar un número de partidas lo suficientemente

elevado como para que se palien los efectos de la aleatoriedad.

5.3. Problemas técnicos encontrados

Primero, he encontrado en una fase tard́ıa del desarrollo del proyecto que el agente re-

alizado estaba haciendo trampas ya que en la fase de simulacion se simulaban acciones

usando las cartas del rival. Aunque no se mirara a sus cartas directamente, al utilizarse

después de muchas iteraciones de simulaciones el algoritmo estaba inferiendo cuales eran

o sus efectos, información que no debeŕıa usar. Más tarde este problema fue resuelto

haciendo que las simulaciones se terminasen cuando se acabase el turno del jugador.

Se consideró un parámetro destinado a reutilizar el árbol para todas las decisiones que

se realizaran dentro del mismo turno, consiguiendo aśı que no se tuviera que crear desde

el inicio el árbol para cada decision, solo se creaŕıa desde el principio para la primera

acción del turno. Esta opción fue finalmente descartada, pues se pensó que debido a que

las cartas en ’HearthstoneTM’ cuando se juegan no producen un efecto determinista por

lo que reutilizar el árbol implicaŕıa que no se estaŕıa teniendo en cuenta información util

que si que era accesible.

Otro problema que se encontró fue ir probando a mano distintos valores de los parámetros

para poder enseñar en esta memoria resultados buenos, incluso si nunca se llegaŕıa a

obtener los mejores resultados posibles por parte del algoritmo ya que se estaban opti-

mizando a mano sus valores.
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Entender como el agente se podŕıa conectar con el simulador Sabberstone, fue otro de los

problemas. Saber como la informacion de cada estado pod́ıa obtenerse del simulador y

también que adaptaciones del ’Monte Carlo Tree Search’ se requeriŕıan para adaptarlo a

’HearthstoneTM’.
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Appendix A

Project set up and structure of the

project

First, it will be started by downloading the contents of this Github repository:

https://github.com/ADockhorn/HearthstoneAICompetition

Second, an IDE is recommended to manage the different packages that were downloaded.

The one used for this project, although others should also work, was Visual studio 2017. It is

important to install when asked .Net Core 1.1. once all the installations finished. A file called

SabberStone.sln should be opened, it contains all the packages being SabberStoneCoreAI the

only one you should modify. [26]
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Figure A.1: Important classes

In Figure A.1 it can be seen which classes need to be understood for using SabberStone. To

create an agent all the information needed is to go to the Agent folder and create a class that

extends AbstractAgent and implements its methods.
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For the concrete files of this project, they are organized as follows:

There is a folder called AlvaroMCTS, that should be inside of folder Agents mentioned above,

with the main class of the algorithm called AlvaroAgent from this class all the other class

objects are created or called for assigning parameters to the MCTS.

Node.cs

Contains all the information that a node is required to store.

DeckManager.cs

It is in charge of building the decks so, there are some ”getters” methods returning each

of the decks.

SelectAction.cs, TreePolicies.cs, SimulationPolicies.cs and Estimator.cs

Are factory classes for the different ways of implementing those parameters and also

contains its implementations.

TycheAgent should be downloaded from:

https://dockhorn.antares.uberspace.de/wordpress/bot-downloads/

ParametricGreedyAgent will be with the code of the project but belongs to Pablo Garćıa

Sánchez.

The following classes should be in folder src:

A class Tournament.cs and AgentTournament.cs was also created as mentioned in subsection

4.1.4. Description of the tests for managing all the experimentation.

Finally, the class Program.cs that contains the function main and is the first executed, con-

tains the set up of the decks and agents with its parameters and a call to start the tournament.
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Appendix B

CSV format document

After executing the tournament, when all games have been played a .csv is created with the

information of the games in the following format.

First, it will store all the games played between each two agents as follows:

Headers: Stage, League, Agent1, Deck1, Agent2, Deck2, Victory1, Turns

An example could be: 2, 5, MCTS1, MidrangeHunter, Greedy, MidrangeHunter, 1, 20

”League” stands for the number of a certain stage’s repetition.

Second, it will store the summatory of the results of each league as follows:

Headers:Stage, League, Agent1Name Victories, Agent2Name Victories, TotalGamesLeague,

Agent1Name Turns, Agent2Name Turns ... depending on the number of agents

Then, it will store the summatory of the results of each stage as follows:

Header: Stage, Agent1Name Victories, Agent2Name Victories, TotalGamesStage, Agent1Name

Turns, Agent2Name Turns ... depending on the number of agents

And below each agent it will appear the number of victories accomplished by the whole stage
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Finally it will appear the final results of the test:

Header: Agent1 Victories, Agent2 Victories... ,totalGames, Agent1 Turns, Agent2 Turns...

And below the total wins adding all stages.

This, will be an example of one test:

Figure B.1: Example of a resulting .csv document

Where the first 4 lines are a chunk of all the information related to the results from the

summatory of each league in each stage, the next table contains the information related to the

summatory of victories in each stage and finally the last table contains the final number of

victories per agent.

The information of each of the games played should be above all the previous information.
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