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CHAPTER ONE

INTRODUCTION

In the last fifteen years, the mid-infrared band has attracted increasing attention of re-
searchers in Group IV photonics because of the promising opportunities that this wave-
length range offers for optical communications and, especially, for sensing. This thesis is
concerned with the development of photonic integrated platforms for the mid-infrared
spectral region, with an emphasis on waveguides and fiber-chip surface couplers.

The purpose of this chapter is to introduce the reader to the mid-infrared band and
its applications, showing that Group IV photonics can be used as a tool to exploit this
wavelength range (Section 1.1). Then, the goals and main contributions of this thesis are
outlined (Section 1.2). Finally, the organization of this work is presented (Section 1.3).

1.1 General Framework

1.1.1 The Mid-Infrared Band

The mid-infrared (MIR) band is a region of the electromagnetic spectrum. In this work,
MIR wavelengths are considered to span from 2 pm to 20 pm [1], yet different boundaries
can be found in the literature [2].

Many applications are possible in the MIR regime [3,4]. Most of them can be grouped
into three main categories, as shown in Fig. 1.1a:

(i) Infrared spectroscopy. The study of the interaction of electromagnetic fields with the
matter is called spectroscopy [5]. Infrared radiation stimulates the vibrational and ro-
tational motions of molecules. Light is absorbed by a given molecule at specific
infrared wavelengths, which define the own unique absorption spectrum of the
molecule. Thus, the presence and concentration of the substances in a sample can be
unambiguously determined by measuring the amount of energy absorbed by their
molecules. In the MIR band, functional groups (e.g., hydroxyl and carboxyl) can be
identified in the functional group region (2.5 um to ~6.7 um), while most absorption
peaks take place in the fingerprint region (~6.7 pm to ~16.7 um) [6]. In Fig. 1.1b, the
absorption spectra of three different samples are shown. Infrared spectroscopy can
be used for environmental monitoring [7, 8], biochemical sensing [9], medical diag-
nosis [10-12], food analysis [13,14], or astronomy [15-17], among other applications.
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Figure 1.1: The mid-infrared wavelength range and its most common applications. (a) Wavelength ranges
associated to each application. Infrared spectroscopy is performed in two different regions of the MIR band:
the functional group region and the fingerprint region. The former enables the identification of functional
groups (e.g., —OH and —COOH), whereas the latter contains the specific signature of each substance. In (b),
the absorption spectra of different samples of water vapor, methane, and carbon monoxide are shown [18—
20]. Free-space optical communication links, schematically represented in (c), operate in the two atmospheric
windows: 3-5 pum and 8-14 pm [21-24]. Thermographs are typically taken in the ranges of 3-5pm and 7-
14 pm [23]. In (d), an example of thermal image is shown. Source: [25].

Because of its relevance, infrared spectroscopy will be examined in more detail in
section 1.1.2.

(ii) Free-space optical communications. Compared to radiofrequency (RF), free-space op-
tical (FSO) communications offer high data rates without the costs and inconve-
niences of spectrum licensing [26]. A FSO link is schematically illustrated in Fig.
1.1c. In the near-infrared (NIR) band (A ~ 1.55pum), water vapor, carbon dioxide,
ozone, and dust increase the Earth’s atmospheric absorption and scattering, thus
hindering FSO links at long distances [27]. The MIR band emerges as a great oppor-
tunity for FSO communications, since two atmospheric windows are at 3-5 um and
8-14 um [21-24]. In addition, background noise caused by Sun, Earth, Moon, or city
lights is minimum at ~3.5pum [22]. Communication systems designed to work in
this band provide reliable communication links under adverse weather conditions,
such as fog or rain [26,28,29].
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(iii) Infrared thermography. All objects whose temperature is higher than 0 K emit infrared
radiation. Infrared cameras can be utilized to detect this body radiation and visu-
alize it, avoiding any contact with the target object. Commercial cameras operate
in the MIR ranges of 3-5pm and 7-14 pm [23]. A real example of a thermal image
is shown in Fig. 1.1d [25]. Infrared thermography (IRT) is used for homeland secu-
rity [30] and biomedical applications [31,32], to name a few.

1.1.2 Infrared Spectroscopy

Infrared spectroscopy can be used to obtain the infrared spectrum of a sample, which
is a graphical representation of the light intensity absorbed by or transmitted through
the sample as a function of some property of light, typically the wavenumber or the
wavelength (see Fig. 1.1b). The absorption and transmission spectra are useful tools for
detecting substances in a sample and determining their concentrations.

Fundamentals of Infrared Absorption

Infrared absorption is originated by the motions of the molecules. In the MIR band, vi-
brational absorption is predominant. The overall vibrational motion of a molecule can
be decomposed as a sum of independent vibrations or normal modes [33]. Each mode has
a natural wavelength A and is associated to a quantized energy level. The frequencies
of the vibrations of most chemical bonds correspond to wavelengths in the MIR range.
At room temperature, normal modes are typically in their ground states (lowest energy
level, Ey), as shown in Fig. 1.2. A transition to the first excited state (E;) can occur if the
energy AE = E; — Ey is supplied to the molecule [6,33]. When infrared radiation interacts
with a molecule, a photon with a wavelength A can be absorbed,! as its energy is

h
AE=FE, - Ey = &, (1.1)
A
where h is the Planck’s constant and c is the light speed. This absorption of energy at

characteristic wavelengths is responsible for the infrared absorption spectra.

E,

Figure 1.2: Quantized energy levels asso-

AE = hc/A ciated to a molecular vibration. A quan-
tum of energy is absorbed, fitting the gap
required for a transition from the ground
state to the excited state.

@ Eo

For the molecule of water vapor (H,O), some types of vibration are illustrated in
Fig. 1.3. The energy gap between the ground vibrational state and the first excited state
for each vibrational mode is shown in terms of wavelength according to Eq. (1.1). The
infrared spectrum of water vapor exhibits absorption bands centered at those specific
wavelengths [33].

IThe infrared absorption associated to a normal mode occurs if the vibration produces a change in the
dipole moment of the molecule. This condition explains why infrared spectroscopy of homonuclear diatomic
molecules such as O, and N,, whose dipole moment is always zero, is not possible [6].
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Figure 1.3: Vibrational normal modes of the molecule of water vapor, schematic representation of the levels
of energy, and absorption spectrum. The spectrum is expressed in terms of absorbance, which accounts for
the amount of light that is absorbed by a sample at a given wavelength. The closely-spaced narrow lines
in the spectrum are caused by the excitation of rotational motions during vibrational transitions, and are a
consequence of the gas phase of the substance [6]. The high-transmission regions between 3 pm and 5 um and
above 8 um corresponds to the MIR atmospheric windows [34]. Figure adapted from [33] using absorption
data from [18].

The Beer-Lambert Law

According to the Beer-Lambert law [35,36],> when a monochromatic light beam of wave-
length A impinges on a homogeneous absorbing sample, as depicted in Fig. 1.4, the trans-
mitted intensity is

I(A) = Ip(A)e *MCE, (1.2)

where Ij(A) is the intensity of the light before interacting with the sample, « is the molar
napierian absorption coefficient of the substance (in m? mol™), C is the concentration (in
molm™) and L is the path length (in m). The Beer-Lambert law can also be expressed as

I(A) = Ip(A)10~MCL) (1.3)

where € = x/ In(10) denotes the molar (decadic) absorption coefficient (in m? mol ).

The infrared spectrum can be plotted in terms of the absorbance A (absorption spec-
trum) or the transmittance T (transmission spectrum), which can be calculated via the
Beer-Lambert law as follows:

A(A) = —log [T (A)] = —log [ IIO (&))] — e(A)CL. (14)

2Strictly, the Beer-Lambert law is only valid when certain requirements are satisfied, as indicated in [36].
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Figure 1.4: Example of use of the Beer-Lambert law. The intensity of the light that passes through a sample
depends on the path length L, the molar absorptivity € of the absorbing substance at the operating wave-
length, and the concentration C. The Beer-Lambert law can be used to obtain the absorption or transmission
spectra of the sample.

Using the absorption spectrum, the substances in a sample can be detected unequivo-
cally and their concentrations can be calculated. As an example, Fig. 1.5 shows the ab-
sorption spectra of two organic compounds: 1-propanol and 2-propanol [37, 38]. The
peaks around A = 3pm appear in the spectra of both 1-propanol and 2-propanol, re-
vealing their functional group C—OH (alcohols). In the region from 7 um to 15um, the
molecular structure of each substance produces a completely different spectrum. These
absorption peaks act as a signature or fingerprint for the substances: (i) the positions
of the peaks allow for the identification of the compounds, whereas (ii) the heights are
proportional to the concentration by means of the Beer-Lambert law [Eq. (1.4)].

2.5 2.5
] . : ] C—OH . )
5] Fingerprint o1 Fingerprint
1] C—OH ]
1.5 1.5
< < ]
11 11
0.5 0.5 LJ\/
0 3 0 J
1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15
A (um) A (um)
(a) (b)

Figure 1.5: Absorption spectra of (a) 1-propanol and (b) 2-propanol. The alcohol functional group (C—OH)
is highlighted, as well as the fingerprint region, which is different for each molecule.

Spectrum Measurement

In general, the optical systems used to obtain the infrared spectrum of a sample comprise
an infrared source, a structure for enabling the interaction between the infrared beam
and the molecules of the sample, and a detector for measuring the absorption of light.
Additionally, devices for processing and routing the light may be required, depending
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on the architecture of the spectroscopy system. As an example, three different schemes
used for infrared spectroscopy are succinctly described as follows.

In Fig. 1.6a, a conventional Fourier transform infrared (FTIR) spectrometer is schema-
tized [5]. FTIR is a traditional spectroscopy technique that is widely utilized when the
complete MIR spectrum of a substance is needed. A broadband beam is radiated by
an infrared black-body thermal emitter. An interferogram is generated using a Michel-
son interferometer. After interacting with the sample under test, the signal is detected
and converted into the transmission spectrum of the sample by a computational Fourier-
transform post-processing.

Sample -
Broadband .| Michelson °0 09% 00 +| Photodetector _ Signal
emitter interferometer BPCIITLE processing
(a)

Tunabl Sample Signal
unable R igna
laser > Photodetector ” processing

(b)
. Planet atmosphere :
Star light et teee e fepnene Tel Signal
o ¥|  lelescope "l processing

(o)

Figure 1.6: Different schemes for infrared spectroscopy in the MIR band. (a) FTIR. (b) TDLAS. (c) Astronom-
ical spectroscopy.

The advent of quantum cascade lasers (QCLs) and interband cascade lasers (ICLs)
[39,40] has motivated the progress in tunable diode laser absorption spectroscopy (TD-
LAS) [41]. QCLs and ICLs are single-frequency, narrow-linewidth, tunable sources that
can emit MIR radiation at room temperature [41]. In Fig. 1.6b, a simple TDLAS setup is
schematized. In the most basic configuration, the wavelength of a light beam is scanned
around a specific absorption peak of the molecules of a sample, which allows for the
quick identification of the substance without measuring the complete MIR spectrum. Be-
cause they do not need moving parts to process the infrared light and to generate the
spectrum, TDLAS setups can be more compact and simpler than FTIR spectrometers.

A third scenario is specific to astronomical spectroscopy (see Fig. 1.6c). The absorp-
tion at MIR wavelengths can be used, for example, to study exoplanets and search for
biosignatures in their atmospheres. This objective is one of the envisioned aims of the
Origins Space Telescope (OST) mission concept [17]. The infrared light from a host star is
attenuated at specific wavelengths when the target planet passes between the star and a
telescope, which receives the light. By measuring the absorption spectrum, the composi-
tion of the planet can be analyzed.

Figure 1.7 shows three commercial spectroscopy systems. Benchtop FTIR spectrome-
ters are capable of determining the complete infrared spectrum of a sample in less than
five minutes. As they are designed for laboratory environments, these spectrometers are
typically bulky. For instance, the Thermo Scientific’s Nicolet iS 50 FTIR spectrometer
shown in Fig. 1.7a has a base of 63 x 70 cm?, a height of 51 cm, and a weight of 64 kg [42].
Because of these dimensions, the collection of the sample and the FTIR spectroscopy are
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performed at different points in time. This delay may render the analysis useless if the
sample degrades over time or if on-the-go sensing of hazardous gases is required. Fur-
thermore, some samples cannot be removed from their locations and carried to a labo-
ratory. Portable spectrometers and gas analyzers allow for in-field usage, but the need
for user’s action and their relatively high weights (~2kg for the Agilent’s 4300 Hand-
held FTIR in Fig. 1.7b [43], and ~13 kg for the AMETEK’s 5100P TDLAS in Fig. 1.7c [44])
prevent their utilization for continuous environmental monitoring and sensing.

(a) (b) (c)

Figure 1.7: Examples of commercial spectroscopy systems. (a) Benchtop FTIR model, Thermo Scientific’s
Nicolet iS 50 FTIR [42]. (b) Handheld FTIR model, Agilent’s 4300 Handlheld FTIR [43]. (c) Portable TDLAS
gas analyzer, AMETEK'’s 5100P TDLAS [44]. The three images have different scales.

Today, more compact solutions are desired. Miniaturized spectroscopy systems can
open up a whole new world of possibilities for in situ environmental monitoring or health
care devices that would constantly provide information to the patients. In this context,
integrated photonics, and Group IV photonics in particular, offers excellent prospects for
a new generation of infrared absorption sensors that can move from the laboratory to the
smartphone and next wearable devices.

1.1.3 Mid-Infrared Group IV Photonics

Group IV photonics, also known as silicon photonics, is a fundamental technology for
datacom and telecom applications in the NIR band, around A = 1.55 pm [45-49]. Group IV
photonics enables the integration of optical devices into standard wafers made of Group
IV materials, such as silicon and silicon nitride. Structures are typically etched into a
silicon layer on top of silicon dioxide, forming the silicon-on-insulator (SOI) platform
(see Fig. 1.8). As shown in the figure, the propagating mode field is strongly confined
within the waveguide core, because of the high index contrast between silicon and sili-
con dioxide (An ~ 2). Moreover, photonic and electronic integrated circuits can be imple-
mented using the same complementary metal-oxide-semiconductor (CMOS) techniques
employed in well-established foundries. These characteristics make Group IV photonics
an ideal technology to cope with the challenging bandwidth requirements of current so-
cieties, providing high-performance, low-power, low-cost, and compact optical devices
that can be mass produced [50-53].

At NIR wavelengths, a myriad of active and passive devices have been presented,
and new ones are continuously being demonstrated, including laser sources, photodetec-
tors, interconnecting waveguides, directional couplers, splitters, multimode interference
couplers (MMIs), Mach-Zehnder interferometers (MZIs), grating couplers, Bragg filters,
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Figure 1.8: Conventional silicon-on-insulator strip waveguide. (a) Geometry. (b) Transverse field distribution
of the fundamental mode supported by a waveguide with a core width (W) of 500 nm, a core thickness (H)
of 220 nm, and an infinite insulator layer (Hgox — c0) at A = 1.55um.

multiplexers, and modulators [49,54]. Companies like Luxtera and Intel are already com-
mercializing transceivers for optical interconnects based on Group IV photonics [55, 56].
Sensing experiments have also been conducted in this band [57-59].

The optical devices that have been extensively developed at NIR wavelengths can be
redesigned to take advantage of the potential applications of the MIR range. Thus, Group
IV photonics can enable the realization of label-free, cost-effective, and compact lab-on-
chip systems for exploiting the infrared absorption of most molecules. Integrated wave-
guides and devices can be employed for routing and processing of light in spectroscopy
systems. For instance, in [60], the authors propose an integrated FTIR spectrometer in
which, by following the principle of spatial heterodyning, the Michelson interferometer
is substituted with an array of Mach-Zehnder interferometers, as reproduced in Fig. 1.9a.
Alternatively, in addition to guiding the light, the planar waveguides can also serve as
the sensing devices. In such a case, which is illustrated in Fig. 1.9b, the evanescent tails of
the fundamental mode that is supported by the waveguides interact with the molecules
of the sample in the upper cladding [61-64].

Group IV photonic devices can not only be useful for sensing applications, but also
for FSO communications. For example, in [24], a broadband 1 x 2 multimode interference
coupler with polarization insensitivity is designed to cover multiple FSO channels in the
second atmospheric window between wavelengths of 7.5 ym and 13 pm.

Furthermore, the MIR band offers technological possibilities for Group IV photonic
devices. As integrated structures are large compared to their NIR counterparts because
of the increased wavelength, MIR devices should be more tolerant to fabrication imper-
fections. Additionally, germanium, which has high loss in the NIR band, can be used as
a guiding material, offering higher modal confinement and nonlinearity [65].

However, despite the benefits of moving to the MIR band, the migration is compli-
cated. Unfortunately, the conventional SOI platform is not the best suited for the MIR
band. As shown in Fig. 1.10, the intrinsic loss of silicon dioxide and silicon becomes
prohibitive over A ~ 4pm and A ~ 8um, respectively, thus frustrating SOI utilization
at long MIR wavelengths [66]. To overcome this problem, materials other than silicon
and silicon dioxide can be combined [67, 68], leading to waveguide platforms such as
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Figure 1.9: Usages of Group IV photonics for infrared spectroscopy. (a) Integrated FTIR spectrometer based
on spatial heterodyne spectroscopy. Source: [60]. (b) Illustration of a sensing waveguide. The evanescent
tails of the fundamental mode supported by the waveguide interact with the molecules of the sample in the
upper cladding.

silicon on sapphire [69], silicon on (silicon) nitride [70], germanium on silicon [71], or
silicon-germanium-based platforms [72,73]. Alternatively, the silicon dioxide layer can
be removed to create suspended silicon and suspended germanium platforms [74-77].
Although many solutions have been proposed, the search for the best MIR platform con-
tinues.

Germanium . -
Silicon | I

Silicon nitride

Sapphire

| |
| | |
Silicon dioxide | | |
| |

Air

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A(um)

Figure 1.10: Transparency (white) and opaqueness (colored) windows of several materials used in Group
IV photonics. Transparency is considered for intrinsic material losses smaller than 2 dB cm ™. Depending on
the waveguide geometry, the wavelength range over which the fundamental mode has a loss smaller than
2dBcm™! can be wider. Figure adapted from [66].

The pursuit of appropriate MIR platforms is an important challenge. Some novel
guiding structures need new simulation approaches and design procedures. In many
cases, alternative manufacturing techniques and non-standard measurement setups are
required. Besides, the absence of mature laser sources and detectors, as well as robust op-
tical fibers, hinders the characterization of new devices. Therefore, while some complex
systems are being proposed for the most promising platforms (e.g., [24,60,78]), the main
focus still remains on the development of the basic structures (such as waveguides and
couplers), which should cover the largest possible range of MIR wavelengths.

1.2 Overview of This Thesis

The main goal of this thesis is to make progress toward the development of Group IV
photonics for the MIR band. This basic objective has motivated a number of significant
contributions. Specifically, suspended silicon and suspended germanium platforms have
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been developed to potentially cover the MIR band up to A ~ 15pm with low loss. Fur-
thermore, novel solutions have been proposed to cope with the problem of fiber-chip
coupling of light, yielding new surface couplers with outstanding efficiency and band-
width that outperform conventional grating couplers.

The waveguides and devices that are proposed in this thesis can be part of more
complex systems for potential applications such as sensing and optical communications.
The design of those systems is beyond the scope of this work.

In this section, the fundamental contributions of this thesis are detailed. A graphical
overview can be found in Fig. 1.11 (main contributions) and Fig. 1.12 (minor contribu-
tions), which include illustrations, simulated electric field propagations, and scanning
electron microscope (SEM) images of the fabricated structures.

1.2.1 Suspended Platforms for the Mid-Infrared Band

The main limitation of the SOI technology, which is typically used in the NIR band, is
the high loss of silicon dioxide beyond A ~ 4 pm. The silicon dioxide is removed in the
suspended silicon and suspended germanium platfoms, thereby enabling low-loss wave-
guiding up to the transparency limits of silicon (A ~ 8 pm) and germanium (A ~ 15um),
respectively.

Suspended silicon waveguides have been realized at A = 7.67 pm. A propagation loss
as low as 3.1dBcm™! has been demonstrated. This result constitutes, to the best of this
author’s knowledge, the lowest propagation loss achieved in a silicon-based integrated
platform at such a long wavelength, and is still comparable to the propagation loss of
state-of-the-art waveguides that use other materials such as germanium. Suspended sili-
con waveguides and bends were reported in [79,80]. Other building blocks — multimode
interference couplers (MMIs) and a mode-evolution-based power splitter — have been
designed [80], and some preliminary experimental results have already been obtained.

Suspended germanium waveguides have also been validated experimentally. Silicon
loss is already noticeable (~2dBcm ') at A = 7.67 um, and prohibitive at longer wave-
lengths. By replacing silicon by germanium, this high loss can be potentially reduced. At
the time of writing, propagation losses of ~5dBcm ! have been achieved for suspended
germanium waveguides at wavelengths of 3.8 um and 7.67 um. The high loss compared
to that of their silicon counterparts is mainly attributed to a known contamination of the
utilized wafers. New fabrication runs are planned for the next months with the aim of im-
proving the performance. Additionally, designs at 9.6 pm are currently being fabricated
and will be measured within the next months. These first results constitute a major step
toward the practical implementation of suspended building blocks and systems at long
MIR wavelengths at which silicon-based devices cannot operate.

The design of the suspended structures was primarily carried out at the Universi-
dad de Mdlaga (UMA), whereas the fabrication and experimental characterization were
performed in the Optoelectronics Research Centre (ORC) at the University of Southamp-
ton, within the framework of two research stays under the supervision of Prof. Goran
Mashanovich. The entire design process and a large part of the experimental measure-
ments were done by the author of this thesis; on the other hand, the fabrication was
accomplished by the researchers of the ORC. The design of both suspended platforms re-
quired an iterative refinement according to the information about geometrical constraints
that was being continuously provided by the various fabrication runs. Consequently, the
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prototyping cycle of the presented structures at different wavelengths took more than
two years.

1.2.2 Fiber-Chip Surface Couplers

Fiber-chip couplers are essential devices in integrated photonics, as they enable the cou-
pling of light between the optical fibers and the chips. In this thesis, two relevant con-
tributions have been made: a suspended germanium micro-antenna and a zero-order
grating coupler. Both couplers are introduced in the following paragraphs. Besides, con-
ventional surface grating couplers were designed with the aim of coupling light during
the characterization of the suspended silicon and germanium waveguides.

The suspended germanium micro-antenna, which is a novel, grating-inspired fiber-
chip surface coupler for the MIR suspended germanium platform, has been proposed at a
wavelength of 7.67 pm. The field radiated by this structure matches the small mode field
diameter of MIR optical fibers, which benefits an increase in the bandwidth and the toler-
ance to fiber tilt angles. Specifically, a bandwidth of ~430 nm is predicted, which is almost
twice the typical fractional bandwidth of conventional grating couplers for the NIR band.
The proposed micro-antenna is markedly tolerant to fiber tilt misalignments of +10°.
Moreover, this micro-antenna is, as far as this author knows, the first efficient fiber-chip
surface coupler that operates with two supported radiation orders between the fourth
and fifth Bragg regimes. The micro-antenna was fabricated in the ORC and its wide an-
gular bandwidth was experimentally confirmed. This all-dielectric micro-antenna design
paves the way for efficient fiber-chip coupling in long-wavelength MIR integrated plat-
forms. The suspended germanium micro-antenna concept was published in [81].

The zero-order grating coupler (ZGC) has been designed to optimize both the cou-
pling efficiency and the bandwidth. Fiber-chip surface couplers with broadband opera-
tion are needed in general, not only for MIR applications but also in the NIR band. De-
spite the maturity level of NIR grating couplers, the trade-off between coupling efficiency
and bandwidth is apparent in the literature: most grating couplers designed for high ef-
ficiency tend to suffer from narrow bandwidths; on the contrary, broadband couplers
typically lack high coupling efficiencies. The operational bandwidth of grating couplers
is limited by the wavelength dependence of the radiation angle. ZGCs minimize such a
dependence, thereby increasing the bandwidth while enhancing the coupling efficiency:.
The ZGC was initially designed for the NIR band, since realization should be easier at
A = 1.55pum because of the high availability of lasers, detectors, and optical fibers. At
this wavelength, an unprecedented performance is predicted by simulation: a subdecibel
coupling efficiency of ~90% and a broad 1-dB bandwidth of ~130nm. Finally, the de-
sign was migrated to the MIR band at A = 3.8 ym, yielding a theoretical bandwidth of
~560 nm. At that wavelength, the material loss of silicon dioxide is relatively low, so that
BOX removal is not necessary for this design. The ZGC concept was published in [82].
The design of the ZGC was initiated at UMA and finished later in the National Research
Council Canada (NRC), within the framework of a short stay under the supervision of
Dr. Pavel Cheben. Because the ZGC is a novel device, its characterization is not standard.
At the time of writing, researchers in the NRC are trying to experimentally demonstrate
this broadband coupler.
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1.3 Organization of This Thesis

This thesis is organized as follows:
Chapter 1 is the current introduction.

Chapter 2 provides a review of the state of the art in MIR integrated photonics. The most
significant Group IV platforms — in the author’s view — are covered, and their
prime properties are highlighted, as well as their disadvantages. At the end of the
chapter, summarizing tables are included.

Chapter 3 is devoted to the design, fabrication, and characterization of suspended wave-
guides. The entire design procedure is detailed for the suspended silicon platform
at a wavelength of 7.67 um, and is applied, yet not thoroughly described again in
the chapter, to the design of suspended germanium waveguides. The latter are de-
signed at 3.8 um as a proof of concept, and then migrated to 7.67 ym and 9.6 um.
The fabrication process is briefly explained and experimental results at 3.8 um and
7.67 pm are shown. The design of some suspended silicon building blocks (MMIs
and a mode-evolution-based 3-dB splitter) is also shown.

Chapter 4 starts with the fundamentals of surface grating couplers. A succinct descrip-
tion of the conventional grating couplers that were designed for chip characteriza-
tion of suspended waveguides is given. Then, the design of the suspended germa-
nium micro-antenna at a wavelength of 7.67 pm is presented and discussed. Finally,
the zero-order grating coupler concept is described, and theoretical results are pro-
vided, firstly in the NIR regime and lastly in the MIR band.

Chapter 5 draws the conclusions and proposes future research lines.
In addition, two appendices are included:

Appendix A shows a brief curriculum vitae of the author of this thesis, including a list
of the journal papers authored or co-authored to date.

Appendix B summarizes the thesis in Spanish.
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Figure 1.11: Overview of this thesis. Main contributions, including 3D illustrations (not to scale), simulations
of electric field propagations and SEM images.



14 1. Introduction

Chapter Three | Suspended Platforms for the Mid-Infrared Band

Suspended silicon devices (A = 7.67 um) [80]

20 pm 20 pm 2pum

1 x 2 MMI 2 x2 MMI 1 x 2 splitter
(design) (design)

Chapter Four | Fiber-Chip Surface Couplers

Conventional grating couplers
Suspended silicon (A =7.67 um) [79, 80] Suspended germanium (A = 3.8 um)

Figure 1.12: Overview of this thesis. Minor contributions, including SEM images of the fabricated structures.



CHAPTER TWO

REVIEW OF PHOTONIC INTEGRATED
PLATFORMS FOR THE MID-INFRARED
BAND

Group IV photonics is an excellent tool to exploit the multiple applications that are pos-
sible in the MIR band, which include sensing and atmospheric communications. While
MIR sources and detectors are already available, and optical fibers are becoming low-loss
at long wavelengths, there is still no standard platform for MIR integrated waveguides
and devices.

With the aim of contextualization, in this chapter the most relevant (at author’s dis-
cretion) waveguide platforms that have been demonstrated so far for the MIR band are
reviewed. First, a general classification for MIR platforms is provided (Section 2.1). Then,
conventional and suspended platforms are analyzed (Sections 2.2 and 2.3, respectively).
The main achievements for each platform are summarized in the tables at the end of the
chapter (Section 2.4).

2.1 Introduction

The cross section of a waveguide is schematized in Fig. 2.1 for a generic conventional inte-
grated platform. The structure comprises four layers: upper cladding, core, bottom clad-
ding (under-cladding), and thick substrate. The first three layers enable waveguiding; the
substrate is optional, supports the whole structure, and should not affect the propagating
mode. The materials forming the platform determine the guiding capabilities.

Materials have different physical properties (e.g., absorption loss, refractive index,
dispersion, or optical nonlinearities) that are suitable for a given application or wave-
length range and unsuitable for others. In the MIR band, conventional waveguide plat-
forms, such as silicon on insulator, can only be used in a very limited wavelength range
because of the absorption loss. Figure 2.2 shows the transparency windows of some
Group IV materials. Silicon dioxide and sapphire, typical under-cladding materials, are
low-loss up to wavelengths around 3.6 pm and 4.3 pm, respectively. Silicon nitride sup-
ports low-loss propagation up to ~6.6 pm. Silicon, the most common core material, has
prohibitive absorption beyond ~8 um. Germanium seems appropriate for the entire MIR

15
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Figure 2.1: Schematic representation of a conventional integrated platform.

range, but the use of silicon is more extended, and hence preferred, for passive devices.
No material is optimal in all cases. For this reason, many research groups have devoted
the last decade to the pursuit of the best waveguide platform.
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Figure 2.2: Transparency (white) and opaqueness (colored) windows of several materials used in Group
IV photonics. Transparency is considered for losses smaller than 2dBcm™'. Depending on the waveguide
geometry, the wavelength range over which the fundamental mode has a loss smaller than 2dBcm™! can be
wider. Figure adapted from [66].

For a given platform, the operating range can be extended by reducing the interaction
between the propagating mode and the absorptive medium. For a lossy under-cladding,
this reduction can be achieved by engineering the waveguide cross-section; for example,
by increasing the thickness and width of the waveguide core [83]. However, this solution
can make the waveguide support high-order modes and can reduce the performance for
sensing applications.

An alternative is to replace the absorptive layers by other materials, or to completely
remove them. Thus, according to the under-cladding material, the platforms found in the
literature can be grouped into two different categories:

* Conventional platforms, those with a solid underlying cladding that is low-loss at the
operating wavelength. In Fig. 2.3a, the under-cladding of the waveguide in Fig. 2.1
is substituted with a new material. The transparency range of the platform will de-
pend on the materials and the geometry of the waveguide. The guiding layer can be
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made of (i) silicon, (ii) germanium or silicon-germanium alloys, or (iii) alternative
materials.

* Suspended platforms, those in which the bottom layer is removed or, equivalently,
the underlying cladding is substituted with air. Several variations have been pro-
posed, among which suspended membranes and SWG-cladding suspended plat-
forms stand out. Figure 2.3b schematizes a suspended waveguide.

In the literature, several articles can be found that review the principal silicon- and
germanium-based waveguides and devices for the MIR band [62,67,68]. In the next sec-
tions, the most relevant platforms are studied in detail, emphasizing their propagation
losses.

upper cladding upper cladding

under-cladding

(a) (b)

Figure 2.3: Types of photonic integrated platforms for the mid-infrared band: (a) conventional and (b) sus-
pended waveguides.

2.2 Conventional Platforms

2.2.1 Silicon-Core Platforms
Silicon on Insulator

Silicon on insulator (SOI) is leading Group IV photonics at A = 1.55 ym, as it is compat-
ible with current CMOS manufacturing processes and allows the massive, cost-effective
fabrication of highly compact devices [49]. The SOI platform comprises a crystalline sil-
icon layer (refractive index of ~3.42 [84]) on top of an insulator or buried oxide (BOX)
under-cladding, typically of silicon dioxide! (refractive index of ~1.42 [85]). Different
materials, such as polymers or oxides, can cover the silicon layer as an upper cladding.
Schematic representations of conventional strip and rib SOI waveguides are shown in
Fig.2.4.

Due to its vast popularity in the NIR band, SOl is the first technology that comes to
mind for the development of optical integrated circuits in the MIR range [3]. Indeed, the
maturity of SOI makes it the best choice for MIR photonics up to A ~ 4pm. The SiO,
under-cladding exhibits increasing intrinsic loss that prevents the use of SOI at longer

n practical use, the term silicon on insulator is reserved for the silicon-on-silica platform. When other
insulators are used, alternative denominations are more common (e.g., silicon on sapphire when the insulator
is sapphire).
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Figure 2.4: Schematic representation of (a) strip and (b) rib silicon-on-insulator waveguides.

MIR wavelengths. Theoretically, a judicious cross-section design can push this limit to-
wards A ~ 6 um [83, 86].

Up to A ~ 4pm, the dominance of SOI is evidenced by the number of devices that
have been proposed until now, including waveguides with propagation losses («) below
1dBem~! [83,87,88], ring resonators [71, 83, 88-90], MMIs [89,91,92], MZIs [71,90, 92],
spectrometers [60,93,94], and (de)multiplexors [92], to name a few.

A variant of the SOI platform incorporates a polycrystalline silicon (poly-Si) over-
layer. The main advantage relies on the fabrication, which offers selective deposition of
poly-5Si and hence the possibility of having different thicknesses along the chip [94,95]. As
MIR devices usually require thick guiding layers, selective overlayer deposition can be
exploited to integrate both NIR and MIR optical circuits on the same SOI chip [91]. Wave-
guides with propagation losses in the range of 3dBcm™ to 6 dBcm™! have been reported
at a wavelength of ~3.8 um [94], as well as MMI splitters [91] and grating couplers [95].

Silicon on Sapphire

By substituting silicon dioxide with another insulator, the operating range of the SOI
platform can be extended. Sapphire (refractive index of ~1.71 [96]) is used in the silicon-
on-sapphire (SOS) platform [97], enabling transparency up to A ~ 4.3 pum [3, 66]. Strip
and slot waveguides are schematized in Fig. 2.5. Like SOI, SOS wafers have been widely
employed in the microelectronics industry, so that this high-contrast platform inherits the
simplicity of fabrication and the feasibility of optoelectronic integration. As a drawback,
sapphire is more expensive and more difficult to manipulate and polish [91].

This platform was very prolific in the years following the first experimental demon-
stration [69], but recently it has lost popularity. This reduced interest is probably due to
the low transparency improvement SOS offers compared to the ubiquitous SOI. Prop-
agation losses smaller than 1dB cm~! were achieved at A = 4.5um [98]. Other passive
devices, such as ring resonators [98-101] and mode converters [102], have been charac-
terized.
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Figure 2.5: Schematic representation of (a) strip and (b) slot silicon-on-sapphire waveguides.

Figure 2.6: Schematic representation of a
silicon-on-nitride waveguide. A thin stack
of SiOy, spin-on glass (SOG), and SiO; lay-
ers are used to bond the silicon nitride clad-
ding to the silicon substrate.

Silicon on Nitride

Silicon nitride (SiN) can be used as an under-cladding to push the operating wavelength
uptoA ~ 6.7um [3,66,103]. Figure 2.6 depicts a silicon-on-nitride (SON) rib waveguide,
as demonstrated in [70]. In the SizNy4 form, this CMOS-compatible material has a refrac-
tive index of ~2 at MIR wavelengths that defines an index contrast comparatively lower
than in SOI and SOS platforms. Higher refractive indices can be engineered by silicon
enrichment [104]. Thus, SON waveguides can be used when tailorable and relatively low
index contrast is needed (e.g., to couple light via the chip edge). A major disadvantage of
this platform is its complex fabrication process, which is based on wafer bonding.

At A ~ 3.39um, a measured propagation loss of ~5dBcm~! was reported for both

quasi-TE and quasi-TM polarizations?.

Air-Clad Pedestal

Although the air-clad pedestal platform has not been very successful, it is worth men-
tioning in this thesis because it falls halfway between suspended and non-suspended
platforms. Silicon is partially removed from an all-silicon substrate and a pedestal is

2For the sake of simplicity, hereafter quasi-TE and quasi-TM polarizations of 3D waveguides will be
referred as TE (transverse electric) and TM (transverse magnetic), respectively.



20 2. Review of Photonic Integrated Platforms for the Mid-Infrared Band

defined to support the waveguide core, as shown in Fig. 2.7. The air cladding creates
the index contrast for waveguiding. Because of the large dimensions of the waveguide
core, the structure possibly supports high-order modes. In [105], a propagation loss of
2.7dBcm~! was reported at a wavelength of 3.7 pum. Bends and 3-dB splitters were also
demonstrated.

Y Figure 2.7: Schematic representation of an
z

X \V air-clad pedestal waveguide.

Other Platforms

Other silicon-based platforms with lower scientific impact can be found in the literature.
Usually, they are helpful for niche applications, but not for general purpose. Some of
these platforms are succinctly reviewed in this section:

e Silicon on porous silicon. Silicon-on-porous-silicon (SiPSi) waveguides were demon-
strated in [87]. SiPSi wafers are not commercially available. The porous silicon
under-cladding is formed from a silicon bulk substrate by irradiation and electro-
chemical etching steps. The porosity determines the refractive index of the sub-
strate (~1.4 in [87]). Although this platform was proposed to work at long MIR
wavelengths, no information is provided in [87] about the transparency of porous
silicon. A propagation loss of 3.9 +- 0.2 dB cm ™! was measured at A = 3.39 um.

e Silicon on lithium niobate. Lithium niobate (LiNbQO3) is transparent up to ~5pum and
has a relatively low refractive index of ~2.5. LiNbOj3 exhibits higher second-order
optical nonlinearity and electro-optic coefficient than Si, thus making this com-
pound very suitable for nonlinear applications and active devices in the MIR band.
In [106], silicon-on-lithium-niobate (SOLN) waveguides were fabricated following
a wafer bonding approach. A propagation loss of 2.5 + 0.7 dBcm ! was achieved at
a wavelength of 3.39 um. This platform can be used to develop integrated electro-
optic modulators in the MIR range.

e Silicon on calcium fluoride. In [107], a fabrication technique to transfer the upper sili-
con layer of SOl wafers onto virtually any material was proposed. As a proof of con-
cept, the authors demonstrated high-contrast silicon-on-calcium-fluoride (SOCF)
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waveguides, which can be potentially used up to a wavelength of ~8 um. A prop-
agation loss of 3.8dBcm™! was achieved at A = 5.2 ym. Ring resonators were used
to measure the absorption spectra of ethanol, toluene, and isopropyl alcohol.

¢ T-waveguides. In [108], wafer-bonded T-shaped waveguides were proved to be single-
mode and single-polarization in a broad range of wavelengths. A propagation loss
of 1.75dB cm ™! was reported at A ~ 3.6 um.

2.2.2 Germanium-Core Platforms
Germanium on Silicon

At wavelengths longer than ~8 pm, silicon cannot be utilized in the waveguide core. To
overcome the high absorption of silicon, germanium-core platforms, in which germa-
nium is the material of the guiding layer, have been proposed with great success [68].
Germanium on silicon (GOS) is one of the first and most promising candidates at long
MIR wavelengths (A > 8um). In this platform, a germanium guiding layer is on top of
a silicon substrate. Schematic GOS strip and rib waveguides are represented in Fig. 2.8a
and Fig. 2.8b, respectively.

Since silicon is present in the under-cladding, low-loss transmission of light can only
be achieved provided the fundamental mode is well confined within the waveguide
core. Unfortunately, the relatively low index contrast between germanium and silicon,
An = nge — ng; ~ 0.55, benefits the interaction of light with the under-cladding. More-
over, the lattice mismatch between silicon and germanium crystals at the core-substrate
interface increases threading dislocation density (TDD). In addition, germanium exhibits
higher free-carrier absorption (FCA) than silicon, especially at long wavelengths. These
inconveniences can be minimized with careful designs, as indicated in [109].

A propagation loss as low as 0.58 &= 0.12dBcm ! has been demonstrated for single-
mode rib waveguides at A = 3.8 um [110]. Strip waveguides with propagation losses
smaller than ~3 dB cm ™! have also been reported in the range between 5.3 pm and 5.8 um
[111,112] and utilized to conduct sensing experiments (cocaine detection [61]). Note that,
in these cases, the full potential of the GOS platform is not exploited, as the operating
wavelengths are not longer than ~8 pm.

Recently, Gallacher et al. achieved a significant milestone [109]: the authors demon-
strated rib waveguides with losses lower than 5dBcm™ in the wavelength range from
7.5pm to 11 pm for both TE and TM polarizations. Above A = 10 um, losses were as
low as ~1dBecm™!. These results constitute the first experimental validation of GOS
waveguides at such long wavelengths. Additionally, a number of passive devices can
be found in the literature, including grating couplers [110], MZIs [110,111], and phase
shifters [113].

In [113], a germanium-on-silicon-on-insulator (GOSOI) platform was utilized. The
GOSOI platform includes a thin SiO; layer that acts as a thermal insulator for realizing
efficient thermo-optic phase shifters.

Silicon-Germanium on Silicon

Silicon-germanium (SiGe) alloys, which are CMOS-compatible, offer attractive optical
properties — such as the possibility of engineering the refractive index, the material dis-
persion, or the third-order non-linearity [65]. Depending on the concentration of silicon
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Figure 2.8: Schematic representation of (a) strip and (b) rib germanium-on-silicon waveguides.

and germanium, SiGe-based platforms can virtually cover the full transparency of ger-
manium, making them one of the most significant platforms reported so far.

A silicon-germanium-on-silicon (SGOS) platform was demonstrated in [114]. A wave-
guide with a Sip ¢Gep 4 core buried in silicon yielded a loss of 0.5 dB cm~at A = 4.75 um.
Interestingly, to couple light into this platform, a grating coupler was locally suspended
to increase the core-cladding index contrast, thereby maximizing the radiation strength
[115].

Instead of utilizing a uniform alloying, in [116] the authors proposed waveguides
with graded Si;_,Ge, cores that are buried in silicon, with x ranging from 0% to 40% (see
Fig. 2.9). For a platform with 3-pum core thickness, low propagation losses of 1dBcm ™!
and 2dBcm ™! were reported at A = 45um and A = 7.4 pm, respectively. Y-junctions, di-
rectional couplers, s-bends, and crossings were also characterized at both central wave-
lengths. At 4.5um, an AWG multiplexer was presented [117]. Experiments to measure
the nonlinear optical response of these waveguides and supercontinuum generation,
which are some of the prime reasons for exploring SiGe-based platforms, were carried
out in [118] and [119], respectively.

Figure 2.9: Schematic representation of a
SiGe-on-Si waveguide. The core is buried
in silicon and made of Si;_,Gey, with x
ranging from 0% to 40%, and from 40% to
0%.

m S
mm SiGe (graded)
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Germanium-Rich (Graded) Silicon-Germanium on Graded Silicon-Germanium

Germanium-rich silicon-germanium alloys on a graded silicon-germanium layer improve
the SGOS platforms of the previous section. In this case, the concentration of Ge is greater
than that of Si (x > 80%) in the homogeneous guiding layer, and the silicon substrate
is substituted with a graded silicon-germanium alloy [72]. Propagation losses of 1.5 &+
0.5dBcm ™! (TE) and 2 + 0.5dBcm ™! (TM) were achieved at A = 4.6 pm.

Variants with graded SiGe in both the waveguide core and the under-cladding have
also been reported in a wide spectral range [73], with propagation losses of 2-3dBcm™
in the band from A = 5.5pum to A = 8.5 um. Figure 2.10 depicts one of these SiGe-on-SiGe
(SGOSG) waveguides, which enable index contrast tunability to virtually cover the entire
MIR range up to A ~ 15 um.

Various high-performance devices have been demonstrated for this platform fam-
ily, such as ultra-broadband MMIs [120] and racetrack resonators [121]. Theoretical de-
signs of promising devices have been proposed, including ultra-wideband polarization
rotators [122], polarization-insensitive MMIs [24], and grating couplers [123]. Sensing
experiments have also been reported in the wavelength range spanning from 5.2 ym to
6.6 um [64]. Recently, an integrated spatial heterodyne Fourier-transform spectrometer
was proposed [78].

Figure 2.10: Schematic representation of
a SiGe-on-graded-SiGe waveguide. In
this example, the under-cladding layer

of Sij_,Gey ranges from x = 0 up to
: SitgGeMd 5 x = 79%, and the upper part of the core is
| .
== Si ¢ (graded) X\V homogeneous with x = 80%.

Germanium on Nitride

A germanium-on-silicon-nitride (GON) platform is proposed in [124] (see Fig. 2.11). Due
to the silicon nitride, the transparency window of this platform is comparable to that of
SON. However, GON waveguides have a high core-cladding index contrast compared
to SON and GOS platforms. This contrast benefits the development of more compact
devices, with reduced cross-section and smaller bend radii. While this platform does not
offer the advantages of GOS or silicon-germanium alloys, it can be useful for specific
applications in which small footprints are required.

For TE-polarized single-mode strip waveguides, a propagation loss of 3.35dBcm !
was demonstrated at A = 3.8 pm.
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Figure 2.11: Schematic representation of
a germanium-on-nitride waveguide. An
SiO, bonding layer is between the nitride
cladding and the silicon substrate.

Germanium on Insulator

The utilization of silicon dioxide as the under-cladding material vastly limits the trans-
parency window of germanium. Therefore, the joint use of germanium and silicon diox-
ide is only helpful for applications where specific properties of germanium (e.g., high
thermo-optic coefficient) are needed, or when very compact chips are required at short
MIR wavelengths (below ~4 um).

A high-contrast GOI platform was proposed in [125-127]. Rib and strip waveguides,
with high propagation losses of ~14dBcm~! and ~12dBcm ™!, respectively, were char-
acterized at A = 1.95um, which is near the lower bound of the MIR range. The authors
attribute the high losses to sidewall roughness caused by the fabrication process. Other
passive devices, such as grating couplers, MMISs, ring resonator, and Vernier filters, were
also reported [127,128].

2.2.3 Alternative Platforms

While the most significant platforms are silicon- and germanium-based, other solutions
can be found in the literature. Some of them are briefly reviewed in this section:

e Silicon nitride on insulator. In [129, 130], strip silicon-nitride-on-insulator (SiNOI)
waveguides were presented. The core material of this CMOS-compatible platform
is silicon nitride, which rests on a thick silicon dioxide layer on top of a silicon sub-
strate. Silicon nitride can be useful for sensing in harsh environments because of its
chemical stability and mechanical hardness [130]. Propagation losses of 0.16 dBcm ™
and 2.1dBcm ™! were reported at A = 2.65um and A = 3.7 pm, respectively.

1

o Silicon carbide on insulator

Silicon carbide is an excellent material for nonlinear applications in the MIR band
because of its large second- and third-order nonlinearity coefficients. This com-
pound appears in different crystalline structures or polytypes. 4H-SiC and oxided
silicon wafers are bonded to form a silicon-carbide-on-insulator (SiCOI) platform
in [131]. Waveguides with a propagation loss of 7dBcm™! were demonstrated at
A =236 pm.

* Aluminum nitride on insulator. Although this work deals exclusively with Group IV
materials, it is worth mentioning MIR integrated platforms that are based on other
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semiconductors. Aluminum nitride on insulator (AINOI) is an especially promising
[I-V platform. Aluminum nitride has interesting properties for MIR applications in
integrated photonics, such as broad transparency window ranging from 200 nm to
13.6 pm, CMOS compatibility, and thermochemical resistance. As for the SON plat-
form, the latter can be helpful for sensing applications. The AINOI platform was
tirstly utilized for the MIR in [132]. Strip waveguides with reduced propagation
loss (« = 0.83dBcm™!) were demonstrated at the short wavelength of 2.5 ym, to-
gether with bends and 3-dB splitters. Recently, Dong et al. extended the operating
wavelength up to 3.8 um, but a high loss of 17.4dBcm™ was reported. Passive de-
vices, such as directional couplers, MMIs, and add/drop filters, were also demon-
strated [133].

* Other non—Group IV semiconductors

Other platforms not based on Group IV materials include silver halides [134,135],
chalcogenide crystals [136-139], mercury-cadmium-telluride [140, 141], and III-V
semiconductors [142, 143]. Some of these platforms might lack the benefits of sil-
icon photonics (e.g., large-scale production or compatibility with microelectronic
manufacturing procedures), but can be useful for (bio)chemical sensing or nonlin-
ear applications, for example.

2.3 Suspended Platforms

2.3.1 Suspended Membranes

The use of undercut SOI was proposed first by Soref et al. [3]. By replacing solid materials
such as silicon dioxide or sapphire with air, suspended waveguides can take advantage
of the entire transparency windows of silicon and germanium. In addition, these wave-
guides are especially appropriate for absorption-based detection of analytes, as a gas or
liquid sample can fill the whole surrounding cladding.

Cheng et al. demonstrated suspended rib SOI waveguides, also known as suspended
membranes, for the first time [74]. The rib creates the lateral silicon-air index contrast
required for waveguiding. A set of holes is etched at both sides of the silicon core. The
lateral holes do not interact with the fundamental mode propagating through the silicon
core. These holes enable the flow of a hydrofluoric (HF) solution to reach and remove the
silicon dioxide. Therefore, two dry-etch steps and one wet-etch step are necessary: (i) for
defining the rib and (ii) for etching the holes. Figure 2.12 shows a schematic diagram of
this suspended membrane. At A = 2.75 um, a propagation loss as low as 3.0dBcm ™! was
achieved. Ring resonators and grating couplers were also developed [74,144].

Suspended membranes based on germanium have also been proposed, yielding prop-
agation losses of 5.4dB cm™!, 29dBem™!, and 2.6dBem™! at wavelengths of 2.15pm
[145], 3.8 um [146], and 7.67 um [77], respectively. These germanium-based waveguides
can potentially cover the full MIR band.
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Figure 2.12: Schematic representation of a
X \;,Z suspended silicon membrane waveguide.

2.3.2 SWG-Cladding Suspended Platforms

A suspended silicon platform based on strip waveguides with lateral subwavelength
grating (SWG) cladding,® schematically represented in Fig. 2.13, was presented for the
first time in [75]. Unlike in suspended membranes, only one dry etch step is needed,
which simultaneously defines the waveguide core and an SWG lattice of holes. This SWG
cladding has a three-fold function: (i) to mechanically support the waveguide core, (ii) to
synthesize a cladding-core index contrast that enables light guiding for a fundamental
mode, and (iii) to allow the flow of the HF acid solution that removes the BOX. A propa-
gation loss as low as 0.82 dBcm ™! was achieved at A = 3.8 um. Suspended silicon wave-
guides with a loss of 3.1dBcm™! at A = 7.67 um constitute one of the main contributions
of this thesis [79]. At this central wavelength, other devices, such as bends and MMIs,
were also reported [79,80,147].

Zhou et al. demonstrated an SWG-cladding suspended silicon slot platform in [76],
including slot waveguides, bends, racetrack resonators, and slot-to-strip mode convert-
ers. Owing to the high field concentration within the slot, these waveguides can offer
high sensitivity for sensing applications up to ~8 pm.

Figure 2.13: Schematic representation of a
suspended silicon strip waveguide (with

Yz lateral SWG cladding).
X\V

SWG-cladding suspended silicon and germanium strip waveguide platforms consti-
tute the backbone of this thesis. Suspended strip waveguides, devices, and surface fiber-

3From now on, waveguides based on this platform will be simply denoted as suspended waveguides. In this
work, the denomination suspended membrane is reserved for the suspended rib waveguides of Section 2.3.1.
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chip couplers have been developed at various MIR wavelengths. An in-depth study of
the platform will be provided in Chapter 3.

2.3.3 Other Suspended Platforms

Alternative methods to suspend the guiding layer have been reported. Although these
results are interesting in theory, they involve much more complex fabrication processes
than the previous suspended structures and have not gained much popularity:

* Fusion-bonded suspended silicon membrane. In suspended membranes, venting holes
are far from the waveguide core. Consequently, the suspended area is too wide
and the membrane stability can be compromised. Narrower, more mechanically ro-
bust suspended membranes are demonstrated in [148], where a silicon layer with
etched waveguides is fusion-bonded to a silicon substrate with pre-patterned air
trenches. Thus, while the fabrication process is more difficult than that of conven-
tional suspended membranes, the necessity of holes is removed. Figure 2.14a shows
a schematic of a fusion-bonded suspended membrane. At A = 3.39 um, the propa-
gation loss is 2.8 dBcm L.

e Air-gap silicon rib. In this platform, rib structures are etched at one side of a sili-
con wafer and a large gap is etched at the other side, as shown in Fig. 2.14b [149].
Waveguides with a propagation loss of 11dBcm™, bends, and 1 x 2 MMIs were
developed at A = 10.6 pm.

(a) (b)

Figure 2.14: Schematic representation of alternative suspended waveguides: (a) a fusion-bonded suspended
silicon membrane and (b) an air-gap silicon rib waveguide.

2.4 Summary of Platforms

In this section the most relevant MIR platforms that have been demonstrated so far in the
literature are summarized. Conventional waveguides are reviewed in tables 2.1-2.3; and
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suspended platforms, in table 2.4. For each platform, waveguide type, and wavelength,
only the waveguides with lowest propagation losses are considered. The symbol “~" is
used when a parameter is not applicable to a specific structure, whereas empty spaces
are left when data is not explicitly available in the referenced articles. The nominal prop-
agation loss & is indicated at the central wavelength A. Platforms are sorted according to
the order followed in this chapter, the type of waveguide (rib, strip, and slot), and the
wavelength (from short to longer). The meaning of the geometrical parameters used in
the tables is shown in Fig. 2.15 for the different waveguide configurations.

(a) (b)

Figure 2.15: Geometrical parameters of (a) rib, (b) strip and (c) slot waveguides.

Table 2.1: Review of non-suspended platforms based on silicon. All dimensions and the wavelength are
given in microns. Propagation losses are given in decibels per centimeter.

Plat. Type H w S Hgox A  Pol « Ref.
SOI  Rib 0.8 2 12 2 34 TE/TM 0.6/0.7 [87]
SOI  Rib 022 135 018 2 38 TE 1.5 [91]
SOI  Strip 022 09 - 2 21 TE 0.6 [95]
SOI  Strip 05 13 - 3 3.8 1.3 [71]
SOI  Slot 05 138 008 3 38 TE 14 [150]
SOS  Strip 028 08 - - 21 TE 1.1 [151]
SOS  Strip 028 1 - - 21 ™ 14 [151]
SOS  Strip 6 1 - - 34 TE 2.1 [102]
SOS  Strip 08 15 - - 4.5 0.7 [98]
SOS  Strip 028 1 - - 52 TE 1.9 [151]
SOS  Strip 06 18 - - 55 TE 4 [99]
SOS  Slot 06 06 013 - 34 TE 11 [102]
SON Rib 08 2 1.2 13 34 TE/TM 52/51 [70]

Si Pedestal 5 8 2 14 3.7 2.7 [105]
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Table 2.2: Review of non-suspended platforms based on germanium. All dimensions and the wavelength
are given in microns. Propagation losses are given in decibels per centimeter.

Plat. Type H W S Hpgox A Pol. « Ref.
GOS  Stip 1 2 - - 37 TE 78  [i11]
GOS Strip 2 225 - - 5.3 TE 3 [111]
GOS Strip 2 29 - - 58 ™ 25 [112]
GOS Rib 12 225 08 - 3.8 TE 25 [152]
GOS Rib 1.7 27 12 - 3.8 TE 0.58  [110]
GOS Rib 18 43 12 - 7.6 TE 25 [153]
GOS Rib 1 4 1 - 10 TE ~1 [109]
GOSOI  Strip 085 65 - 222 37 TE ~8 [154]
GOSOI ~ Strip 2 22 - 5% 5.3 ™ 7 [113]
GOI Strip 024 035 - 2 2 TE 20 [127]
GOI Rib 02 06 01 2 2 TE 14 [126]
GON Strip 1 2 - 1 3.8 TE 335  [124]
SGOS  Stip 2.7 375 - - 4 TE 038 [119]
SGOS  Strip 42 6 - - 4.2 ™ 028  [119]
SGOS Strip 14 2 - = 4.8 TE 0.5 [114,118]
SGOS  Strip 3 33 - - 4.5 ™ <1 [116]
SGOS Strip 3 33 - - 57 ™ <15 [116]
SGOS  Strip 3 7 - - 7.4 ™ <2 [116]
SGOSG Rib 2 7 05 - 4.6 TE 1.5 [72]
SGOSG Rib 2 7 05 - 4.6 ™ 2 [72]
SGOSG Rib - 4 9 - 55-85 TE/TM 2-3 [73]
SGOSG Rib - 4 2 - 55-85 TE/TM 2-3 [73]

* This value includes the thicknesses of both the silicon and the silicon dioxide layers.

Table 2.3: Review of non-suspended platforms based on other materials different from silicon or germa-
nium. All dimensions and the wavelength are given in microns. Propagation losses are given in decibels per
centimeter.

Plat. Type H W S Hpgox A Pol. « Ref.

SiNOI  Strip 25 4 - 4 37 T™ 21 [130]
SiNOI  Strip 4 25 - 25 2.7 0.16 [129]
AINOI Strip 1 10 - 3 25 TM 083 [132]
AINOI Strip 12 225 - 3 3.8 174 [133]
SiCOl  Strip 06 27 - 3 236 TE 7 [131]
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Table 2.4: Review of suspended platforms. All dimensions and the wavelength are given in microns. Propa-
gation losses are given in decibels per centimeter.

Plat. Type H W S Hgox A Pol. « Ref.

Si Membrane 024 1 01 2 275 TE 3 [144]

Si  Air-gap 4 5 5 - 106 TE 11  [149]

Si Wafer bonded 1.07 24 1.07 2 34 TE 4 [148]

Si Wafer bonded 1.07 24 1.07 2 34 TM 28 [148]

Si SWG (strip) 05 13 - 3 38 TE 0.82 [147]

Si SWG (strip) 15 29 - 3 767 TE 3.1  This work [79]
Si SWG (slot) 034 1 - 2 225 TE 28 [76]

Ge  Membrane 03 09 015 2 215 TE 54 [145]

Ge Membrane 025 11 015 322 38 TE 29 [146]

Ge  Membrane 03 35 0.7 3.06 767 TE 26 [77]

Ge SWG(strip) 05 13 - 306 3.8 TE 4.5 Thiswork
Ge SWG (strip) 1 29 - 3.06 7.67 TE 5.2 Thiswork




CHAPTER THREE

SUSPENDED PLATFORMS FOR THE
MID-INFRARED BAND

Of all the aforementioned platforms, suspended silicon and suspended germanium seem
to arise as excellent choices for the MIR band. Both platforms have the potential to offer
low-loss propagation of light and can be fabricated by using well-established manufac-
turing techniques. Suspended silicon waveguides can operate up to A ~ 8 um, whereas
suspended germanium waveguides can cover even longer wavelengths, up to ~15um.

The aim of this chapter is to prove the viability of suspended platforms for light guid-
ing. It begins by showing the geometry of suspended waveguides and their guiding prin-
ciple (Section 3.1). Then, the modeling approaches for simulating suspended waveguides
are proposed. These models are applied to design suspended silicon and suspended ger-
manium waveguides (Section 3.2). Next, the definition of masks and the lithographic
manufacturing process are described (Section 3.3), and experimental results are discussed
(Section 3.4). For the suspended silicon platform, the design of some building blocks is
provided (Section 3.5). These results validate the presented suspended waveguides and
devices as an effective integrated platform for MIR applications. The chapter ends with
concluding remarks (Section 3.6).

3.1 Introduction

The suspended silicon and suspended germanium platforms are based on SOI and GO-
SOI wafers, respectively. Cross-sections of both wafers are illustrated in Fig. 3.1. The
thickness H of the guiding layers can be customized when the wafers are purchased. The
BOX thickness is fixed to 3 pm. GOSOI wafers have a 60-nm-thick silicon film between
the germanium layer and the BOX. This thin film will not affect the guiding capabilities
of the designed waveguides and, thus, will be ignored from now on.

The suspended platforms are fabricated from these wafers in two steps: firstly, the
waveguide core and lateral cladding are patterned and dry-etched; secondly, the BOX is
removed using an acid solution (wet etching). A generic suspended waveguide is illus-
trated in Fig. 3.2. The core, of width W and thickness H, is anchored to lateral unetched
silicon or germanium areas by a periodic cladding. This cladding, of width W,q, com-
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BOX Hgox =3 um

(a) (b)

Figure 3.1: Cross-sections of the (a) SOI and (b) GOSOI wafers used for suspended silicon and suspended
germanium platforms, respectively. The guiding layer thickness (H) must be designed. The BOX thickness
is fixed to 3 pm. The GOSOI wafer has a thin silicon layer of thickness Hg; = 60nm that is removed when
the suspended germanium waveguide is wet-etched.

prises strips of length Lgyip and holes of length Li,gle. An air gap of thickness Hpox = 3 um
separates the guiding layer from the silicon substrate.

mm Sior Ge
SiO,
mm Si

%/Z

Figure 3.2: Schematic representation of a suspended silicon or suspended germanium waveguide. (a) 3D
view. (b) Front view. (c) Top view of the guiding layer. In the front view the lateral cladding is replaced by a
homogeneous SWG metamaterial.

(@ (c)

The periodic cladding of a suspended waveguide operates in the subwavelength grat-
ing (SWG) regime.1 Subwavelength gratings are arrangements of structures with a peri-
odicity A smaller than half the guided wavelength, i.e.,

A
Lstrip + Lhole =A< ABragg = m/ (31)
where Apragg is the Bragg period and g is the effective index of the fundamental Bloch—
Floquet mode traveling along the waveguide [155]. In the SWG regime, radiation and
Bragg reflection effects are suppressed and the periodic structure can be modeled as a
homogeneous non-diffractive metamaterial whose refractive index depends on the ratio

LA description of the different operating regimes of periodic structures will be provided in Chapter 4.
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A/A and the duty cycle (DC = Lgyip/A) [155-157]. In suspended waveguides, the SWG
cladding has three different functions:

(i) To support the waveguide core. The strips of the cladding support the suspended core
and prevent it from collapsing.

(ii) To allow BOX removal. An acid solution flows through the periodically distributed
holes that are etched in the cladding and removes the silicon dioxide under the
guiding layer.

(iif) To provide refractive index contrast. By conveniently choosing the pitch and the duty
cycle, the lateral refractive index contrast that is required for waveguiding can be
controlled.

If the suspended waveguide is properly designed and fabricated, the fundamental
mode is strongly confined within the core and propagates through the structure as shown
in Fig. 3.3.

X (Um)

y (um) Z (um)
(a) (b)

Figure 3.3: (a) Transverse field distribution and (b) propagation of the fundamental mode (TE polarization)
of a suspended waveguide. The structure is outlined.

Simulations were carried out at UMA using a workstation with Intel Xeon ES-2697
v3 processor at 2.6 GHz. The fabrication and characterization processes were performed
in the ORC. Currently, ORC’s Mid-Infrared Group IV Photonics laboratory has three QCL
lasers, whose central wavelengths are 3.8 um, 7.67 pm, and 9.6 ym. The suspended wave-
guides should be realized at these wavelengths.

The upper bound of the transparency window of silicon is A ~ 8 um. Therefore, the
useful wavelengths are 3.8 pym and 7.67 ym. In 2014 and 2016, suspended silicon wave-
guides were demostrated at A = 3.8 pym [75,147]. Thus, regarding the suspended silicon
platform, this thesis is only focused on the development of waveguides at A = 7.67 pm.
At this wavelength, waveguides have been designed, fabricated, and characterized for
TE polarization, yielding a propagation loss of ~3dB cm ™!, of which ~2dBem™! are
attributed to silicon loss. The remaining loss (~1dBcm™!), which can be attributed to
roughness, is comparable to that reported in [147] at A = 3.8 pm.
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From the point of view of propagation losses, suspended germanium waveguides are
not necessary at A = 3.8 um, since suspended silicon is low-loss and preferable. How-
ever, the measurement setup of the ORC at 3.8 pm is more mature (the available source
is tunable and the optical fibers are less fragile) than at longer wavelengths. As a conse-
quence, suspended germanium waveguides were realized at 3.8 um to test the concept.
At7.67 pym and 9.6 um, suspended germanium waveguides are interesting per se because
they can potentially offer low-loss propagation. They have been designed at both wave-
lengths. The first experimental losses, which have been measured only at 7.67 um, are
promising (~5dBcm™1!), but there is still room for improvement. At the time of writing
this thesis, new chips are being fabricated to operate at A = 7.67 uym and A = 9.6 pm.

In the following sections, the development cycle of suspended silicon and suspended
germanium waveguides will be covered. The diagram in Fig. 3.4 summarizes the specific
objectives of this chapter and the results obtained so far.

A=3.8pum A=7.67 pm A=9.6 ym

— PUBLISHED WORK
[79,80]
Cz) designed
% PREVIOUS WORK fabricated NOT FEASIBLE
7] (by other authors from characterized (prohibitive silicon loss)
UMA, ORC, and NRC)

L a=3.1dBcm™!
— PROOF OF CONCEPT ON-GOING WORK ON-GOING WORK
=
=2 designed designed designed
Z
<§f fabricated fabricated
5 characterized characterized
© 1 1
— a=4.5dB cm” a=5.2dB cm”

Figure 3.4: Overview of the designed suspended silicon and suspended germanium waveguides. The indi-
cated propagation losses («) correspond to measured data.

3.2 Waveguide Design

3.2.1 Waveguiding Requirements

To ensure single-mode operation with low propagation loss, suspended waveguides must
be designed to meet the following requirements:

(i) Mechanical requirements. The SWG cladding must be mechanically robust and the
torque must be low enough to prevent collapse. Even small breaks in the cladding
strips can increase the propagation loss.

(ii) Fabrication requirements. The cladding holes must be sufficiently large to allow the
flow of the acid liquid that suspends the structure. If silicon dioxide is not fully
removed, remnants can vastly increase the propagation loss. Besides, the fabrication
process and the thickness of the guiding layer impose a minimum feature size.

(iii) Optical requirements.
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* SWG operation. To avoid radiation or Bragg reflections, the periodic cladding

must satisfy the SWG condition [see Eq. (3.1)].

Leakage minimization. The modes supported by the waveguide can suffer from
power leakage to the substrate (vertical leakage) and to the lateral unetched sil-
icon or germanium (lateral leakage). Therefore, to enable practical single-mode
operation, the fundamental mode must propagate with negligible vertical and
lateral leakage losses, while high-order modes, if guided, must be leaked. As
an example, Fig. 3.5 shows a cut of the fundamental (TEy) and second-order
(TE10) modes at the middle of the waveguide core (y = H/2) for several core
widths. In Fig. 3.5a the width is narrow enough to cut off the high-order mode,
but at the expense of high leakage loss for the fundamental mode. The oppo-
site case is shown in Fig. 3.5¢, in which the core is so wide that both modes are
strongly guided. A compromise solution is observed in Fig. 3.5b. Variations in
H, Wad, Lstip, and Lygle similarly affect the modal confinement.

17 17 13
0.5 1 0.5 0.5
3 3 8
W 0] w07 w04
[} [n] VIRTUALLY [y
SINGLE-MODE MULTI-MODE
-0.5 7 SINGLE-MODE -0.5 7 TE 0.5 TE
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(STRONG KAGE) Ty o
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Figure 3.5: Influence of the core width on the TEyy and TE;y modes of a suspended waveguide. The trans-
verse distribution of the electric field is cut at the middle of the waveguide core (y = H/2) for (a) W = 1 pm,

(b) W =3pum, and (c) W = 5pum.

All these requirements should be fulfilled simultaneously. Table 3.1 indicates whether
high (1) or low (] ) values are needed in practical waveguides for suspension and mechan-
ical stability. Single-mode operation is examined in Table 3.2. A comparative analysis of
both tables shows that most of the parameters require high values for some requirements
and low values for others. Therefore, in order to meet the requirements, a trade-off be-
tween the different dimensions is necessary.

Table 3.1: Design requirements for suspension and mechanical stability in suspended waveguides.

Requirement H W Waad  Lswip® Lnole”™
Flow of HF acid solution i + T
Lightweight waveguide core | | |

Robust cladding 4 T 1

*Lstrip + Lnole < ABragg according to Eq. (3.1).
Hgoyx is fixed to 3 pm and cannot be designed.

3.2.2 Design Methodology and Modeling

The ultimate design goal is to minimize the propagation loss («) of the fundamental
mode supported by the suspended waveguide. The propagation loss is proportional to
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Table 3.2: Design requirements for single-mode operation in suspended waveguides. Blue arrows highlight
the most critical parameters for each requirement.

Requirement

Reduced vertical leakage for TEy) mode
Increased vertical leakage for TEy; mode
Reduced lateral leakage for TEy mode
Increased lateral leakage for TE;p mode

Weaad  Lstrip®  Lnole™

oo
ool s
+——

— >
s

*Lstrip + Lhole < ABragg according to Eq. (3.1).
Hpox is fixed to 3 um and cannot be designed.

the imaginary part of the effective index (np) of the mode and is due to the intrinsic loss
of the core material (¥ material) and the power leakage (¥jeakage) as follows:

27
& = 7 Im (nB) ~ F‘xmaterial + D‘leakager (32)

where T is the confinement factor within the core as defined in [158].2

The term I'tp,terial Of Eq. (3.2) is only relevant if the core material exhibits high loss at
the operating wavelength. For example, ag; ~ 2dB cm ™! at A = 7.67 pm. In such a case,
the influence of the material loss could be reduced by decreasing the confinement factor.
The leakage term can be expressed as the sum of vertical and lateral leakage losses:

Xleakage = Xvertical + Klateral - (3.3)

Both the confinement factor and the leakage depend on the dimensions of the waveguide.
In practical designs, the confinement factor cannot be reduced without substantially in-
creasing the leakage, so that only the latter can be minimized.

For conventional, non-suspended waveguides, the power leakage can be computed
with commercial photonic simulators such as Photon Design’s FIMMWAVE [159] or Syn-
opsys’ RSoft FemSIM [160]. As suspended waveguides are periodic structures, guided
modes are Bloch-Floquet solutions of Maxwell’s equations. In most of the mode solvers,
Bloch-Floquet modes cannot be calculated easily and workarounds are required. In this
thesis, three different approaches, which are summarized in Fig. 3.6, are proposed for
modeling and simulating the suspended waveguides:

e Isotropic approach. This is the simplest approach. The SWG cladding is modeled as
a homogeneous isotropic metamaterial with an equivalent refractive index nswg =
1y, which can be approximated by Rytov’s formula [161]:

DC - 12 1—DCQC) - n? 12 34
nxx’\‘[ n +( )nhole ’ ()

strip
where 7gyip is the refractive index of the cladding strips (silicon or germanium)
and np,e is the refractive index of the material that fills the cladding holes (air).
Simulations can be carried out with any mode solver. In this work, RSoft FemSIM
is employed, taking less than 10s per effective index calculation.? Vertical leakage
simulations are highly accurate, yet lateral leakage losses are underestimated for
narrow cladding widths.

2In Eq. (3.2), the influence of the material loss of the SWG cladding strips has not been considered.
3Using a uniform mesh of 50 nm (x direction) and 100 nm (y direction).
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I Homogenized cladding I
Low cost Computational cost High cost

Isotropic model Anisotropic model Bloch-Floquet

"\l/,z B diag(n,.n,,.n,,) -
Nxx, Nyy and nzz calculated with Rytov's formulas
High accuracy Accuracy (vertical leakage) High accuracy
Low accuracy Accuracy (Iateral Ieakage) High accuracy

Figure 3.6: Modeling approaches of an SWG-cladding suspended waveguide.

* Anisotropic approach. The SWG cladding is modeled as a homogeneous anisotropic
equivalent material (uniaxial crystal) with a permittivity tensor as follows [162]:

n2, 0 0
ngwg=| 0 mny O |, (3.5)
0 0 nZ

where 714y, 1y, and 1, can be calculated by Rytov’s formulas [161]. Specifically, 71,
(= nyy) can be estimated with Eq. (3.4), and

-1/2

My ~ [Dc-n—2 +(1—DC)-ng§1e] : (3.6)

strip
Simulations can be performed using FIMMWAVE, whose finite-element method
(FEM) and finite-difference method (FDM) solvers support anisotropic homoge-
neous materials. While the computation time is only slightly increased with respect



38 3. Suspended Platforms for the Mid-Infrared Band

to the isotropic model (~20 s per simulation*), lateral leakage results are much more
accurate if the numerical parameters of the simulator are conveniently adjusted.

* Bloch—Floquet approach. The suspended waveguide is simulated by Bloch-Floquet
modal analysis without homogenizing the SWG cladding. Effective indices can be
calculated, for example, with RSoft FullWAVE (3D finite-difference time-domain
method, 3D FDTD) [163] using a resonant method similar to that described in [164]
in conjunction to signal-processing techniques [165-167]. This model is the most
accurate, but the simulation time is substantially increased with respect to the pre-
vious approaches (~20 min per simulation point®).

The three models are compared in Fig. 3.7. The real part of the effective index of the
fundamental mode of a suspended silicon waveguide is plotted versus the core thickness
in Fig. 3.7a. In the depicted range of thicknesses, the maximum absolute error between
the effective indices that are calculated for the isotropic and Bloch-Floquet models is
0.032, and half that value between the anisotropic and Bloch-Floquet approaches. These
results suggest that simulations based on both the isotropic and the anisotropic models
provide satisfactory mode solutions, which agree well with the Bloch-Floquet analysis.

1

H=14pum
37 ¥
1 —Isotropic W 05
2.8 — Anisotropic o
06 _ —Bloch-Floquet 0 - T . . T
-4 - 0 2 4
y (um)
(b)
1 _
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«F 0.5
o
0 T
-5 0 5
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Figure 3.7: Comparison between isotropic, anisotropic, and Bloch-Floquet approaches. (a) Real part of the
effective index of the fundamental mode of the suspended structure that is shown in the inset as a function of
the thickness H. (b) Cut of the fundamental mode at the middle of the waveguide with H = 1.4um (x = 0).
(c) Cut of the fundamental mode at the middle of the waveguide with H = 1.4um (y = 0.7 pm). Parameters:
A =7.67pm, W = 2.9um, Lgyip = 0.25um, Lygle = 0.9 um, Wag — o0, Hpox — o0. TE polarization.

The vertical and lateral confinements of the fundamental mode are examined when
H = 1.4pm. An x cut of the mode at the middle of the waveguide confirms that the mode
field profiles, which are shown in Fig. 3.7b, are virtually identical in the vertical direction
regardless of the model. This is due to the fact that the SWG cladding has low influence

4Using the FEM solver with a uniform mesh of 50 nm (x direction) and 100 nm (y direction).
5Using a uniform mesh of 50 nm (x direction), 100 nm (y direction) and 30 nm (z direction).
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on the vertical confinement of the modes. Consequently, the isotropic model leads to the
fastest simulations without compromising the accuracy of vertical leakage calculations.

Any cut of the mode at the middle of the guiding layer is shown in Fig. 3.7c. The mode
profiles within the waveguide core are practically the same independent of the model.
However, the evanescent tails of the modes are slightly different for each model, as they
interact with the SWG medium. Thus, the isotropic model may not provide sufficiently
accurate results for the lateral leakage.

Taking into account the constraints in Tables 3.1 and 3.2, and the modeling approaches
of suspended waveguides, the following two-step design strategy is proposed:

(i) Thickness selection. This is the most important step because it determines the wafer
that must be purchased. The thickness H is chosen to guarantee vertical single-mode
operation (negligible leakage for the fundamental mode; high leakage for the TE;
mode, if supported) regardless of the other possible dimensions of core and lateral
cladding. The waveguide can be modeled using only the isotropic approximation.

(ii) Waveguide selection. The core width (W) and the SWG cladding (Waq, Lstrip, and
Lpole) are chosen to ensure single-mode operation (negligible lateral leakage for the
fundamental mode; high lateral leakage for the TE;y mode, if supported) and meet
fabrication and mechanical requirements. If the isotropic model were used, actual
leakage losses could be higher than simulated. For this reason, in this work lateral
leakage losses are well estimated using the anisotropic model, as it is much more
accurate than the isotropic model, but also much faster than the Bloch-Floquet anal-
ysis.

3.2.3 Design of a Suspended Silicon Waveguide

Here, the entire design process of a suspended silicon waveguide for TE-polarized light
at a wavelength of 7.67 pm is described in detail.

Influence of Silicon Loss

Since silicon has a material 10ss &material = #si ~ 2.1dBem~!at A = 7.67 um [84], Eq. (3.2)
indicates that the designed suspended silicon waveguides will have a minimum achiev-
able propagation loss through the term 'y terial- The influence of this term on the final
propagation loss can be low if the confinement factor is sufficiently reduced.

The mode confinement mainly depends on the cross-section of the waveguide core
(H and W) and the lateral index contrast. For a reasonable equivalent refractive index
of 1.8, the effective index of the fundamental mode of a suspended silicon waveguide is
computed as a function of the core width for several thicknesses. Figure 3.8a shows the
real part of the effective index, whose relatively high value indicates that the mode is well
confined within the waveguide core for the considered H and W values. Additionally,
Fig. 3.8b shows the propagation loss. In the depicted curves, infinite BOX thickness and
cladding width are assumed, so that the estimated propagation losses are only due to
the influence of silicon in the waveguide core (¢ = I'ag;). In practical waveguides, an
intrinsic loss of ~2.3dBcm ™! cannot be avoided. In consequence, the design stage must
focus on minimizing the leakage term of Eq. (3.2).
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Figure 3.8: Study of the intrinsic loss of a suspended silicon waveguide considering the silicon loss, but
not leakage losses. (a) Real part of the effective index and (b) propagation loss of the fundamental mode
of a waveguide as a function of the core width for several thicknesses of the guiding layer. Parameters:
Hpox — 00, Wgaq — 00, and ngwg = 1.8 (isotropic model).

Thickness Selection

In this design step, the thickness of the guiding layer (H) is selected. The vertical leak-
age is primarily affected by this parameter, and to a lesser extent by the width of the
waveguide core and the lateral index contrast.

First, a range of suitable thicknesses is chosen that guarantees high leakage losses for
the undesired second-order vertical mode. As an extreme case, the real part of the effec-
tive index of the TEy mode is calculated as a function of the core thickness for the slab
waveguide in Fig. 3.9a. This structure can be interpreted as a suspended waveguide with
an infinitely wide core or with a homogeneous lateral cladding of silicon. In real wave-
guides with finite core width or with SWG cladding, the vertical leakage will always be
higher. As shown in Fig. 3.9b, the TEy; mode is cut off for H < 1.2 um and weakly guided
for 1.2pm < H < 1.5 pm, thus yielding high vertical leakage, as required. Consequently,
the presence of high-order modes can be ignored at least up to H = 1.5 um.

Next, the geometry of the suspended silicon waveguide that was presented in [147]
for a wavelength of 3.8 um is used as a starting point for the new design at 7.67 pm. Two
parameters are preliminary chosen: (i) an equivalent refractive index ngwg of 1.8, which
approximately produces the same index contrast as at a wavelength of 3.8 um; and (ii) a
core width W of 2.6 um, which corresponds to a scaling from A = 3.8 um to A = 7.67 pm.
Note that if the silicon thickness H were scaled accordingly, a BOX thickness of ~6um
would be needed to maintain a negligible vertical leakage at a wavelength of 7.67 pm. As
Hpox = 3 pum in the utilized SOI wafers, H cannot be simply scaled up.

To choose the exact H value, the vertical leakage of the fundamental (TEyy) mode is ex-
amined using the isotropic model. To isolate vertical leakage from lateral leakage losses,
the width of the lateral cladding is considered infinite (i.e., the unetched lateral silicon
regions are not included within the simulation window, as illustrated in Fig. 3.10a). The
vertical leakage loss of the fundamental mode as a function of the core thickness is shown
in Fig. 3.10b. A thickness of 1 pm, corresponding to the scaled value of the core thickness
at A = 3.8um [147], is not sufficient for realistic waveguides at A = 7.67 um. For the
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Figure 3.9: (a) Schematic representation of the slab waveguide used to analyze the vertical second-order
(TEp1) mode. (b) Effective index of the TEy; mode of the slab waveguide as a function of the core thickness.
The normalized magnitude of the transverse field distribution of the TEj; mode of the slab is shown for
H =15pum.

considered nswG, Avertical < 0.1dBem ™! for any waveguide with H > 1.4um. Since an
overetching during the fabrication process can reduce the core thickness, H was set to
1.5um to guarantee a vertical leakage lower than or equal to 0.1 dBcm™. This thickness
would be valid even if nsyg were higher, because the fundamental mode would be more
vertically confined, resulting in a reduced power leakage toward the substrate.
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Figure 3.10: (a) Schematic representation of the structure that is simulated to calculate vertical leakage losses.
(b) Estimated vertical leakage for the fundamental mode (TEgg) of the suspended silicon waveguide as a
function of the core thickness. A vertical leakage loss of 0.1 dBcm™! is marked with a dashed line. Parame-
ters: ngwg = 1.8, W = 2.6 um, Hgox = 3 um, Wepq — 0.

Waveguide Selection

Once the nominal thickness (H) is chosen, the width of the core (W) and the dimensions
of the SWG cladding (Wad, Lstrip, and Lpge) are selected to minimize the lateral leakage
of the fundamental (TEqp) mode while ensuring mechanical robustness.
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For a thick core of 1.5um, fabrication tests have shown that cladding holes with
Lpole > 800nm are required to facilitate the flow of HF. Likewise, silicon strips with
Lsyrip > 200nm provide sufficient mechanical stability. The lengths Ly,gle and Lsyip were
set to 900nm and 250 nm, respectively. These values were chosen because (i) they sat-
isfy the SWG condition of Eq. (3.1), in which Apags was estimated to be ~1.3 um using
FEXENG®; and (ii) they synthesize an equivalent refractive index nswg of ~1.8, which de-
fines a lateral index contrast that is similar to that used in [147] and in Fig. 3.10b.

The waveguide core was widened from 2.6 pm to 2.9 ym, in order to slightly increase
the lateral modal confinement, thereby enabling the utilization of a narrower, more stable
SWG cladding without affecting the lateral leakage. As a side effect, this variation in W
reduces the vertical leakage, so that the thickness H that was selected previously can
remain unchanged.

For the selected parameters, the lateral leakage is calculated in Fig. 3.11b as a func-
tion of the cladding width using the anisotropic model. The simulations are carried out
by removing the silicon substrate, as schematized in Fig. 3.11a. The lateral leakage is be-
low 0.1dBcm™ for Wg,q ~ 3.65um. The second-order mode is leaked with a loss of
~250dBcm™! for such a cladding width, and of more than 150 dBcm™! for W,q < 4 pm.
Thus, a cladding width of 3.65 um was chosen.

S 10% 1 —TEq - -TEq

Qlateral (d B Cm-1 )

— Ngwg = diag(ny,,ny,n,,) (anisotropic) Wsay (M)
(a) (b)

Figure 3.11: (a) Schematic representation of the structure that is simulated to calculate lateral leakage losses.
(b) Estimated lateral leakage for the TEgg and TE;g modes of the suspended silicon waveguide as a function
of the cladding width. Lateral leakage losses of 0.1 dB cm~1 are marked with dashed lines. Parameters: 714, =
1.8, n;; = 1.1, H = 1.5um, W = 2.9 um, Hgpx — .

Table 3.3 summarizes the selected dimensions for the suspended silicon waveguide
at A = 7.67 ym.
3.2.4 Design of Suspended Germanium Waveguides

As an alternative to the suspended silicon platform, suspended germanium waveguides
were designed at the following wavelengths:

®FEXEN (Fourier EXpansion simulation ENvironment) is the 2D electromagnetic simulator developed by
the researchers of the Photonics & RF Lab at the Universidad de Malaga. FEXEN is based on the Fourier
eigenmode expansion method (Fourier-EEM) and is especially optimized for the simulation of periodic
structures [168].
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Table 3.3: Nominal dimensions of the suspended silicon waveguide at a wavelength of 7.67 um.

H (llm) 144 (}lm) Wclad (um) Lstrip(pm) Lhole (llm) I_IBOX’F (pm)
1.50 2.90 3.65 0.25 0.90 3.00

*For reference. The thickness Hpox is not a design parameter.

(i) A =3.8pum. The characterization of waveguides at 3.8 um is simpler than at longer
wavelengths because of the available experimental setup for the former (see Section
3.4.1 for a description of the setups). Thus, even though suspended silicon wave-
guides work well at 3.8 pm, the design of suspended germanium waveguides was
proposed firstly at this wavelength to prove the concept more easily than at 7.67 pm.
Of course, just as at other MIR wavelengths, the suspended germanium platform at
3.8 um could be helpful for applications that can benefit from the specific character-
istics of germanium, such as higher nonlinearity or refractive index.

(ii) A =7.67 pm. As shown in Section 3.2.3, the suspended silicon waveguides designed
at this wavelength would have a minimum achievable loss of ~2.3dBcm™! that is
caused by the intrinsic loss of silicon. Suspended germanium waveguides do not
suffer from high material loss, potentially outperforming their suspended silicon
counterparts.

(iii) A = 9.6 um. Suspended silicon waveguides have not been designed at 9.6 pm be-
cause of the prohibitive material loss. At 9.6 um, as well as at longer MIR wave-
lengths, the suspended germanium platform could reach its fullest potential.

In this section, the design of suspended germanium waveguides for TE-polarized
light at the aforementioned wavelengths is summarized and final results are provided.

Thickness Selection

GOSOI wafers with thicknesses of 0.5 pm, 1 um, and 2 pm were available in the ORC. The
process of selecting the platform was simplified with respect to the suspended silicon
case. Now, instead of choosing exact H values, the goal was to find which of the three
available thicknesses were the most appropriate for the suspended germanium wave-
guides at each wavelength.

Because the refractive index of germanium (nge ~ 4) is higher than that of silicon
(nsi ~ 3.42), suspended germanium waveguides have stronger vertical index contrast
than their silicon counterparts. Furthermore, if the same duty cycle as in the suspended
silicon waveguides is used (DC ~ 20%), the equivalent refractive index nsyg will be
increased (from ~1.8 to ~2), and hence the lateral index contrast.

Isotropic simulations were performed assuming nswg ~ 2. At each wavelength, the
following conclusions are drawn:

(i) A =3.8um. A negligible vertical leakage can be achieved with a thickness of 0.5 um
and a core width of 1.3 um. These parameters are the same as in suspended sili-
con waveguides at this wavelength [147], so that the guided modes will be more
confined within the germanium core.
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(ii) A =7.67 um. A negligible vertical leakage can be achieved with a thickness of 1 um
and a core width of 2.9 um. In this case, the guiding layer is thinner than in the
suspended silicon waveguides because of the stronger vertical index contrast.

(iii) A =9.6 um. If H and W were scaled from the 7.67-pm germanium design, a thick-
ness of 1.25um and a width of 3.6 pm would be required. For a thickness of 1 pm,
the vertical leakage is relatively high (ayerical ~ 0.8 dBem™1), but it could be slightly
reduced by using a wider core (e.g., ®yertical ~ 0.5dB cm ™! if W = 5pum). Alterna-
tively, the power leakage is negligible regardless of the core width when H = 2 pm.

Finally, in order to study the vertical leakage of the second-order (TEj;) mode, a slab
waveguide was analyzed. The TEy; mode is cut off at wavelengths of 3.8 um and 7.67 ym,
as well as 9.6 um when H = 1um. In contrast, the high-order mode is well guided at
9.6 um for a core thickness of 2 pm.

Waveguide Selection

Using the anisotropic model, the waveguides were completely designed at the three op-
erating wavelengths. As an example, the lateral leakage of the suspended germanium
waveguide at 7.67 pm is shown as a function of the cladding width in Fig. 3.12.

Table 3.4 indicates the final dimensions. Some considerations are given as follows:

e At wavelengths of 3.8um and 7.67 pm, the SWG claddings are slightly narrower
than in the corresponding suspended silicon waveguides (see [147] and Section
3.2.3). This reduction is due to the increased index contrast of the germanium-based
platforms.

¢ If the dimensions simply were scaled, suspended germanium waveguides at 9.6-
pm wavelength would require a core width of 3.6 ym. For the design with H =
1 um, a core width of 4.2 pm was selected instead. The rationale is that the chosen W
value leads to a slightly reduced vertical leakage (tyertica ~ 0.6 dB cm ™) while lat-
eral leakage is ~0.1 dBcm ™! for the fundamental mode and higher than 25 dB cm™
for the second-order mode. A wider core would have decreased the vertical leakage
marginally, but at the expense of increasing the confinement of the TE;y mode.

* A suspended germanium waveguide was designed at a wavelength of 9.6 ym for
the 2-um-thick platform. To facilitate the HF flow, the hole length was increased to
1.05pm, yet the duty cycle of ~20% was kept to maintain the same lateral index
contrast as in the other designs. In this case, although the fundamental mode is
low-loss and the second-order lateral mode is leaked with ~25 dB cm ™!, the second-
order vertical mode is supported because of the excessive guiding layer thickness.
An optimum design could have been proposed for H = 1.5 um, but a GOSOI wafer
with such a thickness was not available in the ORC’s laboratory.

3.3 Fabrication

The suspended silicon and suspended germanium structures were fabricated by using
electron-beam (e-beam) lithography. A photosensitive resist is spun onto the guiding
layer of the wafer. Then, electron beams are properly focused to pattern the layout of
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Table 3.4: Nominal dimensions of the suspended germanium waveguides.

A (pm) H (llm) |4% (llm) Wclad (llm) Lstrip(pm) Lhole (llm) HBOX* (pm)

3.80 0.50 1.30 2.00 0.10 0.45 3.00
7.67 1.00 2.90 3.10 0.20 0.80 3.00
9.60 1.00 4.20 3.60 0.20 0.80 3.00
9.60 2.00 3.60 3.40 0.25 1.05 3.00

*For reference. The thickness Hppy is not a design parameter.

the optical circuit that will be etched. In this section, the procedures for mask definition
and e-beam lithography will be described.

3.3.1 Mask Definition

The first step of the fabrication process is drawing the layout, which is afterward con-
verted into a GDSII file that feeds the e-beam machine. Although e-beam lithography
does not require the layout to be written on a mask plate, the stream file is typically
called mask. The masks for the suspended waveguides were created with Mentor’s Tan-
ner L-Edit IC Layout [169]. A set of C++ functions, which are property of the ORC, were
called from L-Edit to automatize the drawing.

The masks for both suspended silicon and suspended germanium comprise several
sets of waveguides. Each set or cell is composed of waveguides with different lengths
that are accessed by fiber-chip surface couplers, as illustrated in Fig. 3.13. Except for the
length, all of the structures of a cell have the same dimensions. With this arrangement of
waveguides, propagation losses can be calculated by using the effective cut-back method
[170], which will be described in more detail in Section 3.4.

The dimensions of the waveguides are changed from one cell to another. Variations
in Wgad, W, or Lsyip have these two objectives:

1. To compensate for fabrication errors. The dimensions of fabricated structures typically
suffer from positive or negative deviations caused by the combined effect of non-
ideal e-beam patterning and dry etching. Additionally, the acid solution can affect
the silicon or germanium layers and overetch the suspended waveguides, produc-
ing negative biasing (i.e., structures are narrower and thinner than desired). The
overall effect of fabrication errors can be as high as £150nm. When a mask is de-
fined, dimensional variations are applied to compensate for these undesired effects.



46 3. Suspended Platforms for the Mid-Infrared Band

N = <M
I = <

T - <

===

Figure 3.13: Layout of waveguides used to measure propagation losses with the effective cut-back method.
Light is coupled to waveguides of different lengths by using fiber-chip surface couplers.

2. To provide mechanical stability. As the mechanical behavior of the suspended wave-
guides is not simulated, the fabricated structures may be unstable and can collapse.
Even if the nominal design is sufficiently robust, an overetching caused by the acid
solution can weaken and break the waveguides. A chip with all structures broken
is useless. For these reasons, a variety of waveguides was considered.

An example of a mask to characterize suspended waveguides is shown in Fig. 3.14.
Note that suspended structures are defined by their cladding holes. Since the cladding
holes are too small, a metrology box, which is a hole of 1 mm x 1 mm, is drawn to be used
as a target for an ellipsometer, to probe the thickness of the dry-etched areas during the
fabrication process.

Some suspended 90°- and s-bends were also drawn in the mask for suspended sili-
con waveguides. A cascaded configuration, similar to that used for straight waveguides,
was chosen to characterize the propagation loss per bend. These structures had not been
designed. Instead, they were overdimensioned to ensure low loss.
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Figure 3.14: Example of a layout for the characterization of suspended waveguides. Sets of waveguides of
different lengths are distributed along the chip area. Each set corresponds to a variation in the core width,
cladding width, or cladding duty cycle. Fiber-chip surface couplers were used to couple the light. The sus-
pended structures are defined by their holes. A metrology box is drawn to be used as a target for an ellip-
someter and facilitate the measurement of the dry-etched layer thickness during the fabrication process.

|
Waveguides with different lengths accessed via surface fiber-chip couplers i
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3.3.2 Llithography Procedure

The fabrication of the designed structures was performed in the Southampton Nanofab-
rication Centre (SNC) by researchers from the ORC. The fabrication procedure, which is
compatible for both suspended silicon and germanium waveguides, is briefly described
as follows.”

(i)

(i)

(iii)

(iv)

v)

(vi)

(vii)

Moisture removal. The sample — namely, the portion of the wafer where the circuit
is fabricated — is baked at 220 °C to remove any moisture.

Photoresist application. A ZEP520-A photoresist is deposited on the guiding layer,
spin-coated, and baked. The final thickness of the photoresist layer should be care-
fully chosen and depends on the duration of the subsequent dry etch: if the photore-
sist layer is too thin, it can be fully etched, leaving undesired silicon/germanium
areas unprotected; on the other hand, if the layer is too thick, electron scattering can
increase the minimum feature size. For suspended silicon structures at A = 7.67 pym
(H = 1.5um), a thickness of ~700nm is used, whereas for suspended germanium
waveguides at A = 3.8um and A = 7.67 um, whose waveguide core is thinner
(H = 0.5pm and H = 1pm, respectively), the photoresist is ~500 nm thick.

Electron-beam lithography. The mask layout (GDSII file) is transferred into the pho-
toresist by using a JEOL JBX-9300 e-beam machine. With this process, some regions
of the photoresist become soluble in a chemical developer after electron irradiation.

Developing. The sample is dipped into a ZED-N50 developing solution. Photoresist
areas attacked by the electron beams are then removed, thereby leaving the under-
neath silicon/germanium exposed. The sample is washed off in isopropyl alcohol
(IPA) and deionized (DI) water.

Dry etch. An inductively coupled plasma (ICP) etches the silicon/germanium areas
that are not protected by the photoresist (i.e., the holes of the suspended structures).
First, a conditioning silicon wafer is etched during 20 min to stabilize the etch rate.
Then, by using a plain wafer as a carrier, the chip sample is loaded in an Oxford In-
struments” ICP 380 system. After a short initial etching, the etch rate is estimated by
measuring the thickness of the silicon/germanium layer of the metrology box with
an ellipsometer. An iterative process (loading the sample in the ICP tool, etching,
removing the sample from the ICP system, and checking the thickness) is followed
until the silicon/germanium layer is totally etched. If the holes are not completely
opened, the waveguides might not be successfully suspended.

Photoresist removal. Remnants of the photoresist are ashed with oxygen plasma for
~10min (silicon) and ~5min (germanium). Germanium waveguides are less time
in the asher to prevent oxidation.

Wet etch. The sample is dipped into a 1:7 HF:H,O solution, which suspends the
waveguides. The duration of the dipping is critical: if the sample is not submerged
for sufficient time, some devices may not be fully suspended, potentially increasing
propagation loss; on the contrary, if the submersion time is excessive, the HF acid
can negatively affect the thickness and widths of silicon and germanium structures.

7 A detailed description can be found in [171].
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This situation is illustrated in Fig. 3.15, in which narrow and wide waveguides are
attacked by the acid. The figure shows that sufficient HF etching time for the narrow
waveguide is not enough for the wider structure. To suspend all the structures, the
sample must be dipped into the acid for longer time, which reduces the thickness
of the guiding layer. Thus, masks should be defined so that wide structures (e.g.,
tapers), which require long etch times, become fully suspended, while interconnect-
ing waveguides are not dramatically overetched. A dip time of 2-2.5 h was required
to suspended the widest structures.

The silicon etch rate of the acid solution has been measured to be ~0.4nm min~*
(see Fig. 3.16). After the indicated dipping time, a reduction of 50-60nm can be
expected in all dimensions. Additionally, this etch rate should be enough to remove
the thin silicon film underneath the germanium layer of GOSOI wafers without
requiring other chemical agents (see Fig. 3.1b).

(viii) Rinse. The sample is rinsed in a DI water weir to eliminate the remaining acid.

NARROW
WAVEGUIDE

WIDE
WAVEGUIDE

Time in the HF solution

Figure 3.15: Illustration of the wet etch process used to suspend the structures. A sufficient HF etch time
required for a narrow waveguide (central column) is not enough to suspend a wide structure such as an
MMI or the input taper of a grating coupler.
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3.3.3 Fabricated Structures
Suspended Silicon

Figure 3.17 shows some of the fabricated suspended waveguides and bends. The images
were taken with a scanning electron microscope (SEM). To observe whether the silicon
dioxide was properly removed, the chip was cleaved manually and the holding stage
was tilted. All structures were fully suspended without showing signs of collapsing or
bending. The breaks near the facets were caused by the cleaving. Roughness on the chip
surface can be attributed to the silicon overetching. The measured thickness of the silicon
guiding layer was of 1.42 um, which indicates that the thickness was overetched 80 nm,
in reasonably good agreement with the ~60 nm predicted in Fig. 3.16.
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Figure 3.17: SEM images of fabricated suspended silicon (a,b) waveguides, (c) 90°-bend, and (d) s-bend. The
structures of figures (a), (c) and (d) were cleaved and tilted to examine the undercut. Breaks at the facet
and first periods were caused by the cleaving process. The chip surface is affected by undesired roughness,
which was probably created by the HF solution.

Suspended Germanium

The structures of the first sample fabricated to test the suspended germanium wave-
guides at A = 3.8 um were mostly collapsed and broken. In general, the structures suf-
fered from a negative fabrication bias of ~50nm, resulting in too narrow germanium
strips of Lstrip ~ 40-60 nm. Some of the broken germanium strips are shown in Fig. 3.18.



50 3. Suspended Platforms for the Mid-Infrared Band

The mask was redrawn to include new variations with positive bias (i.e., widened struc-
tures). Since only one more fabrication run for suspended germanium waveguides at
3.8 ym was scheduled in the SNC, the new chip was left in the HF weir for only ~30 min,
in order to ensure stability. This time was sufficient for suspending the waveguides, yet
silicon dioxide probably remained underneath the wider input tapers that are used to
access the fiber-chip surface couplers. The loss introduced by the remnants of BOX is
removed with the cutback method. Measurements of this chip will be provided in Sec-
tion 3.4.4.

Similarly, various chips were fabricated to characterize suspended germanium wave-
guides at A = 7.67 pm. Because the fabrication bias for 1-um-thick germanium layers
was unknown, variations with positive biases up to +150nm were included in the first
mask. A visual inspection of the chip under a microscope showed that only those vari-
ations with positive bias larger than 100nm did not collapse. A new chip with more
positive variations was fabricated successfully. SEM images (see Fig. 3.19) showed that
an overetching of ~150nm was affecting all dimensions. This biasing could explain the
massive breaks of the first sample. A focused ion beam (FIB) workstation was employed
to etch a precise area of the chip and examine the removed BOX. The waveguides were
fully suspended. Waveguide propagation losses measured with this chip will be analyzed
in Section 3.4.4.

3.4 Characterization of Suspended Waveguides

3.4.1 Measurement Setup

The characterization of the suspended waveguides was performed using the measure-
ment setups from the Mid-IR Group IV Photonics laboratory of the ORC. Fiber-chip surface
couplers, whose design is addressed in Chapter 4, were used to couple light between the
MIR fibers and the chip. After traveling through the structures, the light is extracted from
the output coupler to another optical fiber, which carries the light toward the detector. In
this section, these setups are described thoroughly.

Setup for 7.67-um and 9.6-um Wavelengths

The setup used to characterize suspended silicon and germanium waveguides at a wave-
length of 7.67 yum is illustrated in Fig. 3.20. The different parts of this measurement setup
are:

* Light sources.

A continuous-wave distributed feedback (DFB) QCL (Thorlabs QD7500CM1) was
employed to inject light into the samples. The maximum emitted power is 106 mW.
The operating wavelength is fixed to 7.67 um. The laser is held in a thermoelec-
trically cooled (TEC) mount (Thorlabs LDMC20/M) connected to a combined cur-
rent/temperature controller (Thorlabs ITC4002QCL). A black diamond-2 lens with
a focal length of 1.9 mm collimates the output beam of the laser.

A laser source by Daylight Solutions was also available in the wavelength range
of 9.25-10.0 um, so that this setup could aso be employed for characterization at
A = 9.6 um. The power output for this laser was lower than 100 mW.
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(a) (b)

Figure 3.18: SEM images of fabricated suspended germanium (a) waveguides and (b) bends for 3.8-um
wavelength (first chip, broken). The bends are part of the grating couplers, which will be covered in Chap-

ter 4.
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Figure 3.19: SEM images of fabricated suspended germanium waveguides for 7.67-um wavelength. (a) Sus-
pended waveguide. (b) FIB etched area to examine the undercut of the suspended waveguides. (c) Close
look of a waveguide. (d) Close look of a waveguide hole.
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* Devices to control the light path.

As optical fibers cannot be directly connected to the laser output, a set of con-
veniently located mirrors carries the light toward the input optical fiber. A final
black diamond-2 lens (Thorlabs C028TME) is utilized to focus the collimated light
onto the input optical fiber, whose tip is positioned at the focal distance of the lens
(5.95mm). Some of the mirrors in the beam path could be flipped 90° to set the
9.6-um laser source.

Optical fibers.

Mid-infrared fibers are fragile. Suspended silicon waveguides were characterized
using a custom-made single-mode As;Se3 optical fiber (Coractive’s IRT-SE-28/170)
with a core diameter of 27 ym and a numerical aperture of 0.22. At A = 7.67 ym, a
mode field diameter of 29.44 pm was estimated using Marcuse’s formula [172].

Later, another chalcogenide fiber (IRFlex’s IRF-Se-12 fiber) was installed. It has a
core diameter of 12 pm and a numerical aperture of 0.47 (estimated mode field di-
ameter of 13.56 um at the operating wavelength). The high core refractive index
and the reduced mode field diameter have implications for the design of fiber-chip
surface couplers (see Chapter 4).

The optical fibers are supported by a set of proprietary fiber holders that are de-
signed and fabricated in the ORC.

Nanopositiong stages.

A set of xyz-axis nanopositioners from Thorlabs and Newport are used to move
the optical fibers along the chip surface. Nanopositioning stages are also used to
move the lens and the input fiber in which light is coupled from the laser, and to
place the output fiber in the right position to maximize the power that excites the
photodetector.

Signal processing stages.

At MIR wavelengths the noise level is high, as all heated bodies emit infrared radi-
ation. Illumination lamps or even human radiation can disturb the measured data.
A slotted chopper wheel modulates the laser beam before being focused onto the
input optical fiber. The turning frequency of the chopper blade, 300-400 Hz, is set
with a chopper controller (Standford Research Systems SR540). This instrument is
connected to the reference frequency input of a lock-in amplifier (AMETEK Sig-
nal Recovery DSP 7265). The detected power is demodulated, thereby improving
the signal-to-noise ratio. This lock-in amplifier is managed via a computer with a
LabView program.

Detector.

Light from the output fiber excited a HgCdTe detector (Infrared Associates” MCT-
13-1.00) that must be cooled with liquid nitrogen. A pre-amplifier is used to increase
the signal level from the detector. This pre-amplifier is connected to the lock-in
amplifier that filters the signal.
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Figure 3.20: Schematic of the MIR measurement setup.

Setup for 3.8-um Wavelength

This setup was employed to characterize suspended germanium waveguides at A =
3.8 um. The relevant differences with the 7.6-pym setup, which make the 3.8-um setup
more user-friendly than the previous one, are briefly noted as follows:

¢ A custom-made Daylight Solutions QCL that is tunable from 3.71 pm to 3.89 pm
was used. The source can operate in either continuous-wave or pulsed modes. A
maximum output power of ~150 mW is emitted at a nominal wavelength of 3.8 pm.
The laser is cooled by an external chiller.

* Asingle-mode ZrF; (ZBLAN) optical fiber by Thorlabs was used. The specifications
are: core refractive index of 1.48, core diameter of 9 pm and numerical aperture of
0.19. At A = 3.8 um, a mode field diameter of 17.8 pm is estimated. These fibers are
protected by a plastic jacket.

* A thermoelectrically cooled MCT photodetector (Vigo System PVI-4TE-4) was used.

3.4.2 Measurement Procedure

The propagation loss of the suspended waveguides was determined with the effective
cut-back method [170]. Waveguides with different lengths were distributed along the
chip, as already shown in Fig. 3.13. Light was coupled using fiber-chip surface couplers
(see Chapter 4). The loss per unit length can be estimated by measuring the power trans-
mitted through each waveguide:

101og;, (%) 101og;, <%)
dBem™) = — L= ’ 7
a (dBem™") L L LI, (3.7)
where P, is the measured power at the output of the shortest (reference) waveguide,
whose length is Lo; and P; is the measured power of a longer waveguide with length
L;. The symbols V and V; denote the output voltages of the photodetector, which are re-

spectively proportional to Py and P; through its responsivity. With this method, measured




54 3. Suspended Platforms for the Mid-Infrared Band

transmissions are normalized with respect to Py (V) and then linearly fitted, thereby iso-
lating the waveguide propagation loss from other sources of loss — such as grating cou-
plers, tapers, or bends. A similar approach can be followed to estimate bend losses.

This characterization method requires that the fiber-chip surface couplers be identical
for all the waveguides. Furthermore, the position of the fibers relative to each coupler
must be maintained. Otherwise, measured transmission points cannot be properly nor-
malized and fitted. Further details about the position of the optical fibers will be provided
in Chapter 4.

At A = 3.8 um, the transmission spectrum over a range from 3715 nm-3888 nm was
post-processed by sliding-window filtering or polynomial fitting, thereby reducing or
removing the noise in the measurement. However, since the laser is not tunable at A =
7.67 pm, measured transmissions at this wavelength cannot be filtered. Instead, they were
averaged over 10s to get rid of random time-dependent noise in the signal.

3.4.3 Results (Suspended Silicon)

Figure 3.21 shows the normalized measured transmission at A = 7.67 um. Before the
HF attack, the waveguides were characterized, yielding a propagation loss of 62.3 +
9.6 dBcm™!, as estimated in Fig. 3.21. This prohibitive loss is obviously due to the effect
of silicon dioxide. Then, after removing the BOX, a propagation loss of 3.1 + 0.2 dBcm™
was achieved. According to the simulations in Section 3.2.3, the material loss of silicon
contributes by ~2.3dB cm~ L. This loss is intrinsic to the structure and, thus, cannot be
removed in practice. The remaining ~0.8 dBcm ™! are attributed to surface and sidewall
roughness, as well as increased lateral leakage. This result practically coincides with that
reported in [147], where the authors presented suspended silicon waveguides with a
propagation loss of 0.82dBcm™! at the wavelength of 3.8 um at which silicon is low-loss.
Furthermore, this propagation loss is comparable to the propagation losses of state-of-
the-art waveguides available in other long-wavelength MIR platforms (see Chapter 2).

Losses of 0.08 = 0.02 dBbend~! and 0.06 + 0.02 dBbend~! were measured for 90°- and
s-bends, respectively.
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3.4.4 Results (Suspended Germanium)

As a proof of concept, suspended germanium waveguides were firstly characterized at
A = 3.8um. Figure 3.22a shows the measured voltage, which is normalized and fitted
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following the effective cut-back method. Propagation losses of 6.7 + 0.2dBcm ™! and
4.5 4 0.3dBcm~! were attained before and after HF attack, respectively. The loss reduc-
tion due to the HF etching is only ~2.2dBcm ™!, as silicon dioxide loss is relatively low
at A = 3.8um.

The principal goal was the characterization of the suspended germanium waveguides
at A = 7.67 um since, at this wavelength, germanium is transparent. Propagation losses
before HF etching were presumably high (> 60dBcm™!), but could not be calculated
precisely because the measured power fell below the noise floor of the photodetector. A
propagation loss of 5.2 = 0.3 dB cm ! was measured after removing the BOX, as shown
in Fig. 3.22b.
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Figure 3.22: (a) Propagation loss measurements for germanium waveguides with the BOX still present
(red curve) and for suspended germanium waveguides (blue curve) at 3.8-um wavelength. (b) Propaga-
tion loss measurements for suspended germanium waveguides at 7.67-um wavelength. The injected light is
TE-polarized in both cases.

The high losses compared to suspended silicon waveguides — with « = 0.8dBcm ™!

at A = 3.8pum [147], and « = 3.1dBcm ! at A = 7.67 um — can be caused potentially by
the following reasons:

* Germanium layer impurities. It was known that the GOSOI wafers that had been re-
cently acquired by the MIR group of the ORC were contaminated. A defect map
provided by the manufacturer of the wafers is shown in Fig. 3.23, indicating the
distribution, diameter, and number of light point defects in the wafer, as well as the
area, marked in red, of larger problematic regions.

e Sidewall roughness and fabrication errors. Although roughness was not clearly observ-
able on the SEM images, this is the most typical source of loss in photonic integrated
devices. The HF attack could deteriorate the chip surface.

SEM images did not reveal the 60-nm silicon film under the germanium layer. Any-
how, its presence could not explain an increased loss due to silicon absorption. According
to isotropic simulations, this silicon layer would produce an increase of only 0.06 dB cm™
in the mode loss.

Although the suspended germanium membranes presented by Osman et al. in [77]
exhibit a lower propagation loss of 2.6dBcm™! at A = 7.67 um, they have two main dis-
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Figure 3.23: Defect map and histogram for one of the GOSOI wafers that were used to fabricate the sus-
pended germanium samples. The defect map shows the distribution of light point defects (LPDs) and defect
areas that were found on the wafer surface. The different colors correspond to the size of the defects. The
histogram counts the number of LPDs as a function of their diameter.

advantages compared to the suspended waveguides proposed in this section: (i) they re-
quire a more complicated fabrication process with two dry etch steps, and (ii) they have a
larger suspended area, which might jeopardize the mechanical stability of the structure.

The propagation losses reported in this thesis for the suspended germanium wave-
guides, albeit higher than those of suspended silicon waveguides, constitute the first ex-
perimental demonstrations of suspended germanium platforms with lateral SWG clad-
ding in the MIR band.

3.5 Suspended Silicon Beamsplitters

After demonstrating the suspended silicon waveguides, various devices were designed
for the new platform. In this section, suspended silicon multimode interference couplers
and 3-dB splitters will be analyzed succinctly. Fiber-chip surface couplers will be covered
in Chapter 4.

3.5.1 Multimode Interference Couplers

Multimode interference couplers (MMIs) are essential building blocks in integrated pho-
tonics, as they can be used as power splitters and combiners. These couplers typically
exhibit more compactness, bandwidth, and relaxed fabrication tolerances than conven-
tional directional couplers. MMIs can be part of Mach-Zehnder interferometers (MZIs),
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which, for example, can be used to build FTIR spectrometers, as in [60] and [78]. In this
work, suspended silicon 1 x 2 and 2 x 2 MMIs were designed at A = 7.67 pm.

Suspended silicon MMIs comprise (i) a multimode waveguide of width Wy and
length Ly, (ii) M input and N output waveguides of width W, and separation W, and
(iii) conventional adiabatic tapers of length Liper to adapt the width W of the intercon-
necting waveguides to W,. Because of the high modal confinement in the MMI core, the
SWG cladding width can be reduced to W ,q mmr in the multimode region to improve
the mechanical stability of the suspended structure. Figure 3.24 schematically illustrates
the top views of suspended 1 x 2 (M =1, N =2)and 2 x 2 (M = 2, N = 2) MMIs. The
former behaves as a 3-dB splitter, while the latter is an optical 90° 3-dB hybrid, which
equally divides the input power and introduces a 90° phase shift between both output
ports.

e

ﬂ!!lLllilll

Figure 3.24: Schematic representations of suspended silicon (a) 1 x 2 and (b) 2 x 2 MMIs. Access ports are
numbered. For simplicity, the geometrical parameters are indicated only in subfigure (b).
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The working principle is based on the self-imaging phenomenon: when the light is in-
jected into the wide multimode waveguide through one of the access ports, labeled from
1 to 4 in the figure, the interference between the supported modes produces several repli-
cas or self-images of the input field at different positions along the propagation direction.
A further discussion of the operation of MMIs can be found in [173].

The key parameters of MMIs are the (i) excess loss, (ii) the power imbalance, and (iii)
the phase error. For a 1 x 2 MMI, the excess loss can be calculated as

EL = —10log (|521|2 + |531|2) , (3.8)
where Sy and S3; are the S-parameters associated to the input port 1 and the output
ports 2 and 3, respectively. The power imbalance and the phase error are zero because

the structure is symmetrical with respect to x = 0 (see Fig. 3.24). On the other hand, the
performance metrics of 2 x 2 MMISs can be calculated as follows:

EL = —10log ([Ss1* + [Su[*), (3.9)

IB = —10log (|s_o,1|2 / |s41|2), (3.10)
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PE = / (S31/S41) — 90°, (3.11)

where S31 and Sy are the S-parameters associated to the input port 1 and the output ports
3 and 4, respectively.

Suspended MMIs can be designed, as usual, following the guidelines by Soldano and
Pennings [173]. First, after applying the effective index method (EIM) [174], the structure
was preliminary designed with FEXEN, UMA’s 2D in-house simulator [168]; afterward,
3D FDTD simulations of the original structure, including the SWG cladding, were carried
out using RSoft FullWAVE to refine the geometry and double check the results.

Figure 3.25 shows the simulated performance of the designed 1 x 2 and 2 x 2 MMIs,
whose dimensions are summarized in Table 3.5, as a function of the wavelength. At A =
7.671m, EL < 0.2dB, |IB| ~ 0dB, and |PE| < 1°.
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Figure 3.25: Performance of the 1 x 2 and 2 x 2 MMIs. (a) 3D FDTD propagation of the TE-polarized electric
field (magnitude) for the 1 x 2 (top) and 2 x 2 (bottom) MMIs when the fundamental modes of the input
waveguides are excited at a wavelength of 7.67 pm. The simulated (b) excess losses, (c) power imbalance,
and (d) phase error are shown as a function of the wavelength. The power imbalance and the phase error of
the 1 x 2 MMI are zero because of the symmetry of the structure, so that the corresponding curves are not
included in (c) and (d).

Several sets of cascaded MMIs were fabricated in the SNC using the same lithography
procedure that was described in Section 3.3.2. Each set had i MMISs, in order to calculate
the excess loss as the slope of the transmitted power as a function of the number of MMIs,
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Table 3.5: Designed dimensions of the 1 x 2 and 2 x 2 MMI couplers for the suspended silicon platform at
A = 7.67 ym (TE polarization). All dimensions are given in microns.

M N | W, Wy Wagammr Wwmmi Lvvi  Liaper
1 2 |59 125 2 13.05 32.2 30
2 2 |59 184 2 13.38 1369 30

i. SEM images of the fabricated structures are shown in Fig. 3.26. For the 1 x 2 MMI, the
first measurements done by the researchers of the ORC indicate excess losses as low as
0.47 £ 0.05dBMMI ! at A = 7.67 um (see Fig. 3.27). The characterization of the 2 x 2
MMLI is still in progress at the time of writing.

20 ym 20 pm

(@ (b)

Figure 3.26: SEM images of the fabricated (a) 1 x 2 and (b) 2 x 2 MMISs for the suspended silicon platform at
A =7.67 pm and TE polarization.

0.47 + 0.05 dB MMI-' Figure 3.27: Measured excess loss
of the 1 x 2 MMI fabricated for
the suspended silicon platform at
A = 7.67um (TE polarization). The
transmitted power through each set
of i MMIs is normalized to the trans-
mission of the shortest set (i = 2);
the excess loss is calculated as the
slope of the linearly fitted curve.

© Measured data
{—Linear fit

3.5.2 Mode-Evolution-Based 3-dB Splitter

As an alternative to suspended silicon 1 x 2 MMISs, the 3-dB splitter illustrated in Fig. 3.28
is proposed. This structure comprises an input waveguide of length L. that reduces its
width along the propagation direction. The input mode is symmetrically coupled into the
two output tapered waveguides, which are separate a distance W; from the central, input
waveguide. To reduce the length L. of the interaction region, the duty cycle of the SWG
cladding between the tapers is linearly apodized from DCy to DCg,1. This variation in
the duty cycle gradually increases the coupling strength, leading to reduced excess loss
compared to non-apodized designs with the same length. Since the splitter’s working
principle is based on mode evolution, a wide bandwidth is expected.
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Figure 3.28: Schematic representation of the mode-evolution-based 3-dB splitter designed for the suspended
silicon platform at a wavelength of 7.67 um (TE polarization). Access ports are numbered.

As a first approximation, the SWG regions of the structure were substituted with iso-
tropic equivalent media. The duty cycle variation was modeled as a gradual equivalent
refractive index. Once the dimensions were chosen, 3D FDTD simulations were carried
out including the actual SWG cladding.

The final geometrical parameters of the splitter are presented in Table 3.6. The TE-
polarized field propagation and the excess loss, simulated with RSoft FullWAVE (3D
FDTD), are shown in Fig. 3.29. At A = 7.67um, an excess loss smaller of 0.07dB is
achieved in a coupling length of ~31um, which is smaller than the length of the 1 x 2
MMI that was designed in the previous section.

Table 3.6: Designed dimensions of the 3-dB splitter for the suspended silicon platform at A = 7.67 um (TE
polarization).

Ws(um) Lc.(um) A (um) DCy (%) DCgqpa (%)
1.10 31.05 1.15 21.74 56.52
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Figure 3.29: Performance of the suspended silicon 3-dB splitter. (a) 3D FDTD propagation of the TE-polarized
electric field (magnitude) when the fundamental mode of the input waveguide is excited at a wavelength of
7.67 pm. (b) Simulated excess loss as a function of the wavelength.
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Although the device was fabricated, as shown in the SEM image in Fig. 3.30, its per-
formance could not be demonstrated, because the duty cycle variation was not correctly
defined in the mask. A new fabrication run is planned to characterize this splitter.

2pm Figure 3.30: SEM image of the fabricated 3-
- dB splitter for the suspended silicon plat-
form at A = 7.67um (TE polarization). S-
bends are included to separate the output
ports. The duty cycle variation was not cor-
rectly defined in the mask used to fabricate
the structure, so that the characterization of
this device has not yet been possible.

3.6 Conclusions

In this chapter, suspended waveguides with lateral SWG cladding have been comprehen-
sively analyzed, covering the design, fabrication, and characterization of the developed
structures.

Suspended waveguides must be designed according to mechanical, fabrication, and
optical requirements. Specifically, the dimensions of the waveguides must guarantee low
loss for the fundamental mode and high loss for the high-order modes (if supported),
while a sufficient mechanical integrity is provided. Three models for modeling and sim-
ulating this kind of suspended structures have been proposed: isotropic, anisotropic, and
rigorous Bloch-Floquet. While the isotropic approach is appropriate for estimating the
vertical leakage to the silicon substrate, it is not well suited for the lateral leakage to-
ward the unetched silicon or germanium lateral areas. Instead, for the latter, the aniso-
tropic model and the Bloch-Floquet analysis are much more accurate. Using the isotropic
and the anisotropic models, suspended silicon waveguides were designed to operate at
a wavelength of 7.67 pm; suspended germanium waveguides, at 3.8 um, 7.67 pm, and
9.6 pm.

Suspended silicon waveguides have been demonstrated at 7.67-pm wavelength with
an excellent propagation loss of 3.1dBcm™!, of which ~2.3dBcm™! are due to the un-
avoidable silicon loss. Suspended silicon 90°- and s-bends also have been characterized
with negligible loss. Additionally, suspended silicon multimode interference couplers
and mode-evolution-based 3-dB splitters have been designed, with 1 x 2 MMIs exhibit-
ing a demonstrated excess loss of 0.47 dBMMI ..

On the other hand, suspended germanium waveguides, characterized at wavelengths
of 3.8 um and 7.67 pm, have yielded losses of ~5dBcm ™!, which is a promising value
at such a long wavelength. The comparatively high loss value is mainly attributed to a
contamination of the wafer utilized to fabricate the structures.

The proposed suspended platforms can play a decisive role in the development of
miniaturized optical devices for spectroscopic applications and communications in the
MIR band.



62

3. Suspended Platforms for the Mid-Infrared Band



CHAPTER FOUR

FIBER-CHIP SURFACE COUPLERS

The coupling of light between optical fibers and integrated waveguides is one of the
most challenging problems in Group IV photonics. In the NIR band, standard optical
fibers have mode field diameters (MFD) of ~10um, a size that is much larger than the
width and thickness of typical single-mode photonic wires (~500nm x 220nm). In the
MIR band, although the available optical fibers are different (e.g., MFD ~ 14pm at
A = 7.67um) and the required waveguides have larger cross-section dimensions than
in the NIR range, the size mismatch still hinders direct butt-coupling of light through
chip facets. In this context, fiber-chip couplers, used to efficiently couple light between
the optical fiber and the chip, have become essential devices for any photonic integrated
platform.

The most common fiber-chip couplers that are currently used in Group IV photonics
can be grouped into two categories:

(i) Edge couplers. Light is coupled through the chip facet. An edge coupler is an in-
tegrated structure that expands or delocalizes the propagating mode field in or-
der that the mode size of the optical fiber and the waveguide become similar near
the chip facet. This mode size adaptation improves the coupling efficiency with
respect to direct butt-coupling. Although edge couplers offer high coupling effi-
ciency and broad bandwidth, they require the dicing or polishing of the chip facets
through which the light is coupled. Typically, edge couplers are optimized for non-
standard, lensed optical fibers with small mode field diameters, which demand pre-
cise fiber alignment. Different types of edge couplers have been proposed in the
literature, including SWG tapers [175], inverse tapers [176,177], and multi-layered
structures [177,178]. An inverse-taper-based edge coupler is illustrated in Fig. 4.1a.

(ii) Surface grating couplers. Light is coupled vertically in or out of the chip. A surface
grating coupler (or, simply, a grating coupler) is a diffractive (periodic or quasi-
periodic) structure, formed in a planar waveguide, that couples the waveguide
mode to an off-chip free-propagating plane wave. The diffracted light can be in-
tercepted by an optical fiber positioned above the grating at a specific angle [179].
Surface grating couplers offer some obvious advantages for prototyping — such
as the tolerance to fiber-grating misalignments or the possibility of being located
at any point along the chip surface, which enables wafer-scale testing [180]. Their
drawbacks are the narrow bandwidth, which is caused by the intrinsic wavelength
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dependence of the radiation angle, and the comparatively low coupling efficiency.
A 3D representation of a surface grating coupler is shown in Fig. 4.1b.

Xy yX

.z vz

(@ (b)

Figure 4.1: (a) Coupling from a lensed optical fiber into a conventional SOI waveguide using an inverse-
taper-based edge coupler. (b) Coupling from a standard optical fiber into a conventional SOI waveguide
using a surface grating coupler.

Although less used today, a third type of fiber-chip surface coupler is worth men-
tioning: the prism-film coupler. A high-refractive-index prism is placed above the planar
waveguide maintaining a thin coupling gap with low refractive index. The light is cou-
pled between the waveguide and the prism owing to evanescent-wave interaction. These
couplers were proposed back in the seventies for low-index-contrast integrated plat-
forms [181-183], in order to measure the optical properties of thin dielectric films [184].
In this thesis, the prism-film coupler concept will be revisited.

This chapter is devoted to the development of fiber-chip surface couplers. First, the
fundamentals of surface grating couplers are explained, including their working princi-
ple and performance metrics (Section 4.1). Then, the design of conventional grating cou-
plers for the suspended silicon (A = 7.67 pm) and suspended germanium (A = 3.8 um)
platforms, which was postponed in Chapter 3, is summarized (Section 4.2). Once the
general procedure for designing grating couplers is shown, the first main contribution of
this chapter is presented: the suspended germanium micro-antenna (Section 4.3). Next,
the second major contribution, the zero-order grating coupler, is proposed with the aim
of reducing the wavelength dependence of conventional grating couplers (Section 4.4).
Finally, the conclusions are drawn (Section 4.5).

4.1 Fundamentals of Surface Grating Couplers

4.1.1 Introduction

Surface grating couplers are planar devices used to couple light from the chip into the
optical fiber, or from the optical fiber into the chip. The working principle and the per-
formance of the device are identical in both ways, in virtue of the reciprocity principle.
Thus, hereafter, only the chip-to-fiber coupling will be studied.

The top and side views of a conventional surface grating coupler are schematized in
Fig. 4.2. The device, which is etched into a guiding layer of thickness H, consists of scat-
terers that are periodically! distributed along the propagation direction. Each scatterer

ISurface grating couplers with quasi-periodic perturbations have been proposed and are extensively
used [185,186]. By judiciously varying the perturbation, the coupling efficiency can be enhanced. Since the
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comprises a segment of refractive index n; and length a = DC - A that is followed by a
segment of refractive index n and length b = (1 — DC) - A, where DC is the duty cycle, A
is the period length or pitch, and n; > ny. The light diffracted by all the grating periods
interferes constructively at a given angle 6, thereby forming a plane wave that propa-
gates freely through the upper medium.? An optical fiber with a tilt angle Ogpe, (= 0) is
positioned above the chip to collect the radiated light. The length (Lg) and width (W)
of the grating are chosen in order that the size of the radiated field matches that of the
optical fiber mode. A taper of length Laper is typically used to increase the width W of an
interconnecting waveguide to Wj.

V. e a
Upper medium (n,) AN b
A
Guiding layer i
Wy
_ Ltaper
v
LQ

(a) (b)

Figure 4.2: Schematic representation of a conventional surface grating coupler. (a) Side view, including the
optical fiber. (b) Top view. An input interconnecting waveguide and a linear taper are shown in both subfig-
ures.

4.1.2 Working Principle of Periodic Waveguides

In this section, in order to facilitate the understanding of the fundamentals of surface
grating couplers, the working principle of generic periodic waveguides is explained.

For simplicity, a periodic waveguide will be modeled as a 2D structure that corre-
sponds to the side view in Fig. 4.2. Since the width of a surface grating coupler is typically
much larger than the wavelength (W > 1), the grating can be seen as invariant in the x
direction, so that the 2D model can be considered valid.

Under this approximation, the function that defines the refractive index of the grating
waveguide is periodic and independent of the x coordinate, that is,

n(y,z+A) =n(y,z). (4.1)

Hence, according to the Bloch-Floquet theory [187,188], the grating supports a Bloch-
Floquet mode with an electric or magnetic field component that can be expressed gener-
ically by

®(y,2) = ¢ (y,2)e ™, (42)

working principle is fundamentally the same for both periodic and apodized (non-periodic) grating cou-
plers, only the former, which are simpler, are covered in this section.

2A plane wave can also be radiated downward. This case, which usually is not desired, will not be con-
sidered.
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where ¢ is the mode profile and < is the complex propagation constant. The mode profile
is also a periodic function, i.e.,

¢y, z+A)=¢(yz). (4.3)

The complex propagation constant can be written as
B = jkons = ap + jPs. 4.4)

Here, kg = 2m/A is the vacuum wavenumber, ng is the effective index of the Bloch—
Floquet mode, ap is the attenuation constant, and Bg is the phase constant. The atten-
uation constant accounts for the power loss, such as leakage or reflection, as the mode
travels through the periodic waveguide. Specifically, the remaining power at the output
of a grating of length L, is given by

P (Lg) = Ppe *ls, (4.5)

where Py is the input power. On the other hand, the constant B corresponds to the z
component of the wavevector of the guided Bloch-Floquet mode, and indicates the phase
change of the mode as it propagates along the grating.

Because the mode profile ¢ is a spatially periodic function [Eq. (4.3)], it can be ex-
panded as a Fourier series:

¢ (v,2) = Y om (y) 57, (4.6)

where ¢, (y) is the coefficient of the spatial harmonic of order m. Taking Egs. (4.2) and
(4.6), the mode field component can be rewritten as

D (y,2) =) ¢ (y) e, (4.7)

where g ,,, the propagation constant of the ||-order harmonic, is

VB = jkonem = B + jBem- (4.8)

Although ap is the same for all of the harmonics, the phase constant is different [179]:

21
,BB,m = koRe (TZB,m) = koRe (I’ZB) + mX (4.9)
Note that, since m is an integer, a discrete set of phase constants exists for each Bloch-
Floquet mode within the grating region.
The upper medium supports a continuous spectrum of plane waves, which can prop-
agate with an angle 6 (defined with respect to the vertical) and a wavevector

k =k (0) = §kona cos (0) + Zkon, sin (0), (4.10)

where # and £ are the unity vectors in the y and z directions, respectively. When the
Bloch-Floquet mode propagates through the grating, the phase constants of some har-
monics can match the z component of the k vector, thereby enabling the upward radiation
of a discrete set of inhomogeneous planes waves

Un(y,2) = i (z)e T Emvthnsz), (4.11)
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where u,,(z) is the amplitude of the plane wave, and k,, and ky, . are, respectively, the y
and z components of the wavevector

kyw =k (0 = 0,) = Gkona cos (0) + Zkona sin (6,,) , 4.12)

where 0, denotes the radiation angle of the diffracted harmonic. The graphical repre-
sentation in Fig. 4.3 shows the satisfaction of the phase matching condition that enables
diffraction (k;,; = PBg,u), resulting in the grating momentum conservation equation (or
grating equation):

2
kotta sin (6,) = ko Re (1) + mX” (4.13)
Radiation |Kinl = km = Ko,
window
Akp, km
Upper
medium (n,) Ym Ky, = fkmsi 6,)
~kona ko”
y = ZBB m

T—»z

Figure 4.3: Graphical representation of the phase matching condition (ky;. = Bg ). The grating-propagating
harmonic with phase constant Bg ,, is radiated upwards as a plane wave with wavevector k (6 = 6,;,) = k.

This equation governs the diffractive behavior of periodic waveguides, and can be
represented graphically using wavevector diagrams or k-diagrams. In Fig. 4.3, a generic
k-diagram for upward3 radiation is shown, indicating the diffraction angle 0,, of the ra-
diated order m. The semicircle, of radius kgn,, defines the radiation window: those or-
ders whose refractive indices are contained within the window, i.e., those harmonics
with |Re (np,,)| < na, are radiated. Thus, when Re (n1p) is known for the fundamental
Bloch-Floquet mode of a periodic waveguide, these diagrams help identify the number
of diffracted orders and their radiation angles.

By normalizing all of the wavevectors by ko, Eq. (4.13) becomes

nasin(6,,) = Re (np) + m% (4.14)

and k-diagrams can be expressed in terms of effective index, as in Fig. 4.4.

Depending on the wavelength and the geometry, Eq. (4.14) determines three different
regimes or zones in which a periodic waveguide can operate. These regimes and their
properties are described as follows:

(i) Difraction-less. No real radiation angle meets Eq. (4.14) or, equivalently, no effective
index falls within the radiation window. Consequently, all diffraction orders are

3 Another k-diagram could be drawn to shown the downward radiation orders. As previously noted,
downward radiation is not considered here for simplicity.



68 4. Fiber-Chip Surface Couplers

kaolky —— k../k,
6.1
0.,

& —1 ® 1 ®
~Iig -n, 0 N, Ng

Y Y Y R

[ T T 4
Ng_3 ng 2 Ng 1 Ngo

Figure 4.4: Example of normalized k-diagram. The real part operator Re (-) is assumed implicit when the
real part of the effective indices is written. The harmonics or orders whose effective indices fall within the
radiation window are diffracted with the indicated angles. The distance between the effective indices of two
consecutive harmonics is A/ A.

frustrated. This is the typical scenario for subwavelength grating (SWG) operation,
which occurs when Eq. (3.1), repeated here for the reader’s convenience, is fulfilled:

A

P gL
< 2Re (np)

(3.1)

Although the SWG propagation is the most common diffraction-less case, wave-
guiding can also occur beyond the first Bragg regime [189].

(ii) Bragg. The harmonic of order p, where p < 0, satisfies that ng , = —np. In this case,
which can be clearly identified in a k-diagram, the Bragg condition is fulfilled, i.e.,

_lplA
A= 7Re (na] (4.15)

In this situation, the grating is said to operate in the |p|™ Bragg regime or within
the |p|™ photonic bandgap (according to photonic crystal theory [190]). The light is
partially reflected back at each discontinuity, and the reflected waves superimpose
constructively. Thus, the propagation of light is forbidden and the power transmit-
ted by the |p|™ harmonic decays exponentially. Furthermore, in the Bragg regime
some real radiation angles can meet Eq. (4.14), thereby enabling radiation.

(iii) Radiation. Equation (4.14) is satisfied for one or more diffraction orders (m < 0).* As
a result, the grating radiates one or more plane waves with an amplitude profile

U (z) = Cpe™ 2%, (4.16)

where C,, is a complex constant that depends on the geometry of the grating and is
different for each order. Note that, in contrast, all diffracted waves share the same
Bloch-Floquet attenuation constant or radiation strength (ag). Radiation zones are
numbered according to the order p of the preceding Bragg regime: for instance, a
grating in the fourth radiation zone operates between the fourth and fifth bandgaps.

“The zero-order grating coupler that will be proposed in Section 4.4 diffracts light for m = 0. This coupler,
which uses non-standard techniques for radiating the light, is an exception.
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Conventional surface grating couplers operate in the radiation zones and can diffract
light in various diffraction orders, each radiating at a different angle. The optical fiber
is positioned above the grating with a specific tilt angle to intercept the radiated power.
Since the optical fiber can only be aligned to collect light from one order, grating couplers
are usually designed with a pitch A that meets Eq. (4.14) for only one diffraction order,
which is typically m = —1 [179]. Single-beam operation has also been demonstrated for
the second diffraction order (m = —2)in [123,191,192]. Moreover, if a surface grating cou-
pler fulfills Eq. (4.14) for several angles, the grating can be designed to mitigate undesired
radiation orders (C,, ~ 0), as will be shown in Section 4.3.

To provide a better understanding of the working principle of surface grating cou-
plers, thorough examples are given in Fig. 4.5. This figure shows the k-diagrams that are
associated to a periodic waveguide as the A /A ratio is decreased. Although the effective
index np could change in actual gratings when A/A is varied, in these examples ng is
considered constant for simplicity. Moreover, the real part operator Re (-) is assumed im-
plicit, for visual clarity. Each k-diagram in Fig. 4.5 is described in the following list, whose
items are labeled using the same letters as in the figure:

(a) The pitch is much smaller than the wavelength, so that the periodic structure works
in the SWG regime. The grating behaves as a non-diffractive waveguide.

(b) Equation (4.15) is satisfied for p = —1. The fulfillment of this condition can be iden-
tified easily because Re (ng 1) = — Re (np). Hence, the structure operates in the first
Bragg regime and acts as a reflector.

(c) Above the first bandgap and before starting to radiate, the guided mode can prop-
agate without diffracting, yet the SWG condition is not satisfied. Even though this
regime could be useful (e.g., better tolerance to fabrication errors could be achieved
as a result of the increased pitch), diffraction-less grating waveguides are not usually
designed in this regime because of the proximity to both the first bandgap and the
first radiation zone.

(d) The grating enters the first radiation zone. In the range where —n, < Re (np_1) < 0,
a single radiation order is supported. A plane wave is radiated backward (—90° <
6_1 < 0°). Many surface grating couplers operate in this zone.

(e) When Re (np,_2) = —Re(np), and therefore Re (ng_1) = 0 (81 = 0°), the struc-
ture enters the second Bragg regime. This is an interesting scenario: when the Bragg
order (p) is even, the harmonic whose order is p/2 is always radiated at 0°. Even
though fully vertical radiation allows for compact chip packaging and easy optical
fiber placement for measuring, high back-reflections may arise due to the photonic
bandgap. Thus, to reduce back-reflections, surface grating couplers are typically de-
signed with off-vertical radiation angles.

(f) In the second radiation zone (i.e., the radiation regime that is between the first and
second bandgaps), the first-order (m = —1) harmonic can radiate forward (6_; > 0°).
Unfortunately, single-beam operation can only be achieved for a relatively small

5A higher wavelength dispersion than in the deep SWG regime can be expected. Moreover, fabrication
fluctuations could change the operation regime and make the grating reflect or diffract. In addition, while
the grating behaves in the diffraction-less regime for the upper medium, downward radiation can occur if
the refractive index of the bottom medium is greater than that of the upper medium.
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range of radiation angles before the second-order (m = —2) harmonic starts radi-
ating. Many surface grating couplers radiate only the order —1 in this zone. Because
of this limited range of angles for single-beam forward radiation, designing surface
grating couplers with single-beam backward (Fig. 4.5d) radiation typically is easier.

(g) The effective index of the second-order (m = —2) harmonic enters the radiation win-
dow, so that two beams (m = —1 and m = —2) are radiated. This situation is usually
undesired, unless most of the power that propagates through the grating is coupled
to only one of the orders.

(h) The third harmonic fulfills Re (np,_3) = — Re (np), that is, the grating enters the third
Bragg regime. Since A /A = 2ng/3 [Eq. (4.15) for p = —3], four harmonics fit exactly
in the range between —ng and ng. As a result, the two supported radiation orders
(m = —1and m = —2) are symmetrically distributed around the center of the radia-
tion window.

(i) In the third radiation zone, three-beam radiation is theoretically possible (potential
diffractive orders: m = —1, m = —2, and m = —3). However, this scenario cannot
happen in the example that is shown in the figure. Instead, the effective index of
the first-order harmonic exits the radiation window before the third-order harmonic
starts radiating, thereby enabling single-beam radiation with only the second-order
harmonic. This case has been exploited, for example, in [123,191,192].

(j) The grating enters the fourth Bragg regime. Hence, the second-order harmonic radi-
ates at 0°. Additionally, the effective indices of the first five harmonics are contained
between —ng (which corresponds to ng _4) and ng (which always equals np (). For
higher A/A values, the grating will operate in radiation and Bragg regimes alter-
nately, and the number and order of the radiating harmonics will increase.

4.1.3 Performance Metrics of Surface Grating Couplers

The main performance metrics of surface grating couplers are the back-reflections (R),
the coupling efficiency (CE), and the bandwidth (BW). Other parameters, such as the
radiation angle or the tolerance to fiber tilt misalignments, can be considered to be figures
of merit for specific applications.

Coupling Efficiency

Coupling efficiency is defined as the fraction of incident power that is coupled from the
chip into the optical fiber and vice versa [155]. This parameter can be estimated as

CE=OL-D-(1—-R), (4.17)

where R denotes back-reflections; D is the directionality, defined as the fraction of input
power that is radiated upward; and OL is the scalar overlap integral between the radiated
field and the mode field of the optical fiber. To achieve the maximum value of CE (= 1),
back-reflections must be suppressed (R = 0) and all power must be radiated upward
(D = 1) with a near-field profile that perfectly matches that of the Gaussian-like mode of
the optical fiber (OL = 1). Next, these parameters are briefly discussed:
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Figure 4.5: Examples of normalized k-diagrams, which show the different operation regimes of a periodic
waveguide as the A/ Aratio is decreased. The effective index np is considered constant. The real part operator
Re (+) is assumed implicit when the real part of the effective indices is written. (a) Diffraction-less [SWG].
(b) First Bragg regime. (c) Diffraction-less. (d) Backward single-beam radiation with m = —1 [first radiation
zone]. (e) Fully vertical single-beam radiation with m = —1 + second Bragg regime. (f) Forward single-
beam radiation with m = —1 [second radiation zone]. (g) Backward [m = —2] and forward [m = —1]
two-beam radiation. (h) Backward [m = —2] and forward [m = —1] two-beam radiation + third Bragg
regime. (i) Backward single-beam radiation with m = —2 [third radiation zone]. (j) Fully vertical single-
beam radiation with m = —2 + fourth Bragg regime.
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* Qverlap integral. The overlap integral can be calculated as

* !/
/z , Eradiated Eﬁber dz

- 7
* / * /
/z , Eradiated EradiateddZ /z , Efiber Eﬁber dz

OL (4.18)

where * symbolizes complex conjugate, E .giated is the radiated field, Egpe, is the
mode field of the optical fiber, and z’ is the axis parallel to the facet of the optical
tiber. This integral limits the coupling efficiency in uniformly periodic grating cou-
plers, as the theoretical maximum overlap between an exponential and a Gaussian
function is 80% [180]. In the literature, apodized surface grating couplers with non-
periodic perturbations have been proposed to ensure a near-Gaussian diffracted
tield profile, thereby improving the coupling efficiency [185].

* Directionality. Although only upward radiation has been considered so far, the grat-
ing equation can also enable outgoing beams toward the bottom medium. The di-
rectionality is given by

Pyp

T+Pup +Pd0wn,

D = (4.19)
where Pyp is the power radiated upward, Pyown is the power radiated downward,
and T is the transmitted power that remains at the end of the grating waveguide.
If the number of periods in the grating is sufficiently high, all input power can be
radiated (i.e., T ~ 0). In vertically symmetrical surface grating couplers (1, = npox
and Hgox — ©0), the guided mode is equally diffracted upward and downward
(Pup = Pgown), yielding D = 0.5. In typical platforms in which the refractive in-
dices of the upper and bottom media are similar but not equal, such as SOI with
air cladding, the directionality can be slightly improved by leveraging the verti-
cal asymmetry. To optimize the directionality, various techniques can be found in
the literature, including the use of bottom mirrors [193,194] and of non-rectangular
grating teeth (blazed gratings) [195-197].

* Back-reflections. Because back-reflections are, together with the coupling efficiency
and the bandwidth, one of the main performance metrics, this parameter is de-
scribed in the next section.

It is worth noting that, at a given wavelength, the coupling efficiency of conventional
surface grating couplers is polarization dependent. The rationale of this dependency is
that, in general, the effective indices of TE and TM guided modes are different. According
to Eq. (4.14), the radiation angles strongly depend on the Bloch-Floquet effective index
of the grating. Thus, the coupling efficiency cannot be maximized for both TE and TM
polarizations simultaneously (unless specific techniques are employed [198]).

Back-Reflections

When a Bloch-Floquet mode is excited and guided through a surface grating coupler, an
amount of power can be reflected back to the input waveguide. Even when operation in
the Bragg regimes is avoided, the discontinuity between the input waveguide and the
grating can make conventional grating couplers exhibit back-reflections above 30%. This
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value can enable the formation of optical cavities between the input and output grating
couplers in a photonic circuit. Back-reflections smaller than 1% are typically required
[199].

The influence of optical fibers can degrade back-reflections, because a Fresnel loss
can occur at the air-fiber interface. This reflected power can couple back into the grat-
ing, thereby increasing the effective back-reflections to values higher than 1% and hence
reducing the coupling efficiency. This inconvenience is especially serious at long MIR
wavelengths (A > 7.5um), as the optical fibers that are commercially available in the MIR
band have high refractive indices. For example, IRFlex’s IRF-Se-12 fiber has a core refrac-
tive index of 2.7 at A = 7.67 um [200], whereas a standard SMF-28 fiber at A = 1.55um
has a core refractive index of only ~1.45 [201].

Several techniques have been proposed to reduce back-reflections, including the use
of waveguide-to-grating transitions [195, 202, 203], SWG structures [195, 203, 204], and
focusing gratings [205].

Spectral Bandwidth

Equation (4.14) shows that the radiation angles of surface grating couplers depend on
the wavelength. Therefore, the optical fiber, which is positioned above the grating with
a fixed tilt angle, cannot efficiently collect the radiated light in a wide range of wave-
lengths. The 1-dB bandwidth, defined as the wavelength range for which the coupling
efficiency drops by 1dB with respect to its peak value, is proportional to the derivative
of the wavelength with respect to the radiation angle [206]:

oA 1, cos 6
BW14B = 77148 ‘ = 114dB . , (4.20)
o0 m 4 ORelms) _ 91 gin g

where 7 gp is a factor solely determined by the optical fiber and 6 is the radiation angle
of the dominant order®.

In conventional surface grating couplers, the radiation order is —1 and the upper
cladding is air, a non-dispersive medium (dn,/0dA = 0). Taking these considerations into
account, Eq. (4.20) becomes

N, cos 6

1 dRe(np)
AT T

BWi4B = #7148 (4.21)

These equations indicate that the bandwidth of surface grating couplers that are de-
signed with a pitch A for a specific optical fiber is given mainly by the following sources:

* The wavelength dependence of the Bloch—Floquet effective index. Clearly, since grating
couplers are designed to maximize the coupling efficiency at a single wavelength,
broadband grating couplers require a low variation of Re (ng) with A. Surface grat-
ing couplers using SWG structures and low-refractive-index materials to increase
the bandwidth have been reported in the literature [204,207].

* The radiation angle. Grating couplers that radiate close to the vertical direction (6 =
0°) are preferable for broadband operation.

®Equation (4.20) assumes that the surface grating coupler diffracts only one order, m. Thus, 8 = 0.
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* The characteristics of the optical fiber, which are enclosed in the 7, gp parameter [204,
208,209]. For example, the bandwidth can be enlarged when the grating coupler is
designed to operate with optical fibers with narrow MFDs. This consideration was
exploited in the design of the suspended germanium micro-antenna that will be
covered in Section 4.3.

* The diffraction order. This parameter typically cannot be utilized to enhance the
bandwidth because conventional grating couplers radiate the -1 order [Eq. (4.21)].
However, in Section 4.4, an ultra-broadband grating coupler will be presented that
radiate the zeroth order.

4.2 Suspended Grating Couplers

Conventional grating couplers were designed to characterize the suspended waveguides
that were demonstrated in Chapter 3. In this section, the general strategy followed to
design such grating couplers is presented. Then, the development of suspended silicon
grating couplers at A = 7.67 um and suspended germanium grating couplers at A =
3.8 um is briefly explained.

4.2.1 General Design Approach

The geometrical parameters that define the performance of conventional grating couplers
are the pitch and the duty cycle. The overall design procedure that has been followed in
this work is summarized in the following steps:

(i) Values of A and DC are selected that produce fabricable structures having low back-
reflections and operating far from Bragg regimes. Typically, only those structures
that radiate the m = —1 order are studied. At this step, the calculations are per-
formed efficiently with UMA’s in-house simulator, FEXEN [168], by exciting the
fundamental mode of a homogeneous input waveguide that is followed by only
one grating period, and imposing Bloch-Floquet boundary conditions on the other
side, thus emulating a semi-infinite periodic structure (see Fig. 4.6a).

(ii) For the selected structures with comparatively low back-reflections, the coupling
efficiency and the radiation angle are estimated from the radiated field and power.
The simulations are carried out with FEXEN, now including the input waveguide,
grating with enough number of periods to radiate most of the input power, and
output waveguide (see Fig. 4.6b).

(iif) The best design is selected according to three figures of merit: high coupling effi-
ciency, small radiation angle, and tolerance to fabrication imperfections.

(iv) For the best design, back-reflections are further reduced with an adaptation section
that is placed between the input access waveguide and the first radiative element
(see Fig. 4.6¢).

Once this procedure is finished, lateral tapers are designed to adapt the width of the
interconnecting waveguides and the gratings, which are wider than the former. In this
work, since adiabatic tapers would be hundreds-of-microns-long and hence more prone
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Figure 4.6: Simulation procedure followed to design suspended grating couplers. (a) Back-reflections are
calculated by including only one grating period and imposing Bloch-Floquet boundary conditions. (b) The
coupling efficiency and the radiation angle are estimated from the radiated field, which is calculated by sim-
ulating the complete structure. (c) Back-reflections are calculated again after adding an adaptation section.

to collapse when suspended, shorter three-stage non-adiabatic tapers were developed.
Heuristic approaches based on the designer’s experience were employed to maximize
the transmitted power. Alternatively, to avoid tapers and thus reduce the footprint of the
device, focusing grating couplers can be designed by applying the equations in [205].

4.2.2 Design of a Suspended Silicon Grating Coupler

When suspended silicon waveguides were designed at A = 7.67 ym, a custom-made
chalcogenide optical fiber by CorActive, with a MFD of ~29.5um and a core refractive
index of 2.7, was available in the MIR laboratory of the ORC [210].

Following the approach described in Section 4.2.1, a conventional grating coupler
radiating the first (im = —1) order was designed with a respectable coupling efficiency
of 58%. Low intrinsic back-reflections smaller than 0.8% were also achieved by including
a simple adaptation section at the beginning of the grating. When the optical fiber is
included within the simulation window, the Fresnel reflection at the fiber-air interface
worsens the performance of the device, leading to R ~ 4.7% and CE ~ 50%. The 1-dB
bandwidth of ~230 nm corresponds to a fractional bandwidth BW; gg/A = 3.00%, which
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is slightly smaller than the values exhibited by typical NIR grating couplers (BW; 45/A =
3.23%) [208]. The radiation angle is ~19°.

The geometrical parameters of this grating coupler are summarized in Table 4.1 and
a SEM image of a fabricated focusing coupler is shown in Fig. 4.7a. Although the device
was not characterized, it was employed to couple light into the chips used to demonstrate
suspended silicon structures at a wavelength of 7.67 um.

4.2.3 Design of a Suspended Germanium Grating Coupler

Thorlabs” ZBLAN optical fiber available at A = 3.8 pm has a MFD of ~17.8 pm and a core
refractive index of ~1.48 [211]. For the characterization of suspended germanium wave-
guides, a conventional grating coupler (m = —1) with a coupling efficiency of ~44%
was designed. The calculated back-reflections are lower than 0.5%. After including the
optical fiber in the simulation window, the latter increases up to 1.7%. Despite the in-
creased wavelength compared to NIR grating couplers, a narrow bandwidth of ~57nm
(BWj4/A = 1.5%) was achieved. The radiation angle is approximately —19°. The geo-
metrical parameters of this design can be found in Table 4.1. A SEM image of the fabri-
cated coupler is included in Fig. 4.7b.

While suspended germanium waveguides were being designed, CorActive’s opti-
cal fiber for the 7.67-um setup was replaced with a non-custom IRFlex’s IRF-Se-12 op-
tical fiber [200] (MFD = 13.56 pm according to Marcuse’s formula [172]). A suspended
germanium grating coupler was designed at A = 7.67 um for the new optical fiber, re-
sulting in a satisfactory coupling efficiency of ~45%, but a narrow bandwidth of 98 nm
(BW1gg/A ~ 1.3%) and low tolerance to fabrication errors (A ~ £25nm) due to the
proximity of the second-order Bragg regime. Owing to its poor overall performance, this
grating coupler is not recommended for practical applications. The search for efficient,
broadband, and tolerant fiber-chip surface couplers for long MIR wavelengths motivated
the design of a suspended germanium micro-antenna, which is covered in Section 4.3.

Table 4.1: Dimensions of the designed suspended grating couplers.

Platform A(@m) a(m) b(Em) a,g (um) bygg (pm)  bygp (um)
Suspended Si  7.67 2.75 1 1.6 0.5 0
Suspended Ge 3.8 0.7 0.88 0.7 0.47 1.09

(a) (b)

Figure 4.7: SEM images of (a) the suspended silicon and (b) the suspended germanium grating couplers at
wavelengths of 7.67 pm and 3.8 pm, respectively.
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4.3 Suspended Germanium Micro-antenna

4.3.1 Motivation

The design of suspended grating couplers in Section 4.2 showed that the fractional band-
width is smaller at MIR wavelengths than at A = 1.55 pym when non-custom MIR optical
fibers are used. The bandwidth is not increased proportionally when the wavelength is
scaled up. At wavelengths beyond ~7.5 pm, this phenomenon is even more pronounced,
and designs with acceptable bandwidth are difficult to achieve.

Most research in MIR integrated photonics has mainly focused on the development
of low-loss waveguides. Fiber-chip couplers have primarily been used to characterize
new platforms (that is, to couple light to measure propagation losses), but have not been
optimized specifically for high coupling efficiency or broad bandwidth [77].

The main difficulty for designing efficient grating couplers for long MIR wavelengths
arises from (i) the materials of the platforms used in the MIR band and (ii) the optical
properties of commercially available optical fibers. These particularities are detailed as
follows:

(i) Platforms with high index contrast. As the intrinsic loss of silicon is high for A > 8 pym,
other materials — e.g., germanium (nge. ~ 4) — are required for this wavelength
range. Germanium-based platforms provide higher index contrasts than their sili-
con counterparts (n2, ~ 16 > n, ~ 12). Because the photonic bandgap in periodic
structures is larger for higher index contrasts [190], the range of A values within
the Bragg regime is increased for germanium gratings compared to silicon gratings.
As a consequence, diffraction occurs for a narrow range of periods A. Typical grat-
ing coupler designs may operate near Bragg regimes, thus suffering from narrow
bandwidth and reduced tolerance to fabrication imperfections.

(ii) Optical fibers with small mode field diameter relative to the wavelength. A standard NIR
optical fiber (SMF-28) has a MFD of 10.4um at A = 1.55um, so that the MFD-to-
wavelegth ratio (MFD = MFD/A) is ~6.7. In contrast, IRFlex’s IRF-Se-12 fiber has a
core diameter of 12 ym and a numerical aperture of 0.47 [200], yielding MFD ~ 1.8
at A = 7.67pum. As the length of the coupling structure is in close relation to the
MEFD of the fiber, the optimum electrical length of the grating, Ly = Lg/A, will be
6.7/1.8 ~ 4 times shorter at A = 7.67 um than at A = 1.55 pm. If MIR optical fibers
had a MFD value comparable to that at NIR wavelengths, MIR grating couplers
with the same radiation strength as in the NIR band could be designed. However,
single-mode MIR optical fibers have smaller MFD. In consequence, grating couplers
with substantially higher radiation strengths are required at long MIR wavelengths.

This need for high radiation strength has implications for grating design. Since grat-
ing couplers in the NIR band typically radiate most power in ~20 periods to effi-
ciently couple light into an optical fiber [180], an efficient MIR coupler will require
only ~20/4 ~ 5 periods — assuming the pitch A is scaled; if A were further in-
creased, the number of periods could be even smaller. Furthermore, a fiber-chip
surface coupler designed for the MIR band with a short electrical length will radiate
a narrow diverging outgoing beam with cylindrical wavefront, which will provide
for broad bandwidth and fiber tilt tolerance. Because of these fundamental differ-
ences with NIR surface couplers, it can be argued that efficient long-wavelength



78 4. Fiber-Chip Surface Couplers

MIR surface couplers for non-custom optical fibers should operate more like micro-
antennas rather than conventional grating couplers.

In the following sections, the development of a suspended germanium micro-antenna
at A = 7.67 um that addresses the previous considerations will be analyzed. This micro-
antenna design was published in [81].

4.3.2 Design

A schematic of the proposed micro-antenna is represented in Fig. 4.8. Note that, although
the structure is similar to a conventional suspended grating coupler, here the pitch is
much larger.

Optical fipg .
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Figure 4.8: Schematic representation of the suspended germanium micro-antenna. (a) 3D view. (b) Side view
with 2D FDTD propagation. (c) Front view. (d) Top view.

As indicated in Section 4.2.1, the typical grating coupler design approach consists in
scanning the pitch and the duty cycle, in order to maximize the coupling efficiency and
minimize back-reflections. The search space is usually restricted to those (A, DC) pairs
that enable single-beam radiation. Because of the design difficulties mentioned in Section
4.3.1, the single-beam condition limits the number of potential efficient micro-antennas
with broad bandwidth and high tolerance to fabrication imperfections. To overcome this
limitation, in this work the single-beam constraint has been relaxed.

High coupling efficiency can be achieved even if several diffraction orders are sup-
ported, provided the grating is designed such that most of the optical power is radiated
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into a single beam. Thus, to expand the search space, a simple condition for “no more than
two orders” can be derived from Eq. (4.14). Figure 4.9a shows the normalized k-diagram
of a grating coupler that supports three arbitrary diffraction orders (in red). The distance,
in effective index units, between two consecutive harmonics is A/ A. Then, 2A/ A is the
distance between the effective indices of the harmonics that are closer to the boundaries
of the radiation window. To guarantee that at least one of the three orders is pushed out
of the diffraction window, 2A /A must be greater than 2n, (see Fig. 4.9b). Therefore, no
more than two orders will be radiated if

At (4.22)
Na

This bound can be used to define the pitch range to be explored in the design process.

2MA < 2n, 2MA > 2n,
« 2n, N - 2n, R
‘/\ ) ]
2MN . 2ANA \
° . s ® . ° . N . " . .
-n, n, -N, n,
@ (b)

Figure 4.9: Normalized k-diagram utilized to demonstrate “no more than two radiated beams”—condition.
(a) Three radiated orders are supported. (b) A maximum of two radiated orders are supported when the
condition is fulfilled.

Back-reflections were calculated for a complete set of (A, DC) pairs. Figure 4.10 shows
the map of back-reflections for all possible gratings with periods ranging from 1pum up
to 10 pm. Below A ~ 1um, the periodic waveguide is working in the SWG regime. The
upper bound for A was chosen to cover all periods that meet condition (4.22), A < A =
7.67 nm. Since good designs could still be found for longer periods, additional values (up
to A ~ 10 um) were also evaluated. Bragg and radiation regimes can be recognized visu-
ally in this contour map of R. Reddish areas where R > 70% correspond to the different
Bragg regimes. On the other hand, dark blue areas with R < 30%,” delimited with solid
lines in Fig. 4.10, are candidates for good coupler designs. However, not all zones with
low back-reflections are useful in practice. Those with high DC values (i.e., small hole
sizes) could prevent HF from successfully removing the BOX beneath the wide micro-
antenna, while those with low DC values (i.e., thin germanium strips) could compromise
the mechanical stability of the suspended coupler. Furthermore, designs located in nar-
row zones between two Bragg regions can exhibit low tolerance to fabrication errors, as
small variations in A or DC can translate into huge variations in the radiation angle or can
push the working point into the Bragg regime, leading to excessive back-reflections and
hence low coupling efficiency. With all of these considerations taken into account, seven
regions of interest (ROIs) were designated and labeled with numbers (1-7). These ROIs
can potentially contain the best possible designs. Note that most of these ROIs (3-7) do
not meet single beam condition [123,191,192], and therefore they would not be evaluated
following a conventional grating coupler design approach.

"Back-reflections of 30% can be suppressed by using simple adaptation sections, as will be shown later in
this section.
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Figure 4.10: Simulated back-reflections as a function of the pitch (A) and duty cycle (DC). Areas with back-
reflections smaller than 30% are delimited with solid lines. Unpractical zones due to fabrication restrictions
are demarcated with dashed curves. Regions of interest (feasible gratings, exhibiting low back-reflections
and operating far enough from Bragg regimes) are labeled with numbers and enclosed in red lines. Final
design point, in ROI 4, is marked with a yellow cross.

The coupling efficiency and radiation angle were estimated exclusively for the re-
duced parameter space determined by the ROIs. For a mode field diameter of 13.56 pm,
the structures with highest CE values can be found in ROIs 3 (bottom part), 4, and 7, as
shown in Fig. 4.11. Nonetheless, ROIs 3 and 7 were discarded, because their associated
radiation angles are greater than the maximum value accepted by typical measurement
set-ups, about 30° (see Fig. 4.11b). In ROI 4, the design with A = 7.6 ym and DC = 0.55
was chosen, resulting in a coupling efficiency of 29% and a radiation angle of ~9°. De-
spite its proximity to the ROI edge, this design is tolerant to fabrication imperfections, as
reasonable errors of £150 nm do not push the structure outside the ROL

To reduce back-reflections, an adaptation section was introduced before the first ra-
diative element, as schematized in Fig. 4.8. The lengths of the germanium strip (a,q =
200nm) and the air trenches (b,q1 = 400nm and b,q, = 0) were chosen to minimize
back-reflections down to R < 0.2% (around —-30 dB). As a result of the enhanced matching
between the waveguide and the grating region, the amount of power radiated upwards
is increased, yielding a coupling efficiency of ~40%.

The final geometric parameters are summarized in Table 4.2.
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Figure 4.11: (a) Simulated coupling efficiency (CE) and (b) absolute value of the simulated radiation angle
(/6]) as a function of the pitch (A) and duty cycle (DC) for designs contained in the ROIs delimited in Fig.
4.10. The final design point is marked with a yellow cross.

Table 4.2: Dimensions of the designed suspended germanium micro-antenna at A = 7.67 ym.

H(um) a(@m) b@um) a,g(um) bygq (um) byg, (um)
1.00 4.18 3.42 0.20 0.40 0.00

4.3.3 Discussion
Analysis of the Micro-antenna without Optical Fiber

The Bloch-Floquet effective index of the designed micro-antenna is ng = 2.18, calculated
with FEXEN. The corresponding k-diagram is represented in Fig. 4.12. Only two radiation
orders are excited, m = —2 and m = —3, as condition (4.22) anticipated. By Eq. (4.14), the
radiation angle associated to the m = —2 order is 0_, = arcsin(0.16) = 9.2°. Furthermore,
the design is located in the fourth radiation zone (between the fourth- and fifth-order
Bragg regimes). This is, as far as this author knows, the first time an efficient surface
chip-fiber coupler is designed to operate with high-order diffraction beams in the fourth
radiation zone.

Ng 4 | Ngo
T—e«t ® S
-1.86 -0.85 0.16 1.17 2.18

Figure 4.12: Normalized k-diagram of the proposed micro-antenna. The real part operator Re (-) is assumed
implicit when the real part of the effective indices is written.
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The micro-antenna, including its adaptation section and an input waveguide, is an-
alyzed with 2D FDTD using RSoft FullWAVE. Figure 4.13a shows the simulated electric
field distribution when the fundamental TE mode of the input waveguide is excited from
the left. Because of the high radiation strength, most of the input power is radiated in the
first radiative element and the wavefront is cylindrical instead of being flat. Although
Fig. 4.12 indicates that the third (m = —3) order is also supported, only one radiated
beam can be seen in Fig. 4.13a. The radiation angle, 6 ~ 9°, is in good agreement with
that predicted by Bloch-Floquet simulations.

The far-field radiation pattern of the micro-antenna, calculated with FullWAVE from
a near-field cut 500 nm above the chip plane, is shown in Fig. 4.13b. The diagram reveals
that two radiation orders are effectively supported, and one of them (6 = 8.6° ~ 0_,)
noticeably prevails over the other (§ = —63.6°). The predominant radiation angle pre-
dicted by this far-field approximation confirms the inclination of the fiber estimated from
the Bloch-Floquet analysis. Also, as a consequence of the strong exponential decay, the
full width at half maximum of the fundamental beam is FWHM ~ 25°, more than twice
that of conventional grating couplers with comparable coupling efficiency in the NIR
band [212].
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Figure 4.13: (a) 2D FDTD propagation of the electric field (TE polarization). In these simulations the optical
fiber has not yet been included. The input waveguide, micro-antenna with three radiative elements, output
waveguide and silicon substrate are outlined. Only one radiated beam is observable. (b) Far-field radiation
pattern (normalized intensity) derived from a field cut 500 nm above the grating surface.

Analysis of the Micro-antenna with Optical Fiber

A 2D slab model of an IRFlex’s IRF-Se-12 optical fiber® was introduced in the simulation
window. The fiber was tilted Oper = 9° with respect to the vertical. The high refractive
index of the fiber core produces reflections at the fiber facet. Note that these reflections
would affect not only the proposed micro-antenna, but any fiber-chip coupler designed
to operate with this optical fiber. To maximize the coupling efficiency, the height of the
optical fiber above the chip must be chosen carefully. Figure 4.14 shows the simulated
coupling efficiency as a function of the fiber distance dgpe;. A standing wave pattern is
observed in the air gap between the micro-antenna and the fiber. The distance between

8Core diameter: Deore = 12 um; cladding diameter: Dg,q = 170 um; core refractive index: ficore = 2.7;
numerical aperture: NA = 0.47 [200].
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maxima is approximately A/2 ~ 3.8um. In practice, this separation provides enough
margin to accurately align an optical fiber using nanopositioning stages. A fiber distance
of 14.46 ym (central maximum in Fig. 4.14) was selected, because it is the minimum value
of dgper that could be used maintaining clearance between the chip surface and the fiber
cladding.
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Figure 4.14: Simulated coupling efficiency as a function of distance dg,e, of the optical fiber with respect to
the chip plane. A standing wave pattern is formed in the air gap between the grating and the fiber, with a
difference between consecutive maxima or minima of half wavelength. Magnitudes of the electric field (TE
polarization) are also included for several points.

Table 4.3 provides the coupling efficiency, back-reflections, and non-coupled transmit-
ted power to the output waveguide for several micro-antennas with a different number
(N) of diffractive elements. For each micro-antenna, these parameters are calculated with
FullWAVE by monitoring the fields inside (i) the optical fiber, (ii) the input waveguide,
and (iii) the output waveguide, and by computing the overlap of such fields with the
modes of the corresponding structures. The 2D FDTD field distribution of each micro-
antenna is shown in Fig. 4.15. As transmitted power (T) drops from 32.6% (N = 1) to
2.4% (N = 2), it is apparent that most of the power is radiated in the first two radia-
tive elements, the first one being the strongest. For N > 2, micro-antenna performances
are virtually indistinguishable. From now on, three radiative elements (N = 3) are cho-
sen. The simulated coupling efficiency is CE = 43%, in good agreement with the value
estimated without the optical fiber during the design process. Reflections at the input
waveguide are R < 5%, higher than those initially designed because of the reflections at
the air-fiber interface.
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Table 4.3: Simulated coupling efficiency (CE), back-reflections (R) and transmitted power to the output
waveguide (T) for the designed micro-antenna as a function of the number of diffractive elements (N).

N CE(%) R (%) T (%)

1 16 0.31 32.59
2 40 4.10 240
3 43 4.65 0.48
4 43 4.54 0.14

z (um) z (um)
(c) (d)

Figure 4.15: Influence of the number of periods N on the radiation of the micro-antenna. 2D FDTD propaga-
tions of the electric field (TE polarization) are calculated with the fiber included in the simulation window.
Device geometry and optical fiber are outlined.

The coupling efficiency as a function of the wavelength is shown in Fig. 4.16a (blue
line). The simulation of the reciprocal case, i.e., coupling light from the fiber into the
chip, resulted in the same efficiency in virtue of the reciprocity principle [213]. A 1-dB
bandwidth of 465 nm is achieved. This corresponds to a fractional bandwidth (BW1 45/ A)
of 6.06%, which is almost twice the ratio of standard grating couplers at A = 1.55um
(BW14/A = 3.23% assuming BW; 4g = 50nm) [208]. Such a broad bandwidth was an-
ticipated because the micro-antenna has been designed to efficiently couple light to an op-
tical fiber with reduced core width and large numerical aperture [208,209]. Additionally,
Fig. 4.16b represents the coupling efficiency as a function of the fiber angle misalignments
(ABfiber = Bfiper — 9°). The coupling efficiency is very tolerant to fiber tilt, with a 1-dB an-
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gular bandwidth of 19.3° (about +10° with respect to the nominal tilt angle of 9°), which
approximately constitutes a threefold enhancement compared to the angular bandwidth
of conventional grating couplers in the NIR (around £3°) [214]. This improvement arises
from the broad angular width of the outgoing beam (see Fig. 4.13b) and is consistent with
the broad 1-dB bandwidth of Fig. 4.16a.

The proposed micro-antenna is very robust against fabrication errors. Figure 4.16a
shows the calculated coupling efficiency when a deviation A = +150 nm is introduced in
the length of the germanium segments a and a,4 (see Fig. 4.8). The penalty in coupling
efficiency, maintaining the same fiber tilt angle of the nominal case (i.e., 9°), is less than
10% at the central wavelength. The rationale of this small penalty is that the absolute
error A = £150nm (a typical value for the fabrication process of suspended structures)
corresponds to a relative error ADC ~ 2% as a consequence of the large pitch.

Finally, 3D FDTD simulations are carried out to double-check the design. The width
of the micro-antenna, which was not needed for the 2D approximation, was chosen to
maximize the overlap between the radiated field and the optical fiber mode in the fiber
facet plane, resulting in Wy ~ 20 um. Figure 4.16a (blue dashed line) depicts the coupling
efficiency as a function of the wavelength, yielding CE = 39.6% and BW; 45 = 436 nm.
Figure 4.16b shows an angular bandwidth of 19.6°. These results agree well with the 2D
simulations.
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Figure 4.16: (a) Simulated coupling efficiency as a function of the wavelength when dimension errors A =
0 (blue line), 150 nm (green line) and -150 nm (red line) affect the length of the germanium strips of the
structure. 3D FDTD simulation results are also included (blue dashed line) for the nominal design. The
radiation angle is 9° in all cases. (b) Simulated coupling efficiency as a function of fiber tilt misaligned angle.

4.3.4 Fabrication and Characterization

Straight and focusing micro-antennas were fabricated for the suspended germanium
platform at 7.67 um. Straight micro-antennas were accessed via three-step tapers with
a total length of 25 pm. Focusing micro-antennas were designed from the straight ver-
sion by applying the equations in [205]. More than three diffractive elements were added
to guarantee that back-reflections were minimum, although the structure should work
with only two or three periods. To increase the mechanical stability, the cladding was not
etched. As most of the power is diffracted at the beginning of the structure, the lack of
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lateral index contrast should not affect the light propagation and radiation, which was
checked via 3D FDTD simulation.

SEM images of the fabricated micro-antenna are shown in Fig. 4.17. In some cases,
the adaptation tooth was broken (see Fig. 4.18). As a result, back-reflections would in-
crease up to ~30%. These higher back-reflections can produce Fabry-Pérot fringes in the
measured power transmission.

(a)

(b)

Figure 4.17: SEM images of the fabricated (a) straight and (b) focusing suspended germanium micro-
antennas.

(a) (b)

Figure 4.18: Zoom of the adaptation section of the fabricated (a) straight and (b) focusing suspended germa-
nium micro-antennas.

It was not possible to experimentally determine the coupling efficiency of the micro-
antenna because the loss of the measurement setup of the ORC’s MIR laboratory was
not characterized. However, the fiber tilt tolerance was studied. For an input optical fiber
with a tilt angle of ~10°, the tilt angle of the output fiber was scanned manually. Figure
4.19 shows the measured voltage at the output of the photodetector. The micro-antenna
couples an indefinite, but high enough, amount of power regardless of the angle. This
result confirms the considerably broad angular bandwidth predicted by the simulations.
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Figure 4.19: Measured power as a function of the fiber tilt angle. Light was coupled into/out of a suspended
germanium waveguide using input and output micro-antennas. The tilt angle of the input waveguide was
fixed to ~10°, while the tilt angle of the output waveguide was changed.

4.4 Zero-Order Grating Coupler

4.4.1 Motivation

Although this thesis is focused on the MIR band, the zero-order grating coupler (ZGC)
was initially designed at A = 1.55 pm to facilitate the fabrication and characterization of
the device. The design was started at UMA and finished in the NRC, where the experi-
mental demonstration is being carried out at the time of writing by researchers from this
center. Later in this section, the ZGC concept is migrated to A = 3.8 um. The ZGC concept
was presented for the first time in [82].

In the NIR band, the efficiency of SOI-based surface grating couplers has been en-
hanced using several techniques, e.g., mitigating back-reflections [202-204], maximizing
the directionality [193,215], or optimizing the overlap between the radiated field and the
near-Gaussian fiber mode [185]. In [194], a sub-decibel grating coupler was reported that,
making use of a bottom mirror and a SWG structure, achieves an excellent experimental
coupling efficiency of 85.7% (—0.67 dB) and a 1-dB bandwidth of 22 nm. A grating with a
simulated coupling efficiency of 89% (—0.51 dB) and a 1-dB bandwidth of 33 nm was re-
ported in [186]. Blazed grating couplers with asymmetric teeth shape have been utilized
to maximize the directionality and hence the coupling efficiency [195-197,216,217]. To
increase the bandwidth of grating couplers, some encouraging results have been demon-
strated, but at the expense of the coupling efficiency. For instance, in [218] a triangular
SWG structure is utilized to achieve a large simulated 1-dB bandwidth of 290 nm, but its
coupling efficiency is moderate (—2.18 dB) and requires the use of a non-standard BOX
thickness. In [204], SWG engineering is used to increase the coupler bandwidth while
minimizing back reflections, achieving a 1-dB bandwidth of 90 nm with a coupling effi-
ciency of —3.8dB.

ZGCs are fiber-chip surface couplers designed to simultaneously maximize both cou-
pling efficiency and bandwidth. These characteristics are not only useful in the NIR, but
also for sensing in the MIR band, since broadband couplers with good efficiency can be
needed, for example, to measure the transmission spectra of substances in a wide range
of wavelengths.
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4.4.2 Geometry

A ZGC is schematically shown in Fig. 4.20. For the initial design in the NIR range, the
ZGC is based on a SOI wafer with 220-nm-thick silicon guiding layer and 3-pm-thick
BOX. The dimensions of the grating (2 and b, or A and DC) are the same as in conven-
tional surface grating couplers. An input taper section (not shown in the figure) is used
to laterally expand the silicon wire mode to the wider SWG radiating region. A silicon
prism, with angle ¢prism, is placed on top of the structure. The prism can be taped by an
optical epoxy that also acts as the upper cladding (1. = 1.50, [219]), or can be attached
using nanopositioning stages (n. = 1, air). The cladding layer has a linearly varying
thickness, starting from t,q 0 at the beginning of the grating and vanishing at its end. A
quarter-wave anti-reflection (AR) coating is included on the upper surface of the prism
to avoid reflections at the silicon-air interface. An SMF-28 optical fiber with a mode field
diameter of 10.4 pm is positioned perpendicularly to the upper surface of the prism [201].

AR coating

(a) (b)

Figure 4.20: Schematic representantion (not to scale) of a zero-order grating coupler. (a) 3D view. (b) Side
view. In the 3D view, the upper cladding (refractive index n, in the side view) is transparent for visualization
simplicity.

4.4.3 Working Principle

As mentioned in Section 4.1.2, the bandwidth limitation of surface grating couplers pri-
marily arises from the variation of the radiation angle with the wavelength [204, 207].
From Eq. (4.14), it follows that, for m = 0, the wavelength dependence is eliminated
(apart from the effect of the refractive index dispersion), and Eq. (4.14) becomes

1, sin (6p) = Re (np) . (4.23)

This relation governs the radiation angle dependence of a zero-order (m = 0) surface
grating coupler. To make the grating radiate the zeroth order, the steps schematized in
Fig. 4.21 are followed:

(i) SWG operation. The grating period A is chosen so that the structure operates in
the SWG regime. Then, the waveguide core effectively behaves as a homogeneous
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equivalent medium with a refractive index (nswg) determined by the grating pitch
and duty cycle. In this case, no order fulfills Eq. (4.14), and the propagating wave is
not diffracted.

(ii) Zero-order radiation. A high-index material is placed on top of the grating making
1, > Re (np). In this situation, the zeroth order propagates from the waveguide to
the superstrate, with a radiation angle given by Eq. (4.23).

Conventional
grating coupler

-Ng =Ny 0 Ny ng

Step (i):
SWG operation

Ng 1 Ngo
o< T | i —
-Ng -N, 0 ny Ng
(b)
Step (ii):
zero-order
radiation
)
Ngo
T |
-n, -hg 0 Ng Ny

Figure 4.21: Working principle of a zero-order grating coupler. (a) Normalized k-diagram of a conventional
grating coupler with m = —1 radiation. (b) Normalized k-diagram of a SWG waveguide. All radiation orders
are frustrated. (c) Normalized k-diagram of a zero-order grating coupler. By increasing the upper material
refractive index, the zeroth order is diffracted. The real part operator Re (-) is assumed implicit when the
real part of the effective indices is written.

The ZGC is assisted by a prism and can be described by the formulation originally
developed in [181, 182, 220] for conventional prism-film couplers. However, unlike the
latter, ZGCs enable index engineering to enlarge the operation bandwidth.

4.4.4 Design of a Longitudinal Zero-Order Grating Coupler

The design of a ZGC at a wavelength of 1.55um is described in this section. The goal is
to simultaneously maximize the 1-dB bandwidth and the coupling efficiency.

In order to define a design strategy, the ZGC is modeled as the 2D slab waveguide
illustrated in Fig. 4.22. The structure is composed of four layers, which account for the
prism, the epoxy gel (1. = 1.5),” the SWG core, and the BOX. The SWG core is replaced by

9The ZGC could be designed with an air gap (1e = 1) instead.
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a homogeneous isotropic medium with equivalent refractive index nswg. Note that the
wavelength dependence of ngy is not taken into account in this model (i.e., dngwg /oA =
0).

n, = 1.5 (epoxy) toiad
nswe (SWG core) 220 nm
y Figure 4.22: 2D slab model of a zero-order
L, Ngox = 1.444 (BOX) grating coupler.
z

The effective index of the fundamental mode of the equivalent slab waveguide is
calculated for different cladding thicknesses t.,q and equivalent refractive indices nswc.
The real part of the effective index is related to the radiation angle through Eq. (4.23). The
imaginary part governs the radiation strength of the coupler, which, in turn, determines
the radiated field matching with the optical fiber mode. Figure 4.23 shows the variation
of the radiation angle and the radiation strength as a function of tg,q for several nsyg
values.

The radiation angle depends strongly on nswg, while its variation with f.,4 is com-
paratively smaller. On the other hand, the radiation strength is almost independent on
nswg, but changes noticeably with t.,q. Consequently, the design can be accomplished
in two almost decoupled steps: (i) an optimal ngwg can be chosen to achieve broad band-
width; (ii) ¢..q can be adjusted to match the radiated field to the Gaussian-like profile of
the SMF-28 optical fiber, thereby increasing the coupling efficiency.

45 3 =3 0.3 1
] fowe { —nNgwe =3
] 0259 —ngwe =275
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Figure 4.23: (a) Real part (radiation angle) and (b) imaginary part of the effective index of the fundamental
mode supported by the zero-order grating coupler (slab model in Fig. 4.22) as a function of the cladding
thickness and the equivalent refractive index of the waveguide core.
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Bandwidth Enhancement

The bandwidth of a grating coupler is proportional to |0A /00| (see Bandwidth in Section
4.1.3) [204]. While the bandwidth of a ZGC is inherently broader than that of a conven-
tional grating coupler, it can be further enlarged by leveraging the subwavelength nature
of the ZGC core. From Eq. (4.20) and making m = 0,

JA 1 1
BWiap o ‘89' B tan (6) . 1 ORe(ng) 1 dm |~ (424)
~—— |Re(ng) 0A 1y OA
Factor A
Factor B

Figure 4.24a shows the variation of |0A/d6| with nsyg, as well as the factors A and
B, for the slab waveguide model with a cladding thickness f.,4 of 250 nm, an epoxy re-
fractive index n. of 1.5, and a silicon prism (n, = 3.476), at a nominal wavelength of
1.55 pm. For a given upper material (e.g., silicon), Factor A is increased for low ngwg val-
ues (low radiation angles), while Factor B is increased as the wavelength dispersion of
the effective index of the propagating mode decreases. As shown in Fig. 4.24a, low nsywg
are required to maximize the product of both factors and hence the bandwidth, which
can be achieved by reducing the duty cycle of the ZGC core. These conclusions assume
that dnswg/dA = 0, which is valid only for the slab model.

However, dnswg/0A # 0 in actual SWGs. Because onsyg/0A affects d Re (np) /0A,
low SWG dispersion (ideally zero) is desired. To illustrate the dispersion effect, an SWG
stratified medium composed of two transversally infinite layers of silicon and epoxy (see
the inset in Fig. 4.24b) is analyzed at A = 1.55um. Figure 4.24b shows the wavelength
dispersion of the synthesized refractive index nsywg as a function of the pitch A for a
fixed minimum feature size (MFS) of 100 nm. While the SWG material is virtually non-
dispersive for short periods, the wavelength dependence substantially grows as the wave
propagating through the structure approaches the photonic bandgap (A — Apragg)- For
this reason, the practical values of A in a ZGC are limited by the intrinsic wavelength
dispersion of the SWG core, which was not considered in the slab model. Therefore, the
conclusions drawn from Fig. 4.24a are only valid for low A values.

Thus, the bandwidth of a ZGC can be improved by using low duty cycles and small
periods. For a given MFS, the lowest feasible duty cycle is DC = MFS/A, with A >
2 - MFS. As short pitches are preferred, in practice making A = 2 - MFS and DC = 0.5 is
the best choice for bandwidth enhancement.

For a typical minimum feature size of 100nm, the SWG waveguide core has a =
100nm and b = 100nm (A = 200 nm, DC = 0.5), which corresponds to ngyg ~ 2.75.

Coupling Efficiency Optimization

Once the bandwidth is enlarged, the coupling efficiency is optimized. Since virtually no
power is radiated toward the substrate, D ~ 1. Using an appropriate injection stage
(i.e., adiabatic taper to convert the narrow input waveguide into a wide SWG), back-
reflections can be minimized (R ~ 0). Hence, the coupling efficiency practically corre-
sponds to the overlap between the radiated field and the mode field of the optical fiber
(CE ~ OL).

The cladding layer is apodized to increase the overlap. From prism-film coupling
theory [183], it is known that a theoretical coupling efficiency up to ~96% can be achieved
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Figure 4.24: (a) Angle sensitivity of the slab model of the zero-order grating coupler, which does not include
SWG dispersion effects. (b) SWG dispersion of the laminar periodic structure shown in the inset as a function
of the pitch when the length of the silicon layers is fixed to the minimum feature size (at A = 1.55um).

by linearly tapering the cladding thickness:

telad (2) = Mz + tdlad 0/ (4.25)
where tg,q 1 and tq,q0 are the cladding thicknesses at the beginning and the end of the
grating waveguide, respectively. For simplicity, ¢.,q 1 is set to 0. Since the radiation angle
is primarily determined by nsyc (see Fig. 4.23), the bandwidth is minimally affected by
the cladding apodization.

For a specific platform, the radiated field profile depends on the initial cladding thick-
ness fqaq0 and the coupling length L. Both parameters are firstly scanned for a ZGC
with an equivalent refractive index ngyc. Once the design is complete, the homogenized
waveguide core is replaced by the actual SWG structure and simulated with FEXEN.

Using this design approach, an optimum overlap of ~95% was achieved for L =
20.3 um and fgj,q,0 = 355 nm. Those values correspond to a cladding inclination of ¢j.q =
tan (tqaq0/L) = 1°. The radiation angle is 6 = 39.3°.

Results

Figure 4.25a shows the coupling efficiency of the ZGC simulated with FEXEN. The design
is then verified with 2D FDTD simulation using RSoft FullWAVE, including the effect of
the silicon prism, the anti-reflection (AR) coating, and the optical fiber. The calculated
back-reflection is 3.3%, primarily due to Fresnel loss at the fiber facet. The quarter-wave
AR layer (refractive index: n,,4 = /3.476 = 1.864; thickness: t),;, = 0.208 um) was
located on the prism surface facing the fiber. The fiber was nominally separated from the
prism surface by a 10-um air gap. The prism angle was ¢prism = 38.3°. This apodized
design yields a coupling efficiency of ~91% at the nominal wavelength of 1.55 pym and a
1-dB bandwidth of 126 nm. The simulated electric field propagation (TE polarization) in
the complete structure is shown in Fig. 4.25b.

For comparison purposes, a non-apodized ZGC was also designed with a cladding
thickness of 200 nm, achieving a coupling efficiency higher than 75% and a 1-dB band-
width of ~130nm (see Fig. 4.25a). While the coupling efficiency is noticeably improved
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by cladding apodization, the bandwidth is only marginally affected, in good agreement
with the modal analysis in Fig. 4.23.
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Figure 4.25: (a) Calculated fiber-chip coupling efficiency as a function of wavelength for the designed zero-
order grating couplers. (b) Simulated (FDTD) field propagation of the TE-polarized wave through the zero-
order grating coupler at A = 1.55 um.

Finally, the ZGC was redesigned to substitute the epoxy cladding with air (1. = 1).
To maintain approximately the same performance as with n. = 1.5, the prism angle was
simply readjusted to @prism = 35.67°.

Access Taper

To complete the analysis, a lateral taper to connect the narrow single-mode input pho-
tonic wire with the wider SWG waveguide of the ZGC was studied. In this section, the
adiabatic taper that was originally designed is detailed, as reported in [82].

The proposed taper is composed of two parts (see Fig. 4.26):

(i) A linear transition to transform the input silicon wire into a SWG waveguide, while
increasing the waveguide width from the initial width W = 500 nm to Wiy = 6 pm.

(i) A linear periodic taper to achieve the final waveguide width Wy of ~15um. This
width corresponds to the maximum overlap (99%) between the lateral (x direction)
of the fundamental Bloch-Floquet mode of the grating waveguide and the optical
fiber mode.

For the taper, the SWG pitch of 200 nm is always below the Bragg threshold [see Eq.
(4.15)] along the propagation direction. The taper lengths (Ltaper,1 = 60 pm and Ligper2 =
120 pm) assure the structure operates in the adiabatic regime.

4.4.5 Design of a Transverse Zero-Order Grating Coupler

As shown in the previous section, low synthesized refractive indices nswg improve the
ZGC bandwidth. Since the lowest nswg values can be achieved by using a transverse
(x-periodic) SWG configuration, a transverse ZGC also was designed.

Figure 4.27a shows a 3D schematic of this device. In this case, ngwg is calculated with
RSoft FemSIM as the refractive index of the homogeneous waveguide that supports a
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Figure 4.26: Schematic represen-
tation of a longitudinal access
taper (not to scale) used for
longitudinal zero-order grating
couplers.

Ltaper,‘] Ltaper,z

guided mode whose effective index coincides with the effective index of the mode of the
actual SWG. The chosen ngwg value was 2 at A = 1.55 um. Lower values are not allowed
because the fundamental mode is weakly guided, hence increasing substrate leakage loss
[221]. In order to avoid the need for 3D simulations of the periodic structure, which are
time-consuming because of the prism, the SWG dispersion was taken into account when
calculating nswg.

Assuming an air cladding, a coupling efficiency of 85% and a 1-dB bandwidth of
139 nm was achieved for tg,q9 = 370nm and L = 14.5pum. The transverse SWG core
comprises strips of 206 nm and trenches of 100 nm.

To adapt the fundamental mode of the input waveguide to the fundamental mode of
the transverse SWG structure, the taper shown in Fig. 4.27b was designed using FDTD
simulations. A first transition of length Liape;,1 = 40 um converts the input homogeneous
waveguide into a 2D SWG grating of intermediate width Wiye = 5um. A length Liaper2 =
90 pm is chosen to adiabatically achieve the final width.

Ltaper,1

(a) (b)

Figure 4.27: (a) Schematic representation of a transverse zero-order grating coupler and (b) access taper. The
schematics are not to scale.

4.4.6 Fabrication and Characterization

At the time of writing, the coupling efficiency of the ZGCs has not yet been estimated
and only preliminary results are available. In this section, a summary of the efforts that
have been devoted to the demonstration of this structure is presented.

Before carrying out the fabrication of the structures, one crucial choice was made: the
silicon prism would not be taped to the chip surface. Instead, it would either be held with
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a special holder or taped to the fiber tip. This decision had four important advantages for
characterization purposes:

(i) No adhesive bonding should be applied. Thus, only designs with n. = 1 would be
fabricated.

(ii) The prism could be removed when off-chip coupling is not required.
(iii) One single prism could be used to test many ZGC variations.

(iv) Fresnel reflections at the prism-fiber can be negligible if an appropriate AR coating
is deposited. Hence, the prism-air AR coating should be replaced by a prism-fiber
AR coating.

The masks were drawn using Autodesk’s AutoCAD. To generate variations in the
geometry of the gratings, a library of Visual Basic functions, which had been developed
by researchers from UMA, was used. Sets of waveguides of different lengths and series
of tapers in back-to-back configuration were included in the mask to measure the prop-
agation and insertion losses, respectively, using conventional grating couplers or direct
butt-coupling to access the chips. After characterizing the waveguides and tapers, the
performance of the ZGCs can be calculated by measuring their response.

Several samples for testing longitudinal and transverse ZGCs were fabricated in 220-
nm SOI wafers with 3-pm-thick BOX. The first samples were patterned in the e-beam
facilities of the University of Waterloo [222], and then etched and diced in the NRC. Sub-
sequent samples were patterned and etched at University of Washington [223], then diced
in the NRC.

The measured losses of the tapers were ~1.5dB taper~! for the longitudinal version
and ~5 dBtaper~! for the transverse version. These values are attributed to the disorders
effects (jitter) in the SWG patterns [224]. To reduce these high losses, a second taper con-
tiguration with reduced SWG area was proposed, as illustrated in Fig. 4.28. In this new
case, the geometry is the following:

(i) A homogeneous linear taper (Liper = 200 um) widens the interconnecting wave-
guide from 500 nm to 15 pm.

(ii) A short adaptation section (Ladapt = 3 pm) converts the fundamental mode at the
output of the taper into the fundamental mode of the SWG.

In the best case, the taper designed for the longitudinal ZGC exhibited a measured
insertion loss of ~0.5dBtaper—!. A SEM image of one of these tapers is shown in Fig.
4.29.

By the time this thesis was written, the experimental ZGC performance has not yet
been estimated, but the measurements are in progress.

4.4.7 Migration to the Mid-Infrared Band

The broad bandwidths of ZGCs are of great interest in the MIR band. A longitudinal ZGC
was designed for a 500-nm-thick SOI platform at A = 3.8 um. At this wavelength, silicon
dioxide loss is not too high and BOX removal of the grating couplers is not worth it.

The dimensions of the MIR ZGC are given in Table 4.4. Figure 4.30 shows the simu-
lated coupling efficiency as a function of the wavelength. A coupling efficiency of ~95%
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(a) (b)

Figure 4.28: Schematic representation (not to scale) of the second-type tapers designed for (a) longitudinal
and (b) transverse zero-order grating couplers.

Figure 4.29: SEM image of the
adaptation section of the lon-
gitudinal access taper (second
type) that is used to transform
the input, narrow silicon wire
into a wide SWG. A part of the
grating also is included in the
image.

is predicted at the central wavelength, with a 1-dB bandwidth of 564 nm. This value cor-
responds to a fractional bandwidth of ~14.8%, which constitutes an improvement of ~1.8
over the longitudinal NIR ZGC. The bandwidth enhancement is mainly due to the small
MFD (MFD-to-wavelength ratio) of the optical fiber, which is MFD ~ 11.4 at A = 3.8 um,
and MFD ~ 6.7 at A = 1.55um, i.e., 11.4/6.7 ~ 1.7. Since both the NIR ZGC and the
MIR ZGC operate in the deep SWG regime (i.e., low SWG dispersion), the fractional
bandwidth of the MIR ZGC is only marginally broadened with respect to the NIR design
despite the reduced A/ A ratio.

Table 4.4: Dimensions of the designed longitudinal zero-order grating couplers at a wavelength of 3.8 um.

tdado (Am) L (um) a(um) b(pum) ¢ .. )
1.0 30.0 0.1 0.1 32.8

4.5 Conclusions

The characteristic parameters of integrated platforms and commercial optical fibers com-
plicate the design of fiber-chip surface couplers at long MIR wavelengths. In this chap-
ter, a novel all-dielectric micro-antenna design for a suspended germanium platform has
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Figure 4.30: Coupling efficiency of the MIR zero-order grating coupler as a function of the wavelength (TE
polarization).

been proposed with outstanding performance in terms of bandwidth and tolerance to
fiber tilt misalignments. Together with the suspended germanium waveguides that were
discussed in Chapter 3, this fiber-chip surface coupler constitutes another step toward
the development of the suspended germanium platform with SWG lateral cladding.

To enhance the operating bandwidth of grating couplers, another new surface grating
concept has been presented. Assisted by a silicon prism, the zero-order grating coupler
achieves both broadband operation and high coupling efficiency simultaneously. Based
on zero-order coupling and subwavelength refractive index engineering, this coupler
overcomes the intrinsic bandwidth limitation of conventional surface grating couplers.

The results in this chapter open excellent prospects for the development of broadband
and efficient input/output optical coupling interfaces for Group IV photonic circuits.
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CHAPTER FIVE

CONCLUSIONS AND PROSPECTS

In this chapter, the main achievements of this thesis are summarized (Section 5.1), and
ongoing work and research activities that can be continued in the future are outlined
(Section 5.2).

5.1 Conclusions

This thesis has reported on the progress toward the development of Group IV-based pho-
tonic integrated platforms for mid-infrared (MIR) wavelengths. Specifically, suspended
silicon and germanium waveguide platforms have been investigated, with the main fo-
cus on (i) the implementation and characterization of single-mode waveguides with low
propagation losses, and (ii) the design of broadband, efficient fiber-chip surface couplers.

5.1.1 Suspended Platforms

Suspended Silicon Platform

A suspended silicon platform with lateral subwavelength grating (SWG) cladding has
been proposed to operate at a wavelength of 7.67 um, which is close to the upper bound
of the transparency window of silicon in the MIR band. In particular, suspended wave-
guides, as well as bends and beamsplitters, have been developed for this platform.

In order to design the waveguides, three different approaches have been proposed
to model the SWG lateral cladding: isotropic, anisotropic, and Bloch-Floquet. While the
latter is the most rigorous, isotropic and anisotropic homogenization approaches are suf-
ficiently reliable for practical design. To enable single-mode operation with low propa-
gation loss, a two-stage systematic design methodology was followed: firstly, using the
isotropic model, the thickness of the initial silicon-on-insulator (SOI) wafer was chosen
to avoid power leakage to the substrate (vertical leakage); secondly, using the anisotropic
homogenization, the remaining dimensions of the waveguide core and lateral cladding
were determined to prevent power leakage toward the unsuspended lateral silicon (lat-
eral leakage).

In addition to waveguides, whether straight or bent, any photonic integrated platform
requires other passive structures to be fully functional. Two types of beamsplitters were
designed for the suspended silicon platform: 1 x 2 and 2 x 2 multimode interference
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couplers (MMIs), and a mode-evolution-based 3-dB splitter. These devices can be part of
more complex blocks such as Mach-Zehnder interferometers, which could be used in the
future, for instance, to build a suspended FTIR spectrometer for sensing applications.

The fabrication and the characterization were performed by researchers of the Opto-
electronics Research Centre (ORC) of the University of Southampton, although the au-
thor of this thesis participated actively in the measurements during two short stays. At
a wavelength of 7.67 um, suspended silicon waveguides yielded a propagation loss of
3.1+ 0.2dBcm ™! (TE polarization), which is the lowest value that has been reported so
far for a silicon-based waveguide at such a long wavelength. This propagation loss is
expected to come from several sources: intrinsic silicon material loss, which contributes
by ~2.3dBem™}; and scattering at the roughness that prolonged HF etching creates at
the silicon/air interfaces. S-bends and 90°-bends also were demonstrated, with losses of
0.06 £ 0.02dBbend ! and 0.08 & 0.02 dBbend !, respectively. For the 1 x 2 MMI, prelim-
inary measurements indicate excess losses as low as 0.47 & 0.05dBMMI 1.

These results, mostly published in [79,80], pave the way to a rich set of new systems
operating in the MIR band with promising applications in communications and spec-
troscopy.

Suspended Germanium Platforms

Because of the high material loss of silicon, the suspended silicon platform becomes un-
suitable for integrated photonics beyond ~8 pm. At such long wavelengths, waveguide
platforms that are based on germanium (low absorption up to ~14 um) arise as excellent
candidates.

The germanium counterpart of the suspended silicon waveguides has been proposed
at wavelengths of 3.8 um (as a proof of concept), 7.67 pm, and 9.6 pm. Many cycles of
design, layout preparation, fabrication, scanning electron microscopy (SEM) inspection,
and testing were carried out in the ORC. In particular, a number of fabrication runs
were needed to fully suspend germanium waveguides, avoid collapsing, refine dimen-
sions, and eventually enable waveguiding. Except for the fabrication in the Southampton
Nanofabrication Centre cleanroom, all activities were performed by the author of this the-
sis at the Universidad de Mdlaga and, during two short research stays, in the ORC of the
University of Southampton.

Propagation losses of ~5dB cm ™! were measured atboth A = 3.8 ymand A = 7.67 ym
(TE polarization). The relatively high loss is attributed to a known contamination of the
wafer that was used to fabricate the structures. These results constitute the first demon-
stration of a germanium-based suspended platform with SWG lateral cladding.

5.1.2 Fiber-Chip Surface Couplers

A significant part of this thesis is dedicated to the design of fiber-chip surface couplers.
Apart from suspended conventional grating couplers for the suspended silicon platform
at A = 7.67 pm and the suspended germanium platform at A = 3.8 um, novel coupling
strategies have been proposed: the suspended germanium micro-antenna and the zero-
order grating coupler.
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Suspended Germanium Micro-antenna

In the MIR band, fiber-chip couplers with broad bandwidth and high coupling efficiency
are critical for many applications, especially for absorption spectroscopy. Broad band-
width is needed to cover the widest possible range of wavelengths when determining
the absorption spectrum of a substance; high coupling efficiency, to increase the signal-
to-noise ratio, that is, to have the required dynamic range to detect absorption peaks that
otherwise could be masked by the noise floor.

The specifications of the single-mode MIR optical fibers that are commercially avail-
able at A = 7.67 um (namely, small core diameters and large numerical apertures) drove
the search for comparatively short grating couplers with high radiation strengths. The
characteristics of these optical fibers, together with the high index contrast of the sus-
pended germanium platform, which increases the size of the photonic bandgap of the
gratings compared to silicon-based platforms, make conventional coupler designs suffer
from narrow bandwidths and low fabrication tolerances.

To overcome such problems, a new grating coupling approach has been developed
for the suspended germanium platform at A = 7.67 pm. The design methodology was
inspired by fundamental grating coupler equations, yet two diffractive orders were al-
lowed rather than only one. This approach enables the design of diffractive structures
with the high radiation strength that is required for long-wavelength single-mode fibers.
The resulting structure, a suspended germanium micro-antenna, radiates most of the in-
put power in just two or three radiation elements in a short electrical length. As a side
effect of the narrow radiated field, the device bandwidth is broadened.

The proposed micro-antenna exhibits a coupling efficiency of ~40% (-4 dB) (TE polar-
ization) with reduced back-reflections and a broad 1-dB bandwidth of ~430 nm, which
almost doubles the typical fractional bandwidth of conventional grating couplers in the
near-infrared (NIR). The micro-antenna has an exceptional angular bandwidth of ~20°,
providing for a fiber tilt tolerance of £10° with an efficiency penalty of only 1 dB. More-
over, coupling efficiency is tolerant to fabrication errors up to 150 nm.

The structure was fabricated at the University of Southampton to measure the propa-
gation loss of the designed suspended germanium waveguides. While a complete charac-
terization of the micro-antenna was not feasible in the MIR laboratory, the broad angular
bandwidth was confirmed experimentally.

The suspended germanium micro-antenna is one of the most significant contributions
of this thesis. It exceeds the coupling efficiencies and bandwidths of other reported grat-
ing couplers for the long-wavelength MIR range. Besides, the micro-antenna constitutes,
to the best of this author’s knowledge, the first time that an efficient surface fiber-chip
coupler has been designed to operate in the fourth radiation zone (between fourth and
fifth Bragg regimes). The micro-antenna approach can be readily extended to other MIR
platforms.

The micro-antenna concept has been recently published in [81].

Zero-Order Grating Coupler

The primary bandwidth limitation of conventional grating couplers is the strong angle
variation with the wavelength. Zero-order grating couplers (ZGCs) have been proposed
specifically to suppress the angle-wavelength dependence. Initially, the ZGC was de-
signed in the NIR band for the SOI platform, since the concept could be proved more
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easily at this wavelength range. To enable zero-order radiation, the structure is assisted
by a high-refractive-index prism. Unlike conventional prism-film couplers, the ZGC has
a subwavelength-patterned waveguide core, which can be engineered to achieve ap-
proximately a threefold bandwidth enlargement compared to conventional grating cou-
plers. The coupling efficiency is increased without degrading the bandwidth by tilting
the prism by an angle of 1°. Thus, the ZGC achieves both broad bandwidth and high
coupling efficiency simultaneously. Simulations predict an unprecedented coupler per-
formance with a 1-dB bandwidth of 126 nm and a coupling efficiency of 91% (—0.41 dB)
for the TE polarization.

Several alternative designs have been proposed using z- and x-periodic SWGs, each
with respective silicon prism specifications. To minimize back-reflections, different types
of injection stages (adiabatic tapers) were designed.

The design was completely done by the author of this thesis at the Universidad de
Maélaga and in the National Research Council Canada (NRC), during a short stay there.
Various fabrication runs were carried out in the NRC, at the University of Waterloo, and
at the University of Washington. The experimental characterization in the NIR band is
still in progress by the researchers of the NRC. So far, the first measurements also indicate
losses of ~0.5dBtaper~! for the adiabatic tapers, but the bandwidth and the coupling
efficiency of the ZGCs have not yet been rigorously confirmed.

The concept proposal and theoretical design of the z-periodic ZGC has been pub-
lished in [82].

5.2 Prospects

The main results of this thesis set the basis for a series of attractive lines of investigation.
Ongoing work and several possible directions for future research activities are listed here.

5.2.1 Suspended Silicon Plaiform

Now that state-of-the-art suspended silicon waveguides have been demonstrated at a
wavelength of 7.67 ym, the focus should be shifted to the development of other funda-
mental building blocks. Even though preliminary experimental results for the 1 x 2 MMI
have been reported, the demonstration of the already designed 2 x 2 MMI and mode-
evolution-based 3-dB beamsplitter is not complete.

Once these components are characterized, other devices — such as directional cou-
plers, Y-branches, ring and racetrack resonators, Mach-Zehnder interferometers, or Bragg
grating filters — need to be implemented in order to build complex systems.

5.2.2 Suspended Germanium Plaiforms

For the suspended germanium platform, waveguides have been characterized at wave-
lengths of 3.8 ym and 7.67 um, exhibiting propagation losses around 5dBcm™!. The at-
tained results are promising, as they validate the platform for MIR waveguiding. Future
work can include the following ambitious tasks:

(i) Refinement at 3.8-um and 7.67-um wavelengths. Further improvements on design and,
most importantly, fabrication are expected to reduce propagation losses to values
even smaller than those for the suspended silicon platform.
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(if) Migration toward longer wavelengths. Although the suspended germanium platform
can potentially outperform suspended silicon at A = 7.67 um, the actual interest
lies on pushing the operating wavelength toward longer values. At A = 9.6 um,
several designs have been proposed in this thesis, and they are pending fabrication
and characterization. Moreover, the platform could be further developed up to a
wavelength of ~15num, thereby covering almost the entire MIR band. Preliminary
designs at A = 12 pm suggest that a Ge-on-SOI wafer with a 2-um-thick guiding
layer would be sufficient for achieving low-loss single-mode propagation.

(iif) Development of passive devices. As for the suspended silicon platform, a set of sus-
pended germanium building blocks (e.g., beamsplitters and ring resonators) could
also be realized in the long term.

5.2.3 Suspended Platforms with Tilted SWG Lateral Cladding

There are three options to reduce the lateral leakage in suspended waveguides: (i) increas-
ing the cladding width, (ii) increasing the core width, and (iii) increasing the cladding-
core index contrast. The latter can be done by reducing the duty cycle of the SWG clad-
ding, as long as the structure remains sufficiently stable.

Recently, tilted SWGs have been reported as a way to control the properties of the
anistropic synthesized metamaterial [162]. Specifically, for the in-plane polarization, the
equivalent refractive index of the tilted structure can be lower than that of conventional
SWGs. By tilting the strips of the SWG lateral cladding, suspended waveguides with
higher index contrast, and hence reduced lateral leakage, can be designed. Figure 5.1
shows SEM images of the very preliminary attempts to implement these structures in a
suspended silicon platform at A = 7.67 pm. Propagation losses of these waveguides have
not yet been measured.

(@ (b)

Figure 5.1: SEM images of (a) suspended silicon waveguide with tilted lateral SWG cladding and (b) transi-
tion from straight to tilted cladding.

5.2.4 Sensing Experiments with Suspended Waveguides

The prime potential application for MIR integrated photonics is sensing. In the literature,
sensing experiments at different wavelengths and platforms have been reported (e.g.,
[61,139]). At A = 7.67 pm, experiments for detecting methane could be conducted with
the suspended silicon and germanium platforms [19].

Suspended waveguides could be used for sensing applications in two different ways:

(i) For guiding and processing light. As suspended waveguides were designed to min-
imize propagation losses, they could be employed to guide the light to the struc-
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tures that interact with the substances under test or they could be integrated within
complex systems (e.g., a spectrometer). The development of Mach-Zehnder intefer-
ometers and ring resonators, as mentioned in Section 5.2.1, could also benefit this
objective.

(ii) For interacting with the sample. As they are surrounded by air, suspended waveguides

1

y (um)

and bends (spirals) could be ideal for operating as the sensing element of an spec-
troscopy system if they were specifically designed for maximizing the light-matter
interaction without increasing propagation losses. As a first approximation to the
problem, some preliminary simulations have been carried out to study the sens-
ing capabilities of the suspended silicon waveguides at A = 7.67 um as designed
in Chapter 3. Figure 5.2 shows the transverse field profiles of the fundamental TE
and TM modes of waveguides. The electric field is substantially more vertically ex-
panded for the TM mode than for the TE mode. As a figure of merit, the power
confinement factor outside the waveguide core — or interaction factor (1) — was
calculated, yielding ~0.1 and ~0.55 for TEp and TMgp modes, respectively. Even
though the light-cladding interaction for the TE polarization is low, the TM mode
has a higher confinement factor in the upper and bottom claddings that could be
useful for sensing. These results suggest that, if designed for enhanced ligh-matter
interaction, these waveguides could be utilized for infrared spectroscopy.
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Figure 5.2: Transverse field distributions of the fundamental (a) TE and (b) TM modes supported by the
suspended silicon waveguide designed in Chapter 3 (A = 7.67 pm). Waveguide propagation losses («) and
waveguide sensitivities (1) are indicated. For the TE polarization, propagation loss values are experimental.

5.2

.5 Micro-antennas

Regarding the micro-antenna couplers for the long-wavelength MIR region, three re-
search activities can be proposed for the future:

(i) Full characterization at 7.67-um wavelength. Suspended germanium micro-antennas

have been designed at A = 7.67um, fabricated, and employed to couple light.
Only the wide angular bandwidth of ~20° was experimentally confirmed. How-
ever, these structures need to be fully demonstrated. By characterizing the inherent
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(ii)

(iii)

(iv)

losses of the measurement setup, the actual coupling efficiency of the micro-antenna
can be determined. A tunable laser will be required to analyze the spectral band-
width.

Development at longer wavelengths. Once suspended germanium waveguides are de-
signed at long MIR wavelengths, new off-chip couplers will be needed. For exam-
ple, at 9.6 um, the central wavelength of one of the lasers in the ORC, the mode field
diameter (MFD) of the IRFlex’s IRF-Se-12 fiber is ~16.4 pm (i.e., MFD = MFD/A ~
1.7). This MFD value is approximately the same as at a wavelength of 7.67 um, so
that the micro-antenna approach is still applicable at 9.6 pm.

High-efficiency designs. So far, a coupling efficiency of ~40% has been achieved in
simulation. A significant limitation is the relatively low directionality, of ~60%.
The micro-antenna performance could likely be improved by allowing two dry etch
steps. By defining asymmetric teeth profiles, such as the L-shaped periods in [197],
most of the power injected from the input waveguide into the coupler can be radi-
ated only upwards (blaze effect).

Migration to other platforms. Although the micro-antenna presented in this thesis was
designed for the suspended germanium platform, other MIR platforms, such as
those based on SiGe alloys, could benefit from the micro-antenna approach.

5.2.6 Zero-Order Grating Couplers

Zero-order grating couplers have been proposed theoretically for the NIR and MIR wave-
length ranges, and the characterization is in progress in the NRC. The most obvious next
steps on this topic are the following:

(i)

(ii)

(iii)

Experimental demonstration at 1.55-um wavelength. Several chips with z-periodic and
x-periodic structures were fabricated. Measurements are challenging even in the
NIR band owing to the non-standard geometry, which requires a very accurate
positioning of the optical fiber and the silicon prism on top of the grating. At the
time, researchers in the NRC have preliminary measured a spectral bandwidth of
~100 nm for the z-periodic ZGC at a central wavelength of 1.55 um, but the coupling
efficiency has not yet been estimated precisely. The full, rigorous demonstration of
both z- and x-periodic ZGCs is a primary goal.

Experimental demonstration at 3.8-um wavelength. Once ZGCs at 1.55um are experi-
mentally confirmed, the structure designed to operate at A = 3.8 um, with unprece-
dented performance in simulation, could be fabricated and measured.

Migration to longer wavelengths. The ZGC concept could be migrated to longer MIR
wavelengths for the suspended silicon and suspended germanium platforms, in or-
der to provide both the broad bandwidth and the high efficiency for sensing exper-
iments.
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APPENDIX B

RESUMEN EN ESPANOL

En las tltimas décadas, la banda del infrarrojo medio ha despertado un gran interés en la
comunidad cientifica dedicada a la foténica del Grupo IV debido a las mdultiples aplica-
ciones que pueden desarrollarse en este rango de longitudes de onda. Esta tesis se centra
en el desarrollo de nuevas plataformas foténicas integradas para la banda del infrarrojo
medio, haciendo hincapié en la realizacién de guias de onda y de acopladores fibra-chip
por superficie.

En este apéndice se ofrece un resumen en espafiol de la tesis. Primero, se lleva a cabo
una introduccién a la banda del infrarrojo medio y a su relaciéon con la foténica del Grupo
IV (Seccién B.1). Seguidamente, se aborda el desarrollo (disefio, fabricacién y caracteri-
zacion experimental) de las guias suspendidas de silicio y de germanio, eje del trabajo
efectuado (Seccion B.2). Por dltimo, se expone el disefio de los acopladores fibra-chip por
superficie propuestos: una microantena de germanio suspendido y una rejilla de difrac-
cién de orden cero (Seccién B.3).

B.1 Introduccion

B.1.1 Labanda del infrarrojo medio y la fotonica del Grupo IV

El infrarrojo medio (mid-infrared, MIR) es la banda del espectro electromagnético que
abarca longitudes de onda de 2um a 20 um! [1]. La radiacién infrarroja puede aprove-
charse para una gran cantidad de aplicaciones. Entre las mds relevantes, se pueden dis-
tinguir tres tipos, recogidos en la figura B.1:

e Espectroscopia infrarroja. Las moléculas de una gran cantidad de compuestos pueden
absorber la radiacion infrarroja que incide en ellas, aumentando sus movimientos
de vibracién y rotacion [5]. Este fenémeno tiene lugar, sobre todo, a las frecuen-
cias de la banda del MIR. El espectro de absorcién de una sustancia da cuenta de
la cantidad de energia absorbida por sus moléculas en funcién de la longitud de
onda A (o del nimero de onda k). Con el examen de los picos de absorcién ob-
tenidos mediante andlisis espectroscépico, es posible identificar las sustancias que

1Dependiendo del dmbito de aplicacion, pueden asociarse otros conjuntos de longitudes de onda a esta
banda del espectro electromagnético. Véase [2] para mas informacién.
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componen una muestra y determinar sus concentraciones. La espectroscopia in-
frarroja puede utilizarse para monitorizacién medioambiental [7, 8], desarrollo de
sensores bioquimicos [9], diagndstico médico [10-12], andlisis de alimentos [13, 14]
o astronomia [15-17], entre otras aplicaciones.

* Comunicaciones dpticas por espacio libre. En el infrarrojo medio existen dos ventanas
de comunicaciones, de 3pm a 5 pm y de 8 pm a 14 pm [21,22], en las que la atmosfe-
ra terrestre deja pasar la luz con escasa atenuacion. A estas longitudes de onda es

posible desarrollar enlaces de comunicaciones dpticas no guiadas con grandes an-
chos de banda.

¢ Termografia. Todo objeto, por encontrarse a una temperatura determinada, emite ra-
diacién infrarroja. Esta puede medirse y visualizarse mediante cdmaras, que suelen
operar en las bandas de 3pym a 5um y de 7 um a 14 um [23].

A (um)
8 9 10 11 12 13 14 15 16 17 18 19 20
|

6 7
Lo e b by by b by by by b Py Py By by |

| | Espectroscopia infrarroja | |

Comunicaciones opticas
por espacio libre

| | | | Imagenes térmicas | |

Figura B.1: La banda del infrarrojo medio y sus principales aplicaciones.

Las aplicaciones de espectroscopia infrarroja son, sin duda, las mas destacables en
la banda del MIR. En la mayoria de los sistemas 6pticos empleados para llevar a cabo
estudios espectroscopicos de muestras, pueden encontrarse los siguientes elementos: una
fuente, que puede ser de banda ancha o sintonizable; una estructura, por ejemplo una
cubeta 0 una pequefia cdmara de gas, que permita la interaccién de la luz de la fuente
con la muestra; dispositivos para llevar la luz desde la fuente hasta las distintas partes
del sistema y para el procesamiento 6ptico de la sefial; y un fotodetector que mide el
espectro.

La mayoria de los aparatos comerciales empleados para realizar espectroscopia infra-
rroja son voluminosos y pesados [42,44]. Esto dificulta su empleo en situaciones donde
se requieren andlisis de sustancias en tiempo real o en condiciones peligrosas (piénsese
en sistemas de detecciéon de gases letales). Por este motivo, seria deseable disponer de
dispositivos compactos, en miniatura, que pudiesen integrarse, por ejemplo, dentro de
teléfonos moviles y relojes inteligentes. La foténica integrada, y en especial la del Grupo
IV, puede revolucionar este campo.

El principal problema de la migracion desde la banda del infrarrojo cercano (near-
infrared, NIR) (A ~ 1.55 um) al infrarrojo medio es que la plataforma habitual, la de silicio
sobre aislante (silicon on insulator, SOI), presenta pérdidas inaceptables para longitudes de
onda mayores de 4 pm a causa del diéxido de silicio, como se muestra en la figura B.2 [66].
Como consecuencia, deben buscarse alternativas que involucren nuevas estructuras de
guiado o que combinen materiales con un mayor margen de transparencia en el MIR.
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De esta forma, numerosos grupos de investigacién han propuesto nuevas plataformas,
como las de silicio sobre zafiro [69], silicio sobre nitruro de silicio [70] y germanio sobre
silicio [71], o las basadas en aleaciones de silicio-germanio [72,73]. Otra forma de reducir
las pérdidas consiste en la eliminacién de la capa de diéxido de silicio de la plataforma
SO], lo que conduce a las estructuras suspendidas de silicio y de germanio, capaces, en
teoria, de cubrir la banda completa del MIR [75,77,144].

El desarrollo de estas plataformas mas novedosas conlleva notables esfuerzos de di-
seflo, ya que, dependiendo de los materiales y de las estructuras de guiado, pueden
necesitarse técnicas no convencionales de simulacién. Por otro lado, la fabricacién y la
caracterizacion experimental de los dispositivos se torna mas compleja en el MIR por-
que los procesos de fabricacion y la instrumentaciéon de laboratorio no tienen el mismo
grado de madurez que a las longitudes de onda del NIR. Aunque ya se estan presentan-
do dispositivos complejos, como espectrometros, en algunos casos concretos [60, 78], el
principal reto contintia siendo mucho mds bdsico: encontrar la plataforma de propésito
general Optima, esto es, aquélla que ofrezca buenas prestaciones, que pueda desarrollarse
facilmente de manera masiva y que sea eficiente y econémica.

Germanio . -
silicio | ]
Nitruro de silicio

| |
Zafiro | | |
\ |
\ |

Dioxido de silicio

Aire

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
A(um)

Figura B.2: Ventanas de transparencia (blanco) y opacidad (color) de varios materiales usados en la foténica
del Grupo IV. Se considera que un material es transparente cuando sus pérdidas son menores de 2dBcm™!.
Figura adaptada de [66].

B.1.2 Obijetivos y aportaciones

El objetivo general de esta tesis es avanzar en el desarrollo de la foténica del Grupo IV en
la banda del infrarrojo medio. Con este fin se han realizado aportaciones relevantes, con
aplicaciones potenciales en comunicaciones y deteccion de sustancias.

En concreto, se han implementado plataformas suspendidas de silicio y de germa-
nio que permiten superar la limitacion fundamental de la tecnologia SOI empleada en
el NIR: las altas pérdidas del diéxido de silicio. De esta forma, la banda de operacién
puede extenderse hasta los limites de transparencia de ambos materiales (~8 um en el
caso del silicio y ~15pum en el del germanio). Se han demostrado guias de silicio sus-
pendido a la longitud de onda de 7.67 pm con unas pérdidas de propagacién de tan solo
3.1dBem™! [79, 80], las més bajas, segtn la bibliografia consultada, que se han obteni-
do con una plataforma basada en silicio a una longitud de onda tan alta. Asimismo, se
han demostrado guias de germanio suspendido a 3.8 ym y 7.67 um con unas pérdidas de
~5dBcm™!. Aunque son més altas que las obtenidas en silicio, estas pérdidas constitu-
yen la primera validacién experimental del concepto de guia suspendida en germanio.
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Por otro lado, se han propuesto soluciones novedosas para el problema de la inyec-
cién eficiente de luz al chip, lo que ha dado lugar a nuevos dispositivos de acoplo, alter-
nativos a los clasicos acopladores de rejilla, con extraordinarias prestaciones en términos
de ancho de banda y eficiencia: la microantena de germanio suspendido [81] y el acopla-
dor de rejilla de orden cero [82].

B.2 Plataformas suspendidas para el infrarrojo medio

B.2.1 Introduccidn

En la figura B.3 se muestra la geometria de una guia suspendida genérica (de silicio o
de germanio). El ntcleo de la guia, de altura H y anchura W, esta anclado a los laterales
sin suspender por medio de una rejilla compuesta por barras de silicio de longitud Lstrip
separadas entre si una distancia Lye. El espacio de aire entre la capa de guiado y el
sustrato de silicio tiene una altura fija (Hpox) de 3 um.

< Wclad

\I//Z mm Si

(a) (c)

Figura B.3: Representacién esquemadtica de una gufa suspendida de silicio o de germanio. (a) Vista 3D. (b)
Vista frontal. (c) Vista aérea de la capa de guiado. En la vista frontal la rejilla lateral se ha reemplazado por
un medio homogéneo equivalente.

En las guias suspendidas, las rejillas laterales tienen tres funciones:

1. Sostener el niicleo de la guia. Las barras de silicio o de germanio laterales sujetan el
ntcleo, que estd suspendido, impidiendo que se caiga.

2. Permitir la eliminacién del didxido de silicio. Para suspender las estructuras, es necesa-
rio hacer pasar una solucién acuosa (4cido fluorhidrico, HF) a través de los agujeros
grabados en la capa de guiado de la estructura. El cido reacciona con el diéxido de
silicio, elimindndolo.

3. Proporcionar contraste de indice lateral. Para que se produzca el guiado de luz, es
preciso que exista un contraste de indice lateral en la estructura, de manera que el
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indice de refraccién del nicleo sea mayor que el de los laterales. La periodicidad
de la rejilla es de menor tamafio que la longitud de onda, de tal forma que trabaja
en el régimen sublongitud de onda (subwavelength grating, SWG) [155-157]. Asi, la
rejilla puede modelarse como un medio homogéneo equivalente, cuyo indice de
refraccién puede controlarse mediante el periodo A y el ciclo de trabajo (duty cycle,
DC = Ls’crip / A)

Cuando una guia suspendida estd convenientemente disefiada y fabricada, la luz se
encuentra muy confinada dentro del nticleo y se propaga con bajas pérdidas. Como ejem-
plo, el perfil transversal y la propagacién del modo fundamental de una guia puede verse
en la figura B.4.

6

- [

x x
-4 -4
-6 B
0 2 4 6 8 10
y (um) z (um)
(a) (b)

Figura B.4: (a) Distribucién transversal y (b) propagacién del modo fundamental (polarizacién TE) de una
guia suspendida.

En este apartado se resume el disefio, la fabricacién y la medida de las guias suspen-
didas de silicio y de germanio realizadas en esta tesis. Para la plataforma de silicio sus-
pendido, se han demostrado guias para polarizacion transversal eléctrica (TE) y longitud
de onda de 7.67 pm, practicamente en el limite de la banda de transparencia del silicio.
Para la plataforma de germanio suspendido, se realiz6 una primera prueba de concepto
a la longitud de onda de 3.8 um, para luego pasar a 7.67 pm y 9.6 pm. Debido a la com-
plejidad del disefio, que en todo momento debia nutrirse de la informacién suministrada
por las fabricaciones previas de estructuras, el ciclo de desarrollo se extendié durante casi
dos afios, dando tiempo a validar experimentalmente las guias disefiadas para 3.8 pm y
7.67 pm. (La fabricacién de las guias de germanio suspendido para la longitud de onda
de 9.6 ym no se habia concluido en el momento de redactar esta tesis).

B.2.2 Diseno
Requisitos de las guias

Para disefiar guias suspendidas monomodo con bajas pérdidas deben satisfacerse los
siguientes requisitos:
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1. Requisitos mecdnicos. Las rejillas laterales tiene que ser suficientemente robustas co-
mo para soportar el peso del ntcleo de la guia. El par de fuerzas aplicado debe ser
lo bastante bajo como para que la guia no se derrumbe o fracture. Incluso pequefias
roturas en las tiras de silicio o de germanio laterales son suficientes para aumentar
las pérdidas de propagacion de las guias.

2. Requisitos de fabricacién. Los agujeros de aire de las rejillas laterales tienen que faci-
litar el flujo del agente quimico que elimina el diéxido de silicio. Si la suspension
no es satisfactoria, las pérdidas pueden aumentar notablemente por efecto de los
residuos de 6xido. Asimismo, los procesos de fabricacién y la altura de la capa de
guiado imponen un tamafio minimo de las estructuras que pueden grabarse.

3. Requisitos dpticos o electromagnéticos.

* Funcionamiento en régimen SWG. Para evitar que se produzca radiacién o refle-
xién de Bragg, las rejillas laterales deben cumplir la condicién SWG [155]:

A (B.1)

Lstrip + Lhole = A < ABragg = 2np

donde Ap;agg s el periodo de Bragg y 15 es el indice efectivo del modo Bloch-
Floquet que se propaga por la estructura.

* Funcionamiento monomodo. Los modos soportados por la guia pueden sufrir
pérdidas por fugas de potencia al sustrato (fugas verticales) o a los laterales
de silicio o de germanio no suspendidos (fugas laterales). Por ello, para que
el funcionamiento sea monomodo en la préctica, el modo fundamental de la
estructura debe propagarse con minimas fugas, tanto verticales como laterales,
mientras que los modos superiores, en caso de que estén soportados, deberdn
extinguirse rdpidamente.

En las tablas B.1 y B.2 se indican las tendencias necesarias de las dimensiones de las
guias para que cada requisito se cumpla. Como puede observarse, es imposible que todos
se satisfagan simultdneamente, por lo que el disefio 6ptimo de la guia serd aquél que pro-
porcione permita bajas pérdidas sin que la guia se derrumbe (solucién de compromiso).

Tabla B.1: Requisitos de disefio para la suspension y la estabilidad mecanica de las guias suspendidas.

Requisito H W Wclad Lstrip* Lhole*
Fluidez de la solucién acida | | 4 T
Ligereza del nticleo N

Robustez de la rejilla lateral 4 T {

*Lstrip + Lnole < ABragg segun la ecuacién (B.1).
Hpox = 3pm y no puede disefiarse.

Modelado de las guias

Desde el punto de vista electromagnético, las guias suspendidas deben disefiarse para
que el modo fundamental que se propaga por ellas no tenga fugas ni al sustrato ni a los
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Tabla B.2: Requisitos de disefio de la guia suspendida para garantizar la operacién en régimen monomodo.
Las fechas azules indican cuédles son los pardmetros mas criticos para cada requisito.

Requisito H W Wclad Lstrip* Lho]e>E
Reduccién de fugas verticales para el modo TEq
Aumento de fugas verticales para el modo TEy;
Reduccién de fugas laterales para el modo TEq
Aumento de fugas laterales para el modo TE

—
>
——

— ==
R

*Lstrip + Lhole < ABragg segun la ecuacién (B.1).
Hpox = 3pum y no puede disefiarse.

laterales sin suspender. Al mismo tiempo, el segundo modo vertical (TEp;) y el segun-
do modo lateral (TE;p) deben tener fugas elevadas, a fin de que, en la practica, pueda
considerarse que la guia trabaja en régimen monomodo.

El calculo de las pérdidas por fugas (leakage) puede realizarse mediante el andlisis mo-
dal de la estructura. Si la guia no tiene pérdidas del material, el leakage puede calcularse
a partir de la parte imaginaria del indice efectivo del modo:

27

x = 7 Im (7’1]3) = Kyertical T Xlaterals (B.Z)

donde ayertical €5 €l leakage vertical v tjatera €5 €l leakage lateral.

Las guias suspendidas son estructuras periédicas debido a las rejillas laterales SWG
y, por tanto, soportan modos Bloch-Floquet. Los resolutores modales convencionales no
suelen calcular modos Bloch-Floquet directamente. Por ello, en su lugar, hay que utilizar
métodos alternativos de simulacién. En esta tesis se plantean tres enfoques diferentes?:

1. Modelo isétropo. Es el caso més sencillo. La rejilla SWG se modela como un metama-
terial homogéneo isétropo con un indice de refraccién equivalente nswg de valor
Nyxx, que puede calcularse a partir de la férmula de Rytov [161]:

2 2 1/2
Myy ~ [DC 2y + (1 - DC) - nhole} , (B.3)

donde n4yip es el indice de refraccion de las barras de la rejilla (silicio o germanio) y
Nhole €S €l indice de refraccién del material que llena los huecos (aire). Las simula-
ciones pueden hacerse con cualquier resolutor modal. En esta tesis se empleé RSoft
FemSIM, que puede proporcionar resultados en menos de 10s por punto de simu-
lacién®. Los valores simulados de pérdidas por fugas verticales son muy exactos,
mientras que los de fugas laterales se subestiman para guias con rejillas estrechas
(Welad bajo).

2. Modelo anisétropo. La rejilla SWG se sustituye por un metamaterial homogéneo anisétro-
po (cristal unidxico) con un tensor de permitividad [162]

n2, 0 0
ngwe=| 0 nj, 0 |, (B.4)
0 0 nZ

2Todas las simulaciones descritas a continuacién se realizaron en una estacién de trabajo con procesador
Intel Xeon ES-2697 v3 a una frecuencia de 2.6 GHz.
3Usando un mallado uniforme de 50 nm en la direccién x y de 100 nm en la direccién y.
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donde 11y, 1y y 11;; pueden calcularse con las férmulas de Rytov [161]. En concreto,
nyx (= nyy) puede estimarse con la ecuacién (B.3) y

-1/2
nee ~ [DCong2 + (1-DC) - ml | . (B.5)

strip
Estas simulaciones pueden realizarse con Photon Design FIMMWAVE, que cuen-
ta con resolutores modales, de elementos finitos (finite-element method, FEM) y de
diferencias finitas (finite-difference method, FDM), que soportan medios anisétropos.
Con este enfoque el tiempo de simulacién se incrementa ligeramente respecto del
caso anterior (~20s por punto de simulacién?); a cambio, las fugas laterales pueden
calcularse con mucha maés exactitud.

3. Modelo Bloch-Floquet. En este caso, la guia suspendida se simula utilizando andlisis
Bloch-Floquet sin homogeneizar la rejilla SWG. Los indices efectivos de los modos
pueden calcularse, por ejemplo, con Synopsys RSoft FullWAVE (3D finite-difference
time-domain, FDTD), combinando los métodos descritos en [164-167]. Este modelo
es el més exacto, pero los tiempos de simulacién se incrementan notablemente con
respecto de los de los enfoques anteriores (~20 min por punto de simulacién®)

Un esquema de los métodos descritos se muestra en la figura B.5.
Considerando estos enfoques, las guias suspendidas pueden disefiarse en dos fases:

1. Seleccion de la plataforma. Usando el modelo isétropo, se obtiene con exactitud la
altura H que minimiza las fugas verticales para el modo fundamental y las aumenta
para el primer modo superior (TEg;).

2. Seleccion del resto de dimensiones de la guia. Usando el modelo anisétropo, se determi-
nan la anchura del nucleo de la guia (W), la rejilla SWG (Lsrip y Liole) Yy su anchura
(Welaq), de tal forma que se minimice el leakage lateral para el modo fundamental
y se incremente para el primer modo superior (TEjp). La velocidad en las simula-
ciones del modelo anisétropo respecto del Bloch-Floquet favorece el uso de aquél,
cuya exactitud es, en la préctica, suficiente para el disefio de las guias.

Teniendo en cuenta los requisitos impuestos a las guias en esta misma seccién y los
tres tipos de modelado propuestos, se disefiaron guias de silicio suspendido a la longitud
de onda de 7.67 pm (tabla B.3) y guias de germanio suspendido a 3.8 um, 7.67 pum y 9.6 um
(tabla B.4).

Tabla B.3: Dimensiones de la guia de silicio suspendido disefiada para operar a la longitud de onda de
7.67 pm.

H (llm) 144 (um) Wclad (llm) Lstrip(pm) Lhole (llm) HBOX$ (pm)
1.50 2.90 3.65 0.25 0.90 3.00

*Como referencia. La altura Hgpx no es un pardmetro de disefio.

#Usando un mallado uniforme de 50 nm en la direccién x y de 100nm en la direccién y con el resolutor
modal FEM.

5Usando un mallado uniforme de 50 nm en la direccion x, de 100 nm en la direccién yy de 30nm en la
direccién z.
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I Rejilla lateral homogeneizada I

Baja Velocidad de simulacion Alta

Modelo is6tropo Modelo aniso6tropo Bloch-Floquet

"\l/,z B diag(n,.n,,.n,,) -
nxx, Nyy Y nzz pueden calcularse con las formulas de Rytov
Alta Exactitud (/leakage vertical) Alta
Baja Exactitud (leakage lateral) Alta

Figura B.5: Modelado de las guias suspendidas.

Tabla B.4: Dimensiones de las guias de germanio suspendido disefiadas.

A(@m) H(@pm) W (um) Wgag (p1m) Lgyip(um)  Lpgle (nm)  Hpox™ (um)

3.80 0.50 1.30 2.00 0.10 0.45 3.00
7.67 1.00 2.90 3.10 0.20 0.80 3.00
9.60 1.00 4.20 3.60 0.20 0.80 3.00
9.60 2.00 3.60 3.40 0.25 1.05 3.00

*Como referencia. La altura Hgox no es un parametro de disefio.

B.2.3 Fabricacion
Mascaras

En la figura B.6 se muestra una de las mascaras que se definieron para fabricar las guias
suspendidas. Para dibujarlas se utilizé el programa Mentor Tanner L-Edit IC Layout
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[169], con ayuda de unas rutinas en C++ escritas por los investigadores del Optoelec-
tronics Research Centre (ORC) de la Universidad de Southampton.

En las distintas méscaras que se dibujaron, las guias se distribuyeron en distintos
grupos por toda la superficie del chip. Cada conjunto de guias se corresponde con una
variacién en la anchura del nicleo, de las rejillas laterales o del ciclo de trabajo, con el
objetivo de compensar posibles errores de fabricacion, intentar que algunas estructuras
no se derrumben y reducir posibles pérdidas por fugas a los laterales sin grabar. Se em-
plearon acopladores chip-fibra de superficie para acoplar la luz, cuyo disefio se resumira
en la seccién B.3. Como puede advertirse en la figura, las estructuras suspendidas estan
definidas por los agujeros de las rejillas laterales. Se incluye una caja de medida en la
mascara para servir de punto de sondeo con el que estimar con un elipsémetro el grosor
de la capa de guiado durante el proceso de fabricacion.

Variacion 6

Variaciéon 5

Variacion 4

Variacion 3

Variacion 2

Variacion 1

Caja de medida

Guias de diferentes longitudes a las que se accede mediante acopladores por superficie EE

Figura B.6: Ejemplo de madscara para la caracterizacién de guias suspendidas.

Litografia

La fabricacién de las guias suspendidas se llevé a cabo por los investigadores del Sout-
hampton Nanofabrication Centre (SNC) de la Universidad de Southampton.

El proceso de fabricacién es esencialmente el mismo para las guias de silicio y las
guias de germanio. Después de un horneado para eliminar humedad, se aplica una fo-
torresina ZEP520-A. Mediante litografia de haz de electrones (e-beam) se transfiere a la
fotorresina el patron de la mascara con las estructuras. Tras revelarla, se realiza un gra-
bado seco (inductively coupled plasma, ICP), que define los agujeros de las rejillas laterales
de la guia suspendida. El chip es entonces sumergido en un bafio con una disolucién de
agua y fluoruro de hidrégeno (HF) en proporciéon 1 a 7, que ataca el diéxido de silicio y
acaba suspendiendo la estructura. La duracion del bafio es critica: si el chip no permane-
ce suficiente tiempo en contacto con el dcido, pueden quedar restos de diéxido de silicio
que aumenten las pérdidas; por el contrario, si el tiempo de inmersién es excesivo, las
dimensiones de la estructura pueden verse afectadas por efecto del dcido sobre el silicio
o el germanio.
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La figura B.7 muestra imagenes de algunas de las guias suspendidas de silicio y de
germanio fabricadas. Estas fotografias se sacaron con un microscopio electrénico de ba-
rrido (scanning electron microscope, SEM) del SNC.

Zim 2 um

Inclinacion: 36°

Inclinacion = 36°

—~

a) (b)

Figura B.7: Imdgenes SEM de las guifas suspendidas de (a) silicio y de (b) germanio disefiadas para operar a
la longitud de onda de 7.67 pm.

B.2.4 Caracterizacion experimental
Montaje de medida

En la figura B.8 se muestra esquematicamente el montaje de medida empleado para la
caracterizacién de las guias suspendidas a la longitud de onda de 7.67 pm. Este montaje
se encontraba en el laboratorio de foténica del Grupo IV para el infrarrojo medio del ORC,
al que el autor de esta tesis de desplazé en el marco de dos estancias breves supervisadas
por el profesor Goran Mashanovich.

Controlador dsl |asen Amplificador de deteccién ]
1 Preamplificador sincrona G—— LabView (PC)

11 —
I L D
11

=— Controlador del

Hélice del
Laser Pantalla Chopper (P chopper (P

Fibra éptica de salida Fibra optica de entrada

Figura B.8: Esquema del montaje de medida usado para caracterizar las guias suspendidas (A = 7.67 um).

Con este montaje, la luz de un laser de cascada cuantica (quantum cascade laser, QCL),
tras ser modulada con un chopper, se inyecta en el chip a través de un acoplador por su-
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perficie, cuyo disefio se explicard en la seccién B.3. Después de propagarse por el chip,
la luz se extrae mediante un acoplador andlogo al de la entrada y es conducida con una
delicada fibra 6ptica de calcogenuro hasta el detector, que previamente debe enfriarse
con nitrégeno liquido. La sefial eléctrica generada a la salida del fotodetector es pream-
plificada y, posteriormente, llevada hasta un amplificador de deteccién sincrona (lock-in
amplifier) que permite reducir la relacién sefial a ruido usando la frecuencia del chopper
para demodular la sefial. La medida es posprocesada en un ordenador personal con el
software LabView.

La caracterizacion de las guias de germanio a la longitud de onda de 3.8 pm se realiz6
con un montaje similar del mismo laboratorio.

Resultados

Las guias se caracterizaron experimentalmente por medio de la técnica cut-back [170].

La figura B.9 muestra la potencia medida a la salida de las guias suspendidas de si-
licio después de normalizarla a la potencia medida a la salida de la guia mas corta. La
caracterizacion realizada antes de eliminar el diéxido de silicio devolvié unas pérdidas
de propagacién de 62.3 + 9.6 dBcm™!, como se observa en la figura B.9. Tras sumergir
el chip en HF, las pérdidas de propagacién descendieron hasta 3.1 - 0.2 dBcm™!. Estas
pérdidas son, que se sepa, las mas bajas que se han obtenido con guias de silicio a una
longitud de onda tan alta, y son comparables a las guias més avanzadas desarrolladas pa-
ra otras plataformas. De los 3.1 dBcm™!, aproximadamente 2.3 dBcm™ se puede atribuir
a las pérdidas intrinsecas del silicio a 7.67 pm. Los 0.8 dBcm™! restantes pueden deber-
se a rugosidades laterales y superficiales y, quizas, a unas pérdidas por fugas laterales
mayores de las disefiadas. Este resultado, obviando las pérdidas propias del silicio, coin-
cide practicamente con el que se presenta en [147] para guias de silicio suspendido a una
longitud de onda de 3.8 um.
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Las guias de germanio suspendido se caracterizaron primero a 3.8 um, como prue-
ba de concepto. El montaje de medida para esta longitud de onda cuenta con un laser
sintonizable y con fibras dpticas méas robustas (de ZrF,), lo que facilita la medicién.
Como se observa en la figura B.10a, se obtuvieron unas pérdidas de propagacion de
6.7 £ 0.2dBcm™! antes de quitar el diéxido de silicio, y de 4.5+ 0.3dBcm ™! tras eli-
minarlo. Estas pérdidas eran suficientemente bajas como para considerar validada la es-
tructura.
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Seguidamente, se caracterizaron las guias suspendidas a 7.67 pm, que si tenian verda-
dero interés, ya que, como consecuencia de la transparencia del germanio a esta longitud
de onda, podrian, en teoria, sufrir menos pérdidas que las guias de silicio suspendido.
Antes de sumergir el chip en HF se midieron unas pérdidas mayores de 60 dBcm™'. Tras
la eliminacién del diéxido de silicio, éstas se redujeron hasta 5.2 += 0.3dB cm~ ! (ver tigu-
ra B.10b). El hecho de que las pérdidas sean mayores que las de las guias suspendidas
de silicio a la misma longitud de onda se atribuye a una conocida contaminacién de las
obleas de germanio empleadas para fabricar el chip. En cualquier caso, este resultado
demuestra la viabilidad de la suspension para las guias de germanio. Actualmente se
estd trabajando en nuevas fabricaciones con las que reducir las pérdidas obtenidas hasta
ahora. Ademads, se tienen preparadas las mdscaras para una préxima fabricacion de guias
suspendidas a 9.6 pm.
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Figura B.10: Pérdidas de propagaciéon medidas de las guias de germanio suspendido a las longitudes de
onda de (a) 3.8 um (con y sin diéxido de silicio) y de (b) 7.67 pm.

B.3 Acopladores chip-fibra por superficie

B.3.1 Introduccidon

Las dimensiones de la seccién transversal de los ntcleos de las guias de onda foténicas
integradas son, por lo general, mucho més pequefias que los didmetros de las fibras 6pti-
cas. Cuando se intenta inyectar luz de una fibra a una guia, esta diferencia de tamafos
genera una incompatibilidad o desadaptacién entre el modo fundamental de la fibra y el
de la guia. Como consecuencia, la integral de solapamiento entre ambos modos es baja, lo
que da lugar a pérdidas de potencia, que no se acopla en su totalidad de la fibra al chip. La
misma situacién desfavorable se tiene al intentar acoplar luz desde el chip hasta la fibra
Optica. Para solventar este inconveniente, existen distintas alternativas [175,176,178,180],
entre las que destacan los acopladores de rejilla por superficie.

Los acopladores de rejilla por superficie estdn formados por una estructura periédica
o casi periddica que difracta la luz que se propaga por ella. Colocando la fibra en la
posiciéon adecuada sobre la estructura, con el angulo de inclinacién correcto, es posible
recoger la luz radiada. Estas estructuras posibilitan el acoplo en cualquier punto de la
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superficie del chip y son més robustas a desalineamientos que los acopladores por canto

del chip. Como inconveniente, presentan de manera natural un ancho de banda limitado.
El escaso ancho de banda de los acopladores de rejilla convencionales puede enten-

derse si se examina la ecuacién que gobierna la radiacién en estos dispositivos [179]

1o sin(6) = Re () + m% (B.6)
donde 7, es el indice de refraccién del medio en el que se encuentra la fibra 6ptica, 6 es
el angulo de radiacién, np es el indice efectivo del modo Bloch-Floquet que se propaga
por la guia periddica, A es el periodo de la guia, A es la longitud de onda de trabajo y m
es un namero entero que recibe el nombre de orden de radiacién. Habitualmente n, = 1
(aire) y m = —1. Como puede verse en la ecuacién, existe una relacién directa entre
sin(f) y A. Por tanto, para diferentes longitudes de onda se obtienen diferentes dngulos
de radiacion. Esto significa que, para una fibra colocada en un dngulo y una posicion fijos,
s6lo a la longitud de onda nominal se podré alcanzar la méxima eficiencia de acoplo.

En esta tesis se han disefiado acopladores de rejilla convencionales para caracterizar
las plataformas de silicio suspendido (A = 7.67 um) y la de germanio suspendido (A =
3.8 um). Adicionalmente, con el objetivo de mejorar las prestaciones de los acopladores
convencionales, se han realizado dos aportaciones muy significativas que se detallaran
en los siguientes apartados: la microantena de germanio suspendido y el acoplador de
rejilla de orden cero.

B.3.2 Microantena de germanio suspendido

Las fibras 6pticas utilizadas en la banda del NIR tienen didmetros modales mayores que
la longitud de onda [201]. Sin embargo, las pocas fibras de calcogenuro disponibles co-
mercialmente para su uso a longitudes de onda altas del MIR tienen didmetros compa-
rables a A [200]. Este tamarfio reducido de las fibras en términos de longitud de onda
tiene un impacto directo en los acopladores, que deberan radiar con fuerzas de radiaciéon
elevadas.

En la figura B.11 se muestra una representacién de la microantena, en la que, ademas
de las distintas vistas, se proporciona la propagacién del campo eléctrico (polarizaciéon
TE). Como puede apreciarse, el incremento en la fuerza de radiacién exige un acopla-
dor muy corto en términos eléctricos, con un frente de onda radiado de tipo cilindrico.
Debido a estas caracteristicas, claramente distintas de las de los acopladores de rejilla
tradicionales, se considera que los acopladores eficientes para estas fibras estrechas de la
banda del MIR se comportan como microantenas.

Para disefiar la estructura y alcanzar la fuerza de radiaciéon requerida, se relajé la
condicién habitual que establece que un acoplador de rejilla debe radiar s6lo un orden
de difraccién [179]. Asi, se utilizaron las técnicas tipicas de disefios de acopladores de
rejilla, pero estudiando todos aquellos periodos que cumpliesen la condicién de “no més
de dos 6rdenes de radiacién”:

A< (B7)

Na
La aplicacion de esta condiciéon permitié encontrar un disefio satisfactorio que radiaba
los 6rdenes —2 y —3 en la zona de radiacién 4 (entre el cuarto y el quinto régimen de
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Figura B.11: Representacion esquematica de una microantena de germanio suspendido. (a) Vista 3D. (b)
Vista lateral superpuesta a una propagacién 2D FDTD del campo. (c) Vista frontal. (d) Vista aérea de la capa
de guiado.

Bragg). Este disefio es el primero, que se sepa, que opera con razonable eficiencia (~40 %),
soportando dos 6rdenes, en esta zona de radiacién.

El disefio de la microantena de germanio suspendido proporciona, a la longitud de
onda de 7.67 pm, una extraordinaria tolerancia a errores de inclinacién de la fibra de
£10°, asi como un ancho de banda a 1dB (BW; 4p) de 430nm, que da lugar a un ancho
de banda fraccional (BW; 4g/A) de 5.68 %. Este valor que casi dobla el ancho de banda
fraccional de los acopladores de rejilla convencionales del infrarrojo cercano (~3.23 %).
En la figura B.12 se representa la eficiencia de acoplo en funcién de la longitud de onda y
del dngulo de inclinacién de la fibra (respecto del angulo nominal de 9°).

La microantena se fabric6é para caracterizar las guias de germanio suspendido a la
longitud de onda de 7.67 pm siguiendo el proceso descrito en la seccién B.2.3. En la figura
B.13 se muestran las imagenes SEM de la microantena. El disefio de esta microantena es
una de las contribuciones més relevantes de esta tesis y se ha publicado en [81].

B.3.3 Acoplador de rejilla de orden cero

El disefio del acoplador de rejilla de orden cero (zero-order grating coupler, ZGC) se co-
menzo6 en la Universidad de Malaga (UMA) y se finaliz6 en el National Research Council
Canada (NRC) durante una estancia breve bajo la supervision del Dr. Pavel Cheben. La
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Figura B.12: (a) Eficiencia de acoplo simulada en funcién de la longitud de onda cuando las dimensiones
tienen errores de A = 0 (linea azul), A = 150nm (linea verde) y A = —150nm (linea roja) que afectan a la
longitud de las tiras de germanio. Resultados de simulacién 3D FDTD también se incluyen (linea discontinua
azul) para el disefio nominal. (b) Eficiencia de acoplo simulada en funcién del 4ngulo de desalineamiento de
la fibra respecto de su valor nominal de 9°.

Figura B.13: Imagen SEM de la microantena de germanio suspendido para operar a la longitud de onda de
7.67 pm.

caracterizacion experimental de este dispositivo es muy compleja y se esta realizando
actualmente en el NRC. Aunque esta tesis estd dedicada a la banda del MIR, el ZGC se
disefi¢ inicialmente a una longitud de onda de 1.55 um. Esta decision se debi6 a la fal-
ta de disponibilidad de l4seres y detectores para el MIR tanto en las instalaciones de la
UMA como en las del NRC. En cualquier caso, el disefio tedrico se migré a la banda del
MIR y se simulé para comprobar su viabilidad en el contexto de esta tesis.

Habitualmente, al disefiar acopladores de rejilla sélo es posible maximizar una de las
dos figuras de mérito fundamentales: la eficiencia de acoplo o el ancho de banda. Asi,
es posible tener altas eficiencias de acoplo sacrificando el ancho de banda y, al contrario,
se puede aumentar el ancho de banda a costa de la eficiencia. El propésito del ZGC es
optimizar, simultdneamente, tanto la eficiencia de acoplo como el ancho de banda de
operacioén del acoplador.

En la figura B.14 se muestra la representacion esquemaética de un ZGC. Este acoplador
estd constituido por una guia periédica SWG de grosor H, longitud L y periodo A. Las
longitudes de los segmentos de los materiales que conforman cada periodo son a y b, de
tal forma que A = a + b. Sobre la guia se sitia un prisma de alto indice de refraccién n,
y angulo ¢prism que se encuentra separado del nicleo de la guia periddica por una capa
de indice de refraccion . y altura variable f.,4(z). En la figura B.14 se incluye también
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el nicleo de una fibra éptica con un dngulo de orientaciéon 6 destinada a recibir la luz
radiada por el acoplador.

Recubrimiento
antirreflectante

(a) (b)

Figura B.14: Representacién esquematica (no a escala) de un acoplador de rejilla de orden cero. (a) Vista 3D.
(b) Vista lateral.

Los ZGC suprimen la dependencia explicita del d&ngulo de radiacién 6 con A, dada
por la ecuacién B.6, haciendo que la guia periddica tenga un periodo suficientemente
pequefio como para trabajar en régimen SWG. En ese caso no existe ningtin orden de ra-
diacién. Para conseguir que se radie con el orden cero, se introduce un material superior
con un indice de refraccién que satisfaga

My > Np. (B.8)
De esta forma, el orden cero (m = 0) radia con un dngulo dado por
1, sin (0) = np. (B.9)

La relacion de proporcionalidad explicita entre sin(f) y A desaparece en un ZGC, au-
mentdndose automdticamente el ancho de banda. Para maximizar la eficiencia de acoplo
se realiza una variacion lineal en la separacion entre el prisma y la guia, lo que permite
alcanzar eficiencias de hasta el 95 % [183]. Puede demostrarse que esta variacion apenas
tiene efecto en el indice efectivo del modo Bloch-Floquet que se propaga por la guia, por
lo que el aumento de la eficiencia de acoplo no penaliza el ancho de banda de los ZGC.

En la figura B.15 se muestran los resultados de las simulaciones del ZGC disefiado a
la longitud de onda de 1.55 um. Se obtuvo una eficiencia de ~95 % y un ancho de banda
a1ldBde ~130nm cuando L = 20.3um y fg,q0 = 355 nm. Este mayor ancho de banda
supone un incremento de ~2.6 % respecto de acopladores de rejilla convencionales en la
banda del NIR.

Posteriormente el disefio se migré a la banda del infrarrojo medio, a una longitud de
onda de 3.8 pum. Como las pérdidas del silicio son relativamente asumibles a esta longitud
de onda, no es necesaria suspender la estructura. Para una longitud L de 30 pm y una
altura inicial t.,q0 de 1 pm, se mantuvo la eficiencia de acoplo en el 95 %, mientras que
el ancho de banda se expandié hasta ~560 nm, como se muestra en la figura B.16.
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Figura B.15: Simulacién del acoplador de rejilla de orden cero. (a) Propagacién del campo (polarizacién TE)
a la longitud de onda de 1.55 pym. (b) Eficiencia de acoplo en funcién de la longitud de onda. Para poder
comparar, se muestra también el disefio de un acoplador de rejilla sin inclinacién del prisma.
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Figura B.16: Eficiencia de acoplo del acoplador de rejilla de orden cero disefiado para la banda del infrarrojo
medio en funcién de la longitud de onda.
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