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Preface 

Language is one of the most astonishing and complex cognitive functions of the 

human brain, which sustains our capacity for abstract thinking and communication. It allows 

us to create endless possible constructions, making feasible not just a basic communication, 

but to express (and think) in a completely novel and complex way. 

Among language functions, the ability to repeat verbal information may seem one 

of the simplest. Yet, it requires the mapping between phonological and motor codes (i.e., 

auditory-motor integration), a process that involves many substages. Repeating a word in our 

native language is an easy task for most of us, but it may become more challenging if the 

sequence of phonemes to-be-repeated is meaningless (i.e., repeating a pseudoword) or too 

long; if it belongs to another language that contains different sounds, or if extra demands such 

as intermediate manipulations between input and output are imposed, for instance reversing 

the order of syllables (backward repetition, e.g., hear “basket”, and repeat “teksab”). 

Importantly, repetition, even of a single known syllable, may become a herculean task for 

persons with aphasia; and backward repetition, even of a full sentence (e.g., hear “I run 

because I am late” and say “etal ma I esuaceb nur I”), may be an easy task for a gifted person. 

Thus, repetition is subjected to variability, which can be explained by individual factors 

related to preservation of the neural language system, but also to anatomical and functional 

differences in the language networks.  

Beyond the individual capacity for this function, verbal repetition invariably stands 

out as crucial for successful language learning throughout life and as a major resource in 

aphasia rehabilitation. Despite of this, repetition is an understudied function and for this 

reason the present doctoral dissertation aims to explore and get further knowledge on the 

cognitive and neural features of different states of repetition abilities (e.g., altered repetition, 

echolalic repetition) in people with different aphasia profiles as well as in healthy persons 

with an extraordinary language ability (i.e., backward speakers). 
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Abstract  

Verbal repetition and audio-visual imitation stand as crucial functions for the 

acquisition and maturation of language in childhood, language learning in adulthood, and a 

major resource for language recovery after brain damage. Although modern neuroimaging 

techniques have allowed the identification of the brain areas involved in repetition tasks in 

healthy subjects, many clinical and neural aspects of this linguistic function are still 

overlooked in persons with aphasia and in emerging models of language expertise. Therefore, 

the present dissertation aims to explore cognitive correlates and neural features of verbal 

repetition from different perspectives including models of dysfunctional repetition (i.e., 

people with aphasia) and language expertise (i.e., healthy backward speakers). Generally, this 

thesis explores the potential of the dorsal and ventral components of the neural network 

supporting verbal repetition to assume, under certain circumstances (e.g., brain damage or 

extraordinary abilities), non-canonical functions. Further, this dissertation addresses clinical 

issues of some aphasic symptoms characterized by uncontrolled repetition (i.e., echolalia), as 

well as reviews sex as a source of variability in verbal repetition outcomes after brain damage. 

Chapter 1 expands the space-constrained background presented in the introductory 

section of each article included in this thesis.  

Chapter 2 presents the research aims targeted in each of the included studies.  

Chapter 3 presents the 5 studies that are part of this dissertation. First, it reviews 

the mechanisms involved in dysfunctional repetition, especially in two repetitive verbal 

behaviors named conduite d’approche and mitigated echolalia (Study 1) and addresses 

clinical issues of the last one (Study 2 and 3). In this regard, Study 1 proposes that in the 

context of aphasia these symptoms (i.e., conduite d’approche and mitigated echolalia) may 

represent active attempts of verbal communication, rather than inconsequential repetitive 

verbal behaviors resulting from maladaptive neural changes. Three cases are presented to 

index the hypothesis that mitigated echolalia emerges from overreliance on the dorsal 

language stream, through the arcuate fasciculus, when the ventral stream is damaged; whereas 

conduite d’approche ensues when the ventral stream attempts to compensate a dorsal damage. 

The role of the right hemisphere and other alternative pathways in both cerebral hemispheres 

in the successful compensation of brain injury is also discussed. Further, Study 2 

reconceptualizes different types of echolalia within a continuous of severity and 

communication capacity. To accomplish this new instantiation, it is proposed that different 

types of echolalia may be associated to failure in distinctive linguistic and non-linguistic 

cognitive functions. Recommendations for its evaluation and treatment are provided, 



suggesting that echolalia interfering with functional communication should be treated. 

Further, complementing the previous one, Study 3 reports a comprehensive single case study 

exploring response to treatment, and behavioral and neuroimaging features of a person with 

mitigated echolalia associated to a chronic fluent aphasia. Findings from such case include a 

reduction of mitigated echolalia after two weeks of intensive aphasia therapy as well as the 

maintenance of these gains with memantine alone for at least 6 months. Importantly, 

reduction of mitigated echolalia instances in response to treatment speeded up the time 

needed to complete comprehension tasks. Neuroimaging results, although indirectly, 

suggested that mitigated echolalia may be supported by the activity of the remaining 

components of the left dorsal stream and compensatory right hemisphere recruitment. 

Additionally, to further explore the neural and cognitive mechanisms involved in 

verbal repetition in a model of language expertise, Study 4 tackles cognitive features and 

neural correlates of verbal expertise in two healthy adult subjects displaying an extraordinary 

ability to orally reverse language, a condition referred to as backward speech. Results suggest 

that phonological expertise, as shown in backward speech, involves reshaping (or pre-existent 

differences) of cortical areas and tracts relevant for auditory-motor integration and semantic 

processing. Greater functional coupling between critical language areas and domain-general 

and high-order visual areas may further support reversing processes. Lastly, Study 5 presents 

a systematic review of the literature aimed to examine sex differences in the prevalence of 

repetition deficits in persons with post-stroke aphasia. Results show that the proportion of 

females in the group of aphasia characterized by repetition deficits (i.e., conduction aphasia) 

is lower than the expected by the prevalence of stroke among them. It is suggested that sex-

related differences in the volume of areas of the right hemisphere homologues to the ones 

subserving repetition in the left hemisphere may be at the base of this difference. This finding 

poses sex as a relevant variable to account for variance in repetition abilities, and as a relevant 

factor to consider in future studies of language acquisition, maturation, and relearning 

promoted by aphasia therapy. 
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1 

Chapter 1. Introduction 

1. Verbal repetition: an overview 

The ability to repeat a just heard word (e.g., discovery) or phonological sequence (e.g., 

nedoniso) is an essential cornerstone of the language function, allowing the acquisition of 

language during childhood, learning new word forms during adulthood, and re-learn lost 

words after language impairment due to brain damage. Despite being a seemingly simple 

task, successful verbal repetition demands the succession of multiple subprocesses that rely 

on a dynamic interaction between sensory and motor areas that will ultimately enable the 

transcription of an auditory sequence into the articulatory code. In order to do so, a healthy 

speaker must first process the incoming sound (auditorily and phonologically), when possible 

link this sound to learned sequences stored in memory, maintain a precise representation in 

phonological short-term memory (STM) until interfacing that representation into the motor 

system to finally accurately articulate the sequence. (Hope et al., 2014; Majerus, 2013). Also, 

although not required, repeating a stimulus involves automatic imitation of some incidental 

aspect such as prosody, phonetic style or vocal pitch (Kappes, Baumgaertner, Peschke, & 

Ziegler, 2009). Yet, verbal repetition skills frequently change after brain damage in the left 

hemisphere, resulting in a decline in performance, the production of errors (e.g., paraphasias) 

or in the recurrent and excessive repetition of verbal material (echolalia). At the other end of 

the continuum, some gifted healthy individuals may develop extraordinary skills in some of 

the intermediate processes involved in verbal repetition which lead to outstanding language 

abilities as is the case of people with the ability to reverse language (i.e., backward speakers). 

Cognitive, computational and neurocognitive instantiations of speech repetition 

converge in formulating two anatomical, i.e., dorsal vs ventral, and functional, i.e., lexical vs 

non-lexical, segregated streams supporting these processes. (Hickok & Poeppel, 2004; 

McCarthy & Warrington, 1984; Patterson, Shewell, Coltheart, Sartori, & Job, 1987; Ueno, 

Saito, Rogers, & Lambon Ralph, 2011) The dorsal stream appears intertwined to the mirror 

neuron system (Arbib, 2010; Corballis, 2010), playing both an important role in 

repetition/imitation functions. Yet, these systems are not immutable cable-like connections. 

Rather, an extensive corpus of evidence shows that behavioural training and cognitive 

strategies may reshape these networks leading, in some cases, to the improvement of language 

function after brain damage (Hartwigsen & Saur, 2017; McKinnon et al., 2017) and, in others, 

to outstanding linguistic abilities as it is observed in cases of language expertise (Elmer, 

Hänggi, & Jäncke, 2014; Elmer et al., 2019; Golestani, Price, & Scott, 2011; Vandermosten, 
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Price, & Golestani, 2016). Interestingly, pre-existing variability in the anatomical and 

functional architectures of these networks may also explain individual differences in 

language abilities (e.g., repetition) and recovery after brain damage (Catani et al., 2007; 

Forkel et al., 2014). With this on mind, in the main corpus of the present dissertation I will 

target overlooked neural, cognitive and clinical aspects of verbal repetition functions in 

people with aphasia (PWA) and in a model of language expertise. But first, this introductory 

chapter aims to broader the background presented in each of the included articles, starting by 

stating the evolutionary, developmental and clinical importance of verbal repetition.  

2. Relevance of verbal repetition  

The complexity of human language makes us unique and, this raise the question of what 

are the changes that shaped such an amazing capacity across evolution. Aboitiz (Aboitiz, 

2018) proposed that one of the most relevant milestones in language evolution was the tuning 

of the neural circuitry sustaining auditory-motor integration systems, which is involved in 

auditory-verbal repetition and the articulatory rehearsal component of phonological 

STM/working memory (STM/WM). The development and maturation of this neural network 

is thought to have enabled our ancestors learning increasing complex phonological strings 

via repetition/imitation, allowing them to adapt to complex social environments (Aboitiz, 

2018). It is to note that, speech is by nature an auditory-motor integration process shaped 

from feed-forward control by which perception modulates production and, at the same time, 

the motor system influence perception (Hickok, Houde, & Rong, 2011; Rauschecker & Scott, 

2009). 

As well, verbal repetition/imitation plays a key role in language acquisition, which 

involves learning new words. Phonological aspects of word-learning are essentially based in 

the capacity to perceive (and maintain) the phonological form of speech as well as in the 

ability to accurately reproduce the articulatory patterns combined on those sounds (Baddeley, 

Gathercole, & Papagno, 1998), all functions grounded into auditory-motor integration 

process. Wernicke was probably the first to suggest that this process plays a crucial role in 

language development (Wernicke, 1874). In fact, one of the most relevant point of 

Wernicke’s model relies on the existence of an anatomical connection between the sensory 

(i.e., Wernicke’s area) and motor (Broca’s area) centers (Wernicke, 1874). In this line, a 

recent study has provided direct evidence that the ability to overtly synchronize speech motor 

output to an incoming speech is variable among individuals and it positively correlates with 

the ability to learn new words (Assaneo et al., 2019). 
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Several studies on native and second language learning in neurotypical developing 

children showed that vocabulary acquisition is strongly linked to the capacity to repeat 

meaningless phonological sequences (for review see Baddeley et al., 1998). Thus, higher 

scores in pseudoword repetition correlate with greater word-learning capacity and vocabulary 

acquisition over time (Gathercole, Service, Hitch, Adams, & Martin, 1999; Gathercole, 

Willis, Emslie, & Baddeley, 1992; Service, 1992). In the same vein, further evidence comes 

from studies of children with specific language impairment —a condition characterized by a 

delay in language development— showing that a poor non-word repetition ability is 

associated with worse progression in language development. This strong link between verbal 

repetition, as a measure of phonological processing, and language learning is also supported 

by the results of experimental studies showing that articulatory suppression (i.e., continuous 

repetition of the syllable bla), which block the possibility of rehearsal, significantly impairs 

word-learning (López-Barroso et al., 2011). 

Furthermore, verbal repetition plays a fundamental role in the classification of aphasias. 

Aphasia, i.e., an impairment in one or more previously mastered language function after brain 

damage, is a disabling and frequent result after stroke. PWA usually have deficits in one or 

more language domains (e.g., comprehension, fluency, repetition) and, as I will present in the 

next section, verbal repetition is one of the three main criteria used to classify aphasias 

(Kertesz, 1979), this allowing to group patients with similar behavioral-brain correlate and 

aiding communication across clinicians. Additionally, from a neurorehabilitation perspective, 

the implementation of repetition and imitation-based therapies have been demonstrated to be 

an effective approach in language treatment of both PWA and children with developmental 

language disorders (Berthier et al., 2017; Duncan & Small, 2016; Lee et al., 2010). These 

approaches pose imitation and repetition as key elements of language therapies, based on the 

evidence of a shared neural network engaged during speech listening and/or observation and 

production. One example of this line of therapeutic approach is IMITATE (Intensive Mouth 

Imitation and Talking for Aphasia Theraupetic Effect) (Lee et al., 2010). Complementary, 

Melodic Intonation Therapy (MIT) is also a form of repetition-based therapy, since it is 

thought to engage similar auditory-motor network than IMITATE, but with greater 

implication of the right hemisphere (Schlaug, Marchina, & Norton, 2008, 2009).  

Finally, verbal repetition stands out as a critical function in neurocognitive research, used 

as a measure of phonological and STM/WM processing and as a gauge of neural integrity 

(Saur et al., 2008). Given that verbal repetition taps both the input (auditory perceptual) and 

output (speech) processes, its study allows a general exploration of the language network 

(Yoo et al., 2012). In this regard, words and meaningless legal phonological sequences (i.e., 
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pseudowords) have been used in repetition tasks to assess the functionality of different 

components of the language network, with pseudoword repetition relying mainly on the 

functionality of the dorsal stream, and word (and sentence) repetition further recruiting the 

ventral route (Dell, Schwartz, Nozari, Faseyitan, & Branch Coslett, 2013).  

3. Verbal repetition plays a central role in aphasia classification  

Even though most clinicians will agree that aphasia constitutes a heterogeneous clinical 

entity, PWA usually share some clinical similarities that allow grouping them into different 

aphasic profiles. In this sense, the ability to repeat words and pseudowords serves as a 

criterion to classify aphasias, allowing the segregation of different syndromes with 

topographical correlates. Thus, aphasias may be grouped in perisylvian aphasias (classical 

aphasias), chiefly characterized by impaired verbal repetition, and extrasylvian aphasias (or 

transcortical aphasias; TAs), characterized by preserved verbal repetition. Aphasias with left 

perisylvian involvement include Broca’s, Wernicke’s, conduction (CA) and global aphasias, 

which account for the majority of aphasia cases (Albert, 1981; Berthier, 1999). Extrasylvian 

aphasias include transcortical motor aphasia (TCMA), transcortical sensory aphasia (TCSA), 

mixed transcortical aphasia (MTCA), and anomic aphasia. While classical aphasias represent 

more than 80% of cases, the occurrence of TAs has been estimated to range between 4% and 

20% of all aphasias (Berthier, 1999).  Figure1 depicts a summary of the main clinical features 

associated to each aphasia type. It is important to highlight that in some types of aphasia 

repetition may be one of the only available resource for communication. As well, echolalic 

repetition may appear as compensatory behavior aiding other language deficits (e.g., 

repetition deficits) as will be further discuss across the studies presented in Block 1.  

This taxonomic classification of aphasia has not been accepted without criticism, and it 

has been argued that language deficits in one third of PWA cannot be accommodated with 

the 8 described aphasic syndromes, particularly when language evaluations are performed in 

the chronic stages (Berthier, Dávila, García-Casares, & Moreno-Torres, 2014; Kasselimis, 

Potagas, Kourtidou, & Evdokimidis, 2012). Despite its downside, this taxonomic 

classification remains useful as a first step in the multimodal evaluation of deficits in a PWA 

and mainly for clinical purposes (communication with patients and relatives, prognosis and 

treatment). 
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4. Cognitive and computational approaches to verbal repetition  

Cognitive models of language functioning posit that repetition is mediated by two routes:  

lexical and non-lexical (Hanley, Dell, Kay, & Baron, 2004; McCarthy & Warrington, 1984; 

Nadeau, 2001; Patterson et al., 1987). The functional architecture of dual route models 

commonly incorporates in the direct non-lexical route a module for acoustic-phonological 

conversion that mediates the input and output, which is likely to be involved in the repetition 

of pseudowords. The lexical route, on the other hand, supports repetition process by the 

Figure 1 Summary of clinical characteristics associated the different aphasias types 
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activation of a lexical entry (and its semantics components) from which the phonology is 

retrieved and later articulated. The distinction between lexical and non-lexical routes for 

repetition allows the clinical dissociation commonly observed in people with CA, (McCarthy 

& Warrington, 1984), in which there can be a preserved ability to repeat words and an 

impaired ability to repeat pseudowords, together with the production of semantic and 

phonological errors (see Crisp & Lambon Ralph, 2006). Further, in this line, it was also 

proposed that accurate language production after brain damage may be also achieved by a 

summation of (partial) information running through each route (“summation hypothesis”) 

(Hillis & Caramazza, 1991, 1995). 

Dual-route models have evolved over time, from a theoretical (cognitive type) 

framework that characterized the major components of language (McCarthy & Warrington, 

1984; Patterson et al., 1987), to modern computational models strongly influenced by neural 

network architecture thought to explain both normal and pathological language processing 

(Dell, 1986; Ueno and Lambon, Ralph, Nozari & Dell, 2013; Roelofs, 2014). One of the most 

influential computational instantiations of language has been devised by Dell and colleagues 

as the dual-route interactive two-step computational model. The early versions of this model 

used a spreading activation-like mechanism aimed to explain speech error in spontaneous 

speech and repetition in healthy subjects (Dell, 1986). Briefly, this model poses that the 

different units involved in the language network are distributed in three layers, one 

accounting for semantics, another for lexicon and the other for phonology. The spread of 

activation is continuous across layers, and it can run in any of the two directions (semantics 

to phonology and viceversa), depending on the task (Dell, 1986; Dell, 1988; Foygel & Dell, 

2000). According to Dell, the non-lexical route involves the activation of the auditory input 

node, and then the activation spreads to the phoneme associated to the input, directly leading 

to the activation of the output phonemes. Repetition through the lexical route instead 

considers that the input triggers the activation of the target word and then this activation 

spreads to the associated phonemes in the output side. For dual-route repetition the target 

word and the auditory input are jointly activated, both converging and contributing to the 

output phoneme activation. In this proposal, semantic units are only indirectly involved in 

repetition (Hanley et al., 2004). This model have proved to successfully predict performance 

(and errors) on repetition tasks in PWA (Hanley et al., 2004; Nozari, Kittredge, Dell, & 

Schwartz, 2010). Importantly, information gathered from the computational dual-route 

interactive two-step models has been used to design neuroimaging studies that aimed to 

disentangle the brain areas and networks participating in verbal repetition (Dell, Schwartz, 

Nozari, Faseyitan, & Branch Coslett, 2013). 
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Hence, cognitive and computational models pose that verbal repetition may be achieved 

through either a lexical or non-lexical route, or by recruiting both routes (the summation 

hypothesis). In the next section, I will address in more detail the lesion correlates of repetition 

abilities in aphasia as well as the neural networks underpinning verbal repetition in healthy 

subjects.  

5. Brain correlates of verbal repetition and its impairment 
 

5.1. Classic models of language functions with a focus on verbal repetition  

Current knowledge on the neural basis and processes sustaining verbal repetition has 

been strongly influenced by the work of the pioneers in the study of language. Therefore, 

here, I briefly present the pioneering contribution made by Carl Wernicke, Ludwig 

Lichtheim and Norman Geschwind to the understanding of the behavioral and neural 

correlates of normal and abnormal verbal repetition. 

5.1.1. Wernicke’s work: an early connectionist proposal  

The German neuropsychiatrist Carl Wernicke (1848-1905) was one of the most 

influencing scholars on the study of the neurobiology of language. After Paul Broca’s first 

description (Broca, 1861b, 1861a) of speech disturbances characterized by severe speech 

production and fluency impairments associated to damage to the third frontal circumvolution 

(inferior frontal gyrus, IFG), in 1874 Wernicke documented a series of complementary cases 

characterized by severe comprehension impairments while speech fluency was preserved but 

replete with neologisms and paraphasias. Post-mortem macroscopic exploration of their 

brains revealed lesions involving the first temporal convolution (superior temporal gyrus; 

STG), from which he concluded that this area was critical for language comprehension 

(Wernicke, 1874). His work intended to offer a model of language and language impairment 

with anatomical correspondence (Figure 2). Based on his model, Wernicke suggested that 

speech repetition was mediated by a “reflex arc”. The auditory stimulus would be transferred 

through the acoustic nerve (a) to the sensory centre (a1) and from there to the motor centre 

and its efferent pathway concerned with speech (b1). Relevantly, he highlighted the 

importance of the subcortical white-matter connection (a1b) —described by Meyer— that 

converging in the insula connected these two centres (Weiller et al., 2011; Fontana, 2019). 

Wernicke went on suggesting that this was the mechanism by which children acquired 

language by imitation of what they heard, and further speculated that another pathway linked 

to meaning may be used for language production in later stages of development.   
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Less known is the fact that Wernicke not just highlighted the existence of a connection 

between the currently known as Broca’s and Wernicke’s areas —direct route— but also 

between the “word concept centre” and the “sound image centre” —indirect route. These 

connections probably corresponded with the arcuate fasciculus (AF) or superior longitudinal 

fasciculus as direct route; and the extreme capsule (overlapping with the inferior longitudinal 

fasciculus [ILF] and inferior fronto-occipital fasciculus [IFOF]) and the uncinate fasciculus 

(UF) as indirect route (Weiller et al., 2011). This fits well with the most accepted 

contemporary model of language (described in detail in a next section) which states that  

language functions are sustained by two processing streams, the dorsal and the ventral 

(Hickok & Poeppel, 2004, 2007; Weiller, Bormann, Saur, Musso, & Rijntjes, 2011). 

However, further elaborations of Wernicke’s model (e.g., Geschwind, 1965) led to 

misinterpretation regarding the tracts pointed by Wernicke as relevant for language functions, 

limiting these to the AF (Weiller et al., 2011). 

Applying his language model, Wernicke predicted the occurrence of different profiles 

of language deficits associated to different locations of brain lesions, including the “sound 

image centre” (a1), the “motor image centre” (b), and the disruption of the connection between 

these centres (a1b). He stated that the latest would result in a syndrome termed 

leitungsaphasia, or CA. Later, Goldstein (1948) argued that CA was not only the result of 

lesions affecting the connection between language centres, but it may also be caused by 

cortical disruption, renaming the syndrome as central aphasia (Anderson et al., 1999; 

Goldstein, 1948). In Wernicke’s initial postulation, the hallmark symptom of CA was the 

presence of paraphasias in speech production, rather than repetition deficits. However, in a 

later work, Wernicke (1906) revised and further developed the syndrome of CA taking into 

consideration Lichtheim’s model (see below) and introduced a new node labelled “word 

concept centre” (‘‘Wortbegriff’’) (Weiller et al., 2011; Wernicke, 1906). In that monograph, 

Wernicke accepted impaired repetition of nonsense words and paraphasias as key symptoms 

of CA resulting from the disruption of the a1b connection. Interestingly, he made a distinction 

between the repetition of pseudowords, which could be repeated only through the a1b 

connection, and words. For the latest, he stated that after a disruption of the main connection 

“…it should still be possible to repeat at command words which have a meaning” (Wernicke, 

1906). Later,  Goldstein pointed out that the successive approximations to the target word by 

means of repetitive phonological self-corrections (conduite d´approche) were also a 

distinctive symptom of CA (Anderson et al., 1999; Goldstein, 1948).   

To sum up, several contributions of Wernicke’s work can be highlighted: (1) he 

developed the first model of language processing, describing neural “centres” critical for 
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language functions which could correspond to what nowadays is known as hubs; (2) he 

conceptualized language as a function that emerge from the interaction of these critical 

centers; (3) he emphasized the importance of white-matter connections; (4) he characterized 

CA syndrome and distinguished the repetition of meaningfully versus meaningless phoneme 

strings (i.e., words vs pseudowords); and lastly (5) he formulated a clinical classification of 

aphasias describing three types (Broca’s, Wernicke’s,  and CA), with different neural 

correlates.  

 

Figure 2. Original Wernicke’s schema of the language network supporting speech production, 

comprehension and repetition (1874). Two main centers are depicted: “sound image centre” (a1) and 

“motor image centre” (b). Both centers are connected by a subcortical pathway running through the 

insular cortex (a1b).  F, T and O refers to frontal, temporal and occipital lobe, respectively; S: sylvian 

fissure; a: acoustic nerve; b1: exit of the centrifugal pathway subserving articulation. Note that this 

diagram shows the right hemisphere.  

5.1.2. Lichtheim’s house: commissures and new aphasic syndromes 

A decade after Wernicke’s initial formulation, the polish Ludwig Lichtheim (1845-

1928) further extended his proposal by staging a theoretical prediction of seven aphasic 

syndromes, presenting the iconic schematic drawing currently known as Lichtheim’s house 

(Figure 3). In his proposal, Lichtheim (1885) described three main nodes: a “motor language 

centre” (M) corresponding with Broca’s area, a “sensory language centre” (A) corresponding 

with Wernicke’s area, and suggested a new one which he termed the “concepts centre” (B  

Begriffe). Several distinctive functions have been suggested by Lichtheim for the connection 

between these nodes, being the “A-B-M” path involved in volitional speech, while the “A-

M” connection was proposed to support automatic (or “reflex”) speech. It is worth noting that 

this last path corresponds with the a1b connection in Wernicke’s proposal (i.e., direct route). 

Lichtheim preserved the original formulation of Wernicke’s (1874) and postulated that the 

disruption of “A-M” connection would result in CA. As well, he supported that the hallmark 

feature of CA was the presence of paraphasias and not repetition deficits, since this could be 

reached through the indirect connection “A-B-M”. More importantly, in this model 
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Lichtheim described two new type of aphasias which combined impaired language abilities 

(i.e., comprehension, production, or both) with preservation of verbal repetition skills, named 

commissural aphasias (Berthier, 1999; Henderson, 1992). The term TA was later coined by 

Wernicke (Berthier, 1999) and,  since then,  the original Lichtheim’s terms inner commissural 

aphasia and inner commissural word-deafness were replaced for TCMA and TCSA, 

respectively. As Figure 3 depicts, Lichtheim’s proposal considered seven putative 

disruptions, each causing a distinctive clinical picture.  

 

Figure 3. Lichtheim’s house: schema of language organization and language disruption. This diagram 

illustrates different aphasias profiles associated to different lesion locations. In current terminology, he 

proposed that a lesion in “A” would cause a Wernicke’s aphasia, lesion in “M” would result in Broca’s 

aphasia, disruption of the connection “3” will be associated with a profile of conduction aphasia, 

disruption of the connection “6” would result in transcortical sensory aphasia, and damage of “4” would 

derive in transcortical motor aphasia. Finally, the interruption of the connections “5” and “7” would 

cause sensory and motor deficits rather than aphasic symptoms.  

Therefore, the main contribution of Lichtheim was the description and 

characterization of new aphasias types (Eling, 2011) based on the disruption of the anatomical 

connections between the proposed language hubs. He described two new aphasias (TCMA 

and TCSA) and predicted the combination of both syndromes producing what is currently 

classified as MTCA (Berthier, 1999). Lichtheim introduced the conceptual center (B) and the 

connection between this and the other two centers (i.e., A and M), opening the possibility of 

disconnection in several points of the language system which would result in distinctive 

aphasia profiles. Another important contribution made by Lichtheim was that he considered 

that the “concept centre” was a distributed set of radiated connections along the cerebral 

cortex rather than located at one spot. This could be the first conceptualization that the 

“semantic system” is widely distributed in the brain. In fact, the connections A-B and B-M 

would represent the convergence of different tracts in two major speech centers.  
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It is noteworthy that three convergent discoveries ensued in nearly 20 years. First, 

Broca described a brain area crucial for language production (named by Wernicke “motor 

image centre”); second, Wernicke’s introduced the “auditory image center” and the 

connection linking the motor and the auditory image centers. From this description, Wernicke 

predicted three aphasia types; and third, Lichtheim expanded the model, highlighting the 

connections (“commissures”) linking the centers previously discovered by Broca and 

Wernicke (Henderson, 1992). In short, the Wernicke-Lichtheim model is considered a 

milestone in the study of the neurobiology of language, providing an explanation of the 

aphasic syndromes, yet without detailed anatomical correspondence due to the limitations of 

XIX century’s methods. 

5.1.3.  Geschwind: the disconnection account  

In the 60s, the behavioral neurologist from Boston Norman Geschwind (1926-1984) 

reintroduced and further developed the Wernicke-Lichtheim model in the light of the 

twentieth century’s emerging neuroscience. He suggested that the white matter pathway 

proposed by Wernicke to link the posterior “sound images centre” to the “motor images 

centre” is the AF and formulated that CA may result from the disruption of this tract (Figure 

4). With this, he outlined a specific anatomical structure that fitted with the proposal of 

Wernicke (1874) and with the theoretical taxonomy of Lichtheim (1885). Importantly, 

Gechwind broadened the concept of disconnection syndrome introduced by Wernicke, which 

was limited to lesions involving white matter tracts that disconnected cortical regions, to the 

involvement of cortical areas that had the same effect. This new view, was further extended 

to the understanding of the neural basis of the CA syndrome, suggesting that CA could result 

from either white-matter damage or involvement of the overlying cortical tissue that 

disconnected Broca’s and Wernicke’s areas. As well, he advocated that Wernicke’s aphasia 

could also be understood as a disconnection syndrome. In this case, both lesions in 

Wernicke’s area and the connection from this to the angular gyrus (AG) could cause this type 

of aphasia. Geschwind posited that the AG may play an important role in language 

processing, acting as a “cross-modal association” area between hearing, vision and touch. 

This means that a given name would passes through Wernicke’s area then this information 

will be transferred to the AG and this area will eventually trigger activation of the name’s 

associated features (i.e., shape, smell) in other cortical areas (Catani & Mesulam, 2008). 

Further, it is noteworthy that Geschwind (Geschwind, Quadfasel, & Segarra, 1968) 

revived the idea of isolation of speech area early introduced by Goldstein (1917), to explain 

a rare type of aphasia (i.e., MTCA). Goldstein (1917) devised that severe impairment in 

verbal production and auditory comprehension with preserved, yet echolalic, repetition 
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should have lesions placed outside the “central” perisylvian language area (e.g., speech area). 

In his view, these lesions were “peripheral” and could not only account for explaining major 

language deficits, but also were well-suited for “isolating” the anatomically spared left speech 

area, which by being out of control of superior cortical centers (frontal and parietal), released 

a poorly monitored echolalic repetition. 

Final comments  

The ground-breaking contributions of the pioneers is unquestionable. They set the 

basis of the study of the neurobiology of language, outlined aphasic syndromes posing 

repetition as one of the major functions, and enlightening the subsequent research on the field. 

Yet, it is currently accepted that classical models need to be updated in the light of current 

evidence (Poeppel, Emmorey, Hickok, & Pylkkänen, 2012). The development of 

neuroimaging-techniques had promoted a colossal expansion of the knowledge of the neural 

basis of language and its relation to language disturbances, leading to the emergence of new 

proposals based on stronger empirical evidence, thus overcoming one of the main drawbacks 

of the old proposals (Eling, 2011). Fewer updates have been made regarding aphasias 

classification. After Lichtheim (1885), the clinical profile proposed for the different aphasias 

was widely accepted (Albert, 1981), although much more clinical evidence was gathered. In 

the next sections I will review modern evidence of the neural correlates of the different 

aphasia’s types, present current models of language processing, and knowledge of the brain 

networks supporting verbal repetition derived from neuroimaging studies.  

 

Figure 4. Original Geschwind’s schema of the language network. B, Broca’s area, which lies anterior 

to the lower end of the motor cortex; W (open circles), Wernicke's area; A (closed circles), arcuate 

fasciculus which connects Wernicke’s to Broca’s area. Figure and caption from Geschwind, 1970. 

5.1.4. Modern evidence of a classical view: neural correlates of aphasia  

In the last decades, some of the early claims regarding brain-language relationships 

have been challenged, for instance, by re-examination of Broca’s patients brain (Dronkers et 

al., 2007; Thiebaut de Schotten et al., 2015), or by cases of Wernicke’s aphasia without 
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damage to Wernicke’s area (Ogar et al., 2011). In fact, great efforts have been placed in 

exploring the correspondence of aphasic syndromes and lesion location in the light of modern 

neuroimaging techniques. In this sense, the voxel-lesion symptom mapping (VLSM) 

approach —an analysis method of structural MRI that provide a measure of how strongly a 

lesion in a given voxel predicts performance in a task (Bates et al., 2003)— has provided 

important advances. Using this approach, Henseler, Regenbrecht, and  Obrig (2014) have 

explored the lesion location associated to different aphasic syndromes in a sample of 102 

chronic aphasics, and their results showed a clear distinction in the anatomical areas involved 

in Wernicke’s and Broca’s aphasia, with minimal overlap between them. Broca’s aphasia 

profile was found to be associated with lesions affecting the IFG, IC, surrounding white 

matter and basal ganglia of the left hemisphere, while Wernicke's aphasia was associated to 

posterior lesions involving the temporal gyrus (STG, middle temporal gyrus [MTG], and 

inferior temporal gyrus [ITG]), the temporo-parietal junction, and the temporo-occipital 

regions (Figure 5, panel A).  

Similarly, another study with a large aphasic sample (n = 98, chronic stage) identified 

the lesion locations that better predict the four classical aphasic syndromes (Yourganov, 

Smith, Fridriksson, & Rorden, 2015). In agreement with previous study, lesions affecting the 

IFG and the AF (anterior and long segments) better predicted Broca’s aphasia, whereas 

damage to the AG and Heschl’s gyrus predicted Wernicke’s aphasia. CA was associated to 

lesions encompassing  the posterior segment of the AF and Heschl's gyrus (Yourganov et al., 

2015) (Figure 5, panel B). In a more specific way, another study suggested that disruption of 

the anterior segment of the AF is associated to the emergence of a Broca-like CA, while 

reduction in the integrity of the left posterior segment of the AF is associated with Wernicke-

like CA (Song et al., 2011). Yet, the critical components damaged in cases of CA and, 

therefore, critical structures for repetition ability, are still under debate. Given its relevance 

for the present dissertation, this issue is further discussed in a next section. Lastly, in 

Yourganov and colleagues´ study (2015), global aphasia was predicted by involvement of 

several components of the fronto-temporal network including the AF (Yourganov et al., 

2015), while no brain areas were predictive of  anomic aphasia (Figure 5, panel B), suggesting 

that this last one has non-localizing value. 

Regarding aphasias with preserved repetition, given its lower prevalence, current 

knowledge mostly came from single cases and case series studies (but see Berthier et al., 

1991 for a group study). These aphasias are usually caused by lesions affecting borderzone 

vascular territories either between the anterior cerebral artery and middle cerebral artery, in 

the case of TCMAs, or between the later and the posterior cerebral artery in TCSAs (Cauquil-
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Michon, Flamand-Roze, & Denier, 2011). Generally, TCMA cases are associated to damage 

in left frontal areas, supplementary motor area (SMA), and deep white matter, which may 

disrupt the connections between SMA and perisylvian areas involved in speech production 

(Cauquil-Michon et al., 2011; Freedman, Alexander, & Naeser, 1984). Further, TCSA was 

reported after lesions affecting a variety of regions including lateral thalamus, STG, temporo-

parietal-occipital junction and temporo-occipital area. Thus, comprehension deficits 

associated to TCSA may be explained by disconnection between the auditory (or visual) areas 

and semantic areas (Cauquil-Michon et al., 2011). In these aphasic syndromes, preservation 

of repetition is normally associated with sparing of the left perisylvian network supporting 

this function (Berthier, 1999), however there are several cases of aphasia with preserved 

repetition abilities and extensive damage to the left perisylvian area. In these cases, repetition 

preservation (or its recovery) may be sustained by the recruitment of preserved right 

hemisphere areas (Berthier et al., 1991; Berthier, 1999). Yet, the time course for repetition 

recovery may be variable, with some studies describing a rapid recovery after brain damage 

(Berthier et al., 1991; Tanabe et al., 1987) and others describing progressively recovery that 

may continue even after several years (Pulvermüller & Schönle, 1993). 

Since language is grounded on a complex and segregated neural network (Mesulam, 

1990), a focal lesion may cause local and distant negative effects (diaschisis) (Carrera & 

Tononi, 2014). In agreement with this idea, it has been proposed that language disturbances 

are better characterized by the disruption of cortical and functional networks rather than by 

local damage (Fridriksson et al., 2018; Klingbeil, Wawrzyniak, Stockert, & Saur, 2019). 

Thus, by using functional connectivity analytical approaches (e.g., resting state functional 

connectivity) several studies have provided evidence on the connectivity profile seen in 

PWA. Altogether, these data  suggest that a decrease of interhemispheric and  

intrahemispheric resting state functional connectivity correlates with language deficits (for a 

review see Klingbeil, Wawrzyniak, Stockert, & Saur, 2019). Nevertheless, this is an emerging 

approach and no association between connectivity profiles and aphasic types has been 

delineated yet.  

Summarizing, the evidence presented above shows that despite the heterogeneity on 

lesion location among the same aphasic syndrome (see figure 5, panel B), there are within-

group similarities in the lesions’ distribution that allows differentiating one aphasia type from 

others, thus, providing evidence in favor of a brain/language correspondence. However, as it 

could be inferred, this relationship is far more complex and variable across individuals than 

the proposed by early scholars.  
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Figure 5. Lesions associated to different aphasic syndromes. (A) VLSM-maps showing lesions 

significantly associated with Broca’s aphasia (red) and Wernicke’s aphasia (blue). All voxels shown 

exceeded the critical threshold for significance (indicated by the white line in the colour bars, p<.05 

FDR-corrected). Lighter colors reflect increasing Z-scores. Numbers indicate MNI coordinates. Figure 

and figure legend adapted from Henseler et al., 2014. (B) Lesion overlap across patients with each 

aphasia type. The color bar indicates the proportion of patients with damage in a given voxel.  A voxel 

with overlap = 1 indicates that this voxel was lesioned in all patients. Figure and figure legend adapted 

from Yourganov et al., 2015 

5.2. Contemporary models of language functions with a focus on verbal 

repetition  

Echoing back words, pseudowords or sentences involves the mapping between 

phonological relevant content and the motor pattern required for their pronuntiation. 

Although not required, repeating a stimulus also involves automatic imitation of auditory 

parameters (Kappes et al., 2009) and visual signals through action observation (Iacoboni et 

al., 1999; Kohler et al., 2002). Thus, given that both imitation and auditory-motor 

transformation are relevant for speech repetition, in this section I describe the mirror neuron 
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system in the human brain and the neurocognitive dual-stream model as a brain 

conceptualization of the repetition process.  

5.2.1. Audio-visual mirror neuron system   

The motor theory of speech perception highlights the importance of motor gestures 

in speech perception (Liberman and Mattingly, 1985). Accordingly, not only the sounds per 

se are essential for speech perception, but further the articulatory gestures associated with 

them. During perception, the sounds of speech are directly mapped onto the articulatory-

based representations, which in addition to allow the reproduction of the just heard sound, 

aids listeners’ understanding. More recently, the description of the mirror neuron system 

brought back this idea. The mirror neuron system is composed of a group of neurons that 

become active when executing a goal-directed action but also when observing the action 

(Giacomo Rizzolatti & Craighero, 2004; Giacomo Rizzolatti, Fogassi, & Gallese, 2001). One 

of the first neuroimaging evidence of the mirror neuron system in humans comes from a 

positron emission tomography experiment showing that both the observation of an action 

(i.e., grasp an object) and its execution induced activation in the STG and MTG, and the 

caudal portion of the IFG (BA45) (Rizzolatti et al., 1996). In the language domain, using 

transcranial magnetic stimulation (TMS) recordings, it was demonstrated that passive 

listening of words induces an increase of activation in language motor centers (Fadiga, 

Craighero, Buccino, & Rizzolatti, 2002), providing evidence for a link between speech 

perception and motor actions. Subsequently, several functional neuroimaging experiments 

have explored the brain areas that respond to both speech perception and production. Findings 

suggest that areas with common response mainly encompasses the  bilateral posterior STG, 

inferior parietal cortex (IPC), premotor cortex (PMC) and IFG (Buchsbaum, Hickok, & 

Humphries, 2001; Mashal, Solodkin, Dick, Chen, & Small, 2012), among other areas 

involved in planning and execution of speech.  

5.2.2.  The dual-stream model 

The dual stream model, developed as a language equivalence for the visual “what” 

and “where” pathways (Ungerleider & Haxby, 1994), is the most extended modern 

neurocognitive model of language processing. This model, intended to link previous 

cognitive approaches with the motor control theory (Hickok & Poeppel, 2004, 2007), 

highlights the importance of the auditory-motor network for speech perception and 

production. According to this, the language network is organized in two functional and 

anatomical segregated streams, named dorsal and ventral.  
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Hickok and Poeppel (2004, 2007) posit that the dorsal stream is mainly involved in 

auditory-motor integration, that is, the translation of auditory stimuli into the motor pattern 

that allows its pronunciation. Thereby, it constitutes the main stream supporting verbal 

repetition, especially of words lacking meaning (e.g., pseudowords) (Saur et al., 2008). 

Further important functions associated to the dorsal stream are online speech monitoring and 

errors correction (Hickok et al., 2011; Hickok & Poeppel, 2007; Rauschecker & Scott, 2009), 

new vocabulary acquisition and phonological short term memory (Hickok & Poeppel, 2007; 

Lopez-Barroso et al., 2013; López-Barroso et al., 2015). On the other hand, the ventral stream 

mainly supports lexico-semantic processing, that is, the access to the memory trace that 

associate the word-form to its meaning, which may also mediate repetition of words and 

sentences (Hickok & Poeppel, 2007).  

According to this proposal, early stages of auditory processing involve the posterior 

portion of the bilateral STG, and from this area two processing streams emerge: one running 

dorsally and one ventrally, being the dorsal left-lateralized, and the ventral bilaterally 

distributed (Catani and Mesulam, 2008). The dorsal stream projects from STG to the IPC, 

and from there to frontal areas involved in articulatory-motor processes including the IFG, 

PMC and IC. Moreover, the ventral stream projects from the STG to the posterior MTG and 

ITG. These areas are thought to be a lexical interface, linking lexical stimuli with their 

semantic representations (Hickok & Poeppel, 2007). Then, information is transferred to the 

anterior temporal gyrus —which may have a combinatory role for lexical-semantic and 

sentence-level processes (syntactic and semantic integration)— and, after to the IFG, part of 

the dorsal stream according to this proposal. Figure 6 depicts the functional and anatomical 

features of the model as proposed by Hickok and Poppel (2007). This model has been 

supported by hundreds of neuroimaging studies (for a review of functional studies see Price, 

2012) targeting healthy and brain-damaged patients (Fridriksson et al., 2016; Saur et al., 

2008).  

As a final comment, it is noteworthy that the cortical areas encompassing the audio-

visual mirror neuron system and areas subserving the dorsal stream are tightly intertwined 

and overlap at some parts. This may explain, for instance, the findings of greater improvement 

of spontaneous speech with audio-visual feedback than audio-only feedback observed in 

some PWA (Fridriksson et al., 2012), suggesting that combined auditory and visual signals 

may induce simultaneous engagement of these interrelated and overlapping left networks, 

thus aiding speech production. 
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Figure 6. Functional anatomy of the dual-stream model of language processing proposed by Hickok & 

Poeppel. IFG: inferior frontal gyrus; Spt: Sylvian–parietal–temporal; STG: superior temporal gyrus; 

STS: superior temporal sulcus; MTG: middle temporal gyrus; ITS: inferior temporal sulcus; p: 

posterior; a: anterior. Figure from Hickok & Poeppel (2007). 

5.2.3. Integrative models: verbal repetition and phonological short-term/working 

memory  

Behavioral assessment of verbal repetition and verbal working memory (i.e., 

repetition of words, sentences or word series), and the neural network supporting these 

functions, overlap to a great extent (Baldo, Katseff, & Dronkers, 2012; Salis, Kelly, & Code, 

2015). Nevertheless, the study of language and memory have traditionally evolved as separate 

fields, thus verbal repetition and phonological rehearsal have been mostly studied as 

independent functions.  

Verbal repetition is a language function that inevitably implies the maintenance of 

phonological information, at least for a very short period (Hickok & Poeppel, 2007; Majerus, 

2013). At the same time, models of WM (Baddeley & Hitch, 1974; Cowan, 1999) have 

proposed subvocal verbal repetition (i.e., rehearsal) as a mechanism needed to refresh the 

information and avoid memory decay, suggesting that these two functions are intimately 

linked. In fact, in many cases both processes are difficult to segregate. For instance, in some 

abnormal repetition conditions, such as echolalia –a frequent symptom of TAs– , the recurrent 
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repetition of verbal material may play, in some patients, the role of “overt rehearsal” that 

compensate WM difficulties. The functionality of echolalia will be deeply discussed in 

Studies 2 and 3 of the present dissertation. Likewise, CA –which is characterized by deficits 

in verbal repetition and phonological STM/WM– may serve to further exemplify the existent 

link between repetition and WM (Kohn, 1992; Shallice & Warrington, 1977).  

Recently, neurocognitive integrative models of verbal repetition and STM/WM have 

been formulated. In this line, Buchsbaum & D’Esposito  (2019) proposed that phonological 

maintenance rely on auditory-motor processes undergoing in the language dorsal stream 

supporting verbal repetition. According to this proposal, three are the main components 

supporting phonological STM and verbal repetition: (1) the auditory areas involving the STG; 

(2) the auditory-motor interface –a mechanism that process auditory information and 

transforms it into an articulatory code that guides motor action; and (3) the articulatory motor 

areas placed in the IFG. In a simplified manner, this approach poses that a continuous flow 

of information between auditory and motor areas, mediated by the auditory-motor interface, 

allows to maintain phonological information active. This account rejects the existence of a 

“container” that temporarily store phonological sequences (as proposed by Baddeley, 1992; 

Baddeley & Hitch, 1974); rather STM is understand as a process that emerges from the 

language network supporting auditory-motor integration (i.e., dorsal stream). 

Similarly, Majerus (2013) possess a model that abandons the existence of a specific 

dedicated storage for verbal sequences. Instead, the model proposes that the maintenance of 

phonological and semantic information is supported by the dorsal and ventral language 

streams, respectively. Accordingly, verbal information is maintained active by reactivation 

and rehearsal, eventually allowing it repetition. Relevantly, the author differentiates between 

repetition of single items (words and short pseudowords) and word series. Thus, whereas 

repetition of single items is supported by the above-mentioned language pathways, repetition 

of word series and long pseudowords, which requires higher attentional load, is supported by 

a fronto-parietal network that aids attentional control and serial order maintenance. Figure 7 

depicts areas supporting the repetition of short items and sentences, as proposed by Majerus 

(2013). In short, attempts to understand phonological STM within the current knowledge of 

brain functioning suggest that this function emerges from recurrent excitatory loops of 

auditory-motor areas within the language pathways and, in some occasions, with further 

participation of areas supporting general-domain processes.  
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Figure 7. Networks supporting phonological maintenance processes during repetition. (A) Maintenance 

of phonological sequences during short pseudowords repetition is supported by the dorsal language 

pathway linking the superior temporal gyrus with the posterior inferior frontal gyrus. Maintenance of 

single words during repetition is also sustained by the dorsal pathway but with additional support of the 

ventral language pathway, linking the middle temporal cortex with the anterior inferior frontal gyrus. 

This reflects the temporal activation of the semantic representation associated with the to-be repeated 

item. The frontal areas reached by each pathway are proposed to preclude from possible phonological 

and semantic interferences. (B) Maintenance of multiples pseudowords and words for repetition 

involves a bilateral fronto-parietal network implicated in domain-general attentional and serial ordering 

processes, in addition to the left dorsal and ventral language pathways which participate in the 

maintenance of phonological and semantic information, respectively. The left fronto-parietal network, 

linking the intraparietal sulcus with the superior and middle prefrontal cortices, is proposed to support 

the maintenance of multiples verbal stimuli by focusing attentional resources on the representation 

temporarily activated in the dorsal and ventral pathways. In the right hemisphere, the fronto-parietal 

network is proposed to support the maintenance of serial order information, which is needed to withhold 

the occurrence order of words within a list or sentence, and of phonemes/syllables within a novel word. 

The numbers indicate Brodmann areas. Figure and figure legend based on Majerus et al. (2013).  
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6. Neural basis of verbal repetition: modern evidence 

The current knowledge on the neural basis of verbal repetition is the result of multiple 

studies based on different populations including healthy subjects, patients undergoing awake 

brain surgery, and PWA. Likely, different techniques have been employed such as structural 

and functional magnetic imaging (fMRI), magnetoencephalography (MEG) and 

electrocorticography (ECoG), each providing unique insights on the network supporting 

verbal repetition. For instance, fMRI-based evidence from healthy subjects has the potential 

to inform on the areas showing increased activation during the performance of a given task, 

while using methods based on the correlation between lesion and symptoms can reveal areas 

that need to be spared for successful performance (Fridriksson et al., 2016). Further, while 

fMRI has a good spatial resolution, MEG and ECoG have high temporal resolution (Babiloni, 

Pizzella, Gratta, Ferretti, & Romani, 2009). Thus, besides their relevant contribution to the 

localization of important neural areas, these two last methods have critically contributed to 

delineate the time course of cortical involvement during verbal repetition tasks.  

In this section I will review the current evidence on the neural correlates of verbal 

repetition, taking into account important variables that may influence  results such as type of 

the to-be repeated material (single words vs sentences, words vs pseudowords and so on), as 

well as the articulatory involvement during the task (cover vs overt).  

6.1. Evidence from healthy subjects and intraoperative recordings 

Findings from studies based on healthy subjects and intraoperative recordings in 

patients with tumors or treatment-refractory epilepsy evidenced that verbal repetition 

involves a large bilateral network that encompasses perceptive and production speech areas, 

as well as several white matter tracts connecting these areas. Verbal repetition of words and 

pseudoword commonly induce strong activation over a bilateral temporo-frontal network 

encompassing superior/middle temporal areas as well as the middle/inferior frontal gyri, 

together with primary motor and PMC (Hartwigsen et al., 2013; Saur et al., 2008; Yoo et al., 

2012). Although similar regions are usually involved in the repetition of both type of stimuli, 

pseudowords tend to induce greater activation in the left temporo-frontal network than words 

including STG, IFG, anterior IC (Palomar-García, Sanjuán, Bueichekú, Ventura-Campos, & 

Ávila, 2017; Saur et al., 2008) and PMC, as well as the bilateral SMA (Hartwigsen et al., 

2013), while words seem to involve to a greater degree the posterior areas of the left STG, 

including the AG, than pseudowords (Palomar-García et al., 2017; Yoo et al., 2012). 
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To perform a fine-grain dissection of the neural network components supporting 

verbal repetition in relation with the different sub-processes involved, Hope and colleagues 

(2014) ran a complex within-subject fMRI study with 16 different conditions. This 

methodology allowed the authors to dissect the brain regions supporting 10 sublevel 

computations carried out during the repetition of words. The factors considered were: (1) 

effect of stimuli modality (auditory vs visual); (2) phonological cues (presence vs absence); 

(3) familiar semantic content (presence vs absence); (4) speech production (covert vs overt).  

The results revealed a complex neural network involving several areas, with different 

regions associated to each of the sub-processes. It is to note that all the contrasts used in this 

study were active (i.e., task related), meaning that results do not reveal areas “active” during 

the task; rather they depict the areas with significantly greater involvement in one task 

compared to other.  Specifically, greater activation for auditory than visual processing was 

depicted in the bilateral STG (L1 and L9 in table 1). Further, results did not yield any area to 

be specifically associated to phonological processing of auditory stimuli (L2 in table 1), yet, 

the analyses revealed areas that were commonly active for auditory and visual phonological 

stimuli including the left superior temporal sulcus and left posterior putamen (L3 in Table 1). 

Increased activity in the left ventral PMC and the anterior putamen was associated to motor 

execution of speech influenced by sublexical phonological processing (L5 in Table 1), while 

activity within the IFG pars orbitalis (boundary with pars triangularis) was found during 

covert speech (i.e., condition without motor component) (L4 in Table 1). Semantic content 

effect disclosed significant involvement of the left IFG pars orbitalis (ventral portion) (L6 y 

L7 in Table 1) and in the left posterior MTG extending into the AG, hippocampus, and right 

cerebellum (L7 in Table 1). Also, overt in comparison to covert speech was associated with 

activation in several areas including the bilateral SMA, anterior cingulate gyrus, precentral 

gyri, IC, putamen, temporal lobe, and cerebellum (L8 in Table 1).  

Further regions associated with each of the 10 sub-processing levels proposed by the 

authors to be involved in auditory word repetition are specified in Table 1 (Hope et al., 2014).  

In short, the study by Hope and co-workers revealed that verbal repetition depends on the 

concerted action of several brain regions in charge of different subprocesses.  
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 In a complementary way, studies based on ECoG recording further informed on the 

areas associated to speech repetition as well as the time-dynamics of the underlying cortical 

activation. At early stages, overt repetition is accompanied by activation of posterior MTG 

and STG (beginning at 0 ms) which is related to acoustic processing. After, the perisylvian 

area, including PMC, becomes active, probably associated to speech perception/recognition 

and, later, the amplitude and spatial extent decrease until the 700 ms, time by which a second 

increase, related to production is initiated. At this stage, the activation in the perisylvian area 

increases, comprising primary motor areas, PMC, and temporal areas (peak at 1200 ms), 

likely related to motor planning of speech and speech processing of the spoken word (Pei et 

Table 1. Processes associated to word repetition and relevant brain areas supporting them. Table 

based on Hope et al.  (2014). 

Levels of processing in word 

repetition 

Description Area associated 

L1. Auditory processing of all input 
Acoustic processing common to all types 

of sounds including speech 

Bilateral STG, including 

Heschl’s gyri and planun 

temporale 

L2. Auditory phonological input 

Speech enhanced acoustic processing, 

possibly resulting from the complexity of 

speech sounds 

No-significant areas 

L3. Sublexical phonological inputs 

Sublexical processing of auditory & 

visual inputs that can be recoded into 

articulation 

Left STS, left p-putamen 

L4. Covert articulation 

Articulatory processing/preparation 

during silent tasks, i.e., prior to overt 

production 

Left pOrb/pTri 

L5. Phonological inputs on overt 

speech 

The influence of sublexical phonological 

associations on overt articulation 

Left v-PM and Left a- 

putamen 

L6. Semantic access/associations 
Recognizing the meaning of words, even 

when they don’t have to be reproduced 
Left pOrb 

L7. Semantic input to articulation 
Retrieving phonology/articulatory 

associations from semantic processing 

Left pMTG, angular, 

hippocampus, right CB, left 

FO, pOrb, pTri, IFS 

L8. Motor control of overt speech 
Motor execution of speech output 

(orofacial, larynx, breathing) 

Precentral, postcentral , CB, 

a-INS, v-putamen, amygdala, 

Tp, pTri, SMA, ACC 

L9. Auditory feedback 
Auditory processing of sounds produced 

during speech production 

Bilateral STG, including 

Heschl’s gyri and planun 

temporale 

L10. Domain general processing 

Processing that is independent of stimuli 

or the effector used to respond (e.g., 

fingers or mouth) 

ACC, SMA, pre-SMA, Left 

d-pOp/dPM, vPM, aINS-d, 

SMG, lateral CB 

p: posterior; a: anterior; d: dorsal; v: ventral; STS: superior temporal sulcus; Orb: pars orbitalis; Tri: pars 

triangularis; PM: premotor; MTG: middle temporal gyrus; CB: cerebellum; FO: frontal operculum; Tp: temporal 

pole; IFS: inferior frontal sulcus; SMA: supplementary motor area; SMG: Supramarginal gyrus; ACC: anterior 

cingulate cortex; INS: insula.  
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al., 2011) (Figure 8). Covert auditory repetition induced a similar pattern in the early acoustic 

processing phase, but as expected, with lower activation over primary motor cortex as well 

as over posterior STG and MTG (Pei et al., 2011). Activation associated to stimuli processing 

appears later for visually presented stimuli (Leuthardt et al., 2012; Pei et al., 2011). 

Interestingly, ECoG recordings during repetition tasks suggest that most of the repetition 

errors are triggered by stimulation of the posterior STG and MTG. More precisely, 

phonological paraphasias and perseverations (e.g., repetition of a previous response) were 

induced by inhibitory stimulation of different portions of the posterior STG and 

supramarginal gyrus (SMG), while neologisms are triggered by inhibitory stimulation of the 

anterior STG. Further, motor errors (e.g., distorted speech) are associated to functioning 

disruption of primary motor areas and ventral post-central gyrus and less often to the STG 

and IFG (Leonard, Cai, Babiak, Ren, & Chang, 2019). As a limitation, note that stimulation 

studies using ECoG recordings frequently do not consider the contribution of the right 

hemisphere to speech repetition, since the electrode grid is generally placed on the left 

hemisphere.  

 

Figure 8. Spatiotemporal dynamics of brain activation associated to overt word repetition as measured 

with electrocorticography over nine epileptic patients. Color-bar depicts coefficient of determination 

(r2), which indicates statistical differences in electrocorticography amplitude between overt repetition 

compared to rest. Numbers indicate time since stimuli onset in ms. The average measures for all 

participant reported in Pei et al., 2011 is represented. Figure adapted from Pei et al., 2011. 
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White matter tracts involved in verbal repetition   

Fitting dual stream model of language processing (e.g., Hickok and Poeppel 2007), 

key areas for word and pseudoword repetition are connected through two pathways, one 

running dorsally and the other ventrally. Diffusion tensor imaging (DTI) studies suggested 

that the fronto-temporo-parietal pathway (e.g., dorsal pathway) mainly encompasses the AF. 

Although this pathway was classically thought to connect Broca’s and Wernickes’s areas 

(Geschwind, 1970), modern tractography techniques have shown a more complex pattern of 

connectivity for this tract. As depicted in Figure 9, three principal branches have been 

identified as part of the AF: (1) long AF segment; (2) anterior AF segment; and (3) posterior 

AF segment. The long segment (direct pathway) directly connects Broca’s and Wernicke’s 

areas, corresponding with the classically described AF (Geschwind, 1970). The other two 

segments conform an indirect route, with the anterior segment connecting Broca’s area with 

the IPC (Geschwind’s territory), and the posterior segment linking the IPC and Wernicke’s 

area. Previous studies using DTI-tractography have found different patterns of lateralization 

for the segments of the AF. Thus, the long segment is normally strongly left lateralized, the 

anterior segment is right lateralized, and the posterior segment has a bilateral distribution 

(Catani et al. 2007; Lopez-Barroso et al. 2013; Thiebaut de Schotten et al. 2011). However, 

individual and sex differences exist (Thiebaut de Schotten et al., 2011) (see further discussion 

in a next section). Although not completely related to language functions, the superior 

longitudinal fasciculus (SLF), a fronto-parietal tract, is often confused with the AF. Three 

components (i.e., I, II, III) have been identified for the SLF (Thiebaut de Schotten et al. 2011), 

with components I and II running dorsally to the AF, and component III corresponding with 

the anterior segment of the AF. This explains why in the literature the terms AF and SLF are 

often used interchangeably. 

Moreover, the ventral pathway encompasses different white matter bundles 

connecting frontal and temporal areas including the IFOF, ILF and UF. All these tracts 

converge at the anterior extreme capsule (EmC), crossing from the temporal to the frontal 

lobe, as has been shown in studies involving monkeys (Schmahmann et al., 2007) and humans 

(Anwander, Tittgemeyer, von Cramon, Friederici, & Knösche, 2007). The IFOF, or also 

called extreme capsule fiber system (ECFS) (Friederici & Gierhan, 2013), connects the 

medial and lateral orbitofrontal cortex (BA47) and the occipital cortex passing by STG and 

MTG. The ILF connects the occipital (lateral and ventrolateral parts)  to the anterior temporal 

lobe with some branches reaching hippocampus and amygdala (Catani & Thiebaut de 

Schotten, 2008; Herbet, Zemmoura, & Duffau, 2018). Lastly, the UF connects the anterior 

part of the IFG (pars orbitalis) and frontal operculum with the anterior temporal lobe 
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(Friederici & Gierhan, 2013). Generally, ventral pathways show similar volume in the right 

and left hemisphere. The pathways that conform the dorsal and ventral pathways are 

illustrated in Figure 9. 

Figure 9. White matter tracts involved in verbal repetition. 

6.2. Evidence from persons with aphasia: lesion-based approaches 

Certainly, a great amount of the knowledge on the neural basis of verbal repetition 

comes from studies of patients with brain damage. Complementing the previously exposed 

evidence, lesion approach studies have focused on identifying brain structures that are crucial 

for verbal repetition and, thus, on identifying the lesions that are likely to cause aphasias with 

repetition impairments (e.g., CA). In this regard, considerable efforts have been made to 

disentangle the role of two structures that were suggested by independent studies to be crucial 

for repetition: (1) the AF, the main white matter bundle of the dorsal stream, and (2) the 

Sylvian–parietal–temporal area (Spt).  

Several studies have delineated a link between damage to the AF and repetition 

deficits in brain-damaged individual as observed, for instance, in CA. In fact, Geschwind was 

the first author proposing that lesions to this bundle will result in CA as a consequence of the 

disconnection between frontal and posterior areas (Catani & Mesulam, 2008; Geschwind, 

1974). This early idea was further supported by modern lesion-approach analyses. For 

instance, DTI-based studies of PWA showed that lesions in the AF correlated with the 

severity of repetition impairment (Breier, Hasan, Zhang, Men, & Papanicolaou, 2008; 

Kümmerer et al., 2013, but see Bernal & Ardila, 2009). In this line, some studies have shown 

that in most cases, persons presenting with CA have affectation of the AF (Jones et al., 2014; 

Zhang et al., 2010). However, a different position argues that repetition deficits are better 
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explained by cortical dysfunction than by white matter damage (Hickok & Poeppel, 2004). 

In this sense, some studies have suggested that since the area Spt responds to both speech 

perception and production (Buchsbaum et al., 2001; Hickok, Buchsbaum, Humphries, & 

Muftuler, 2003; Hickok, Okada, & Serences, 2009), it represents an auditory-motor interface 

crucial for verbal repetition. In this line, some studies using VLSM analysis have evidenced 

that deficits in verbal repetition tasks are associated with damage to Spt among others areas 

(Baldo et al., 2012; Rogalsky et al., 2015). Likely, lesion analyses of patients with CA have 

shown that areas of maximum lesion overlap encompassed Spt (Buchsbaum et al., 2011). 

Yet, the results of these studies cannot explain cases of CA with selective involvement of the 

AF (see discussion in Berthier et al., 2012) nor the CA cases with sparing of the left Spt 

(Jones et al., 2014).  

The claim in favor of cortical involvement as critical element of repetition deficits is 

further supported by cases of preserved repetition despite AF involvement (Shuren et al., 

1995), and impaired repetition without AF involvement (Anderson et al., 1999). However, it 

can be argued that at least three factors may explain that variability. The first is that some 

negative cases (Shuren et al., 1995; Anderson et al., 1999) had long-lasting epilepsy which 

may have induced brain reorganization. Second, the negative evidence may have coincided 

with the moment of spontaneous recovery occurring during the first months after brain 

damage, meaning that a lesion to the AF may cause repetition deficits early after brain 

damage but be hastily reversed due to compensatory mechanisms. For instance, rapid 

recovery of repetition was described in three cases of CA after selective lesion to the AF 

(Tanabe et al., 1987).  Linked to the previous one, the third factor is related to anatomical 

differences in the development of the right AF (Berthier et al., 2012), which has been 

suggested to show individual differences in the lateralization pattern, being left lateralized in 

some cases and bilaterally distributed in others (Catani et al., 2007). This come to say that 

greater development of the right segment may aid recovery of repetition deficits. In fact, this 

latest factor was suggested to explain contrasting repetition abilities (i.e., preserved vs 

impaired) in PWA showing similar lesion location and volume (Berthier et al., 2013).  

Given that these structures work in concert to achieve normal performance, and that 

both the AF and Spt area are closely located, it is probable that a lesion encompassing the 

tempo-parietal region will affect both structures. Thus, the reasonable position is to suggest 

that lesions affecting both the AF and the Spt contribute to repetition impairments. Actually, 

this is fully supported by recent lesion-behavior mapping (e.g., VLSM) studies, which 

suggest that an extended network is involved in verbal repetition, encompassing the left 

posterior STG, MTG, left SMG, and the adjacent white matter (Fridriksson et al., 2018; 
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Henseler et al., 2014; Kümmerer et al., 2013; Pilkington et al., 2017; Ripamonti et al., 2018) 

as well as articulatory-related areas such as PMC, IC and IFG (Fridriksson et al., 2018; 

Kümmerer et al., 2013; Ripamonti et al., 2018) —(Figure 10, panel A and B). Thus, lesion-

network approaches suggest that repetition deficits are predicted by damage to an extensive 

cortical network involving dorsal and ventral areas (Fridriksson et al., 2018) —(Figure 10, 

panel C). Interestingly, increasing the complexity of the to-be repeated material gradually 

increases the extension of cortical areas crucial for performing the task (Henseler et al., 2014) 

—(Figure 10, panel B).  

 

Figure 10. Lesioned voxels depicting high negative correlations with repetition performance. (A) 

Voxelwise lesion-behavior map for repetition scores. Color bars indicate z-scores at p <.01, FDR 

corrected. Numbers indicate coordinates in MNI space. Figure and legend adapted from Kümmerer et 

al. (2013). (B) VLSM-maps showing significant voxels associated with the impaired repetition of 

phonemes (left), 1-syllabic words (middle) and sentences (right). All voxels shown exceeded the critical 

threshold for significance (indicated by the white line in the colour bars, p <.05 FDR-corrected). Lighter 

colors reflect increasing Z-scores. Figure and figure legend adapted from Henseler et al., 2014. (C) 

Results from Univariate Region-wise lesion-symptom mapping (RLSM; red-yellow) and Connectome 

lesion-symptom mapping (CLSM; blue-green), two lesion-behavior like analyses that, in this case, 

indicate how strongly damage to a given region and connection (respectively) predicts scores in a 

repetition task. Figure and figure legend adapted from Fridriksson et al. (2018). 
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Importantly, plastic changes and preexisting differences within the repetition networks, 

and right homologues components, may influence the degree of recovery in PWA and the 

emergence of extraordinary language abilities in models of language expertise. Given that 

these aspects are of concern for the purpose of this dissertation, in the next section I will 

review plastic changes occurring in non-damage brains when mastering an ability relying on 

the auditory-motor network, the mechanisms supporting language improvements after brain 

damage and the role that pre-existing individual differences, particularly sex, may have in 

this processes. 

7. Mechanisms underlying language expertise and recovery after 

brain damage 

7.1. General mechanisms supporting expertise in auditory-motor processes 

Advantages in auditory-motor abilities are associated to improved linguistic and 

musical performance. Several studies have addressed functional and anatomical brain 

differences related to linguistic and musical training showing that expertise in these domains 

is accompanied by long-lasting differences in cortical areas and tracts encompassing the 

bilateral dorsal and ventral streams, motor-related and domain-general processes areas. Yet, 

the direction of these differences is variable across studies, and sometimes complex to 

interpret.  

Short periods of musical and linguistic training are generally associated with increased 

grey matter volume, increased activity and lower diffusion  (e.g., greater fractional anisotropy 

[FA] or lower radial diffusivity [RD]) in relevant components (e.g., auditory-motor network) 

(Imfeld, Oechslin, Meyer, Loenneker, & Jancke, 2009; Lahav, Saltzman, & Schlaug, 2007; 

Mårtensson et al., 2012).Yet, early acquisition of audio-motor skills and prolonged training 

seem to induce a more complex reshaping of brain structure and functioning. In this regard, 

both increased (Golestani, Price, & Scott, 2011) and decreased (Elmer et al., 2014) grey 

matter volume were reported associated to linguistic expertise (e.g., phoneticians or 

simultaneous interpreters). To cite an example, Golestani and colleagues (2011) reported that 

years of training in phonetic transcription positively correlated with IFG volume. Moreover, 

musical training was shown by some studies to elicit a complex pattern with increase gray 

matter volume in some areas but decrease in others (James et al., 2014; Vaquero et al., 2016). 

However, other studies only reported greater volume in musician compared to non- musician  

(Gaser, Schlaug, & Scott, 2011; Han et al., 2009) (for a review of studies of neuroplasticity 

in musicians see table 1 in Vaquero et al.,  2016). In the same line, tractography-based 
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analyses have evidenced white matter microstructural changes associated to language and 

musical expertise. For instance, studies of  phoneticians (Golestani et al., 2011; 

Vandermosten et al., 2016) and simultaneous interpreters (Elmer, Hänggi, Meyer, & Jäncke, 

2011) reported reduced FA in tracts associated to auditory-motor processing, such as the long 

segment of the AF (Vandermosten et al., 2016), while another study of simultaneous 

interpreters reported a much complex pattern of white matter microstructure with greater FA 

in some tracts and lower in others (Elmer et al., 2019). Similarly, early musical training was  

associated with increased FA as reported by some studies, and  with decreased FA 

(Schmithorst & Wilke, 2002) and increased mean diffusivity (MD) as reported by others 

(Imfeld et al., 2009).  

Discrepancies in the direction of brain changes associated to auditory-motor expertise 

are difficult to explain in the light of the current knowledge, since results cannot be 

interpreted in a straightforward manner. Reduced grey matter volume in relevant cortical 

areas is often found in degenerative diseases (Busatto et al., 2003; Wang et al., 2015) and 

associated to lower performance in, for instance, language tasks (Amici et al., 2007), but  

lower volume not always correlates with lower performance. Actually, decreased volume in 

frontal areas due to synaptic pruning is a hallmark of brain maturation (Giorgio et al., 2010; 

Sowell, Thompson, Tessner, & Toga, 2001). Certainly, lower FA and/or greater radial (RD) 

and MD are normally linked to pathological states, due to the association of these parameters 

with decrease myelination and lower axonal packing (Alexander, Lee, Lazar, & Field, 2007; 

Neil, Miller, Mukherjee, & Hüppi, 2002). Yet, this is likely to be an oversimplification, as 

anisotropy is influenced by many other factors (e.g., amount of crossing fibbers, axon 

diameter and so on), with axonal membrane properties having a main role (Beaulieu, 2002, 

2009; Neil et al., 2002). Therefore, while in pathological cases neuroimaging results are 

interpreted in a straightforward direction (greater diffusivity and reduced grey matter volume 

correlate with dysfunctional states), this does not seem to always apply for cases of prolonged 

training and early acquired abilities in non-pathological studies.  

Regarding expertise, an important issue is that in many cases is difficult to establish 

whether the observed brain differences are induced by training, are pre-existent or are the 

result of an interaction of both factors (Wan & Schlaug, 2010). Strong evidence in favor of 

training-induced differences comes from studies showing correlation between amount of 

training and structural or functional differences (Golestani et al., 2011; Halwani, Loui, Rüber, 

& Schlaug, 2011). Conversely, evidence that pre-existent differences may favor performance 

comes from studies showing that individual differences in the auditory-motor network 

predicts imitation abilities, as well as music and language learning (Assaneo et al., 2019; 
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Lopez-Barroso et al., 2013; López-Barroso et al., 2011; Lucía Vaquero, Ramos-Escobar, 

François, Penhune, & Rodríguez-Fornells, 2018; Lucía Vaquero, Rodríguez-Fornells, & 

Reiterer, 2016). 

Importantly, the study of expert models provides a deeper understanding of the brain 

signatures that enable outstanding performance in auditory motor abilities, informing models 

of neuroplasticity. Also, understanding the brain changes occurring when one master a 

linguistic function may enlighten the development of therapeutic approaches for PWA, by 

pointing out putative brain components that may be enhanced to aid performance. In the next 

section, I review the neural reconfiguration mechanisms underlying the recovery from 

aphasia.  

7.2. General mechanisms and structures supporting language recovery in 

aphasia  

Spontaneous recovery of functions after brain damage is frequent during the first 

months. Importantly, these spontaneous changes may be potentiated by therapy afterward 

during the chronic stage. Yet, while the mechanisms responsible for rapid recovery may be 

related to restored blood flow or hematoma reduction (Berthier et al., 2011; Hillis et al., 

2006),  recovery beyond the acute phase is likely to be driven by neural reconfiguration across 

preserved brain networks and within the preserved areas of the damaged network/s. Different 

hypotheses have been postulated regarding brain changes associated with language recovery 

after brain damage. These hypotheses refer to: (1) the recruitment of perilesional 

dysfunctional but still viable neural tissue and the unmasking of function of non-affected 

nodes in the left hemisphere; (2) the compensatory involvement of homologues areas on the 

right hemisphere; and (3) the combination of (1) and (2), which acting together support 

language improvement (Berthier et al., 2011; Schlaug, 2018; Turkeltaub et al., 2011).  

Longitudinal studies have suggested that the contribution of spared areas of the left 

hemisphere and undamaged areas of the right hemisphere to language recovery change over 

time (Hartwigsen & Saur, 2017). As a general pattern, greater involvement of ipsilateral areas 

in the acute phase are expected, then compensation via right networks at later stages (sub-

acute/chronic) may take place, to finally shift back to the left hemisphere in the chronic stage 

(Hartwigsen & Saur, 2017;  Saur et al., 2006). However, there is great variability in the 

recovery pattern of PWA, and this issue has not received enough attention. It has been posited 

that at individual level many variables may influence which networks are recruited during 

recovery and the degree of recovery reached. Amongst other important factors, the features 

related to the lesion (i.e., lesion location and lesion size), initial aphasia type and severity, 
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and type of treatment received  (Watila & Balarabe, 2015) stand out. Regarding lesion-related 

factors, available evidence suggests that the recruitment of the right hemisphere depends, in 

fact, on the extension and location of the damage in language-related regions of the left 

hemisphere (Anglade, Thiel, & Ansaldo, 2014). For instance, it has been shown that PWA 

and lesions compromising the left IFG show both recruitment of perilesional areas such as 

anterior IC and homologues nodes of the right hemisphere (Turkeltaub et al., 2011), while 

patients with preserved left IFG only recruit perilesional areas.  Further, several studies have 

pointed out that lesion load of the left AF —meaning the proportion of the tract affected— 

and the development of the right AF are powerful predictors of aphasia recovery  (Forkel et 

al., 2014; Geva, Correia, & Warburton, 2015; Hillis et al., 2018; Jehna et al., 2017; Marchina 

et al., 2011).   

Improvements restricted to some linguistic abilities may depend on the strengthening 

of specific components of the residual and contralateral language networks, which may 

selectively be modulated by the nature of the therapy. For instance, our research team 

demonstrated that modulation of brain plasticity with a combined therapy (a drug modulating 

the cholinergic system and intensive imitation-repetition therapy), significantly improved 

verbal communication in a PWA by inducing structural plasticity of the frontal aslant tract 

(FAT) of the damaged hemisphere (Berthier et al., 2017), a key white matter pathway 

involved in verbal fluency (Catani et al., 2013). Furthermore, a reduction of semantic errors 

induced by intensive language therapy was associated to structural plasticity within the left 

ventral stream  (McKinnon et al., 2017). In the same vein, improvements in speech production 

induced by MIT have been associated with structural changes in the right AF (Schlaug et al., 

2009). Moreover, since stroke induces networks alterations, enhancement of functions may 

be accompanied by large scale reconfiguration, for example by increasing temporal 

synchronization among language-relevant and compensatory areas, or increasing modularity 

(Klingbeil et al., 2019). For instance, improvements in the number of correct syllables in a 

repetition task induced by combined language therapy and non-invasive brain stimulation, 

correlated with increased resting state functional connectivity among several nodes of the left 

hemisphere (Marangolo et al., 2016) (for a review see Klingbeil et al., 2019).  

7.3. Support between dorsal and ventral pathways to aid linguistic 

performance  

Evidence indicates that although the dorsal and ventral streams are anatomically and 

functionally segregated, a synergistic cooperation between them is possible (Makris & 

Pandya, 2009; Rauschecker & Scott, 2009; Rolheiser, Stamatakis, & Tyler, 2011; Weiller, 
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Bormann, Saur, Musso, & Rijntjes, 2011). Nevertheless, the type and sites of interaction 

between these two language streams is still elusive. In this regard, Cloutman (2013) proposed 

three models of interaction between the two streams. The first account considers that although 

both streams process information independently, the transferred information along the 

pathways is integrated at a final destination in the cerebral cortex. The second hypothesis 

maintains that separate information along the two pathways is modulated by feedback loops 

within one such stream and also between streams. Finally, the third account suggests the 

existence of a crosstalk between the two streams at multiple stages and sites. These standpoint 

theories open a number of perspectives for future research.  

One important question is if under certain circumstances (e.g., brain damage), the 

functions of one stream can be compensated, or further supported, by the other and if this 

compensation is adaptive (if it improves language deficits, or not). In the same line, it also 

remains unclear whether further recruitment of an additional stream, even in normal 

circumstances, may support the improvement of functions, and therefore, support 

extraordinary verbal abilities. To cite just an example, previous neuroimaging studies with 

healthy population revealed that although in normal circumstances the left dorsal stream is in 

charge of verbal repetition processes required to learn auditory-presented new words (López-

Barroso, Catani, Ripollés, Dell'Acqua, Rodríguez-Fornells, & de Diego-Balaguer, 2013; 

López-Barroso, Ripollés, Marco-Pallarés, Mohammadi, Münte, Bachoud-Lévi, et al., 2015), 

the left ventral stream may take over these duties when the ipsilateral dorsal stream is 

artificially blocked in healthy subjects (López-Barroso, de Diego-Balaguer, Cunillera, 

Camara, Münte, Rodríguez-Fornells, 2011).  

The compensatory potential of language-related streams on the right and left 

hemisphere are further addressed in the main corpus of the present dissertation (i.e., Study 1, 

Study 3, Study 4 and 5). In next section I analyze individual and sexual differences as putative 

sources of variability in phonological processing abilities.   

7.4. Sources of variability in verbal repetition abilities  

The concept of degeneracy stands out as a mechanism explaining differences in 

language outcome after brain damage and different brain-behavior relationship across 

individuals. This has been defined as “the ability of elements that are structurally different to 

perform the same function or yield the same output” (Edelman & Gally, 2001) and it was 

used to describe the situation in which more than one structure (or system) support a given 

function or task, being each of these sufficient (Friston & Price, 2003; Noppeney, Friston, & 

Price, 2004). Degeneracy within subjects (Price & Friston, 2002) was proposed as a 
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mechanism supporting: (1) cognitive functions resilience after damage; and (2) recovery of 

functions after brain damage, as multiple systems may support the same function. By this, 

language deficits and recovery of functions after brain damage will be influence by individual 

differences, for instance premorbid language lateralization and structural and functional 

differences. Likely, degeneracy across subjects has been proposed as a mechanism to explain 

neurofunctional inter-individual differences, since the same task may be supported by 

different neural networks across individuals. In other words,  equal performance in a given 

task may be supported by different neural mechanisms across subjects reflecting the 

implementation of different cognitive strategies (Noppeney et al., 2004). This stand as an 

important concept to understand different language outcomes after brain damage (e.g., 

aphasia) in light of similar lesions, as well as to explain individual differences in neural 

systems supporting expertise, which are of relevance in Study 4 and Study 5 of the present 

thesis. 

A potential source of individual differences in brain structure and functioning is sex.  

Sex differences in the human brain have been recognized for more than one century (Woolley 

1910). A variety of neuroimaging studies on sex differences examining structure, patterns of 

brain activation and connectivity have suggested that the configuration of language-related 

networks vary among females and males (Catani et al., 2007; Ruigrok et al., 2014; Thiebaut 

de Schotten et al., 2011). Given that anatomical differences seem to play an important role in 

the clinical expression and recovery after brain damage (Berthier et al., 2013; Forkel et al., 

2014), it will be important to determine whether sex differences exist in the prevalence of 

some aphasic syndromes. This issue is addressed in Study 5, where the proportion of females 

and males in aphasias characterized by preserved and impaired repetition is estimated based 

on a literature review of publish cases of CAs and TAs.  
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Chapter 2. Research aims 

As presented in the Introduction section, the neural network involved in repetition has 

been extensively studied. Findings evidenced that this ability is supported by a distributed 

neural network encompassing sensory and motor areas. Yet, clinical issues regarding 

pathological verbal repetition have not been addressed within the light of modern 

neuroscience, and behavioral and neural individual differences had been overlooked.    

The crosscutting aim of the present dissertation is to explore the clinical, cognitive 

and neural features of verbal repetition, moving from a dysfunctional ability to expertise 

level. The present thesis comprises five studies that are organized into two blocks. Block 1 

encompasses three studies focused on altered verbal repetition behaviors in PWA, in an 

attempt to provide fresh information on the compensatory plastic mechanisms underlying 

them. Block 2 comprises two studies that aim to explore sources of individual differences in 

repetition abilities, including verbal expertise and verbal repetition after brain damage. Next, 

I state the specific goal pursued in each study. 

Block 1: 

• Study 1 aims to examine neural and cognitive features of mitigated echolalia and 

conduite d’approche —two frequent but unexplored repetitive verbal behaviors in 

aphasia— in three persons with chronic post-stroke aphasia. Specifically, this study 

explores if these symptoms emerge as a consequence of the overreliance on one route 

(e.g., dorsal) when the other one (e.g., ventral) is affected. For this purpose, 

multimodal evaluation including language and cognitive assessments as well as 

different neuroimaging techniques are used.  

• Study 2 has the objective of reviewing the symptom of echolalia (which refers to the 

repetition of words and utterances spoken by another person) in the context of aphasia. 

Specifically, it aims to provide a reappraisal of the characteristics of the different types 

of echolalia, exploring its possible causes, and providing directions for its clinical 

assessment and treatment. 

• Study 3 aims to further explore the most frequent subtype of echolalia (mitigated 

echolalia) in a person with fluent aphasia and impaired auditory comprehension. For 

this, the symptom of ME is analyzed at behavioral and brain levels while trying to 

elucidate its different purposes in different linguistic contexts. Since in this case ME 

interfered with functional communication, a second objective was to study the 

efficacy of a combined treatment (i.e., memantine and intensive language-action 

therapy) in reducing instances of echolalia.  
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Block 2: 

• Study 4 aims to characterize the common features and the individual differences at 

cognitive and brain levels of two healthy subjects with an extraordinary ability to 

reverse language as assessed through forward and backward repetition tasks. At 

large, built on a multidimensional approach, this study sought to offer insights on 

the cognitive strategies and the structural and functional neural distinctiveness that 

characterize outstanding performance in auditory-motor based linguistic task.  

• Study 5 explores sex-related differences in the ability of verbal repetition after brain 

damage. Specifically, the aim of this study is to analyze sex-distribution in two types 

of aphasias, one characterized by impaired verbal repetition abilities (i.e., CA) and 

the other by preserved repetition (i.e.,TA). This will provide evidence on whether 

sex differences in the frequency of verbal repetition deficits exist in among PWA. 

The hypothesis of this study was based on the previous exposed evidence suggesting 

sex brain-dysmorphisms in language-related areas. 
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Chapter 3. Main corpus 

Block 1: Pathological repetition: neural features 

and the clinical approach 
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Study 1. Repetitive verbal behaviors are not 
always harmful signs: Compensatory plasticity 

within the language network in aphasia1 

                                                            
1 This study corresponds to:  
Torres-Prioris, M. J., López-Barroso, D., Roé-Vellvé, N., Paredes-Pacheco, J., Dávila, G., & 
Berthier, M. L. (2019). Repetitive verbal behaviors are not always harmful signs: 
Compensatory plasticity within the language network in aphasia. Brain and Language, 190, 
16–30. https://doi.org/10.1016/J.BANDL.2018.12.004 
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A B S T R A C T

Repetitive verbal behaviors such as conduite d’approche (CdA) and mitigated echolalia (ME) are well-known phenomena since early descriptions of aphasia.
Nevertheless, there is no substantial fresh knowledge on their clinical features, neural correlates and treatment interventions. In the present study we take advantage
of three index cases of chronic fluent aphasia showing CdA, ME or both symptoms to dissect their clinical and neural signatures. Using multimodal neuroimaging
(structural magnetic resonance imaging and [18]-fluorodeoxyglucose positron emission tomography during resting state), we found that despite of the heterogeneous
lesions in terms of etiology (stroke, traumatic brain injury), volume and location, CdA was present when the lesion affected in greater extent the left dorsal language
pathway, while ME resulted from preferential damage to the left ventral stream. The coexistence of CdA and ME was associated with involvement of areas over-
lapping with the structural lesions and metabolic derangements described in the subjects who showed one of these symptoms (CdA or ME). These findings suggest
that CdA and ME represent the clinical expression of plastic changes that occur within the spared language network and its interconnected areas in order to
compensate for the linguistic functions that previously relied on the activity of the damaged pathway. We discuss the results in the light of this idea and consider
alternative undamaged neural networks that may support CdA and ME.

1. Introduction

Traditional descriptions of aphasia have ascribed language dis-
turbances to tissue damage involving different cortical areas, deep grey
nuclei and their associative white matter connections (Albert,
Goodglass, Helm, Rubens, & Alexander, 1981; Damasio & Damasio,
1992). This brain-language relationship seems to be suitable to account
for the loss or impoverishment of previous language abilities (e.g., re-
duced auditory comprehension, word finding difficulty, faulty repeti-
tion), hereafter referred to as “residual language deficits”. However, it
is evident that, despite having lost some language abilities, persons with
aphasia (PWA) indefatigably attempt to communicate and this often
leads to the emergence of either correct verbal emissions or speech
errors, sometimes in the form of repetitive verbal behaviors (RVBs)
(recurrent utterances, paraphasias, perseverations and echolalia)
(Wallesch, 1990). The neural correlates of correct verbal emissions and

RVBs seem to be different from the ones subserving residual language
deficits, since the former cannot emanate from a fully dysfunctional
network affected by irreversible tissue damage or absent blood flow and
metabolic activity. Following this line of reasoning, RVBs cannot be
explained by the direct effect of the lesion. Rather, their occurrence
may reflect neural changes attempting to compensate the residual
language deficits via recruitment of undamaged brain networks
(Fridriksson, Baker, & Moser, 2009). These plastic changes may occur
spontaneously or promoted by aphasia therapy even well beyond the
acute stage (Hartwigsen & Saur, 2017).
Using a lesion-deficit approach, recent efforts have been directed to

examine the relationship between tissue damage and residual language
deficits through neuroimaging methods such as voxel-based lesion-
symptom mapping (Bates et al., 2003; Dell, Schwartz, Nozari,
Faseyitan, & Branch Coslett, 2013; Mirman et al., 2015; Schwartz et al.,
2009), voxel-based correlational methodology (Halai, Woollams, &
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Study 2. Thinking on treating echolalia in 
aphasia: Recommendations and caveats for future 

research directions2 

                                                            
2 This study corresponds to:  
Berthier, M. L., Torres-Prioris, M. J., & López-Barroso, D. (2017). Thinking on Treating 
Echolalia in Aphasia: Recommendations and Caveats for Future Research Directions. 
Frontiers in Human Neuroscience, 11, 164. https://doi.org/10.3389/fnhum.2017.00164 
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Caveats for Future Research
Directions
Marcelo L. Berthier 1*, María J. Torres-Prioris 1, 2 † and Diana López-Barroso 1, 2 †

1Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias and

Instituto de Investigación Biomédica de Málaga, University of Malaga, Malaga, Spain, 2 Area of Psychobiology, Faculty of
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ARE VERBAL IMITATION AND REPETITION THE SAME?

Imitation in the form of repeating speech sounds, accents, and words plays a foundational role
in the normal acquisition and development of language (Meltzoff et al., 2009; Adank et al.,
2013) eventually contributing to a life-long fine-tuning of communication skills (Tannen, 1987;
Delvaux and Soquet, 2007). Imitation of prosodic and paralinguistic features may be intentional
in certain contexts (e.g., mockery, impersonation, acting rehearsal). However, in general, imitation
in healthy subjects is unintended as it involves automatic mimicry of non-essential components of
the acoustic-phonetic information (speaking rate, prosody, accent) embedded in the heard message
(Kappes et al., 2010)—the so-called chameleon effect. Therefore, it seems that verbal imitation is not
the same as verbal repetition because in the latter, the auditory stimulus is intentionally repeated
and the reproduced speech contains relevant phonological information, but the incidental acoustic
features of the perceived stimulus are not invariably mimicked (Kappes et al., 2009, 2010).

ECHOLALIC REPETITION AND ITS SUBTYPES

Echolalia, the repetition of words and/or utterances spoken by another person (Wallesch,
1990), is frequently documented in individuals with autism spectrum disorders (Stiegler, 2015),
neurodegenerative dementias (Da Cruz, 2010; Kertesz et al., 2010), post-stroke aphasia (Geschwind
et al., 1968; Christman et al., 2004), and other neurologic and psychiatric disorders (Berthier et al.,
2017a). However, there are no studies on the prevalence of echolalia in these conditions. This
is intriguing as, for instance, echolalia is a usual accompanying feature of transcortical aphasias,
which represent 4–20% of all aphasias (Berthier, 1999). Moreover, echolalia has occasionally
been described during the recovery process of classical perisylvian aphasias (global, Wernicke,

conduction, Broca; Brown, 1975; Hadano et al., 1998; López-Barroso et al., 2017). This implies
that a more in depth assessment would inflate the prevalence rates.

Echolalia is a heterogeneous symptom of aphasia and several subtypes have been described
(Wallesch, 1990; Berthier, 1999). More than one type of echolalia can coexist in the same patient
(Brown, 1975; Hadano et al., 1998) and changes from one form to another (i.e., from complete to
partial) during aphasia evolution is common. The most severe types of echolalia occur in aphasias
with preserved repetition abilities (transcortical aphasias; Berthier et al., 2017a). Two of them,
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Study 3. Are you a doctor? … Are you a doctor? 
I’m not a doctor! A reappraisal of mitigated 

echolalia in aphasia with evaluation of neural 
correlates and treatment approaches3 

                                                            
3 This study corresponds to:  
Berthier, M. L., Torres-Prioris, M. J., López-Barroso, D., Thurnhofer-Hemsi, K., Paredes-
Pacheco, J., Roé-Vellvé, N., … Dávila, G. (2018). Are you a doctor? … Are you a doctor? 
I’m not a doctor! A reappraisal of mitigated echolalia in aphasia with evaluation of neural 
correlates and treatment approaches. Aphasiology, 32(7), 784–813. 
https://doi.org/10.1080/02687038.2016.1274875 



Are you a doctor? . . . Are you a doctor? I’m not a doctor! A
reappraisal of mitigated echolalia in aphasia with evaluation
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ABSTRACT
Background: Mitigated echolalia (ME) is a symptom of aphasia
which refers to a seemingly deliberate repetition of just-heard
words and phrase fragments. ME has historically been viewed as
a compensatory strategy aimed to strengthen auditory compre-
hension. Nevertheless, this hypothesis and other possible func-
tional deficits underlying ME have not been evaluated so far.
Aims: This study aimed to (a) reappraise ME in the frame of
modern neuroscience; (b) report the effects of Constraint-
Induced Aphasia Therapy (CIAT) and a cognition-enhancing drug
(memantine) on detrimental ME in a patient (CCR) with fluent
aphasia; and (c) analyse the functional and structural brain corre-
lates of ME in CCR with multimodal neuroimaging.
Methods & Procedure: Tasks tapping verbal expression and audi-
tory comprehension were administered to CCR to evaluate ME.
After baseline testing, evaluations were performed under placebo
alone (weeks 0–16), combined placebo with CIAT (weeks 16–18),
placebo treatment alone (weeks 18–20), washout (weeks 20–24)
and memantine (weeks 24–48). Instructions to reduce ME during
CIAT were provided to CCR. Language evaluation and multimodal
neuroimaging were also performed 10 years after ending
treatment.
Outcomes & Results: At baseline, ME occurred in spontaneous
speech and in difficult-to-understand single words, indicating
impaired meaning access. However, more instances of ME were
heard in sentence comprehension, reflecting additional impair-
ment in short-term memory. ME also occurred in words that
were correctly defined and understood to the extent that even
after accessing word meaning successfully, CCR repeated the same
word several times, suggesting impaired inhibitory response con-
trol. In comparison with baseline, analysis of auditory sentence
comprehension under treatment revealed significant decrements
of ME just after ending CIAT and 2 weeks later. These gains were
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Block 2: Individual/sex differences in verbal 

repetition and phonological processing 
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Study 4. Language in reverse: Behavioral and 

neural correlates of backward repetition4 

                                                           
4This study corresponds to:  

Torres-Prioris, M.J., López-Barroso, D., Càmara, E., Fitipaldi, S., Sedeño, L., Ibáñez, A., 

Berthier, M. L., García A. Language in reverse: Neurocognitive correlates of phonological 

encoding in backward speakers. Submitted article. 



 

104 

 



 

105 

Language in reverse: Neurocognitive correlates  

of expert phonological encoding in backward speakers 

 

María José Torres-Prioris1,2, Diana López-Barroso1,2, Estela Càmara3, Sol Fitipaldi 4,5, 

Lucas Sedeño4,5, Agustín Ibáñez4,5,6,7,8, Marcelo L. Berthier1,2, Adolfo M. García4,5,9,* 

 

1 Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, 

Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, 

Spain 

2 Area of Psychobiology, Faculty of Psychology and Speech Therapy, University of Malaga, 

Malaga, Spain 

3 Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute - IDIBELL, 

08097 L'Hospitalet de Llobregat, Barcelona, Spain. 

4 Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive 

and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University. 

5 National Scientific and Technical Research Council (CONICET). 

6 Universidad Autónoma del Caribe. 

7 Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad 

Adolfo Ibáñez. 

8 Centre of Excellence in Cognition and its Disorders, Australian Research Council (ARC). 

9 Faculty of Education, National University of Cuyo (UNCuyo). 

 

 

 

 

 

 

* Corresponding author. Adolfo M. García, Ph.D., Institute of Cognitive and Translational 

Neuroscience and CONICET, Pacheco de Melo 1860, C1126AAB, Buenos Aires, Argentina. 

E-mail: adolfomartingarcia@gmail.com 

 

mailto:adolfomartingarcia@gmail.com


 

106 

Abstract 

Despite its prolific growth, neurolinguistic research on phonological encoding has largely 

neglected the study of phonemic sequencing mechanisms –namely, the neurocognitive 

systems supporting the linear organization of phonemes. To bridge this gap, the present study 

reports multidimensional signatures of two experts in backward speech, that is, the capacity 

to produce utterances by reversing the order of phonemes while retaining their identity. Our 

approach included behavioral assessments of backward and forward speech alongside 

measures of voxel-based morphometry, diffusion tensor imaging, and resting-state functional 

connectivity. Relative to controls, both backward speakers exhibited behavioral advantages 

for reversing words and sentences of varying complexity, irrespective of working memory 

skills. These patterns were accompanied by increased grey matter volume, increased mean 

diffusivity, and enhanced functional connectivity along dorsal and ventral stream regions 

mediating phonological and otherwise linguistic operations, with complementary support of 

areas mediating associative-visual and domain-general processes. Still, the specific loci of 

these neural patterns differed between both subjects, suggesting individual variability in the 

correlates of expert backward speech. Taken together, our results offer new vistas on the 

relatively underexplored domain of phonological sequencing, while illuminating neuroplastic 

patterns underlying expert language processing. 

 

Keywords: backward speech, phonemic sequencing, voxel-based morphometry, diffusion 

tensor imaging, functional connectivity. 
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Introduction 

When visiting the local barber shop, a native Spanish speaker from La Laguna, 

Spain, may be caught off guard by the parlance of some compatriots. He might be greeted 

with the utterance nasbue chesno and fail to understand it at all. With time, however, he may 

realize that the phrase was a backward rendition of buenas noches (good evening) and that 

this peculiar way of speaking is quite widespread in this town. So much so, in fact, that a 

group of citizens demand that UNESCO acknowledge their linguistic extravaganza as 

intangible cultural heritage. Still, theirs might be a lost cause. Although word inversion is 

also part of other sociolects, such as Argentine lunfardo, the Canary Academy of Language 

has declared that this phenomenon has no scholarly value. 

Yet, that position is arguably short-sighted. Backward speech constitutes an 

extraordinary ability to quickly reverse words, pseudowords, and even sentences, which 

requires reordering phonemes while retaining their identity. Therefore, it offers a useful 

model to study phoneme sequencing –i.e., the capacity to select, retrieve, and temporarily 

arrange sounds needed to set up an articulatory plan (Dell, Burger, & Svec, 1997; Hartsuiker 

et al., 2005; Levelt, Roelofs, & Meyer, 1999). In this sense, whereas various aspects of 

phonological-phonetic encoding have been studied in patient samples (Han et al., 2016; 

Laganaro, Python, & Toepel, 2013; Laganaro & Zimmermann, 2010; Wilshire, 2002), the 

neurocognitive mechanisms underlying phoneme sequencing skills remain notoriously 

overlooked in models of language expertise. To bridge this gap, here we combined behavioral 

assessments with structural and functional brain imaging methods to examine 

multidimensional signatures of backward speech in two healthy expert backward talkers. 

Backward speech can manifest in different forms depending on the reversed unit. At 

word level, reversal may be done by rearranging phonemes (e.g., basket becomes teksab) or 

syllables (e.g., basket becomes ketbas) (Cowan, Braine, & Leavitt, 1985). At sentence level, 

the above operations may be performed while the constituents are also reversed (i.e., starting 

from the last word and going backwards to the first one, such that basket is fun becomes nuf 

si teksab) or while their syntactic ordering is preserved within the phrase (e.g., basket is fun 

becomes teksab si nuf) (Cowan et al., 1985). Both forms of backward speech may be 

supported by inner visualization of written words or phrases (Coltheart & Glick, 1974; Cowan 

et al., 1985; Cowan & Leavitt, 1982; Jokel & Conn, 1999) or heightened working memory 

abilities (Cowan & Leavitt, 1982; Prekovic et al., 2016). Of note, backward speech proves 

particularly feasible in languages with transparent or relatively transparent orthography, such 
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as Spanish (Seymour, Aro, & Erskine, 2003), as this allows for phonemes to nearly always 

retain their identity (same sound) irrespective of their position and surrounding segments. 

Although a number of studies have examined linguistic aspects of backward speech 

in healthy subjects (Chia & Kinsbourne, 1987; Coltheart & Glick, 1974; Cowan, Braine, & 

Leavitt, 1985; Cowan, Leavitt, Massaro, & Kent, 1982; Cowan & Leavitt, 1982, 1987), 

evidence on its neural signatures proves scant. The few case studies on pathological backward 

speech (Cocchi, Pola, Sellerini, Tosaca, & Zerbi, 1985; Jokel & Conn, 1999; Mitchell, 1903) 

provided but vague references to frontal or temporal lesions. More relevantly, the only study 

exploring in vivo neural correlates of this skill (in a healthy backward speaker with 

exceptional working memory abilities) showed greater activity during backward than during 

forward speech mainly in the bilateral inferior frontal gyrus (IFG), left superior temporal 

gyrus (STG), left supramarginal gyrus (SMG), and the left fusiform gyrus (FFG) (Prekovic 

et al., 2016). Of note, these areas are implicated in phonological processing and verbal 

working memory (Chein, Ravizza, & Fiez, 2003; Prekovic et al., 2016), with the FFG playing 

additional roles in visual imagery (Dehaene, Le Clec’H, Poline, Le Bihan, & Cohen, 2002). 

This evidence suggests that backward speech (and with it, phonemic sequencing skills) would 

critically rely on dorsal stream regions, with less critical involvement of the ventral stream 

(Hickok & Poeppel, 2007; Saur et al., 2008). However, no study has systematically examined 

this issue, let alone integrating neuroanatomical and functional connectivity methods. 

Following the dual-stream model of speech processing (Hickok & Poeppel, 2007; 

Saur et al., 2008), language processing critically relies on two segregated and interactive 

neural routes. Auditory-motor integration processes, including phonological encoding 

operations, would be mainly subserved by the dorsal stream, whereas lexico-semantic access 

and other functions would be critically supported by the ventral stream (Hickok & Poeppel, 

2007; Saur et al., 2008). More particularly, core functions of the dorsal route (including verbal 

repetition and phonemic processes) are subserved by temporo-frontal areas directly 

connected through the long segment of the arcuate fasciculus (AF) (Catani, Jones, & Ffytche, 

2005; Catani & Mesulam, 2008; Turken & Dronkers, 2011) and by two indirect segments: a 

parieto-temporal segment (posterior segment of the AF) and a parieto-frontal one (anterior 

segment of the AF) (Catani & Mesulam, 2008; Catani et al., 2005; Turken & Dronkers, 2011). 

On the other hand, the ventral stream comprises temporo-frontal areas connected through the 

inferior longitudinal fasciculus (ILF), the inferior fronto-occipital fasciculus (IFOF), and the 

uncinate fasciculus (UF) (Catani & Mesulam, 2008; Dick, Bernal, & Tremblay, 2014). 

The more critical role of dorsal over ventral stream regions for phonemic sequencing 

is further supported by lesion-symptom analyses in aphasic patients. Indeed, the production 
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of phonemic paraphasias (misplacement of phonemes) and neologisms correlates with 

damage to dorsal regions (Stark et al., 2019), including the STG and SMG (Pilkington et al., 

2017), the precentral and postcentral cortices (Schwartz, Faseyitan, Kim, & Coslett, 2012), 

and the underlying white matter (Han et al., 2016; Pilkington et al., 2017). Conversely, 

semantic paraphasias are more typically associated with ventral lesions, including the left 

middle and inferior temporal gyri (MTG, ITG) (Stark et al., 2019). However, this double 

dissociation is not always so clear cut. For instance, phonological processes also hinge on 

secondary contributions from the ventral stream, especially when dorsal regions are 

overloaded (Lopez-Barroso et al. 2011) or otherwise compromised (López-Barroso & de 

Diego-Balaguer, 2017; Perani et al., 2011; Rauschecker et al., 2009; Torres-Prioris et al., 

2019). Therefore, dorsal but also ventral stream brain regions emerge as potential putative 

sources of diverse phonological-phonetic encoding processes. 

Against this background, we hypothesized that elevated phonemic sequencing skills, 

as exhibited by expert backward speakers, would be mainly associated with distinct brain 

signatures along the dorsal stream, with complementary markers in ventral stream areas. To 

test this conjecture, we profited from access to two expert backward speakers. First, we 

compared these subjects’ language reversing abilities with those of non-expert controls, 

anticipating higher performance in tasks requiring phonemic inversion (i.e., backward 

speech) and assessing the influence of working memory abilities on the predicted effect. 

Second, relying on voxel-based morphometry (VBM) and diffusion tensor imaging (DTI), 

we tested the prediction that backward speakers would exhibit distinct structural 

configurations in dorsal stream regions and tracts (AF), with contributions of ventral stream 

areas and associated white matter tracts (ILF, IFOF, and UF). Third, we relied on functional 

connectivity analysis to explore whether dorsal and ventral stream regions also exhibited 

distinct patterns of resting-state coupling in both backward speakers. Briefly, building on this 

multidimensional approach, the present study seeks to offer novel insights on the neural 

underpinnings of phonological-phonetic encoding, in general, and phonological sequencing 

skills, in particular. 

Methods 

Participants 

The study focused on two native Spanish speakers with an exceptional ability to 

reverse words and sentences, together with a sociodemographically matched control group. 

Backward speaker 1 (BS1) was a 43-year-old left-handed man with 17 years of formal 

education who worked as a system engineer. He had normal hearing and vision. Except for a 
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period of developmental stuttering between ages 10 and 12, he reported no history of other 

learning difficulties, psychiatric conditions or neurological disorders. BS1 realized that he 

could easily reverse words at age 14, in the absence of any explicit learning on this skill. 

Throughout his adulthood, he has constantly made deliberate (non-pathological) use of 

backward speech daily without resorting to any conscious strategy. For reversing words, he 

would rearrange each phoneme from last to first. For instance, he reversed the word banana 

as ananab. He stated that he typically reverses simple words effortlessly, whereas long words 

(e.g., structuralism) or long sentences prove more demanding. Notably, when faced with a 

sentence, he states that he can opt to reverse all words while keeping or reversing their 

original ordering. Yet, for the propose of assessment he was asked to employ the more 

frequently used form. Then, sentences reversal was done by keeping word´s original order. 

None of BS1’s relatives have ever presented this ability.  

Backward speaker 2 (BS2) was a 50-year-old right-handed man with 14 years of 

formal education who worked as a photographer. His hearing and vision were normal, and he 

reported no history of learning difficulties or neuropsychiatric disorders. He effortlessly 

developed the ability to voluntarily reverse speech at age 8. Although he uses backward 

speech frequently, he has never explicitly practiced this skill. As in the case of BS1, his 

reversals operate on the phonemic (rather than the graphemic) level. His backward speech 

was also based on the words’ phonological structure but, when reversing sentences, he only 

reversed them from the last to the first word. He reported that he cannot identify any specific, 

conscious strategy supporting his backward speech, although he declared being able to 

internally “see” flashes of the written words. The only family member with a similar skill 

was his 19-year-old daughter, although our behavioral assessment revealed that her 

performance was substantially poorer than BS2’s (unpublished data). 

The control sample for the behavioral study comprised 18 healthy men with a mean 

of 38.9 (SD = 10.9) years of age and an average of 15.7 (SD = 1.8) years of education. All 

subjects showed normal hearing and normal or corrected-to-normal vision, and reported no 

history of learning difficulties, psychiatric or neurological disorders, or drug or alcohol abuse. 

This sample was matched with both experimental subjects in terms of age (BS1: Crawford’s 

t, two-tailed = .277; p = .785; BS2: Crawford’s t, two-tailed = .902; p = .379) and education 

level (BS1: Crawford’s t, two-tailed = .703; p = .491; BS2: Crawford’s t, two-tailed = - .919; 

p = .370). 

A different control group composed by 24 participants was used for the 

neuroimaging analyses, yet the number of participants included in each analysis varied (see 

section 2.4 below). All control participants were healthy men meeting the same inclusion and 
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exclusion criteria detailed above. These participants had a mean age of 32 years old (SD = 

15.1) and an average of 15 (SD = 3.1) years of education. The whole sample was matched 

with both subjects for age (BS1: Crawford’s t, two-tailed = .715; p = .482; BS2: Crawford’s 

t, two-tailed = 1.169; p = .254) and education level (BS1: Crawford’s t, two-tailed = .632; p 

= .533; BS2: Crawford’s t, two-tailed = - .316; p = .754). 

The study was approved by the Ethics Committee of the Institute of Cognitive 

Neurology (a host institution of the Institute of Cognitive and Translational Neuroscience). 

All participants provided written informed consent in accordance with the Declaration of 

Helsinki. 

Behavioral assessment 

The behavioral assessments comprised two sets of tasks, aimed to test general 

cognitive skills as well as backward and forward language abilities. Testing was conducted 

in a quiet room over a single session lasting roughly 2 hours per subject. All evaluations were 

performed by the same examiner.  

General cognitive tasks 

Reasoning test: Non-verbal reasoning was assessed through the Matrix Reasoning 

subtest from the Wechsler Adult Intelligence Scale-III (WAIS-III) (Wechsler, 2002). In each 

trial, participants were presented through a PC screen with an incomplete array of shapes and 

had to point to one out of six possible pieces to complete the pattern. The test consists of 26 

items, scoring 1 point for each correct answer and 0 for incorrect ones. Direct scores were 

transformed to a typified age-adjusted scale with a maximum possible score of 19. 

Forward and backward digit span: These tasks were taken from WAIS-III 

(Wechsler, 2002). In the forward digit span task, subjects were required to repeat a sequence 

of numbers in the same order as the examiner. Stimuli were read aloud by the examiner. The 

number of digits presented ranged from two to nine, with two trials for each array, yielding a 

total of 16 trials. The maximum possible score was 16, with one point for each correct trial. 

For its part, the backward digit span task required subjects to repeat the sequence of digits in 

reverse order. The number of digits presented ranged from two to eight, with two trials for 

each number of digits (i.e., two sequences of two digits, two sequences of three digits, and so 

on), with a total of 14 trials. The maximum possible score was 14, with one point for each 

correct sequence. The task was interrupted if the subject could not complete any of the two 

trials with the same number of items. Given that typified age-adjusted scores are only 

available for the digit summed score (i.e., forward plus backward), direct scores were used.  
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 Operational span task: This task (Unsworth, Heitz, Schrock, & Engle, 2005; 

Unsworth, Redick, Heitz, Broadway, & Engle, 2009) measures WM storage-plus-processing 

capacity using letters as to-be-remembered stimuli and math operations as the distractor task. 

Scores were calculated by summing the number of letters recorded correctly and in the right 

order (number of correct responses) and summing up the number of mistakes in math 

operations (speed and accuracy), named math errors (Unsworth et al. 2005). As in previous 

reports, only subjects with a performance of 85% or higher in the math operations entered the 

analysis (Unsworth et al. 2005) (for more details, see Supplementary information, section 1). 

This and next task were presented through E-prime 2.0 running on a Windows 7 PC.  

 Symmetry span task: The symmetry span task (Kane et al., 2004; Unsworth et al., 

2009) was used to measure WM storage-plus-processing capacity when employing visuo-

spatial information. This test resembles the operational span task but, in this case, participants 

were required to remember locations within a grid and judge whether a figure was 

symmetrical in its vertical axis or not as distractor. Two scores were calculated, namely: the 

number of correct positions and of symmetry errors. The former was obtained by summing 

up the number of locations remembered correctly and in the right presentation order; the latter 

was established by adding the number of accuracy and speed errors committed in the 

symmetry judgment trials. The criterion to determine speed errors was the same as that used 

for the operation span task but based on the time employed in the symmetry judgment trials 

(for more details, see Supplementary information, section 1). 

Backward and forward language tasks 

Stimuli for the backward and forward language tasks were presented binaurally 

through Panasonic on-ear stereo headphones through an PC running with Windows 7. All 

stimuli were created via a computerized voice generator (text-to-word app included in 

Macintosh computers) and delivered through Psychtoolbox on Matlab software (v. 2016b) in 

.wav format, with a sampling rate of 44100 Hz. The volume of presentation was adjusted for 

each subject individually. In each task, the proportion of correct responses for each subject 

was calculated and compared to the mean proportion obtained by the control group. 

Forward and backward word and pseudoword repetition: These two tasks were 

used to assess the subjects’ capacity to repeat stimuli by sequencing their phonemes in the 

typical and reverse (i.e., backward) order. Importantly, in the latter case, instructions 

indicated that responses had to include all phonemes, from last to first. The forward repetition 

task involved 80 items (40 words, 40 pseudowords) presented in increasing length. The mean 

duration of stimuli for this task was .582 s (SD = .168). For its own part, the backward 
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repetition task comprised 120 stimuli (40 words presented in typical order [e.g., carta, 

meaning ‘letter’], 40 words presented in reverse order [e.g., efej [for jefe], meaning ‘boss’], 

and 40 pseudowords [e.g., baisa]), also presented in increasing length. 

The sets used for both directions contained 20 high-frequency words, with 10 short 

(1-2 syllables) and 10 long (3-6 syllables) items; 20 low-frequency words, with 10 short (1-

2 syllables) and 10 long (3-6 syllables) items; 20 pseudowords composed of high-frequency 

syllables, with 10 short (2-3 syllables) and 10 long (4-5 syllables) items; and 20 pseudowords 

made up of low-frequency syllables, with 10 short (2-3 syllables) and 10 long (4-5 syllables). 

Additionally, the backward repetition task included another 40 words presented in reserve 

order, with 20 high-frequency and 20 low-frequency items. The use of increasingly long 

stimuli allowed examining the subjects’ reversing span. The mean duration of stimuli for task 

2 was .631 s (SD = .194). 

The words used in the forward and backward tasks did not significantly differ in 

terms of mean frequency (log frequency; forward task: M = 1.34, SD = .638; backward task: 

M = 1.36, SD = .633) [t(118) = -.176, p = .860], familiarity (forward task: M = 5.52, SD = 

.800; backward task: M = 5.40, SD = .877) [t(118) = .727, p = .469], imageability (forward 

task: M = 4.90, SD = 1.16; backward task: M = 4.83, SD = 1.29) [t(118) = .291, p = .772] or 

concreteness (forward task: M = 4.89, SD = 1.08; backward task: M = 4.88, SD = 1.10) [t(118) 

= .042, p = .966]. Also, the frequency of high-frequency (M = 1.93, SD = .284) and low-

frequency (M = .755, SD = .164) words was significantly different [t(94.23) = 27.76, p < 

.001]. Crucially, however, both lists were similar in familiarity [t(118) = 1.06, p = .289] and 

imageability [t(118) = -1.74, p = .085]. Pseudowords were extracted from a previous report 

(Aguado, 2005). 

Each trial began with a white fixation cross appearing for 300 ms over a black screen, 

followed by the auditory stimulus (which was administered during the display of the black 

screen). The maximum response time given before the start of the following trial was 3 s for 

forward and 7 s for backward trials. Subjects’ responses were audio-recorded and then 

examined individually by one of the authors. Only responses that completely matched the 

expected answer (i.e., those that matched all the phonemes presented, in either forward or 

backward direction) were categorized as correct and given 1 point. Otherwise, responses were 

categorized as incorrect and given 0 points.  

Forward and backward sentence repetition: The forward and backward sentence 

repetition tasks were used to assess phoneme sequencing ability in both normal and reserve 

order, but at the sentential level. Each of these tasks consisted of 25 sentences of increasing 

length (with five-trial sets comprising sentences of four, six, eight, ten, and 11-12 words). 
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The mean duration of stimuli for the two lists used in this task was 2.436 s (SD = .923) for 

list 1 and 2.416 s (SD = .844) for list 2. Here, too, the use of increasingly long sentences 

allowed assessing the subjects’ reversing span. Sentences for both lists had similar 

grammatical structure (all were declarative, indicative, affirmative, unmarked, and endowed 

with one coordinated phrase), same number of words (n = 197), frequency of contained words 

(log frequency; list 1: M = 2.70, SD = .1.45; list 2: M = 2.66, SD = 1.50) [t(392) = .323, p < 

.747] and mean number of phonemes in contained words (list 1: M = 4.60, SD = 2.96; list 2: 

M = 4.62, SD = 2.95) [t(392) = .034, p < .973]. section 2. In all analyses, alpha levels were 

set at p < .05. 

Lexical decision task: This task was used to assess lexical access for words 

presented in regular or reverse order. It comprised 96 stimuli, namely: 24 words in normal 

order, 24 words in reverse order, and 48 pseudowords. Participants were instructed to press 

the “yes” key when a real word appeared on the screen (regardless of whether it was spelt 

forwards or backwards) and to press the “no” key when a pseudoword appeared. Stimuli 

remained on the screen for 300 ms and subjects had up to 2.5 s to respond. The inter-stimulus 

interval varied randomly between 1.5 and 2.5 s. Words written forward and backward were 

similar in mean frequency [t(45.54) = .863, p = .393], number of phonemes [t(46) = -.451, p 

= .654], familiarity [t(46) = -.948, p = .348], and imageability [t(46) = -192, p = .849]. 

Pseudowords were created by changing one phoneme to each real-word stimulus. 

Performance was established by calculating the percentage of correct responses (accuracy) 

and response times (RTs). 

Neuroimaging data acquisition 

MRI acquisition and preprocessing steps are reported following guidelines from the 

Organization for Human Brain Mapping (OHBM) (Nichols et al., 2017; Poldrack et al., 

2017). Whole-brain T1-weighted anatomical 3D scans, spin echo volumes, were acquired in 

a 1.5-T Phillips Intera scanner with a standard eight-channel head coil. Scans were acquired 

parallel to the plane connecting the anterior and posterior commissures. The acquisition 

parameters used were: repetition time (TR) = 7.489 ms; echo time (TE) = 3.420 ms; flip angle 

= 8°; 196 slices, matrix dimension = 256 × 240; voxel size = 1 × 1 × 1 mm3; sequence 

duration = 7 min. Additionally, diffusion tensor images (DTI) were acquired with a twice-

refocused, single-shot, echo-planar imaging pulse sequence. The tensor was computed using 

32 non-collinear diffusion directions (b = 800 s/mm2) that were maximally spread by 

considering the minimal energy arrangement of point charges on a sphere, and one scan 

without diffusion weighting (b = 0 s/mm2, b0). Finally, we acquired functional MRI resting-
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state recordings with 33 axial slices (5-mm thick). Functional spin echo volumes were 

registered in sequential ascent, parallel to the anterior-posterior commissures, covering the 

whole-brain, with the following parameters: TR = 2.777 ms; TE = 50 ms; flip angle = 90; 33 

slices, matrix dimension = 64 × 64; voxel size in plane = 3.6 mm × 3.6 mm; slice thickness 

= 4 mm; sequence duration = 10 min; number of volumes = 209. Participants were asked to 

keep their eyes closed and to avoid moving or falling asleep during the acquisition of the 

functional volumes. 

The two backward speakers underwent the complete scanning session. Structural 

(T1-weighted) images were obtained from all 24 controls, while diffusion tensor image (DTI) 

and resting-state functional connectivity (rsFC) recordings could be obtained only for 18 and 

15 of them, respectively. Importantly, the control group used for each analysis remained 

sociodemographically matched with both subjects (for more details, see Supplementary 

information, section 1). 

Neuroimaging analyses 

Whole-brain voxel-based morphometry (VBM) 

Whole brain voxel-based morphometry (VBM) was used to quantify differences in 

grey matter volume between each backward speaker and the control group (Ashburner & 

Friston, 2000). Preprocessing analyses were performed using the computational anatomy 

toolbox (CAT12: http://www.neuro.uni-jena.de/cat/) for the Statistical Parametric Mapping 

(SPM12: http://www.fil.ion.ucl.ac.uk/spm/) software, running on Matlab (2016b). First, all 

T1 weighted images were manually reoriented to set the origin to the anterior commissure 

using the Reorient function from SPM12. Then, the standard preprocessing pipeline of 

CAT12 was used. Briefly T1-weighted images were segmented, corrected for signal 

inhomogeneity and normalized using the Diffeomorphic Anatomic Registration Through 

Exponentiated Lie algebra algorithm (DARTEL). Then, the corresponding normalization 

parameters were applied to the segmented gray matter images. Subsequently, the resulting 

gray matter normalized images were modulated by their Jacobian determinants and spatially 

smoothed (FWHM = 10 mm), which allow direct comparison of regional differences in the 

volume of gray matter volume (Mechelli, Price, Friston, & Ashburner, 2005). The total 

intracranial volume (TIV) was calculated as the sum of the gray matter, white matter, and 

cerebrospinal fluid. Finally, images were visually inspected. 

Statistical analyses were performed on Matlab (2016b). First, the TIV of each 

participant was regressed out from the intensity of each voxel of the smoothed grey matter 

images. The residual of this analysis was used for the statistical analysis. A Crawford t-test 
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was used to compare the intensity of the calculated residual images of each of the two 

backward speakers with the control group. Results are reported with an uncorrected threshold 

of p < .001 and a minimum cluster threshold of 50 continuous voxels, as previously reported 

(Kanai, Feilden, Firth, & Rees, 2011; Machino et al., 2014).  

Tractography: Automatic fiber quantification (AFQ) 

Diffusion tensor imaging (DTI) preprocessing 

DTI preprocessing started by correcting for head motion and eddy current distortions 

through the FMRIB Diffusion Toolbox (FDT), followed by brain extraction via the Brain 

Extraction Tool (BET; Smith, 2002) –both toolboxes are part of the FMRIB Software Library 

(FSL 5.0.1; www.fmrib.ox.ac.uk/fsl/; Jenkinson et al., 2012). Reconstruction of the diffusion 

tensor was carried out using least-square estimation algorithm included in the Diffusion 

Toolkit (Tractvis software, Ruopeng Wang, Van J. Wedeen, TrackVis.org, Martinos Center 

for Biomedical Imaging, Massachusetts General Hospital). Whole-brain tractography used 

an angular threshold of 35 degrees and an FA threshold of 0.15. Finally, fractional anisotropy 

(FA) maps were generated using Diffusion Toolkit for each subject. 

Automatic dissection of white matter pathways 

Automatic virtual dissections were performed using Automated Fiber Quantification 

software (AFQ, https://github.com/jyeatman/AFQ) (Yeatman, Dougherty, Myall, Wandell, 

& Feldman, 2012). Previous studies have shown that automatic dissection using AFQ shows 

high agreement with manual dissection of the white matter tracts (Ripollés et al., 2017; 

Vaquero, Rodríguez-Fornells, & Reiterer, 2016), while affording measures in 100 points 

along the tracts. Different white matter tracts were selected as pathways of interest due to 

their implication in phonological processing. Specifically, the three segments of the AF (long, 

anterior, and posterior) were dissected as dorsal language pathways (Catani, Jones, & 

Ffytche, 2005); while the IFOF, the UF, and the ILF were dissected as ventral language 

pathways (Dick et al., 2014). All tracts were dissected in native space and in both cerebral 

hemispheres.  

The FA maps of BS1, BS2, and the control group (n = 18) were imported into the 

AFQ software package, running in Matlab (2016b). AFQ processing was implemented 

following a standard pipeline mainly consisting in three steps (Yeatman et al. 2012). First, 

whole-brain tractography was created via a deterministic algorithm with a fourth Runge-

Kutta path integration method and 1-mm fixed step size (Mori, Crain, Chacko, & Van Zijl, 

1999). Second, tracts were segmented targeting two regions of interest (ROIs) defined in MNI 
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standard space. Only fibers passing through the two ROIs were assigned to a specific tract. 

Finally, tract refinement was performed in two steps: initially, the dissected tracts were 

compared, for each subject, with a probabilistic atlas of white matter tracts (Hua et al., 2008), 

and aberrant streamlines were discarded; then, a filter was applied establishing that 

streamlines that were spatially deviated 4 SDs from the core tract were removed. Thereupon, 

mean diffusivity (MD) and FA were calculated at 100 equidistant nodes along each of the six 

tracts of interest in each hemisphere. FA and MD are non-specific global indexes of diffusion. 

FA reflects the directionality coherence of water molecule diffusion, and it is considered an 

index of microstructural white matter integrity sensitive to factors such as axonal integrity 

and density, extent of myelination, fiber diameter, and fiber packing (Beaulieu, 2002; 

Pierpaoli & Basser, 1996). MD reflects the magnitude of diffusion; thus, higher MD values 

mean higher diffusivity. Generally, lower fiber integrity is characterized by decreased FA 

and increased MD, although this is likely an oversimplification (Soares, Marques, Alves, & 

Sousa, 2013). In addition, given that MD is calculated as the mean of the three eigenvalues 

of the diffusion tensor, when significant differences in MD between backward and controls 

were found, we looked at axial (AD) and radial diffusivity (RD) in these nodes in order to 

better distinguish the underlying source of variability. This allowed us to study the 

statistically significant differences between each backward speaker and the controls in any 

part of the white matter microstructure, making point-by-point comparisons along the tract. 

Comparisons between the subjects and the control group were performed using Crawford’s 

two-tailed t-test. In order to avoid reporting false positives due to the high number of 

comparisons (i.e., 12 tracts), Bonferroni correction for multiple comparisons was applied. 

Therefore, significant differences were reported at p < .00416. Given that we looked at 100 

nodes for each tract, an additional cluster correction was applied such that only clusters 

containing at least 5 continuous significant nodes (at p < .00416) were reported (see Banfi et 

al., 2019 for a similar approach). 

Seed-to-voxel resting-state functional connectivity (rsFC) analysis 

Resting-state fMRI data and the T1-weighted images of the backward speakers and 

the control group (n = 15) were preprocessed on SPM12 following a standard preprocessing 

pipeline. The preprocessing steps included: AC-PC orientation for the functional and the T1-

weighted images, realignment of the functional volumes to the first volume, coregistration 

between the functional and the structural T1-weighted image, segmentation of the T1-

weighted image into different tissues, normalization of the functional and structural images 

to the MNI space using the parameters derived from the segmentation of the T1-weighted 
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image, and smoothing of the functional volumes with an 8-mm full-width half-maximum 

kernel. 

RsFC analyses were performed with the CONN functional connectivity toolbox 

v.18a (www.nitrc.org/projects/conn, Whitfield-Gabrieli & Nieto-Castanon, 2012), through a 

gold-standard seed-to-voxel approach (Cole, Smith, & Beckmann, 2010). Normalized and 

smoothed functional data were band-pass filtered (0.008-0.09Hz) to remove low-frequency 

drift and high-frequency noise effects. The mean timeseries from each seed ROI was used as 

a predictor in a multiple regression model at each voxel of the brain. Different confound 

regressors were also included in the model to remove non-interest signals associated to 

cerebrospinal fluid, white matter, head movement (six motion correction parameters derived 

from the realignment preprocessing step), and scrubbing. CONN computed the Fisher-

transformed bivariate correlation coefficients between the fMRI signal in each ROI (averaged 

across all voxels within the ROI) and every voxel of the brain, resulting in a connectivity map 

that represents all other voxels that are correlated with the seed ROI. The seed ROIs were 6-

mm spheres selected from the ROIs available in the CONN toolbox, based on the FSL 

anatomical atlas. The selected ROIs and the coordinates of the center of the spheres were: left 

IFG pars triangularis (-50, 29, 9), right IFG pars triangularis (52, 28, 8), left IC (-37, 2, 1), 

right IC (38, 3, -1), left SMG (-60, -39, 31), right SMG (62, -35, 32), left pSTG (62, -24, 2) 

and right pSTG (-63, -30, 4). The ROIs selected as seeds for the seed-to-voxel analysis 

corresponded to brain areas known to be involved in phoneme sequencing, phonological 

encoding, and speech production (Baldo, Wilkins, Ogar, Willock, & Dronkers, 2011; Gow & 

Nied, 2014; Hickok & Poeppel, 2007; Siok, Jin, Fletcher, & Tan, 2003; Ueno & Lambon 

Ralph, 2013; Vaden, Piquado, & Hickok, 2011).  

Functional connectivity maps for each seed ROI were used for second-level analysis 

based on one-way ANCOVAs with age as a covariate, as implemented in the CONN toolbox, 

in order to study differences between each subject and the control group. Since analysis were 

performed for eight seeds (four in each hemisphere), cluster-level FDR correction was 

adjusted to p < .00625 in order to diminish family-wise error rate. This resulted from dividing 

.05 α-value by the eight tested seeds (i.e., Bonferroni correction). Thereby, results are 

reported using a whole-brain cluster-level FDR correction (p < .00625) for voxel-wise 

analyses at p < .001 (uncorrected) (Friston, Worsley, Frackowiak, Mazziotta, & Evans, 1994). 

Results 

Behavioral results 

http://www.nitrc.org/projects/conn
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General cognitive tasks 

Reasoning test: No significant differences were observed between the backward 

speakers and the control group (BS1: Crawford’s t, two-tailed = .360; p = .723; BS2: 

Crawford’s t, two-tailed = -1.79; p = .091).  

Memory tasks: Results from the forward digit span task revealed that, relative to 

controls, performance was higher for BS1 (Crawford’s t, two-tailed = 4.67; p < .001) and 

similar for BS2 (Crawford’s t, two-tailed = -.386; p < .704). As regards backward digit span, 

no significant differences were observed between each subject and controls (BS1: Crawford’s 

t, two-tailed = 1.76; p = .095; BS2: Crawford’s t, two-tailed = -.133; p = .895).   

Operational span task: Three subjects from the control group were excluded from 

data analysis because they failed to reach the minimum performance level of 85% on the 

math operations. Both backward speakers successfully reached the criterion. BS1 did not 

significantly differ from controls in either correctly recalled items (Crawford’s t, two-tailed 

= .379; p = .710) or math errors (Crawford’s t, two-tailed = .503; p = .622). For his part, 

compared with controls, BS2 recalled fewer items (Crawford’s t, two-tailed = -3.71; p = .002) 

but did not differ in the number of math errors (Crawford’s t, two-tailed = -.951; p = .357).  

Symmetry span task: One subject from the control group was excluded from data 

analysis because he failed to reach the 85%-accuracy criterion on the symmetry judgement 

trials. Both backward speakers successfully reached the criterion. Relative to controls, BS1 

showed similar performance in both correctly recalled positions (Crawford’s t, two-tailed = 

.629; p = .538) and symmetry errors (Crawford’s t, two-tailed = .313: p = .758). Instead, BS2 

showed lower performance in correctly recalled positions (Crawford’s t, two-tailed = -2.51; 

p = .023), with no differences in the rate of symmetry errors (Crawford’s t, two-tailed = 1.01; 

p = .323). For more statistical details, see Supplementary information, section 2 (Table S1). 

Backward and forward language tasks 

Forward and backward word and pseudoword repetition: Results from forward 

repetition revealed no significant differences between the backward speakers and controls for 

both words (BS1: Crawford’s t, two-tailed = .000; p = 1; BS2: Crawford’s t, two-tailed = 

.487; p = .500) or pseudowords (BS1: Crawford’s t, two-tailed = .893; p = .384; BS2: 

Crawford’s t, two-tailed = .000; p = 1) (Figure 1, panel A1). Conversely, backward repetition 

revealed higher accuracy for the two backward speakers than controls in all stimulus types, 

namely: words presented forwards (BS1: Crawford’s t, two-tailed = 5.19; p < .001; BS2: 

Crawford’s t, two-tailed = 5.94; p < .001), words presented backwards (BS1: Crawford’s t, 
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two-tailed = 5.73 ; p < .001; BS2: Crawford’s t, two-tailed = 4.87; p < .001), and pseudowords 

(BS1: Crawford’s t, two-tailed = 15.72; p < .001; BS2: Crawford’s t, two-tailed = 11.48; p < 

.001) (Figure 1, panel B1). For more statistical details, see Supplementary information, 

section 2 (Table S2 and Table S3).  

Further analyses were performed including each of the four memory tasks as 

covariates (i.e., forward and backward digit span and the operational and symmetry span 

tasks). All results remained significant (i.e., higher accuracy for backward speakers) after 

controlling for covariables (i.e., memory tasks) –for more statistical details, see 

Supplementary information, section 2 (Table S4). 

Forward and backward sentence repetition: Results of forward sentence repetition 

revealed no accuracy differences between the two backward speakers and controls (BS1: 

Crawford’s t, two-tailed = -.221; p = .827; BS2: Crawford’s t, two-tailed = .221; p = .827) 

(Figure 1, panel A2). Contrariwise, backward sentence repetition proved significantly more 

accurate for both BS1 (Crawford’s t, two-tailed = 65.58; p < .001) and BS2 (Crawford’s t, 

two-tailed = 41.63; p < .001) (Figure 1, panel B2). In fact, the control group showed a floor 

effect, with only two participants being able to reverse only one short (three-word) sentence. 

For more statistical details, see Supplementary information, section 2 (Table S2 and Table 

S3).  

Further analyses were performed including each of the four memory tasks as 

covariates. The accuracy of both subjects was still significantly higher than that of the control 

group when controlling for memory capacity –for statistical details, see Supplementary 

information, section 2 (Table S4). 

Lexical decision task: Accuracy for words written in forward direction did not differ 

between controls and either BS1 (Crawford’s t, two-tailed = -1.35; p = .195) or BS2 

(Crawford’s t, two-tailed = .810; p = .429) (Figure 1, panel A3). Similarly, neither subject 

had significant differences in RT (BS1: Crawford’s t, two-tailed = -1.23; p = .235; BS2: 

Crawford’s t, two-tailed = -1.07; p = .300) (Figure 1, panel A4). Accuracy was also similar 

for words written backward between controls and both BS1 (Crawford’s t, two-tailed = -1.83; 

p = .084) and BS2 (Crawford’s t, two-tailed = .230; p = .821) (Figure 1, panel B3). Contrarily, 

RT was lower for BS1 (Crawford’s t, two-tailed = -2.67; p = .016) but not for BS2 

(Crawford’s t, two-tailed = -.880; p = .391) (Figure 1, panel B4). Finally, accuracy for 

pseudowords did not differ between controls and either subject (BS1: Crawford’s t, two-tailed 

= 1.74; p = .099; BS2: Crawford’s t, two-tailed = .759; p = .458). Still, this condition yielded 

lower RT for BS1 (Crawford’s t, two-tailed = -2.13; p = .048) but not for BS2 (Crawford’s t, 
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two-tailed = -1.42; p = .174). For more statistical details, see Supplementary information, 

section 2 (Table S5). 

Figure 2. Behavioral results. The figure shows outcomes for the two backward speakers and controls 

in the repetition (tasks 1-4) and lexical decision (LD) tasks, both in forward (A1, A2, A3, A4) and 

backward (B1, B2, B3, B4) direction. The asterisk (*) indicates significant differences at p < .05.  

Neuroimaging results 

Whole-brain voxel-based morphometry (VBM) analysis 

Results from the whole-brain VBM analysis revealed areas of significantly greater 

grey matter volume in both backward speakers compared to controls (p < .001, uncorrected; 

extent threshold = 50 voxels). No significant areas with lower grey matter volume were 

identified. For BS1, this effect was found in a cluster over the boundary between the left 

parahippocampal cortex and the FFG (Figure 2A). For BS2, significantly greater grey matter 

volume was found in several clusters, spanning the bilateral MFG and IFG, the right 

precuneus, and the right cuneus (Figure 3A) –for details, see Supplementary information, 

section 2 (Table S6 and S7). 

Tractography results: Automatic Fiber Quantification (AFQ) 

Diffusion analysis using AFQ revealed significant differences between both 

backward speakers and the control group in MD (see Tables S8 and S9). Differences in FA 

are not reported as they did not survive the cluster correction –arguably because FA requires 

larger samples than MD to capture significant effects (De Santis, Drakesmith, Bells, Assaf, 

& Jones, 2014). Figures 2B and 3B show the studied tracts for BS1 and BS2, respectively. 

Relative to controls, BS1 showed higher MD values in the left and right posterior AF (Figure 
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2C). For his part, compared with controls, BS2 exhibited increased MD in the left posterior 

AF and the right UF (Figure 3C) – for details, see Supplementary information, section 2 

(Table S8 and S9). 

In order to further explore the nature of the differences in MD, we explored the 

patterns of AD and RD in the significant MD clusters. On the one hand, nodes of significant 

greater MD in the left posterior AF segment of BS1 compared to control showed higher RD 

than AD values. Figure 2C illustrates this pattern, where the MD (black line) increases in 

parallel to RD (blue dotted line) in the red shadowed area. The same pattern was seen in the 

significant MD cluster found for this subject in the right AF posterior segment (see in Figure 

2C the corresponding plot for the right AF posterior segment). On the other hand, and in the 

same line, in the BS2, the statistically significant increase in MD found for the left AF 

posterior segment was accompanied by an increase in RD (as illustrated in Figure 3 C, left 

panel). Contrary, in the right UF the increase in MD (Figure 3C, right panel, red shadowed 

area) occurred together with an increase in AD while RD remained low. 

Seed-to-voxel resting-state functional connectivity (rsFC) analysis 

Results revealed significant differences in functional connectivity between each 

backward speaker and the control group. For BS1, greater connectivity was found between 

five seeds and several brain areas (Figure 2D) –for details, see Supplementary information, 

section 2 (Table S10). No seeds were found with significantly decreased functional 

connectivity. Specifically, compared to controls, BS1 exhibited increased connectivity of (i) 

the left IFG seed with right dorsal and ventral areas, including part of the SMG, IC, premotor 

ventral area, MTG and ITG; (ii) the right IFG seed with domain-general areas including 

bilateral parietal, anterior frontal, anterior cingulate and precuneus cortex, in addition to the 

right MTG and ITG; (iii) the left IC seed with bilateral occipital cortex, bilateral anterior 

frontal cortex, right cerebellum and right ITG; (iv) the right IC seed with bilateral frontal 

areas and right posterior ITG; and (v) the right SMG seed with bilateral anterior frontal areas, 

left MFG and IFG. No significant differences between BS1 and controls were found for the 

seeds located in the right or left posterior STG, or the left SMG. 

BS2 also showed greater connectivity, relative to controls, between specific seeds 

and, mostly, with associative visual posterior regions (Figure 3D) –for details, see 

Supplementary information, section 2 (Table S11). Specifically, stronger connectivity was 

found between (i) the left IC seed and large clusters involving the left pSTG and bilateral 

lateral occipital cortex and cuneus; (ii) the right IC seed and the right inferior lateral occipital 

cortex and bilateral cuneus; and (iii) the left SMG seed and the left occipital pole. Also, 
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decreased connectivity was observed between the left IC seed and clusters involving the left 

cerebellum. No further significant differences were found. 

Figure 3. Structural and functional neuroimaging results from Backward speaker 1. A. Voxel-based 

morphometry (VBM) results. Relative to controls, Backward speaker 1 showed significantly greater 

grey matter volume (red-yellow colors) in the left parahippocampal and fusiform gyri. The color bar 

represents t-values. Images are shown in standard space over a MNI template available in MRICRON 

software. B. Deterministic tractography reconstruction of the dorsal and ventral language white matter 

tracts in Backward speaker 1, in the left and right hemispheres, in native space. C. Profiles of tracts 

showing nodes with significantly different mean diffusivity (MD) in Backward speaker 1 compared to 

controls (red shadowed areas). The black solid line represents MD. Note that nodes with significant 

greater MD also show increments in radial diffusivity (RD, dotted blue line) but not in axial diffusivity 

(AD). Nodes are ordered in the dorsal-ventral direction. Tracts are shown using a three-dimensional 

rendering derived from Automated Fiber Quantification (AFQ) software, depicting a core fiber 

represented as a 5-mm-radius tube (color-coded based on p-values at each node along the tract). D. 

Seed-to-voxel functional connectivity results. Orange-yellow color indicates voxels showing increased 

functional connectivity with the seed in Backward speaker 1 compared to controls. The seeds are 

indicated for each analysis with a blue sphere. L: left; R: right; IFG: inferior frontal gyrus; IC: insular 
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cortex; SMG: supramarginal gyrus; AF: arcuate fasciculus; IFOF: inferior fronto-occipital fasciculus; 

UF: uncinated fasciculus; ILF: inferior longitudinal fasciculus. 

 

Figure 4. Structural and functional neuroimaging results from Backward speaker 2. A. Voxel-based 

morphometry (VBM) results. Relative to controls, Backward speaker 2 showed significantly greater 

grey matter volume (red-yellow colors) in the left inferior and middle frontal gyri and in the right 

inferior frontal gyrus. The color bar represents t-values. Images are shown in standard space over a MNI 

template available in MRICRON software. B. Deterministic tractography reconstruction of the dorsal 

and ventral language white matter tracts in Backward speaker 2, in the left and right hemispheres, in 

native space. C. Profiles of tracts showing nodes with significant different mean diffusivity (MD) in 

Backward speaker 2 compared to controls (red shadowed areas). The black solid line represents MD. 

Note that for the left posterior AF nodes with significantly greater MD also show increments in radial 

diffusivity (RD, dotted blue line). The right UF nodes with significantly greater MD display higher axial 

diffusivity (AD; dotted green line). Nodes are ordered in the dorsal-ventral direction for the AF posterior 

segment and in ventral-dorsal direction for the UF. Tracts are shown using a three-dimensional 

rendering derived from Automated Fiber Quantification (AFQ) software, depicting a core fiber 

represented as a 5-mm-radius tube (color-coded based on p-values at each node along the tract). D. 

Seed-to-voxel functional connectivity results. Orange-yellow color indicates voxels showing increased 

functional connectivity with the seed in Backward speaker 2 compared to controls. The seeds are 

indicated for each analysis with a blue sphere. L: left; R: right; IC: insular cortex; SMG: supramarginal 
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gyrus; AF: arcuate fasciculus; IFOF: inferior fronto-occipital fasciculus; UF: uncinated fasciculus; ILF: 

inferior longitudinal fasciculus. 

Discussion 

This study examined neurocognitive correlates of expertise in backward speech as a 

window into the mechanisms subserving phonological encoding, in general, and phoneme 

sequencing, in particular. Converging data from behavioral, structural and functional 

connectivity analyses consistently pointed to components of the dorsal stream (with 

complementary involvement of ventral, domain-general, and associative-visual mechanisms) 

as key signatures of elevated phoneme sequencing skills. These results illuminate an 

understudied dimension of phonological-phonetic encoding while informing models of 

language-related expertise. 

Relative to controls, both subjects had significantly higher accuracy in all backward 

repetition tasks, with BS1 also exhibiting faster recognition of reversed written words. 

Considering that neither subject showed advantages in any of the forward repetition tasks, 

this confirms that they were specifically gifted for (re)sequencing of phonemes rather than 

other general phonological operations. Importantly, too, this selective advantage for 

backward speech remained significant after covarying for WM outcomes, indicating that the 

subjects’ behavioral superiority was likely driven by phonological skills proper rather than 

by memory abilities, as described for other cases (Prekovic et al., 2016). In line with evidence 

from other models of expert language processing (Santilli et al., 2019; Yudes, Macizo, 

Morales, & Bajo, 2013), this finding suggests that linguistic enhancements due to recurring 

practice may emerge only for specifically taxed functions, irrespective of other domain-

general skills (García, Muñoz, & Kogan, 2019). Furthermore, greater accuracy in reversing 

tasks may partly reflect the subjects’ learning of (reversed) phoneme sequences, such that 

their processing as chunks (Segawa, Masapollo, Tong, Smith, & Guenther, 2019) would 

lower memory demands. 

These behavioral advantages were accompanied by specific structural and functional 

brain patterns. Interestingly, beyond some commonalities, each backward speaker presented 

distinct neural signatures, suggesting that similar behavioral advantages may result from 

different plastic adaptations (or from distinctive pre-existing differences) which, in turn, may 

reflect contrastive underlying strategies (Noppeney, Friston, & Price, 2004). 

Regarding volumetric differences, comparisons with controls revealed greater grey 

matter volume in the parahippocampal/fusiform gyri for BS1 and in the bilateral MFG and 

IFG, right precuneus, and right superior parietal cortex for BS2. The 
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parahippocampal/fusiform gyri are involved not only in episodic memory and visuospatial 

processing (Aminoff, Kveraga, & Bar, 2013), but also in successful verbal memory encoding 

(Strange, Otten, Josephs, Rugg, & Dolan, 2002) and working memory processing (Bergmann, 

Rijpkema, Fernández, & Kessels, 2012). Tentatively, this might constitute a substrate 

mediating BS1’s greater memory capacity, reflected by his ability to manipulate larger 

amounts of phonological information –as suggested by his higher performance in reversal of 

long sentences compared to BS2, and his greater digit span compared to controls. As regards 

in BS2, some of the regions presenting increased grey matter volume, such as the bilateral 

IFG, are critical hubs for phonological-phonemic encoding and articulatory planning 

(Ferpozzi et al., 2018; Flinker et al., 2015; Siok, Jin, Fletcher, & Tan, 2003; Zatorre, Meyer, 

Gjedde, & Evans, 1996), actually exhibiting increased activation during backward compared 

to forward speech in expert subjects (Prekovic et al., 2016). Additionally, greater volume in 

the right cuneus and precuneus might suggest an additional involvement of attentional and 

visual imagery processes in this skill (Cavanna & Trimble, 2006; Corbetta, Kincade, & 

Shulman, 2002).  

As regards white matter differences, both backward speakers depicted greater MD 

in parts of the temporo-parietal segment of the AF, seemingly reflecting greater perpendicular 

diffusivity (i.e., RD). Of note, the posterior segment of the AF connects two critical hubs of 

the phonological network: the posterior STG and the inferior parietal cortex (including the 

SMG) (Catani et al., 2005). Thus, this result hints to a possible link between the structural 

configuration of this dorsal tract and phoneme reversal skills. Furthermore, the posterior 

segment of the AF reaches posterior inferior and middle temporal areas implicated in 

orthographic-phonological decoding processes (i.e., word-form area) (Thiebaut De Schotten, 

Cohen, Amemiya, Braga, & Dehaene, 2014) and in phonological-semantic mappings (i.e., 

lexical interface) (Hickok & Poeppel, 2007), respectively. Thus, two plausible interpretations 

may be inferred. First, the distinctive AF pattern observed in both subjects may reflect 

increased recruitment of the graphemic-phonemic translation circuit (Broce et al., 2019; 

Thiebaut De Schotten et al., 2014), sustaining speech reversal through visualization of the to-

be repeated stimuli. Second, backward speech may be further supported by direct activation 

of the reversed phonological sequence through prior activation of the semantic context during 

speech perception (Catani et al., 2005; Hickok & Poeppel, 2007). Yet, the latter is unlikely 

to be the only mechanism supporting this ability, since greater reversal abilities were also 

observed in meaningless words (i.e., pseudowords). 

For his part, BS2 also exhibited significantly greater MD in part of the right UF, 

accompanied by increased AD. As part of the ventral pathway, the UF participates in 
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semantic processing, lexical retrieval (Basilakos et al., 2014; Papagno, 2011), and 

semantically constrained word learning (Ripollés et al., 2017). Tentatively, this could indicate 

that inverted words were accessed directly as full lexical units, as suggested above, although 

further research would be needed to test this conjecture. Yet, further explanations seem to be 

possible. The ventral pathway, beyond its crucial involvement in lexico-semantic access, has 

been implicated in monitoring functions required for the correct sequencing of phonemes 

during repetition of unfamiliar strings (Saur et al. 2009), suggesting that the observed 

difference may be explain by the increased monitoring demands placed by phoneme 

resequencing. Moreover, the ventral route can represent compensatory mechanisms when the 

dorsal stream is overloaded (Lopez-Barroso et al., 2011), not developed, or dysfunctional 

(Brauer, Anwander, & Friederici, 2011; Torres-Prioris et al., 2019). Therefore, the distinctive 

diffusion pattern found in the UF may be linked to the systematic recruitment of supporting 

ventral mechanisms upon continual and excessive demands placed by the backward speakers 

on dorsal routes. The fact that the observed pattern involved the right hemisphere may suggest 

individual differences in language organization, aligning with the greater cluster of grey 

matter volume in the right than in the left hemisphere found in this subject in our VBM 

analyses. As the UF is also considered a limbic tract (Catani & de Schotten, 2012; Von Der 

Heide, Skipper, Klobusicky, & Olson, 2013), its particular configuration in BS2 might also 

be partially associated to the motivational and rewarding value of language reversal, as 

described for language learning (Ripollés et al., 2014).  

Accordingly, the structural differences identified in our subjects may represent 

putative signatures of their superior abilities for reversing phonological units. Most of these 

findings fit with previous evidence of structural brain changes associated with expert 

auditory-motor abilities. Indeed, professional simultaneous interpreters and phoneticians, 

who exhibit elevated phonemic processing abilities, also show grey matter volumetric 

increases (Becker, Schubert, Strobach, Gallinat, & Kühn, 2016; Golestani, Price, & Scott, 

2011; Hervais-Adelman, Moser-Mercer, Murray, & Golestani, 2017; but see Elmer, Hänggi, 

& Jäncke, 2014) and lower FA associated to greater RD in networks mediating speech 

articulation and sensory-motor integration (Elmer, Hänggi, Meyer, & Jäncke, 2011). In fact, 

greater perpendicular diffusivity (i.e., lower FA and greater RD) in relevant pathways is a 

frequent finding in studies of expert auditory-motor abilities (Elmer et al., 2019; Elmer et al., 

2011; Imfeld, Oechslin, Meyer, Loenneker, & Jancke, 2009; Vandermosten, Price, & 

Golestani, 2016). The observed MD adjustments in task-relevant tracts may be attributed to 

greater efficiency of these networks, potentially resulting from increased axonal caliber, 

sprouting of collateral branches or greater extracellular space (Beaulieu, 2009; Giacosa, 
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Karpati, Foster, Penhune, & Hyde, 2016; Vandermosten et al., 2016), affecting to some nodes 

of the tract. Still, current understanding of diffusion dynamics precludes any fine-grained 

conclusions in this regard (Beaulieu, 2002, 2009; Neil et al., 2002). 

Additional insights come from our functional connectivity analyses. Compared with 

controls, both subjects showed greater coupling between phonologically relevant seeds and 

several areas involved in verbal, visual, and otherwise cognitive processing (Duncan & 

Owen, 2000; Koechlin, 2011). In particular, the two backward speakers presented enhanced 

connectivity between the left IC –implicated in articulation (Baldo, Wilkins, Ogar, Willock, 

& Dronkers, 2011; Dronkers, 1996) and auditory-motor integration (Mutschler et al., 2009)– 

and right occipito-temporal areas encompassing the FFG region. For BS1, this pattern was 

also seen for the left and right IFG seeds. Suggestively, given their involvement in 

orthographic processing, occipito-temporal areas have been proposed to mediate inner 

visualization strategies during expert backward speech (Prekovic et al., 2016). In fact, meta-

analytic evidence attests to the involvement of the bilateral IC in receptive and expressive 

language processes (Chang, Yarkoni, Khaw, & Sanfey, 2013), whereas the FFG is critically 

engaged during phonologically demanding tasks (Dietz, Jones, Gareau, Zeffiro, & Eden, 

2005) as well as phono-graphemic integration (Tan, Laird, Li, & Fox, 2005). Moreover, the 

FFG plays a crucial role in high-level visual processes, such as reading (McCandliss, Cohen, 

& Dehaene, 2003; Weiner & Zilles, 2016), and more critically, due to the increased cross-

talk between FFG and phonological dorsal areas after literacy is attained, it is activated in a 

top-down manner by phonological stimuli in the absence of visual stimuli (Dehaene et al., 

2010). Thus, this coactivation pattern might reflect greater integration between phonological-

phonetic encoding and visual-orthographic processes –a possible implicit strategy underlying 

backward speech skills. 

Furthermore, BS1 exhibited greater functional coupling between left seeds and 

several right-sided regions (including perisylvian and occipito-temporal areas), while right 

seeds showed both greater intra- and inter-hemispheric functional connectivity across 

perisylvian, parietal, and occipital regions. These patterns suggest, on the one hand, stronger 

synchrony in left-sided language-preferential regions (Friederici & Gierhan, 2013; Hickok & 

Poeppel, 2007) and phonologically sensitive right-sided hubs (Hartwigsen et al., 2010; 

Vigneau et al., 2011), pointing to greater involvement of the right hemisphere in 

phonological-phonetic encoding processes in BS1 compared to controls. On the other hand, 

generally, enhanced coupling in the fronto-temporo-parietal network (partially encompassing 

the dorsal and ventral streams) suggests strengthening of circuits involved in auditory-motor 

integration as well as maintenance and manipulation of verbal information in memory 
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(Froudist-Walsh, López-Barroso, Torres-Prioris, Croxson, & Berthier, 2017; Koenigs, 

Barbey, Postle, & Grafman, 2009; Majerus, 2013) –two crucial processes underlying 

language reversal. Indeed, increased coupling between auditory and articulatory areas has 

been observed in expert simultaneous interpreters, presumably reflecting elevated phoneme-

to-articulation mapping skills (Elmer & Kühnis, 2016). Also, greater connectivity between 

phonology-related and domain-general areas (i.e., cingulate cortex, prefrontal and parietal 

areas) may reflect the high cognitive demands of continual backward speech (Fedorenko, 

Duncan, & Kanwisher, 2013). 

For his part, BS2 exhibited greater coupling between bilateral seeds implicated in 

phonological processing and posterior areas involved in visual and graphemic processing 

(e.g., occipito-temporal cortex) (Carreiras, Armstrong, Perea, & Frost, 2014; Dehaene & 

Cohen, 2011). Conceivably, this hyperconnectivity pattern might represent a neural 

fingerprint of implicit visual imagery underlying speech reversal, as previously suggested by 

regional activation patterns during backward speech (Prekovic et al., 2016). This 

interpretation, in fact, fits well with the lack of exceptional memory abilities in BS2. 

In sum, both convergent and divergent results across the two subjects suggest that 

expertise in phonological encoding (and, more particularly, phoneme sequencing) is mediated 

by structural and functional adaptations along the dorsal stream, with additional support from 

ventral, visual-associative and domain-general areas. This conclusion supports the dual-

stream model of language processing (Hickok & Poeppel, 2007) while affording 

neurocognitive insights on expert language skills. For instance, anatomical and functional 

adjustment in networks mediating phonological, lexico-semantic, and language control 

processes have been repeatedly reported in simultaneous interpreters relative to untrained 

multilinguals (García et al., 2019; Hervais-Adelman & Babcock, 2019), and phoneticians 

relative to subjects without phonetics training (Golestani et al., 2011; Vandermosten et al., 

2016). The present study extends such findings by showing that language-related neuroplastic 

adaptations may emerge even for unconventional forms of language expertise, even those 

that are not publicly used in daily life or honed through professional training. 

Finally, as stated earlier, our study indicates that similar forms of language expertise 

may recruit differential neural mechanisms. Although the majority of the studies on language-

related neuroplasticity have favored averaged reports across multiple samples, thus masking 

potential individual differences within their samples (Elmer et al., 2014; Elmer et al., 2019; 

Golestani et al., 2011; Vandermosten et al., 2016), our results align with few studies using 

difficult artificial language learning tasks in healthy subjects that report individual variability 

in the integrity of dorsal and ventral white matter tracts associated to successful learning 
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(Lopez-Barroso et al. 2013; Lopez-Barroso et al. 2011; Lopez-Barroso and De Diego-

Balaguer 2017). Crucially, a recent study (Assaneo et al., 2019) has also provided evidence 

on individual variability in auditory-motor integration abilities, potentially related to the 

adoption of different cognitive strategies during linguistically demanding tasks. Compatibly, 

our results suggest that the similar forms of language expertise may rely on different neural 

signatures. 

Less directly, our results may also have clinical implications, in particular for those 

disorders characterized by phonemic (or grapheme) phonological encoding or sequencing 

errors. For instance, conduction aphasics frequently manifest phonemic paraphasias 

involving phoneme substitution or displacement (Damasio & Damasio, 1980; Goodglass, 

1992) –a pattern that is also observed in other aphasias types such as the logopenic variant of 

primary progressive aphasia (Gorno-Tempini et al., 2008; Kohn, 1992). In this sense, the 

identification of critical networks underlying phoneme sequencing skills may promote 

advances for the diagnosis, prognosis, monitoring, and treatment of such conditions –e.g., by 

foregrounding key neural targets for non-invasive brain stimulation protocols. 

Limitations and avenues for further research 

Its contributions notwithstanding, the present study presents some limitations. First, it is 

based on a small sample size, comprising only two subjects. Although single-case studies 

have proven crucial for understanding of brain-language relationships, in general (Dronkers, 

Plaisant, Iba-Zizen, & Cabanis, 2007; Thiebaut de Schotten et al., 2015), and the neural bases 

of backward speech, in particular (Prekovic et al., 2016), future work should aim to replicate 

our findings in larger samples. Second, our design did not include in vivo neural correlates of 

backward expertise. Even though the results converge with those from task-related 

neuroimaging research on spontaneous backward speech (Prekovic et al., 2016), and despite 

the validity of off-line assessments to detect neural correlates of language expertise (Elmer 

et al., 2019; Golestani et al., 2011; Vandermosten et al., 2016), further investigations should 

complement our approach with ongoing neuroscientific data. Third, our cross-sectional 

design did not allow us to determine whether the neural patterns observed are the result of 

experience-dependent plastic changes due to training, or if they reflect pre-existing individual 

differences. Thus, longitudinal studies are required to shed light on this issue. Finally, due to 

practical limitations, behavioral and neuroimaging analyses were here performed on two 

separate samples, which precluded the exploration of correlations between performance and 

neural signatures. Although this methodology has yielded informative results regarding other 
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aspects of language (Steeb et al., 2018), it would be desirable to circumvent such a limitation 

in new studies. 

Conclusion 

Our results suggest that expertise in backward speech, as a proxy of elevated 

phonemic sequencing skills, encompasses varied structural and functional adaptations along 

the dorsal stream, as well as in components of the ventral stream, visual, and otherwise 

cognitive processing areas. These findings inform current neurocognitive models of 

phonological encoding and constrain our understanding of language-related neuroplasticity 

at large. Further research along these lines may illuminate a hitherto underexplored aspect of 

verbal processing. 
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Supplementary information 

1. Behavioral assessment 

Operational span task. In this task letters are used as to-be-remembered stimuli and math 

operations as distractor. In each trial, participants viewed a letter and then performed a calculation. 

This sequence was repeated in sets of three to seven trials, varying randomly across participants, 

with a total of 75 trials. After each set, subjects were presented with an extended list of letters and 

had to click on the correct ones in their order of appearance. After the recall screen, a feedback 

screen showed the number of correctly remembered letters and the percentage of correct 

calculations. Prior to the task, all subjects underwent a three-stage training phase (for details, see 

Unsworth, Redick, Heitz, Broadway, & Engle, 2009). Also, during the math operation training, 

we calculated the mean time needed to solve the operations. If during testing subjects took more 

than the mean time plus 2.5 SDs, that trial was computed as a speed error. Scores were calculated 

by summing the number of letters recorded correctly and in the right order (number of correct 

responses) and summing up the number of mistakes in math operations (speed and accuracy), 

named math errors (Unsworth et al. 2005). Only subjects with a performance of 85% or higher in 

the math operations entered the analysis (Unsworth et al. 2005). 

Symmetry span task: This test resembles the operational span task, with some differences. First, 

instead of letters, participants are presented with a four-by-four matrix in which different to-be 

remembered locations are signaled. The number of locations varied from two to five in each set, 

with a total of 42 trials. Second, instead of performing math operations, subjects had to judge 

whether a figure was symmetrical in its vertical axis or not. To this end, participants were shown 

sequences of spatial locations in the matrix, followed by a figure to judge its symmetry; this was 

followed by the testing phase. As in the operational span task, feedback was offered concerning 

the number of correct locations remembered and the percentage of correct answers in the 

symmetry judgement phase. Before testing, all participants completed three practice blocks 

allowing for familiarization with all phases of the task. Two scores were calculated, namely: the 

number of correct positions and of symmetry errors. The former was obtained by summing up the 

number of locations remembered correctly and in the right presentation order; the latter was 

established by adding the number of accuracy and speed errors committed in the symmetry 

judgment trials. The criterion to determine speed errors was the same as that used for the operation 

span task but based on the time employed in the symmetry judgment trials. 

Stimuli  

Forward word and pseudoword repetition task.  

 

 

 

  

Words forward (n=40) 

High-frequency words Low-frequency words 

1-2 syllables 3-6 syllables 1-2 syllables 3-6 syllables 

noche 
conferencia peine mochila 

sala 
instituto pipa sátira 

Llama 
ejecución soñar manipular 

juez 
médico cubo deducir 

monte 
guitarra clavo concordia 

avión 
capacidad sobra ardilla 

junta 
inversión truco coyote 

pleno 
información pala abeja 

presión 
octubre pliego conejo 

patria 
constitución dogma demora 
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Backward word and pseudoword repetition task. 

Words forward (n=40) 

High-frequency words Low-frequency words 

1-2 syllables 3-6 syllables 1-2 syllables 3-6 syllables 

amor 
solidaridad blusa apoyarse 

fecha 
argentina pera pereza 

cuba hospital fiera carruaje 

hotel 
hermano ansia cortina 

pagar 
protección sentar amargura 

acto 
existencia trueno escoba 

carta 
desarrollar maldad tortilla 

curso 
comisario ciervo bailarín 

nación 
ministerio limbo martillo 

vigor 
respiración pulso modernidad 

Words backward (n=40) 

achul (Lucha)   
nóisivelet (televisión) kilo (olik) zedarnoh (honradez) 

efej (Jefe) 
nóicisopxe (exposición) ebleum (Mueble) sateirotsih (historietas) 

reac  (Caer) 
ainoloc (colonia) opas (Sapo) olugnátcer (rectángulo) 

arim  (Mira) 
olucríc (círculo) ralloc (Collar)  adalasne (ensalada) 

rirba (Abrir) 
nóisaerc (Creación) nótob (botón) agutrot (Tortuga) 

nóinu (Unión) 
akigól (lógica) atnam (manta) anaznam (manzana) 

evalc (Clave ) otisóporp (propósito) azat (taza) ogolónom (monólogo) 

eplog   (Golpe) 
ovituceje  (ejecutivo) zeun (nuez) orenillag (gallinero) 

agrac (carga) 
orejnartxe (Extranjero) oidet (Tedio)  dadineres (serenidad) 

apluc (Culpa) 
ojabart (trabajo) resoc (coser) aimedipe (epidemia) 

Pseudowords (n=40) 

High-frequency syllables Low-frequency syllables 

2 syll. 3  syll. 4  syll. 5 syll. 2  syll. 3  syll. 4  syll. 5  syll. 

ena conamo entosame terablenicia olu burrefo ustiñole neciglotadia 

cote paesma deteraco cosimenlada chegue geoncu denomugue cosumanfora 

esmo asope pacósena indetomapo osfu irrolo marópeno anquibesido 

saén taensi menciabiso analícato riol muñeas tundialaso onotánego 

decón brénodi autidenes masperamones bupil plúzogue augicumal cusmipalates 
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Pseudowords (n=40) 

High-frequency syllables Low-frequency syllables 

2 syll. 3 syll. 2 syll. 3 syll. 2 syll. 3 syll. 2 syll. 3  syll. 

mengo diconcias bacompiter padestamendos dentu rijundios fubelporón dolirtagentas 

bledos meterción atelación senociaresca clegas gosandión acichesión fomosiarinda 

pronda camendo grancodesta aidespeconte blismu putelcho prantecolde aicaldisempa 

baisa prestona perlitebles elestramienda zaiña plasquice yerguimeblos esontrafielda 

miendo puesticón maprósedas prodalesciones quieslo luesbicán mafrínegas cletufansiolas 

 

Forward sentence repetition  

1. Iba andando y cayó 

2. Estará lunes y martes 

3. Abren escuelas y hospitals 

4. Sabe leer y escribir 

5. Colgar carteles y avisos 

6. Hoy he comido pollo y papas 

7. Lo operaron y se recuperó rápido 

8. Las opciones parecen buenas y acertadas 

9. Multan por alta velocidad y drogas 

10. La lectura es gratificante y divertida 

11. Aprobé todos los exámenes y pasé de año 

12. En esta zona llueve en invierno y verano 

13. Ha llegado esta mañana y regresa el sábado 

14. Me podría haber llamado y no lo hizo 

15. Presenta una obra apta para chicos y grandes   

16. Pronto cumple cincuenta años y lo festejará a lo grande 

17. La selección de películas incluye algunas clásicas y otras modernas 

18. Las computadoras se usan para resolver problemas y para entretenerse. 

19. Encima de mi escritorio está la carta y el sello 

20. Pedile a la vecina un poco de leche y chocolate 

21. Hubo varios heridos en un accidente y llamaron a la ambulancia 

22. Son características típicas de los monos y de los humanos inteligentes 

23. El ejercicio físico mejora la salud y el estado de ánimo general 

24. El auto que me he comprado lleva termómetro y equipo de música 

25. El cerebro controla funciones vitales y permite responder a estímulos 

externos 

Backward sentence repetition 

1. Inventar letras y cantar 

2. Es atento y gracioso 

3. Luna llena y playa 

4. Apagamos y nos vamos 

5. Cosas locas y aburridas 

6. El escarabajo azul y la tortuga 

7. Suena el teléfono y enseguida aparece 

8. Esperando su paquete y el cambio 
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9. Su trabajo exige esfuerzo y paciencia 

10. Hay empanadas al horno y canelones 

11. Canciones que te traen recuerdos y te alegran   

12. Me pidió permiso para salir y se fue 

13. Mafalda es una niña muy inteligente y ocurrente 

14. El universo está formado por planetas y estrellas 

15. El abogado sabe mucho de leyes y sentencias 

16. El libro es ameno y cambiará tu forma de pensar 

17. Es una idea genial y seguro que lo podés conseguir 

18. Cuando era joven jugaba al trompo y a las bolillas 

19. Pronto cumplirá su promesa y estaremos todos listos para festejar 

20. Los avances tecnológicos han impulsado la industria y la comunicación 

21. Los animales característicos de la sabana son la jirafa y el león 

22. Las aves revolotean entre los presentes y se posan en las estatuas 

23. El taxi paró tres cuadras después y todos bajaron de prisa 

24. Todas las semanas salgo a correr y a andar en bicicleta 

25. El departamento tiene cuatro habitaciones arriba y un patio amplio abajo 

Lexical decision 

 

Neuroimaging data acquisition 

Tractographic analyses were made with a control sample of 18 participants. This subsample was 

matched with both backward speakers in terms of age (Backward speaker 1: Crawford’s t, two-

tailed = .603; p = .554; Backward speaker 2: Crawford’s t, two-tailed = 1.025; p = .319) and years 

of education (Backward speaker 1: Crawford’s t, two-tailed = .926; p = .367; Backward speaker 

2: Crawford’s t, two-tailed = 0.00; p = 1).   

Resting-state functional connectivity analyses included a control sample of 15 participants, who 

were also matched with both backward speakers in terms of age (Backward speaker 1: Crawford’s 

t, two-tailed = .476; p = .641; Backward speaker 2: Crawford’s t, two-tailed = .875; p = .396) and 

years of education (Backward speaker 1: Crawford’s t, two-tailed = .602; p = .556; Backward 

speaker 2: Crawford’s t, two-tailed = -.303; p = .767).

Words (n = 48) Pseudowords (n = 48) 

roca teléfono gorriones jarra racu tolófena  garriones jurro 

subir teniente lechuga morder sibor taneinto  lichuzo murdor  

guión imaginación cerrojo moño goeún  imigenución  cerrrujo muña 

tela solitario zanahoria loba tile sulitereo  zapatoria  lubo 

pierna fotografía gaseosa fresa poerno futogrefía  gesiosa fruso 

vaca espejo paella jarrón vocu espaje puello  jorrán  

guardia ceremonia chorizo clavel gaurdio cirumonea  churoza cleval  

regla sabiduría butaca barman rugle sabudaría botuca bermon  

sal esfera bromear cartón sil esforo  brumeor cartán 

juicio anillo amabilidad aula joiceo anulla  amobiludad aola  

cantar médica anotar hacha contur mídeco anuter hucho 

viaje esquina arruga uña veaja esqueno arragu  eña  
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2. Supplementary results 
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Table S4. Comparison of the two backward speakers with controls in backward tasks, controlling for 

memory outcomes.  

 Statistical comparison1 

 BS1 vs. controls BS2 vs. controls 

 p zCCC* CI p zCCC* CI 

       

Backward repetition  

of words and pseudowords 
< .001 7.945 

3.250 to 

10.53 
 .001 7.15 2.99 to 9.41 

Backward repetition  

of sentences 
< .001 67.88 

36.674 to 

82.03 
< .001 43.07 

23.18 to 

52.11 

1 Bayesian comparison developed to compared a single case´s score to a control group when controlling 

for covariates (Crawford, Garthwaite, & Ryan, 2011).The BTD_Cov.ex was used.  BS1: Backward speaker 

1; BS2: Backward speaker 2. (*) effect size.  

Table S3. Accuracy for the two backward subjects in the backward repetition tasks. 

 BS1 BS2 

Single items1   

    1-word forward .92 1 

    1-word backward .79 .69 

    1-pseudoword .66 .50 

    Mean all items .79 .73 

Sentences    

    4-6 words 1 .90 

    10-12 words .70 .30 

    Mean all items .88 .56 

1 This task required backward repetition of words presented in forward position (prototypical 

form), words presented in backward order, and pseudowords. BS1: Backward speaker 1; BS2: 

Backward speaker 2. 
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Table S6.  VBM results for Backward speaker 1.  

Cluster size 

 

Peak MNI coordinates Hemisphere Anatomical label  

(n of voxels)  

Peak t 

x y z 

61 -34.5 -40.5 -7.5 Left Parahipopcampal (45) 

Fusiform (12) 

4.93 

 

Table S7.  VBM results for Backward speaker 2. 

Cluster size Peak MNI coordinates Hemisphere Anatomical label 

(n of voxels) 

Peak t 

 x y z   

613 

 

48 33 12 Right Inferior frontal (495) 

Middle frontal (113) 

15.9 

372 -37.5 46.5 13.5 Left Middle frontal (332) 

Inferior frontal (40) 

9.07 

60 9 -87 19.5 Right Cuneus (60) 5.07 

51 -33 36 43.5 Left Middle frontal (48) 4.85 

299 4.5 -54 66 Right Precuneus (220) 7.22 

72 39 -45 63 Right Postcentral (53) 

Superior parietal (19) 

5.18 

 

 

 

 

Table S8. Significant nodes of mean diffusivity (MD) that significantly differed between 

backward speaker 1 (BS 1) and the control group. Only results that survived both the 

Bonferroni corrected p threshold at the node level (p < .00416) and the cluster correction 

(cluster > 5 contiguous significant nodes) are reported. Means (M) and standard deviations 

(SD) are reported for the control group. AF: arcuate fasciculus. 

 
Significant results at p ≤ .00416 

 

   Controls    

Hemisphere Tract Node M SD BS 1 t 

p 

(2-

tailed) 

Left 
Posterior AF 

segment 

95 .76 .036 .89 3.47 .0029 

96 .76 .034 .90 3.96 .001 

97 .76 .033 .91 4.26 .0005 

98 .76 .033 .91 4.37 .0004 

99 .77 .033 .91 4.44 .0004 

100 .77 .032 .91 4.5 .0003 

Right 
Posterior AF 

segment 

1 .75 .178 .88 4.1 .001 

2 .75 .178 .88 4.36 .000 

3 .74 .178 .89 4.52 .000 

4 .74 .178 .88 4.63 .000 

5 .74 .177 .88 4.56 .000 

6 .74 .176 .86 4.27 .001 

7 .74 .175 .84 3.85 .001 

8 .73 .175 .83 3.31 .004 
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Table S9. Significant nodes of mean diffusivity (MD) that significantly differed between backward 

speaker 2 (BS 2) and the control group. Only results that survived both the Bonferroni corrected p 

threshold at the node level (p < .00416) and the cluster correction (cluster > 5 contiguous significant 

nodes) are reported. Means (M) and standard deviations (SD) are reported for the control group. AF: 

arcuate fasciculus. 

 
Significant results at p ≤ .00416 

 

   Controls    

Hemisphere Tract Node M SD BS 2 t 
p 

(2-tailed) 

     Left                                                                                                                          Posterior AF segment 

32 .74 .034 .86 3.42 .0033 

33 .74 .035 .87 3.56 .0024 

34 .74 .035 .88 3.72 .0017 

35 .74 .035 .88 3.89 .0012 

36 .74 .035 .88 4.01 .0009 

37 .74 .035 .89 4.05 .0008 

38 .74 .037 .89 3.99 .0009 

39 .74 .038 .89 3.89 .0012 

40 .74 .039 .89 3.80 .0014 

41 .74 .040 .89 3.73 .0017 

42 .74 .041 .89 3.68 .0019 

43 .74 .041 .89 3.61 .0022 

44 .74 .041 .89 3.53 .0025 

45 .74 .042 .89 3.45 .0030 

46 .74 .042 .89 3.38 .0036 

47 .74 .042 .88 3.32 .004 

Right Uncinate fasciculus 

85 .73 .04 .87 3.45 .003 

86 .73 .041 .89 3.67 .0019 

87 .73 .041 .90 3.87 .0012 

88 .73 .041 .91 4.06 .0008 

89 .73 .041 .91 4.24 .0006 

90 .73 .04 .91 4.33 .0005 

91 .73 .04 .91 4.32 .0005 

92 .74 .039 .90 4.2 .0006 

93 .74 .039 .89 4.01 .0009 

94 .74 .036 .88 3.81 .0014 

95 .74 .034 .87 3.56 .0024 
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Table S10. Seed-to-voxel functional connectivity results based on resting-state data from Backward 

speaker 1. 

Seed location 

(coordinates) 

Clusters MNI 

coordinates 

 

x     y     z 

Cluster 

size 

Hemispher

e 

Anatomical label 

 

Minimum 

cluster size 

FDR-

corrected 

[t(13) = 4.22] 

     

Left inferior 

frontal gyrus (pars 

triangularis) 

-50  29  9 

 

54 -2 8  

  

 

58 -60 -10   

 

 

58 -30 26 

 

  

461 

 

 

369 

 

 

262 

 

 

Right 

 

 

Right 

 

 

Right 

 

 

(Pre)central 

operculum 

Insula 

Heschl’s gyrus 

Lateral occipital 

Inferior temporal 

Middle temporal 

Parietal operculum 

Supramarginal 

Postcentral 

 

262  

 

Right inferior 

frontal gyrus (pars 

triangularis) 

52  28  8 

-20 -52 62 

 

50 -54 -2 

 

-60 -24 44    

  

0 20 28    

8 -54 64 

-26 50 -12 

32 60 -4 

-6 -72 38 

38 -36 52 

  

372 

 

342 

 

313 

 

302 

246 

238 

228 

173 

166 

Left 

 

Right 

 

Left 

 

Right/left 

Right 

Left 

Right 

Right/left 

Right 

Lateral occipital 

Superior parietal 

Inferior temporal 

Middle temporal 

Postcentral 

Supramarginal 

Anterior Cingulate 

Superior parietal 

Frontal pole 

Frontal pole 

Precuneous 

Postcentral 

Supramarginal 

166 

Left insular cortex 

-37  2  1 

58 -62 -10         

18 -98 10               

-12 -102 -10     

34 64 06           

52 2 50            

38 44 38        

38 -34 40    

32 -84 -20  

 

14 -70 36      

28 -48 68   

501 

411 

344 

182 

173 

171 

153 

131 

 

121 

118 

Right 

Right 

Left 

Right 

Right 

Right 

Right 

Right 

 

Right 

Right 

Inferior temporal 

Occipital pole 

Occipital pole 

Frontal pole 

Precentral gyrus 

Middle frontal gyrus 

Postcentral 

Occipital 

 Fusiform 

Precuneous 

Superior parietal 

118 

 

Right insular 

cortex 

38  3  -1 

58 -60 -12   

-38 46 -18  

32 -88 -20     

44 48 -8   

-24 52 -6 

-26 -92 -16           

688 

507 

376 

302 

213 

201 

Right 

Left 

Right 

Right 

Left 

Left 

Inferior temporal 

Frontal pole 

Cerebellum Cru1 

Frontal pole 

Frontal pole 

Occipital pole 

201 

Right 

supramarginal 

gyrus 

62  -35  32 

-10 -72 28 

 

-30 56 -6 

26 58 -6   

36 34 46 

-36 32 40   

26 -50 68 

-54 26 16  

883 

 

549 

471 

365 

305 

153 

147 

Right/Left 

 

Left 

Right 

Right 

Left 

Right 

Left 

Cuneus  

Precuneus 

Frontal pole 

Frontal pole 

Middle frontal 

Middle frontal 

Superior parietal 

Inferior frontal 

147 

 

 



 

 150 

Table S11. Seed-to-voxel functional connectivity results based on resting-state data from Backward 

speaker 2. 

Seed anatomical 

label 

(coordinates) 

Contrast 

Clusters 

MNI 

coordinates 

x     y     z 

Cluster 

size 
Hemisphere 

Anatomical 

label 

 

Minimum 

cluster size 

FDR-corrected 

[t(13) = 4.22] 

Left insular cortex 

-37  2  1 
+ 

38 -92 -12 

 

 

 

 

-62 -20  4 

2567 

 

 

 

 

188 

Right/Left 

 

 

Right 

Right 

Left 

Occipital pole 

Lateral occipital 

Cuneus 

Inferior temporal 

Fusiform 

Posterior Superior 

temporal  

 

 

188 

 - -38 -50 -56 223 Left Cerebellum 188 

Right insular 

cortex 

38  3  -1 

 

+ 
-2 -72 18 

38 -84 -6 

810 

165 

Right/Left 

Right 

Cuneus 

Lateral occipital  
165 

Left 

supramarginal 

gyrus 

-60  -39  31 

+ -30 -98 -6  182 Left Occipital pole 182 
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Study 5. Are verbal repetition deficits over-

represented in males? A systematic literature 

review on post-stroke aphasia5 

 

                                                           
5 This article corresponds to:  

Torres-Prioris, M. J., Pertierra, L., López-Barroso, D., Dávila, G., Berthier, M. L. Are verbal 

repetition deficits over-represented in males? A systematic literature review on post-stroke 

aphasia. Working article. 
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Abstract 

Background 

Repetition is an essential function for language acquisition in childhood, new word learning 

during adulthood, and a major resource in aphasia rehabilitation such as Imitation-Based 

Aphasia Therapies. Imitation and repetition of verbal information in humans is a complex 

function requiring the concerted action of large-scale neurocognitive networks, which may 

have individual and sex-related differences in their functional organization and configuration. 

However, until now there are no studies aimed to explore sex differences in repetition abilities 

after stroke. 

Methods & procedure 

In the present study we conducted a systematic literature review devised to examine sex 

differences in verbal repetition prevalence in post-stroke aphasia. We examined the 

prevalence of two aphasia subtypes, conduction (CA) and transcortical (TA), which were 

selected as index language disturbances based on their impaired and preserved repetition 

abilities, respectively. The male:female ratio was compared with the expected by stroke 

prevalence.  

Outcomes & results  

The review disclosed that the proportion of male in the CA group was higher than expected, 

whereas the expected was found in the TA. These outcomes suggest that males may be more 

vulnerable than females to suffer from stroke-related aphasias with enduring repetition 

deficits. Although, the present work is not exempt from limitation, it seeks to encourage 

further studies that explore sex ratio among patients with verbal repetition deficits. Hence, 

future studies may consider not only sex as a relevant factor in the clinical profile of post-

stroke aphasia, but could address the neural correlates of sex-related brain differences in the 

prevalence of CA. 

 

Keywords: Language repetition, conduction aphasia, sex dimorphism, arcuate fasciculus.  
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Introduction  

Imitation and repetition of verbal material are key functions in the acquisition and 

development of language and these skills may contribute to overcome language deficits in 

aphasia, a condition broadly defined as the partial or total loss of language functions after 

acquired brain damage. In the past decades, the generically termed “Imitation-Based Aphasia 

Therapies” (Duncan & Small, 2016; Lee et al., 2010) have emerged as an important milestone 

in the treatment of aphasia. These therapies are aimed to increase language production 

through verbal imitation and repetition, based on the evidence of shared neural mechanisms 

for speech perception/observation and the execution of verbal acts (Duncan & Small, 2017). 

In persons with aphasia (PWA), improvements in verbal production are associated to 

compensatory activity in cortical and white matter tracts in the spared left hemisphere regions 

as well as in the intact right hemisphere (Santhanam, Duncan, & Small, 2018; Sarasso et al., 

2014). 

 Verbal repetition is a complex function requiring the concerted action of large-scale 

neurocognitive networks that involves both left and right perisylvian areas (Hope et al., 2014; 

Mesulam, 1990; Saur et al., 2008). Mechanistically, speech repetition requires the translation 

of the phonological code into the motor code, which will eventually allow its articulation 

(auditory-motor integration) (Hickok & Poeppel, 2007).  Some authors suggest that auditory-

motor integration of speech in both healthy subjects  (Hickok et al., 2011) and PWA 

(Rogalsky et al., 2015) requires the activity of the left sylvian parieto-temporal (Spt) area, 

whereas others point that the activity of the arcuate fasciculus (AF) is key for this process 

(Lopez-Barroso et al., 2013b; Parker Jones et al., 2014; Saur et al., 2008; Schulze, Vargha-

Khadem, & Mishkin, 2012). Importantly, anatomical and functional differences in brain 

structures involved in auditory-verbal repetition seem to be linked to differences in verbal 

tasks performance.  For instance, López-Barroso and colleagues reported that better ability 

to remember new learned words correlated with greater white matter integrity of the left AF 

(Lopez-Barroso et al., 2013) and increased functional connectivity within the auditory-motor 

network (López-Barroso et al., 2015). In this line, Catani and colleagues (2007) reported that 

better performance in a verbal recall task (California Verbal Learning Test) (Delis, Kramer, 

Kaplan, & Ober, 1987) was associated with a well-developed long segment of the AF in both 

hemispheres (i.e., bilateral pattern) (Catani et al., 2007). Berthier and coworkers described 

two cases showing similar lesion distribution and volume in the left hemisphere but different 

verbal repetition capacity (Berthier et al., 2013). The dissociated repetition performance in 

such cases could be explained by dimorphic development of the right long segment of the 

AF, being well developed in a female with preserved repetition and inexistent in a male with 
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repetition deficits (Berthier et al., 2013). Additionally, a study exploring predictive 

anatomical biomarkers of spontaneous recovery in PWA showed that the presence of a well-

developed long segment of the AF in the right hemisphere favor language recovery after left 

perisylvian damage (Forkel et al., 2014). Altogether, these results suggest that premorbid 

organization of language-related pathways (e.g. AF), which are subjected to inter-individual 

variability and sex differences (Catani et al., 2007; Lopez-Barroso et al., 2013; Madhavan, 

McQueeny, Howe, Shear, & Szaflarski, 2014; Thiebaut de Schotten et al., 2011), might 

influence the aphasia profile and, presumably, the response to behavioral interventions.  

Among sex-related differences in brain structure, a recent meta-analysis identified 

that females have, on average, greater volume than males in areas of the right hemisphere 

homologues to the language areas of the left hemisphere (inferior frontal gyrus, pars 

triangularis, pars opercularis, planum temporale and Heschl´s gyrus) (Ruigrok et al., 2014). 

In accordance, in the above-mentioned study, Catani and colleagues (Catani et al., 2007) 

found that on average females had greater development of the right AF, a tract connecting 

the superior temporal gyrus and the inferior frontal gyrus, thus having a more symmetrical  

pattern (~60%) than males (~15%) (see also (Thiebaut de Schotten et al., 2011), although this 

was not replicated in other study (Allendorfer et al., 2016). Further sex-related differences in 

structural and functional connectivity have been reported, indicating that females have greater 

inter-hemispheric connectivity, whereas males have greater intra-hemispheric connectivity 

(Ingalhalikar et al., 2014; Sun et al., 2015). Interestingly, these divergent patterns of 

connectivity seem to be linked to sex differences in cognitive performance (Satterthwaite et 

al., 2015).  

Despite the described anatomo-functional sex-based brain differences and their 

relevance to cognitive functioning, until now there is no clear behavioral evidence on whether 

verbal repetition may have different sex preponderance among PWA, neither whether sex 

may influence the response to certain aphasia therapies. Generally, the aphasic literature has 

yielded mixed results regarding sex rate among PWA (Basso, Capitani, & Zanobio, 1982; Di 

Carlo et al., 2003; Engelter et al., 2006; Ferro & Madureira, 1997; Hier, Yoon, Mohr, Price, 

& Wolf, 1994; Kang et al., 2010; Kertesz & Benke, 1989; Renzi, Faglioni, & Ferrari, 1980; 

Scarpa, Colombo, Sorgato, & De Renzi, 1987) and, specially, there are not studies aimed to 

explore prevalence of auditory-verbal repetition deficits among females and males with 

aphasia. A very recent meta-analysis has found that aphasia is more frequent among females 

than males, with a rate ratio of 1.10-1.14, but these differences disappear when controlling 

by age (Wallentin, 2018). However, this finding is mainly based on sex ratio in the acute 

stage and may not reflect compensatory changes occurring during spontaneous recovery, 
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where premorbid brain anatomy may play an important role (Forkel et al., 2014). Further, 

although this study made a significant contribution in summarizing the existent evidence in 

aphasia rates among females and males, is not informative on sex distribution in the different 

aphasia types and symptoms.  

The aim of our study was to analyze the relationship between sex and one specific 

type of post-stroke aphasia, conduction aphasia (CA), a language disorder chiefly 

characterized by repetition deficits. For this, we performed a systematic review of the existing 

studies reporting cases of CA. Additionally, two other types of aphasias (i.e., transcortical 

aphasias - TA) showing a different clinical profile to CA, that is preserved repetition abilities, 

were also studied as a control group. Since verbal repetition is a crucial component of 

language (re)learning and a target domain in language therapies such as Imitation-Based 

Aphasia Therapies (see reviews in Duncan & Small, 2016; Eom & Sung, 2016; Salis et al., 

2015), we envisage that exploring sex differences in CA may contribute to gain further 

knowledge on the role of demographic factors in the clinical diagnosis and treatment of PWA. 

Based on the abovementioned sex-related brain dimorphisms, namely greater volume of the 

right AF, greater volume in perisylvian areas of the right hemisphere and greater 

interhemispheric connectivity for females than males, it is plausible that brain configuration 

in females is more suitable to compensate repetition deficits after damage in the left 

hemisphere via recruitment of the right hemisphere than males. Thereby, we hypothesize that 

aphasic males are more likely to show enduring repetition deficits than aphasic females, thus 

CA would be more frequently observed in males than in females. Although our study was 

based on clinical data and could not address the role of sex-related brain differences in the 

prevalence of CA, the hypothesis that we pose here are based on the available evidence 

regarding sex differences in brain structure and functioning.  

Methods 

Population target of this study 

In this study, the syndrome of CA was chosen as a target post-stroke language 

impairment for the following reasons: (i) the core clinical feature of CA is a deficit in verbal 

repetition; (ii) overall, CA has an identifiable anatomical correlate, that is the simultaneous 

involvement of the left long AF segment and its overlying cortical mantle (i.e., temporo-

parietal and frontal regions) (Berthier et al., 2012; Rogalsky et al., 2015) (but see Bernal & 

Ardila, 2009), and (iii) the AF and the overlying cortical regions are possibly sexually 

dimorphic (Catani et al., 2007; Ruigrok et al., 2014).  
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As a control disorder, we reviewed other types of post-stroke aphasia profiles known 

as TA, which are paradigmatically characterized by preserved verbal repetition in the face of 

(i) non-fluent speech and good auditory comprehension (transcortical motor aphasia - 

TCMA); and (ii) fluent speech and poor auditory comprehension (transcortical sensory 

aphasia - TCSA). Transcortical aphasics were selected due to two main reasons. On the one 

hand, this group is composed of subjects with an aphasic profile that does not overlap in their 

surface symptoms and clinical course with CA. In other words, TA would not evolve from or 

into CA, and therefore such cases constitute an independent sample of post-stroke aphasics. 

On the other hand, causative lesions of TCMA and TCSA would reasonably be expected to 

affect different cerebral structures (i.e., lesions that spare the perisylvian language area) than 

those causing CA. Cases of mixed transcortical aphasia (MTCA) were not reviewed because 

these subjects show a severe language impairment with low performance in every language 

task and repetition sometimes is far from being relatively spared as occur in TCMA and 

TCSA (MTCA scores ranged from 5 to 10 in the repetition subtest of the Western Aphasia 

Battery (WAB) (Kertesz, 1979).Thus, we consider a group composed of cases with TCMA 

and TCSA as the most accurate control group for CA, as diagnostic criteria for these two 

aphasic syndromes requires good repetition (scores ranged from 8 to 10 in WAB´s repetition 

subtest – Kertesz, 1979) 

Search Strategy  

A systematic review according to PRISMA standards (Moher, Liberati, Tetzlaff, 

Altman, & Group, 2009) was conducted. Search terms used in the algorithm included 

“conduction aphasia”, “associative aphasia”, “afferent motor aphasia” and “central aphasia”. 

The search was run in two computerized databases, Medline (PubMed) and PsycINFO, in 

order to retrieve all reported cases of CA from the literature until November 2018. An 

additional search was done for the control TA group, comprising the same period of time and 

using an analog algorithm, which included the terms “transcortical aphasia”, “transcortical 

motor aphasia”, “transcortical sensory aphasia”, “Gogi aphasia”, “anterior isolation 

syndrome” and “posterior isolation of the speech area”. References of retrieved articles were 

thoroughly screened for further relevant articles, letters, book chapters and meeting abstracts. 

Only English-written publications were reviewed.  

Data Extraction and Quality Assessment 

Two of the authors (MJTP and LP) reviewed the title and abstract of each retrieved 

publication, and thereafter the full text was assessed for eligibility. Disagreements were 

resolved by consultation with one of the senior authors (MLB) with experience in diagnosing 
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these aphasic syndromes. Aphasic subjects considered by the respective publication´s authors 

to suffer from CA or TA (TCMA or TCSA) by means of formal standardized testing or 

reliable clinical bedside assessment were included in the analysis. Articles providing no clear 

link between sex and aphasia type were not included. Only articles that had available sex 

information for each individual PWA, or for each type of aphasia were included. The 

following inclusion criteria were used: first single unilateral stroke (ischemic or 

hemorrhagic); ≥ 18 years of age; no prior history of developmental disorders, no concomitant 

neurological or psychiatric disease, substance abuse or severe head trauma, nor any other 

general medical condition that could affect cognitive performance. Information sought 

included subject´s sex and, when available, handedness, education level, time post onset and 

severity of aphasia, treatment received and lesion localization, assessed by neuroimaging 

and/or autopsy reports.  

Statistical analysis  

First, a chi-squared test of independence was performed to determine whether sex 

and aphasia type were associated. Secondly, in order to further explore the reviewed data, 

and to take into account the greater prevalence of stroke among males, the male proportion 

in both CA and TA groups calculated from our database was compared with the male 

proportion in the stroke population calculated from male:female ratio. The male:female ratio 

was obtained from a systematic review on stroke prevalence (Appelros, Stegmayr, & Terent, 

2009). The age adjusted male:female pooled ratio calculated from 13 different prevalence 

studies was 1.41 (95% CI, 1.12 to 1.59), meaning that male would account for 58.51% of 

chronic stroke patients (Appelros et al., 2009). Thus, the male prevalence in CA and TA 

groups obtained from our database were compared to the male prevalence in stroke patients 

using a binomial test. The original aim was to compare the male proportion found in the CA 

and TA groups with the male prevalence in chronic post-stroke aphasia. Higher proportion of 

males is usually found in the aphasic population due to the higher incidence of stroke among 

them, however ambiguous results have been reported in the last decades regarding this matter 

(Kertesz & Sheppard, 1981; McGlone, 1977; Renzi et al., 1980; Scarpa et al., 1987) 

preventing us from using this as reference value. The most reliable data on this issue comes 

from the recently published meta-analysis (Wallentin, 2018). In the mentioned study, the 

reported female:male ratio of 1.10 – 1.14 was calculated dividing the percentage of females 

with aphasia from the total of female with stroke by the percentage of males with aphasia 

from the total of males with stroke. Nevertheless, since Wallentin´s study (Wallentin, 2018) 

do not report enough information about the sex distribution in the stroke group, and since the 

studies included report mainly data from the acute stage while our data includes mainly 
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chronic cases (> 6 months), we considered that comparing the percentage of male found in 

the CA and in TA samples with the proportion of males in the stroke population was the more 

accurate procedure. In fact, this alternative parameter was proposed by Basso and colleagues 

(Basso, Forbes, & Boller, 2013) as a reference to compare the prevalence of post-stroke 

aphasia.  

All reported cases collected from the literature were included. However, with the 

aim of controlling from potential biases, an additional analysis of a subsample was carried 

out to exclude case-series and group studies reporting only males or females. This exclusion 

criterion was applied over the total cases of aphasia reported, not only on the CA or TA 

groups. For example, Haley, Jacks, and Cunningham´s study (Haley, Jacks, & Cunningham, 

2013) reported 5 cases of males with CA and none female. However, the total aphasic sample 

of this study, including other type of aphasias, was of 19 males and 13 females. Thus, since 

the overall sample included both sexes and no bias were expected, data coming from this 

study was included in this additional analysis. Note that data coming from Veterans Hospitals 

reporting only males was excluded in this additional analysis. Single cases were included 

after checking than not significant difference were seen between the ratio of male:female 

found in our database and the male:female  ratio expected  from stroke prevalence.  

All statistical analyses were performed with SPSS software, version 25 (IBM, Armonk, NY, 

USA). 

Results 

A total of 1.201 items were screened, with marked predominance of full text articles. 

Publications included consisted mainly of single case reports, case-series, case-control 

studies, cohort studies, as well as clinical trials for pharmacological or aphasia therapy 

interventions, which included CA and TA among other types of aphasia. Figure 1 depicts the 

flow of information through the different phases of the systematic review. There were no 

articles aimed to investigate the prevalence of CA or TA or sex susceptibility in the profile 

of aphasia. Publications covered from 1947 to 2018, but cases published before these dates 

were also included, although their original references are not listed. For instance, these 

included the original description of CA by Osborne in 1834 (Breathnach, 2011) and 

Lichtheim´s case of Samuel Berger in 1885 (Köhler, Bartels, Herrmann, Dittmann, & 

Wallesch, 1998).  
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Figure 1. Flow chart of the different phases of the systematic review based on PRISMA statement 

(www.prisma-statement.org). 

Two hundred and thirty-one publications were selected from the literature search, 

accounting for a total of 764 cases finally included in the database. Among those, there were 

506 (66.2%) subjects with CA extracted from 159 studies, and 258 (33.8%) subjects with TA 

(TCMA and TCSA) extracted from 104 studies. Note that 32 studies reported cases of both 

CA and TA. In the CA sample (n = 506), there were 376 (74.3%) males and 130 (26.7%) 

females. In the TA sample (n = 258), there were 161 (62.4%) males and 97 (37.6%) females. 

Thus, the ratio of CA:TA in the male group was of 2.33 and for the female group was 1.34. 

The TA group consisted of 123 (47.7%) subjects with TCMA, 112 (43.4%) with TCSA and 

23 (8.9%) generally classified as having TA with no further subtype classification. In the CA 

group, only 18 (3.5%) subjects were  further classified as having reproduction CA (n = 6; 

1.2%) and repetition CA (n = 12; 2.4%) subtypes, whereas the remaining cases were generally 

classified as CA. Reproduction conduction aphasia (CA) is characterized by phonemic 

http://www.prisma-statement.org/
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paraphasias in all verbal domains and recurrent 

production of sequential phonemic 

approximations to the target word aimed to 

self-repair errors (conduite d’approche) 

(Nadeau, 2001; Tim Shallice & Warrington, 

1977). Repetition CA shows virtually isolated 

repetition deficits, which have been attributed 

to a selective impairment in auditory-verbal 

short-term memory (Nadeau, 2001; Tim 

Shallice & Warrington, 1977).  

The additional analysis in which case-

series and groups studies that reported only 

males or females were excluded was comprised 

of a total of 189 studies (101 reporting cases of 

CA, 58 reporting cases of TA and 30 reporting 

both), accounting for 599 PWA (63.8% males; 

36.2% females). Among those, there were 373 

cases of CA, composed of 247 (66.2%) males 

and 126 (33.8%) females. There were 226 cases 

of TA, composed of 135 (59.7%) males and 91 

(40.3%) females. In this case, the ratio of 

CA:TA in the male group was of 1.82 and for 

the female group was 1.38. Table 1 depicts 

sociodemographic and clinical characteristics 

of PWA included in the present study, when 

available. 

Chi-squared test of independence 

(Yates’ corrected) indicated a significant 

association between sex and aphasia type when 

considering the whole sample (χ2 (1) = 11.03, 

p = .001) but not when the subsample was 

analyzed (χ2 (1) = 2.56, p = .130). However, note that the expected probability calculated 

here with the chi-square test does not consider sex differences in stroke prevalence. 

Considering the whole sample, results from the binomial test indicated that the 

proportion of males in the CA group (i.e., 74.3%) was significantly higher than the expected 
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58.51% by stroke prevalence (p < .001; one-sided; 95% CI, 70.3 % to 78.1%). Conversely, 

no significant differences were observed between the proportion of males in the TA group 

(i.e., 62.4%) and the expected by stroke prevalence (p = .114; one-sided; 95% CI, 56.2% to 

68.3%). Since we are operation with proportion, necessarily the opposite pattern is found for 

females in the CA group (i.e., 26.7%), meaning a lower proportion of females in the CA 

group than expected by stroke prevalence, and no significant differences between the 

proportion of females in the TA group (i.e., 37.6%) and the expected by stroke prevalence. 

These results remained unchanged in the additional analysis in which group studies that 

reported only males or females were excluded. In this case, the binomial test indicated that 

the proportion of 66.2% of males with CA was higher than the expected 58.51% (p = .001; 

one-sided; 95% CI, 61.2% to 71%). For the TA group, the additional analysis showed that 

the observed proportion of males (i.e., 59.7%) did not differenced from the expected by stroke 

prevalence (p = .380; one-sided; 95% CI, 53% to 66.2%).  

A further analysis comparing the proportion of males found in the CA group (i.e., 

74.3%) with the proportion found in the TA (i.e., 62.4), indicated that the proportion of males 

was significantly higher in the CA group (p < .001; one-sided; 95% CI, 70.3 % to 78.1%). 

Similar results were found in the additional analysis of the subsample, indicating than the 

66.2% found in the CA group was significantly higher than the 59.7% found in the TA group 

(p < .006; one-sided; 95% CI, 61.2% to 71%). 

 

Figure 2. Depicts the proportion of males and females in the target CA group and in the control TA 

group when considering the whole sample (A), and when case-series and group studies reporting only 

males or females were excluded (B). The dotted line represents the proportion of males expected by 

stroke prevalence according to Appelros et al., 2009. The asterisks indicate significant differences (p < 

.05) between the proportion of males found in our data set and the proportion of males expected by 

stroke prevalence. 
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Discussion 

In the present study we conducted a systematic literature review of published cases 

of CA and TA with the aim of exploring whether sex differences in the rate of repetition 

deficits after stroke exist.  Our findings reveal a higher proportion of males in the group of 

aphasia characterized by repetition deficits (i.e., CA) than in the group with preserved 

repetition (i.e., TA), being this proportion greater than the expected from the proportion of 

males in the general stroke population (58.51%). Conversely, the proportion of females in the 

CA was lower than expected by stroke prevalence.  In other words, our results provide clinical 

data of greater prevalence of auditory-verbal repetition deficits among post-stroke males 

compared to females. By contrast, the proportion of males in the control group (i.e., TA 

group) did not differed from the expected by general stroke prevalence in males. Recently, 

Wallentin´s study (Wallentin, 2018), reported no differences in aphasia rate, but this study 

did not provide information about putative differences in aphasic symptoms such as repetition 

deficits.  Thus, our cross-sectional study adds important data on the status of impaired 

auditory-verbal repetition domain, a typical feature of CA complementing previous studies 

on aphasia rate among sex. Importantly, the present study was guided by a hypothesis based 

on the current evidence on sex differences in brain anatomy and functioning pointing that 

females have a more tune right neural network that might play a role in the recovery from of 

verbal repetition abilities.    

Repetition impairment is a constant feature of perisylvian aphasic syndromes 

(Albert, Goodglass, Helm, Rubens, & Alexander, 1981; Berthier, 2005). Further, verbal 

repetition is a key component of phonological working memory (rehearsal mechanism), 

essential for language acquisition during childhood and word learning in adulthood (López-

Barroso et al., 2011). Thus, emerging model-based aphasia therapies incorporate audio and 

audiovisual repetition-imitation training as a major resource for promoting language recovery 

(Berthier, Dávila, Green-Heredia, et al., 2014; Eom & Sung, 2016; Fridriksson et al., 2012; 

Salis et al., 2015).  Since repetition abilities have a pivotal role in language re-learning and 

therapy during post-stroke aphasia recovery, the assessment of sex vulnerability to develop 

long-lasting repetition deficits and its recovery possibilities may be of utmost importance.  

Although the neuroanatomical correlates of CA and TA reviewed herein could not 

be reliably examined, we suggest that one likely source of the different prevalence of sex in 

CA is based on sex-related brain dimorphisms. It is possible that females, by virtue of having 

higher interhemispheric connectivity (Gur & Gur, 2017; Ingalhalikar et al., 2014; Sun et al., 

2015) and greater volume of gray and white matter on areas of the right hemisphere 

homologues to the areas involved in verbal repetition in the left hemisphere compared to 



 

 165 

males (Catani et al., 2007; Ruigrok et al., 2014), are more apt than males for verbal repetition, 

especially after brain damage. Such a biological endowment may assist in the recruitment of 

the right hemisphere (Berthier et al., 2013; Forkel et al., 2014) after damage to the language 

areas in the dominant hemisphere. We believe that sex differences in verbal repetition become 

more apparent in brain-damaged than in healthy subjects. Healthy literate subjects perform 

at ceiling while repeating single words, words lists, and sentences, making difficult to identify 

errors (see data in (Berthier, 2001; Castro-Caldas, Petersson, Reis, Stone-Elander, & Ingvar, 

1998; Rosselli, Ardila, & Rosas, 1990) presumably because the activity of the left hemisphere 

prevails and it is enough to sustain a flawless execution. And yet, sex differences in healthy 

subjects may appear in more demanding word learning tasks through verbal repetition with 

females outperforming males (Catani et al., 2007) and after brain damage (Berthier et al., 

2013; Forkel et al., 2014). In this regard, preliminary data show that the architecture of the 

non-lesioned right AF might be a biological marker to predict the natural evolution of 

repetition deficits in PWA (see Forkel et al., 2014). However, further studies in large sample 

sizes are needed to unveil whether females have a more bilateral pattern of the direct segment 

of the AF and whether a strong left lateralization of the AF might be an anatomical predictor 

of persistent verbal repetition deficits as occur in CA. Thus, longitudinal studies are needed 

to address this issue.  

The present systematic literature review should be interpreted in light of some 

methodological limitations. One limitation is the existing differences between the reviewed 

studies as the goals, available information, and scope varied from one reviewed article to 

another. Some demographic and clinical variables could not be adequately controlled. 

Unfortunately, we do not have reliable information regarding lesion volume and localization 

in most cases, thus overlooking the role of lesion characteristics. Additionally, we must note 

that only in approximately two thirds of the reviewed cases, data on time post-onset of aphasia 

was available. As time of evolution of stroke itself may influence aphasia clinical subtype, 

we recognize this as a possible bias when trying to assess its association to sex. However, 

chronic aphasics accounted for 66% of subjects in all subgroups. Finally, publication bias is 

another major concern of any systematic review of published cases. However, being CA a 

relatively infrequent aphasia syndrome, there seems to be no statistical alternative in order to 

ascertain sex relative prevalence. 
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Chapter 4. General conclusions 

Before jumping to the general conclusions of this dissertation, I address some 

limitations that need to be acknowledged, and point out possible directions for future studies. 

 Limitations and future directions  

First, the studies included involved small sample sizes. However, single case studies 

have been foundational in the development of neuropsychology (Laine & Martin, 2012), and, 

although they do not have the confirmatory power of large studies, they serve as hypothesis 

generators and, at the same time, allow exploring individual differences frequently 

overlooked in group studies.  

Study 1 provides an interpretation of Conduite d’ approche and mitigated echolalia 

as symptoms that emerge from compensatory attempts and proposes putative alternative 

pathways supporting these behaviors. However, larger studies adopting lesion-approaches 

(e.g., VLSM) to correlate lesion location with these behaviors are needed to bring further 

evidence on this issue. In addition, longitudinal studies are needed to provide evidence on the 

emergence and evolution of these behaviors across time. Further, Study 2 and Study 3 suggest 

that echolalia may be a compensatory behavior aimed to overcome some linguistic (i.e., 

comprehension) and short-term memory deficits. Yet, further larger studies are needed to 

determine whether this repetitive behavior is useful to improve comprehension or other 

linguistic functions, and under which circumstances (i.e., cognitive, neural). This will have 

clinical relevance informing therapeutic decisions.   

Lastly, this dissertation explores sources of variability in verbal repetition and found 

sex to be a relevant variable. Specifically pointing out lower prevalence of repetition deficits 

among women. In this regard, although we provide speculative explanations for this finding, 

we could not directly address the origin of this difference. Yet, given the low prevalence of 

TAs this was the more putative approach to address the issue of sex differences in verbal 

repetition outcome after brain damage. Future studies are needed to: (1) replicate our 

findings; (2) determine whether this pattern of lower repetition deficits among women is 

already present at the acute stage or, alternatively, emerges afterwards; (3) provide evidence 

on differences in compensatory brain changes (or pre-existing differences) explaining verbal 

repetition outcomes in females and males after brain damage.  
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Conclusions 

The present dissertation includes five studies that address different aspects of verbal 

repetition in persons with chronic aphasia as well as in a model of phonological expertise in 

healthy persons named backward speech. The results of these studies lead to relevant 

conclusions described below. 

Block 1 

Study 1. Results from this study suggested that the symptoms of conduite d’ 

approche and mitigated echolalia reflect compensatory changes within the preserved stream 

in the left hemisphere and alternative right hemisphere pathways that emerge when the main 

pathway for a given function is damaged. Thus, echolalia seems to emerge from a spared left 

dorsal stream when the ventral stream is damaged. Likely, the symptom of conduite d’ 

approche results from the activity of the ventral stream when the left dorsal stream is out of 

functioning. Although at present, these repetitive verbal behaviors only provide suboptimal 

performance in persons with aphasia, the novel interpretation of these behaviors as active 

attempts to overcome a language deficit, open new avenues for remodeling the language 

network with modern interventions (e.g., non-invasive brain stimulation, drugs) to promote 

recovery.  

Study 2. This opinion article analyzed different types of echolalia which may lay in 

a continuum of severity, suggesting that it represents a heterogeneous symptom of aphasia. 

Thus, exploring the effects and the global interference that echolalia has in communication 

at individual level is crucial to enrich its clinical management. Further, recommendations 

regarding its assessment and treatment were provided.  

Study 3. The results from this single case study suggested that mitigated echolalia 

interfering with functional communication may be modulated through treatment. Further, it 

is shown that in the studied subject, mitigated echolalia emerged mainly as a strategy to 

compensate for comprehension and short-term memory impairments associated to a large 

temporal lesion. Functional and structural neuroimaging analysis suggested that ME may 

emerge from the activity of remnants of the left dorsal stream and homotopic perisylvian 

counterpart in the right hemisphere.  

Block 2 

Study 4. Results from this study suggested that expertise in backward speech in 

healthy subjects, which relies on sequencing processes of phonological encoding, induces 

functional and structural adaptations mainly within the optimized route for phonological 

processing (i.e., dorsal stream) and limited involvement of the ventral stream. Further, 
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functional imaging results suggested that backward speakers feature greater synchrony 

between language-related regions and areas involved in high-level visual and domain-general 

processes (e.g., attention), which may reflect and implicit visualization of the to-be-reversed 

strings as well as the increment of cognitive demands placed by reversal processes. Yet, great 

individual differences in the neural features of each subject were observed, which we 

speculate to be related to the strategy used during backward speech, depending more on 

phonological memory in one case and in visualization strategies in the other. 

Study 5. Results from this study provide evidence of different ratios of repetition 

deficits in males and females after stroke, with the formers showing greater prevalence than 

the latest. One putative explanation of this finding is that the described anatomical differences 

depicting greater volume in right cortical areas and relevant white matter tracts (i.e., AF) 

homotopic to the ones involved in verbal repetition in the left hemisphere, together with the 

greater inter-hemispheric connectivity, may favor recovery through recruitment of right areas 

in females. Importantly, this finding may encourage further investigations posing sex as a 

putative relevant variable.  

 Overall, the results of the 5 studies presented herein suggest that cognitive strategies 

and neural correlates involved in a given task change after brain damage, and that symptoms 

previously considered as “deleterious errors” may reflect attempts to overcome language 

deficits resulting from plastic changes within available tissue. Further, while recovery of 

language after brain damage seems to rely on remnant and alternative pathways when the 

major pathways are damaged, differences between expert backward speakers and controls 

suggest that plastic changes (or pre-existing differences) occur mainly within networks 

devoted to the task, and lesser over alternative ones. Yet, the increased cognitive demands 

placed by phoneme reordering leave traces in the brain circuitry in the form of greater 

functional connectivity between domain-general and phonological-related processing areas. 

Although further larger studies are certainly needed, together this leads us to think that the 

different components of the human language network are specialized and, when available, 

improvement of functions is supported by reshaping and tuning of these networks. 

Importantly, when the preferential pathway for a given task is not available, redundant 

connections and compensatory changes aid performance, although such performance might 

be suboptimal. Yet these alternative routes may be enhanced through different therapeutic 

interventions. Importantly, inter-individual differences in verbal repetition really exist. Thus, 

differences in the strategy used to comply with a task demand, the type and amount of 

behavioral training or the action of biological strategies (e.g. drugs) coupled with pre-existing 

brain differences may be a source of variability in the ability to repeat. Among this last one, 
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this dissertation points out sex as an important variable influencing outcomes in verbal 

repetition after brain damage.  

I believe that the finding and the clinical suggestions provided in this dissertation will 

contribute to the understanding of the brain networks supporting the improvement of 

linguistic abilities and management of some common symptoms of aphasia. Thus, the results 

of this work may inform models of brain plasticity and aid clinical interventions.   
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Chapter 5. Resumen (en español) 

Introducción  

Perspectiva general de la repetición verbal en el presente trabajo 

El lenguaje es la función cognitiva más compleja del cerebro humano. Nos permite 

crear un sinfín de posibles construcciones, sustentando nuestra capacidad de pensamiento 

abstracto y de comunicación. Entre las funciones que integran el lenguaje, la capacidad de 

repetición verbal parece ser la más simple. No obstante, esta función requiere la traducción 

de un código fonológico a un patrón motor (proceso conocido como integración audio-motora  

Hickok & Poeppel, 2007), lo cual recae en una serie de subprocesos. Así, repetir un estímulo 

(palabra, pseudopalabara o frase) de forma exitosa requiere procesar auditiva y 

fonológicamente el estímulo, cuando sea posible acceder al trazo de memoria asociado a 

dicho estímulo (en el caso de palabras conocidas), y mantener una correcta representación en 

la memoria a corto plazo hasta transformar el código fonológico en un patrón motor que será 

finalmente ejecutado.  Este proceso se sustenta en una compleja red cerebral en la que 

participan regiones perceptivas, motoras y las conexiones entre ellas, en estrecha relación con 

otros procesos como el control inhibitorio y la memoria.    

Repetir una secuencia fonológica en nuestra lengua suele ser una tarea fácil para la 

mayoría de nosotros, pero puede resultar más demandante si la secuencia de fonemas a repetir 

no tiene significado (p.ej., pseudopalabras), pertenece a otro idioma o es demasiado larga y, 

aún más, si requiere de manipulaciones intermedias como invertir el orden de las sílabas o 

fonemas que la componen. Sin embargo, existe variabilidad individual y la repetición de una 

sílaba puede ser extremadamente difícil para una persona con afasia, mientras que, por 

ejemplo, repetir estímulos invirtiendo el orden de los fonemas puede ser una tarea fácil para 

una persona con pericia en este proceso. Estas disparidades se pueden explicar por diferencias 

anatómicas y funcionales en la red cerebral que sustenta la capacidad de repetición y en 

sistemas relacionados. De hecho, diferencias en esta red han sido descritas como sustrato 

neuronal de algunos tipos de afasias, así como también de diversos tipos de pericia lingüística 

(p.ej., traductores simultáneos y fonetistas).  

Aunque las técnicas modernas de neuroimagen han permitido establecer con 

bastante claridad la red cerebral que sustenta la función de repetición verbal en sujetos sanos, 

muchos aspectos de esta función lingüística han sido poco estudiados en personas con afasia 

y en modelos emergentes de pericia lingüística. Por lo tanto, el presente trabajo busca 

explorar las características cognitivas y los correlatos neuronales de la repetición verbal desde 

diferentes perspectivas, incluyendo modelos de repetición disfuncional (i.e., personas con 
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afasia) y modelos de pericia lingüística (i.e., habladores inversos), y con ello contribuir a 

mejorar el conocimiento de algunos síntomas clínicos (p.ej., ecolalia) caracterizados por 

repetición disfuncional, y las bases cerebrales asociadas. Los objetivos específicos de cada 

estudio incluido se abordan en un apartado posterior. Antes, se presentan los antecedentes 

que justifican dichos objetivos y la evidencia científica derivada de estudios previos en la que 

se sustentan los mismos.  

Importancia de la repetición verbal  

Filogenéticamente, el desarrollo de la red cerebral que sustenta la capacidad de 

integración audio-motora —proceso clave que subyace la capacidad de repetición (y que 

constituye el bucle fonológico de memoria de trabajo)— apareció como una función clave 

que propició el desarrollo de un sistema lingüístico complejo (Aboitiz, 2018).  Se ha 

propuesto que la optimización de este sistema ha permitido a nuestros ancestros aprender 

secuencias fonológicas de complejidad creciente por medio de la repetición e imitación 

(Aboitiz, 2018).  

Asimismo, a nivel ontogenético, la repetición verbal y la imitación juegan un papel 

clave en la adquisición del lenguaje. Diversos estudios de adquisición de primera y segunda 

lengua en niños con desarrollo normal muestran que la adquisición de vocabulario está 

fuertemente relacionada con la capacidad para repetir secuencias fonológicas sin significado 

(i.e., pseudopalabras) (ver revisión en Baddeley et al., 1998). Así,  la obtención de mejores 

puntuaciones en repetición de pseudopalabras se ha relacionado con una mejor capacidad de 

aprendizaje de palabras y mayor adquisición de vocabulario tiempo después (Gathercole, 

Service, Hitch, Adams, & Martin, 1999; Gathercole, Willis, Emslie, & Baddeley, 1992; 

Service, 1992).  

Por otro lado, la repetición verbal es un recurso clave de las terapias de recuperación 

del habla en trastornos afásicos —caracterizados por la pérdida o dificultad para producir o 

comprender el lenguaje como consecuencia de un daño cerebral. De hecho, la capacidad de 

repetición verbal es uno de los dominios más utilizados para clasificar las afasias (Kertesz, 

1979), lo cual permite agrupar a personas con un correlato comportamental y  cerebral similar, 

y facilitar con ello la comunicación entre clínicos.  

La repetición verbal como dominio para clasificar las afasias  

Una de las clasificaciones más usadas de los trastornos afásicos se basa en la 

capacidad de repetición verbal, distinguiendo las afasias con repetición alterada asociadas a 

lesiones perisilvianas de las afasias con repetición preservada asociadas a lesiones extra-
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silvianas. Las afasias perisilvianas son más frecuentes e incluyen las afasias clásicas de Broca, 

Wernicke, conducción y global. Mientras que las afasias transcorticales, menos frecuentes, 

incluyen las afasias transcorticales motora, sensorial y mixta. Cada uno de estos subtipos se 

caracteriza por un perfil clínico y radiológico distinguible. Aunque una caracterización 

detallada excede los objetivos del presente resumen, se hará mención a la afasia de 

conducción y transcorticales (sensorial y motora) como representativas de afasias con 

repetición alterada y preservada, respectivamente.  

La afasia de conducción se caracteriza especialmente por una notable dificultad en 

la repetición verbal, apareciendo más afectada la repetición de pseudopalabras que de 

palabras, y con relativa preservación de la capacidad de comprensión y producción verbal. 

Sin embargo, es frecuente que las afasias con repetición alterada cursen con dificultades más 

leves en la producción y en la comprensión del habla de forma asimétrica, por lo que algunos 

autores se refieren a estos tipos de afasia de conducción como afasia de conducción tipo 

Wernicke cuando aparece más afectada la comprensión, o afasia de conducción tipo Broca 

cuando aparece más afectada la producción. Otros síntomas característicos de la afasia de 

conducción son las parafasias fonémicas, así como la emisión de secuencias de aproximación 

a la palabra objetivo y autocorrección de errores (i.e., conduite d´approche). Este tipo de 

afasias se ha vinculado a un déficit en la programación del habla, una pobre codificación 

fonológica, así como a una alteración de la capacidad de integración audio-motora y de la 

memoria fonológica a corto plazo (Berthier, Lambon Ralph, Pujol, & Green, 2012).  Desde 

el punto de vista neuroanatómico, la afasia de conducción se ha relacionado principalmente 

con lesiones del haz de sustancia blanca que une el área de Broca con el área de Wernicke, 

denominado fascículo arqueado (FA). Por otro lado, diversos estudios de neuroimagen 

también han señalado que una región de la corteza perisilviana conocida como área 

temporoparietal (Spt, por sus siglas en inglés) es clave para la integración audio-motora y su 

lesión resulta en un perfil de afasia de conducción (Buchsbaum et al., 2011). 

Por otro lado, la afasia transcortical sensorial se caracteriza por déficits de 

comprensión verbal y denominación acompañados por repetición preservada y producción 

bien articulada, aunque el lenguaje suele ser ininteligible y lleno de parafasias neologistas. 

Por otro lado, la afasia transcortical motora es un tipo de afasia no fluente, que se presenta 

con dificultades en la producción y en la denominación, pero con repetición y comprensión 

preservadas. El habla suele estar acompañada de un marcado esfuerzo, agramatismos y 

dificultades articulatorias.  
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Modelos neurocognitivos y bases cerebrales de la repetición verbal 

Los modelos cognitivos, computacionales y neurocognitivos de repetición verbal 

convergen en postular que este proceso se sustenta en dos vías anatómica (vía dorsal y vía 

ventral) y funcionalmente (vía léxica y vía subléxica) segregadas (Dell, 1986; Hickok & 

Poeppel, 2004, 2007; McCarthy & Warrington, 1984; Patterson et al., 1987). Además, aunque 

no es fundamental para desempeñar la tarea, la repetición de un estímulo conlleva la imitación 

automática de algunos parámetros, como el ritmo o la melodía (Kappes et al., 2009) y de 

señales visuales (Iacoboni et al., 1999; Kohler et al., 2002). Por lo tanto, la repetición verbal 

se sustenta, por un lado, en una red cerebral especializada en el procesamiento lingüístico y 

por otro, en una red cerebral que, sin ser específica, tiene la capacidad de “activarse” cuando 

realizamos una acción (p. ej. hablar) y cuando la observamos. Este último sistema cerebral se 

conoce como sistema de neuronas espejo (Giacomo Rizzolatti & Craighero, 2004).  

Más precisamente, uno de los modelos neurocognitivos más aceptados en 

neurociencia cognitiva —el modelo de la doble ruta de procesamiento— postula que la 

función de integración audio-motora, es decir, la capacidad para transformar un menasje 

auditivo en un patrón motor, se sustenta principalmente en la vía de procesamiento dorsal. 

Por otro lado, los procesos de asociación léxico-semántico, es decir, los procesos que 

permiten acceder al significado de las palabras, están sustentados por un conjunto de 

estructuras que conforman la vía ventral (Hickok & Poeppel, 2004, 2007). De acuerdo con 

esta propuesta, la capacidad para repetir secuencias sin significado (pseudopalabras) recae 

principalmente sobre la vía dorsal (Dorothee Saur et al., 2008), mientras que ambas vías de 

procesamiento participarían en la repetición de palabras y frases con significado. A nivel 

anatómico, ambas vías de procesamiento nacen del giro temporal superior posterior (GTSp) 

donde tienen lugar los estadíos tempranos del procesamiento acústico. La vía dorsal proyecta 

desde el GTSp a la corteza parietal inferior (CPI) y desde aquí a áreas frontales que participan 

en procesos articulatorios-motores, incluyendo el giro frontal inferior (GFI), la corteza 

premotora (CPM) y la corteza insular (CI). Por otro lado, la vía ventral proyecta desde el 

GTSp hacia el giro temporal posterior medio e inferior y desde aquí hacia el GFI  (ver figura 

6, Capitulo 1). Este modelo ha sido apoyado por cientos de estudios de resonancia magnetica 

estructural y funcional en sujetos sanos (para una revisión ver Price, 2012), así como por 

estudios de lesión en personas con afasia  (Fridriksson et al., 2016; Saur et al., 2008). 

Por otro lado, el sistema de neuronas espejo se refiere a un conjunto de áreas 

cerebrales que responden tanto cuando se está escuchando o viendo a alguien hablar como 

cuando se ejecuta el habla, y abarca el GTSp bilateral, CPI, CPM and GFI izquierdo entre 

otros (Buchsbaum et al., 2001; Mashal et al., 2012). Por tanto, las áreas que comprenden la 
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vía dorsal postulada en el modelo de doble ruta se superponen con las áreas que conforman 

el sistema de neuronas espejo, lo que refleja la cercana interacción entre los procesos de 

repetición verbal y los de imitación; ambos fundamentales para el aprendizaje del lenguaje y 

para la recuperación de este en personas con afasia.  

Evidencia de neuroimagen y estudios de lesión  

En línea con el modelo de la doble ruta de procesamiento, los hallazgos de estudios 

basados en sujetos sanos sugieren que la capacidad de repetición verbal se sustenta en una 

extensa red que involucra regiones corticales y diversas conexiones de sustancia blanca. De 

forma general, la repetición de palabras y pseudopalabras induce una fuerte activación 

bilateral del GTS, giro temporal medio (GTM) así como del GFI y giro frontal medio, en 

conjunto con áreas motoras primarias y CPM (Hartwigsen et al., 2013; Dorothee Saur et al., 

2008; Yoo et al., 2012). Aunque en la repetición de ambos tipos de estímulos participan 

regiones similares, la repetición de pseudopalabras tiende a inducir mayor activación de la 

red fronto-temporal izquierda que la repetición de palabras, incluyendo el GTS, el GFI, la CI 

y la CPM (Hartwigsen et al., 2013; Palomar-García, Sanjuán, Bueichekú, Ventura-Campos, 

& Ávila, 2017; Saur et al., 2008). Algunos estudios también señalan que el patrón de 

activación inducido por palabras se extiende, en mayor medida que el de las pseudopalabras, 

hacia áreas posteriores del GTS (Yoo et al., 2012). De forma complementaria, los resultados 

de estudios de lesión en sujetos con afasia —a través de análisis de correlación entre la lesión 

en un área cerebral (p. ej. vóxel) y el rendimiento en una tarea (p. ej. repetición)— convergen 

con los resultados derivados de estudios con sujetos sanos (ver figura 10, capítulo1).   

Las regiones corticales que forman parte de las redes que sustentan la capacidad de 

repetición están unidas por diferentes tractos de sustancia blanca que transcurren dorsal y 

ventralmente. Estudios basados en imagen por tensor de difusión han mostrado que la vía 

fronto-temporo-parietal, es decir la vía dorsal, comprende principalmente el fascículo 

arqueado (FA). Aunque inicialmente se describió como un haz de fibras que conecta la región 

de Broca con la región de Wernicke (Geschwind, 1970), estudios recientes ponen en 

evidencia que la estructura de este tracto es algo más compleja (Catani, Jones, & Ffytche, 

2005). El FA está conformado principalmente por tres segmentos: (1) el segmento largo; (2) 

el segmento anterior; y (3) el segmento posterior. El segmento largo (vía directa) conecta 

directamente las áreas de Broca y Wernicke, mientras que los otros dos segmentos conforman 

una ruta indirecta entre estas dos regiones, donde el segmento anterior conecta el área de 

Broca con la CPI (territorio de Geschwind), y el segmento posterior vincula la CPI con el 

área de Wernicke. Por otro lado, la vía ventral abarca diferentes tractos de sustancia blanca 
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que conectan áreas frontales y temporales, incluyendo el fascículo fronto-occipital inferior 

(FFOI), el fascículo longitudinal inferior (FLI) y el fascículo uncinado (FU).  El FFOI conecta 

la corteza orbitofrontal medial y lateral (AB47) con la parte posterior del GTS, GTM y GTI 

así como con la corteza occipital. El FLI conecta las mismas regiones posteriores temporales 

y occipitales que el FFOI con el lóbulo temporal anterior (Catani y Thiebaut de Schotten, 

2008) y, por último, el FU conecta la corteza frontal dorsolateral y orbitofrontal con el lóbulo 

temporal anterior (Friederici y Gierhan, 2013). En general, las vías dorsales están 

lateralizadas a la izquierda y las ventrales muestran un volumen similar en el hemisferio 

derecho e izquierdo ( Thiebaut de Schotten et al., 2011). Los tractos dorsal y ventral se 

muestran en la figura 9 (Capitulo 1).  

Aunque las vías dorsal y ventral están segregadas anatómica y funcionalmente, 

algunos hallazgos sugieren que en ciertas circuntancias ambas vías cooperan sinérgicamente 

para ejecutar una tarea determinada (Makris y Pandya, 2009; Rauschecker y Scott, 2009; 

Rolheiser, Stamatakis y Tyler, 2011; Weiller, Bormann, Saur, Musso y Rijntjes, 2011). Por 

ejemplo, estudios previos de neuroimagen con población sana revelaron que, aunque en 

circunstancias normales la vía dorsal izquierda sustenta los procesos de repetición verbal (i.e., 

bucle fonológico) necesarios para aprender palabras nuevas presentadas de forma auditiva 

(López-Barroso, Catani, Ripollés, Dell'Acqua, Rodríguez-Fornells, y de Diego-Balaguer, 

2013; López-Barroso, Ripollés, Marco-Pallarés, Mohammadi, Münte, Bachoud-Lévi, et al., 

2015), la vía ventral izquierda puede hacerse cargo de esta función cuando la vía dorsal 

ipsilateral se bloquea artificialmente (p.ej. mediante la repetición de forma continuada de una 

sílaba irrelevante como “bla”) (López-Barroso, de Diego-Balaguer, Cunillera, Camara, 

Münte, Rodríguez-Fornells, 2011). Esto plantea varias preguntas importantes: (a) ¿las 

funciones de una vía pueden ser compensadas o respaldadas por la otra en determinadas 

circunstancias como las que se dan en el daño cerebral adquirido?; (b) ¿las posibles 

compensaciones son adaptativas, es decir, mejoran los déficits del lenguaje?; (c) ¿las 

capacidades linguisticas extraordinarias en sujetos sanos expertos (p.ej. habladores inversos) 

son facilitadas por el reclutamiento de una vía alternativa no preferente para la función 

línguistica?; (d) ¿o por el contrario esta capacidad se sustenta en el remodelado de la vía 

preferente?. El potencial compensatorio de las vías relacionadas con el lenguaje es un tema 

de interés en el presente trabajo y se abordará en los estudios 1, 3, 4 y 5.  

Dimorfismos sexuales en áreas homologas a las relacionadas con repetición verbal 

Un factor potencial de diferencias individuales en la estructura y función del cerebro 

es el sexo. Las diferencias asociadas al sexo en el cerebro humano han sido reconocidas desde 

hace más de un siglo (Woolley 1910). Se han publicado múltiples estudios de neuroimagen 
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sobre diferencias de sexo que examinan la estructura, los patrones de activación cerebral y la 

conectividad (ver Gong et al. 2011; Ruigrok et al. 2014; Sommer et al. 2002). Ruigrok y sus 

colaboradores realizaron un metaanálisis (Ruigrok et al. 2014) cuyos resultados sugieren que 

las mujeres tienen de promedio un mayor volumen en áreas del hemisferio derecho 

homólogas a las áreas del lenguaje relevantes para la repetición verbal (GFI derecho [pars 

triangularis y pars opercularis], planum temporale y circunvolución de Heschl). Además, los 

estudios de conectoma cerebral revelaron una conectividad intrahemisférica más fuerte en los 

hombres en comparación con las mujeres frente a una mayor conectividad interhemisférica 

en las mujeres en comparación con los hombres (Ingalhalikar et al. 2014; Sun et al. 2015). 

En esta misma línea, evidencia previa sugiere que el volumen de los tractos de 

sustancia blanca relacionados con el lenguaje varía entre mujeres y hombres (Catani et al. 

2007; Thiebaut de Schotten et al. 2011). Por ejemplo, la lateralización del FA puede estar 

sujeta a diferencias de sexo. Catani y colaboradores (2007) proporcionaron evidencia de que 

el segmento largo del FA está fuertemente lateralizado en términos de volumen hacia el 

hemisferio izquierdo en ~ 60% de la población estudiada, mientras que el ~ 40% restante 

tiene una representación bilateral. Además, los autores encontraron que el patrón bilateral era 

más frecuente en mujeres (~ 60%) que en hombres (~ 15%), mientras que la lateralización 

izquierda fuerte fue más frecuente en hombres (~ 85%) que en mujeres (~ 40%). En este 

sentido, dado que el FA aparece como una estructura importante para la repetición verbal, la 

lateralización de este tracto puede determinar la capacidad de repetición después de una lesión 

cerebral y la expresión clínica de los trastornos del lenguaje (Berthier et al. 2013; López-

Barroso et al. 2015). De hecho, Forkel y colaboradores (2014) realizaron un estudio 

longitudinal prospectivo para evaluar cómo la lateralización del FA afecta la gravedad de la 

afasia post-ictus y su recuperación espontánea. Curiosamente, encontraron que el volumen 

del segmento largo de FA derecho era un factor predictivo de una mejor recuperación 

espontánea del lenguaje. 

 Por lo tanto, dado que las áreas corticales y los tractos de materia blanca del 

hemisferio derecho homólogos a las áreas críticas para la repetición verbal muestran mayor 

volumen en las mujeres que en los hombres, y dado que las diferencias anatómicas parecen 

desempeñar un papel importante en la expresión clínica y en la recuperación después del daño 

cerebral, será determinar si existen diferencias de sexo en la prevalencia de síndromes 

afásicos. Este tema se abordará en el Estudio 5 de la presente tesis doctoral, dónde la 

proporción de mujeres y hombres en dos tipos de afasia (una caracterizada por repetición 

reservada y otra por déficits de repetición) se estima en base a una revisión de la literatura de 

los casos publicados de afasia de conducción y afasias transcorticales.  
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Objetivos  

El objetivo transversal de la presente tesis doctoral ha sido explorar las 

características clínicas, cognitivas y neurales de la repetición verbal a partir de casos extremos 

en el continuo de su ejecución. Por tanto, se examinan las características asociadas a la 

repetición verbal tanto en sujetos con afasia como en sujetos con una habilidad fonológica 

extraordinaria denominada habla inversa. El presente trabajo comprende cinco estudios que 

de forma conjunta pretenden estudiar la flexibilidad de las vías del lenguaje y aportar 

evidencia que permita establecer en qué circunstancias las funciones de una vía pueden ser 

compensadas (en el caso de pacientes con afasia) o potenciadas (en el caso de personas con 

habilidades extraordinarias) por la otra vía para mejorar las funciones lingüísticas. De forma 

complementaria, esta tesis aborda problemáticas clínicas y pretende elucidar alternativas de 

evaluación y tratamiento para un síntoma afásico muy frecuente pero poco estudiado 

denominado ecolalia —caracterizado por la repetición excesiva de palabras y expresiones 

emitidas por otra persona. Finalmente, en este trabajo se han explorado fuentes de 

variabilidad en la capacidad de repetición verbal después de un daño cerebral, con especial 

interés en el sexo (hombres vs mujeres) como variable relevante. Los objetivos concretos de 

cada uno de los 5 estudios incluidos se exponen a continuación.  

Estudio 1 tiene como objetivo examinar si la ecolalia mitigada y la conducta de 

búsqueda (conduite d’approche) en tres casos de afasia post-ictus crónica surgen como 

compensación de una ruta (p. ej., dorsal) cuando la otra (p. ej., ventral) está afectada. Para 

este propósito, se utilizan evaluaciones multimodales que incluyen lenguaje y otras funciones 

cognitivas, así como neuroimagen multimodal (resonancia magnética y tomografía por 

emisión de positrones).   

El Estudio 2 tiene el objetivo de conocer el estado del arte del síntoma de ecolalia 

en el contexto de la afasia post-ictus, revisando las características de los diferentes tipos, sus 

posibles causas y correlatos cerebrales; y proporcionar aproximaciones para su evaluación 

clínica y tratamiento. 

El Estudio 3 tiene como objetivo estudiar más a fondo el subtipo más frecuente de 

ecolalia (i.e., ecolalia mitigada) en una persona con afasia fluida y comprensión auditiva 

alterada, para elucidar su funcionalidad, y explorar las características cerebrales que 

acompañan este síntoma. Dado que en este caso la ecolalia mitigada interfería con la 

comunicación funcional del paciente, un objetivo adicional fue estudiar la eficacia de un 

tratamiento (terapia intensiva del lenguaje y memantina) para reducir las instancias de 

ecolalia mitigada. 
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El Estudio 4 tiene como objetivo identificar las características comunes y las 

diferencias individuales a nivel cognitivo y cerebral de dos sujetos sanos con la capacidad 

extraordinaria de invertir el habla, según lo evaluado mediante tareas de repetición hacia 

adelante y hacia atrás. De forma general y basado en un enfoque multidimensional, este 

estudio busca ofrecer información sobre las estrategias cognitivas y las características 

neuronales distintivas que caracteriza el desempeño sobresaliente en tareas lingüística 

basadas en funciones auditivo-motoras. 

El Estudio 5 tiene como objetivo analizar la distribución por sexo de dos tipos de 

afasias, una caracterizada por déficits de repetición verbal (i.e., afasia de conducción) y la 

otra caracterizada por repetición preservada (i.e., afasia transcortical), con el fin de 

proporcionar evidencia sobre si los problemas de repetición después del daño cerebral tienen 

diferente prevalencia en hombres y mujeres. La hipótesis de este estudio se basa en la 

evidencia de diferencias estructurales y funcionales entre hombres y mujeres en áreas 

cerebrales relacionadas con el lenguaje, especialmente del hemisferio derecho.  

Resumen de los estudios, resultados y conclusiones 

Los comportamientos verbales repetitivos como la conducta de búsqueda (conduite 

d’approche) y la ecolalia mitigada son fenómenos bien conocidos desde las primeras 

descripciones de afasia. Sin embargo, no hay un conocimiento actualizado y sustancial sobre 

sus características clínicas, correlatos cerebrales y tratamiento. Por esto, centrándonos en 

diferentes aspectos de estos síntomas, los estudios 1, 2 y 3 han ido dirigidos a proporcionar 

datos que permitan profundizar en aspectos clínicos y en el conocimiento de los mecanismos 

neurales que dan lugar a estos comportamientos.   

Específicamente, el Estudio 1 aporta evidencia de que la conducta de búsqueda (o 

conduite d’approche) y la ecolalia mitigada no emergen como efecto directo de una lesión 

(tejido no funcional) en el hemisferio izquierdo, sino que representan procesos de plasticidad 

y compensación entre las vías dorsal y ventral de la repetición. Para explicar esta idea 

estudiamos tres casos de afasia fluida crónica que presentaban conducta de búsqueda, ecolalia 

mitigada y ambos síntomas, y exploráramos sus características clínicas y neurales. Usando 

neuroimagen multimodal, encontramos que la persona con conducta de búsqueda tenía 

lesiones que afectaban principalmente la vía dorsal izquierda, mientras que la persona con 

ecolalia mitigada presentaba principalmente afectación de la vía ventral izquierda. La 

coexistencia de conducta de búsqueda y ecolalia mitigada se asoció con afectación de áreas 

que se solapan con las descritas en los dos casos anteriores (figura 4, Estudio 1). Los 

resultados de este estudio sugieren que la conducta de búsqueda y la ecolalia mitigada reflejan 
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cambios dentro de la vía preservada del hemisferio izquierdo y vías alternativas del 

hemisferio derecho que surgen para compensar las funciones lingüísticas que anteriormente 

dependían de la actividad de la vía dañada. Así, la conducta de búsqueda emergería de la 

actividad de la vía ventral, tras daño de la vía dorsal, en un intento por compensar las 

funciones de la vía dorsal (p.ej., repetición verbal). De la misma forma la ecolalia mitigada 

reflejaría la actividad de la vía dorsal cuando existe daño en la vía ventral, en un intento por 

superar entre otros los déficits de comprensión verbal (frecuentes tras lesiones ventrales). Por 

lo tanto, la ecolalia parece emerger de la vía dorsal izquierda preservada (y componentes 

derechos) cuando la vía ventral está dañada. Probablemente, la conducta de búsqueda resulta 

de la actividad de la vía ventral cuando la vía dorsal izquierda está dañada. Aunque en la 

actualidad, estos comportamientos verbales repetitivos solo proporcionan un rendimiento 

subóptimo en personas con afasia, es decir, no contribuyen a una comunicación eficiente, la 

interpretación novedosa de estos comportamientos como intentos activos para superar un 

déficit de lenguaje, abre nuevas oportunidades para remodelar vías preservadas con 

intervenciones modernas (p. ej., estimulación cerebral no invasiva) que promuevan la 

recuperación. 

El Estudio 2 presenta el estado del arte del síntoma de ecolalia en la afasia post-

ictus, revisando aspectos clínicos y cerebrales. El análisis de diferentes tipos de ecolalia nos 

lleva a concluir que la ecolalia constituye un síntoma heterogéneo y que los diferentes tipos 

pueden organizarse en un continuo de gravedad, en el cual las formas más leves presentan 

mayor capacidad comunicativa. Así también, este artículo proporciona recomendaciones para 

su evaluación y tratamiento, sugiriendo que se debe evaluar la capacidad comunicativa de la 

misma, e inhibir a través de estrategias de tratamiento en aquellos casos en los que la ecolalia 

interfiera con la calidad de la comunicación.  

El Estudio 3 se focalizó en estudiar un caso de afasia fluida caracterizado por 

múltiples instancias de ecolalia mitigada. La ecolalia mitigada representa uno de los subtipos 

más leves y frecuentes en afasia. Este síntoma ha sido visto históricamente (Pick, 1924) como 

una estrategia compensatoria dirigida a fortalecer la comprensión auditiva. Sin embargo, esta 

hipótesis y otros posibles déficits subyacentes a la ecolalia mitigada no se han evaluado en 

detalle hasta ahora. Por esto, en el presente trabajo hemos estudiado las características clínicas 

y neurales de un paciente con ecolalia mitigada. Puesto que en este caso las numerosas 

instancias de ecolalia interferían con la comunicación funcional, se evaluó la eficacia de la 

terapia intensiva del lenguaje y de un fármaco (memantina) para aminorar la ecolalia con la 

idea de mejorar la capacidad comunicativa del discurso. El paciente recibió 2 semanas de 

terapia intensiva del lenguaje seguida de administración de memantina.  Se evaluó la ecolalia 
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en varios puntos antes y después del tratamiento. Se adquirieron imágenes de resononcia 

magnética estructurales y funcionales que permitieron hacer análisis de tractografía y de 

actividad cerebral mientras la persona repetía palabras y pseudopalabras. En el caso estudiado 

se muestra que la ecolalia surge principalmente como una estrategia para compensar los 

déficits de comprensión y las alteraciones de la memoria a corto plazo asociadas a una gran 

lesión temporal. El análisis de neuroimagen funcional y estructural sugirió que la ecolalia 

emerge de la actividad de los remanentes de la vía dorsal izquierda (figuras 3 y 5, Estudio 3) 

con compensación funcional en el hemisferio derecho. Además, los resultados de este estudio 

de caso único sugieren que la ecolalia que interfiere con la comunicación funcional puede ser 

modulada a través del tratamiento. 

El Estudio 4 investigó las características cognitivas y neurales de dos personas con 

una habilidad extraordinaria para invertir palabras y oraciones (¡de más de 10 palabras!) de 

forma rápida y precisa. Por ejemplo, dada la frase “sueña con ovejas eléctricas”, estos sujetos 

repetirían “añeus noc sajevo sacirtcéle” o “sacirtcéle sajevo noc añeus”. Este proceso implica 

la repetición de material auditivo, pero requiere de procesos intermedios de reordenamiento, 

lo que incrementa la demanda cognitiva. El estudio de esta peculiar habilidad nos permitió 

indagar en los mecanismos de procesamiento fonológico y más específicamente los 

mecanismos de secuenciación fonémica, es decir, los sistemas neurocognitivos que permiten 

organizar y mantener secuencias de fonemas específicas. Además, este modelo de pericia 

lingüística permitió explorar las peculiaridades cerebrales que sustentan este comportamiento 

extraordinario, y de forma más general informar sobre mecanismos de plasticidad. En este 

contexto, esperábamos que los habladores inversos presentaran diferencias estructurales y/o 

funciones en áreas y tractos de la vía dorsal —principal vía que sustenta los procesos de 

conversión audio-motora. No obstante, también consideramos que los habladores inversos 

requieran de recursos cognitivos/cerebrales adicionales, por lo que también se esperaba la 

contribución de las áreas y tractos de la vía ventral, o áreas implicadas en procesos de dominio 

general. Específicamente, este trabajo incluyó tareas conductuales (p.ej., memoria, repetición 

directa y repetición inversa, decisión léxica) junto con la caracterización cerebral a nivel 

estructural (morfometría basada en vóxeles y tractografía) y funcional (conectividad 

funcional en reposo), que fueron comparadas con un grupo control. Para el análisis de 

tractografía se consideraron tanto los tractos de la vía dorsal (FA) como ventral (FFOI, FLI 

y FU), mientras que para el análisis funcional se seleccionaron como regiones de interés áreas 

involucradas en procesamiento fonológico (GFI, CI, giro supramarginal, y GTSp). En 

comparación con los sujetos controles, ambos habladores inversos mostraron tener un 

rendimiento significativamente mejor en repetición inversa de palabras y frases. Además, esta 
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habilidad extraordinaria se acompañó de diferencias estructurales y funcionales a nivel 

cerebral. Aunque se observaron diferencias individuales entre los dos hablantes inversos, en 

general los resultados apuntan a adaptaciones estructurales y funcionales a lo largo de 

regiones y tractos de la vía dorsal, con soporte complementario de la vía ventral y áreas 

relacionadas con procesos de domino generales. Estas diferencias estuvieron caracterizadas 

por un mayor volumen de sustancia gris y una mayor integridad en regiones de la vía dorsal, 

y mayor conectividad funcional entre las áreas de interés y diferentes regiones cerebrales 

(Figuras 2 y 3, Estudio 4). Si bien a través de la evaluación cognitiva (memoria de trabajo, 

atención) realizada no se detectaron ventajas cognitivas asociadas a la pericia en tareas de 

repetición, especulamos que las diferencias cerebrales observadas están relacionadas con la 

estrategia utilizada durante los procesos de reordenamiento, probablemente basada en 

procesos de memoria fonológica en un caso y estrategias de visualización en el otro. 

Finalmente, en el Estudio 5 se realizó una revisión sistemática de la literatura para 

estudiar si la proporción de mujeres y hombres en la afasia de conducción difiere de la 

esperada por prevalencia de accidentes cerebrovasculares en cada uno de los sexos. Además, 

se revisaron los casos publicados de afasia transcorticales como grupo control.  Los resultados 

de este estudio sugieren que la proporción de hombres en el grupo de afasias de conducción 

es mayor al esperado por prevalencia de accidentes cerebrovasculares, mientras que la 

proporción de mujeres es menor de la esperada. No se encontraron diferencias en el grupo de 

transcorticales (grupo control). Una posible interpretación de este hallazgo hace referencia a 

las diferencias cerebrales (anatómicas y funcionales) entre hombres y mujeres descritas 

anteriormente. Así pues, la existencia de un mayor volumen en áreas perisilvianas del 

hemisferio preservado y una mayor integridad del FA, conjuntamente con mayor 

conectividad interhemisferica que los hombres, podría favorecer la recuperación en mujeres 

mediante el reclutamiento de estructuras del hemisferio derecho.  

De forma general, los resultados de los estudios que conforman esta tesis doctoral 

sugieren que las vías que sustentan la capacidad de repetición verbal, a pesar de tener 

especificidad funcional, trabajan sinérgicamente, de forma que si una de ellas no está 

disponible (p.ej., por daño cerebral) la otra vía ipsilateral y vías del hemisferio derecho 

intentan compensar las funciones dañadas, aunque quizás con menor eficacia. 

Concretamente, este trabajo sugiere que las estrategias cognitivas y los componentes 

cerebrales que sustentan algunas tareas cambian después del daño cerebral, y que los síntomas 

considerados previamente como "errores", pueden reflejar cambios plásticos en vías 

compensatorias. Así, proponemos que los síntomas de ecolalia y conducta de búsqueda 

representarían compensación de una vía (y vías alternativas del hemisferio derecho) cuando 
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la otra ha sido dañada. Es de destacar que el Estudio 3 sugiere que la ecolalia representa un 

intento por sobreponerse a otros déficits como dificultades de comprensión. No obstante, la 

eficacia de este mecanismo no está clara, y nuestros trabajos sugieren que en los casos en los 

que exista excesiva ecolalia y que, por tanto, esta interrumpa el flujo de la comunicación, 

debe ser tratada para disminuir las instancias. En el otro extremo, las habilidades lingüísticas 

extraordinarias (habladores inversos) parecen acompañarse de diferencias estructurales y 

funcionales que afectan principalmente a la vía optimizada para la tarea (p.ej. vía dorsal), con 

soporte adicional de otras vías (p.ej. ventral), y de áreas involucradas en procesos de dominio 

general. Pero es preciso destacar que existen importantes diferencias interindividuales en los 

mecanismos subyacentes, probablemente reflejo del uso de diferentes estrategias cognitivas. 

Así también, los resultados aquí expuestos sugieren que el sexo es una variable importante 

que influye en la capacidad de repetición después de un daño cerebral. Creo que los resultados 

y recomendaciones presentadas en esta tesis contribuyen a mejorar la comprensión de las 

redes cerebrales que sustentan la mejora de las habilidades lingüísticas, y el manejo clínico 

de algunos síntomas comunes de la afasia. Así también, los resultados de este trabajo pueden 

favorecer al desarrollo de modelo de plasticidad cerebral en modelos patológicos y en 

expertos.  



 

 192 



 

 193 

CHAPTER 6 



 

 194 



 

 195 

Chapter 6. References 

Aboitiz, F. (2018). A Brain for Speech. Evolutionary Continuity in Primate and Human 

Auditory-Vocal Processing. Frontiers in Neuroscience, 12, 174. 

https://doi.org/10.3389/fnins.2018.00174 

Amici, S., Ogar, J., Brambati, S. M., Miller, B. L., Neuhaus, J., Dronkers, N. L., & Gorno-

Tempini, M. L. (2007). Performance in Specific Language Tasks Correlates With 

Regional Volume Changes in Progressive Aphasia. Cognitive and Behavioral 

Neurology, 20(4), 203–211. https://doi.org/10.1097/WNN.0b013e31815e6265 

Anderson, J. M., Gilmore, R., Roper, S., Crosson, B., Bauer, R. M., Nadeau, S., … Heilman, 

K. M. (1999). Conduction aphasia and the arcuate fasciculus: A reexamination of the 

Wernicke-Geschwind model. Brain and Language, 70(1), 1–12. 

https://doi.org/10.1006/brln.1999.2135 

Anglade, C., Thiel, A., & Ansaldo, A. I. (2014). The complementary role of the cerebral 

hemispheres in recovery from aphasia after stroke: A critical review of literature. Brain 

Injury, 28(2), 138–145. https://doi.org/10.3109/02699052.2013.859734 

Anwander, A., Tittgemeyer, M., von Cramon, D. Y., Friederici, A. D., & Knösche, T. R. 

(2007). Connectivity-Based Parcellation of Broca’s Area. Cerebral Cortex (New York, 

N.Y. : 1991), 17(4), 816–825. https://doi.org/10.1093/cercor/bhk034 

Arbib, M. A. (2010). Mirror system activity for action and language is embedded in the 

integration of dorsal and ventral pathways. Brain and Language, 112(1), 12–24. 

https://doi.org/10.1016/J.BANDL.2009.10.001 

Assaneo, M. F., Ripollés, P., Orpella, J., Lin, W. M., de Diego-Balaguer, R., & Poeppel, D. 

(2019). Spontaneous synchronization to speech reveals neural mechanisms facilitating 

language learning. Nature Neuroscience, 22(4), 627–632. 

https://doi.org/10.1038/s41593-019-0353-z 

Baddeley, A. (1992). Working memory. Science (New York, N.Y.), 255(5044), 556–559. 

https://doi.org/10.1126/science.1736359 

Baddeley, A. D., & Hitch, G. (1974). Working Memory. Psychology of Learning and 

Motivation, 8, 47–89. https://doi.org/10.1016/S0079-7421(08)60452-1 

Baddeley, A., Gathercole, S., & Papagno, C. (1998a). The phonological loop as a language 

learning device. Psychological Review, 105(1), 158–173. 

Baddeley, A., Gathercole, S., & Papagno, C. (1998b). The phonological loop as a language 

learning device. Psychological Review, 105(1), 158–173. 

Baldo, J. V, Katseff, S., & Dronkers, N. F. (2012). Brain Regions Underlying Repetition and 

Auditory-Verbal Short-term Memory Deficits in Aphasia: Evidence from Voxel-based 

Lesion Symptom Mapping. Aphasiology, 26(3–4), 338–354. 

https://doi.org/10.1080/02687038.2011.602391 

Bates, E., Wilson, S. M., Saygin, A. P., Dick, F., Sereno, M. I., Knight, R. T., & Dronkers, 

N. F. (2003). Voxel-based lesion–symptom mapping. Nature Neuroscience, 6(5), 448. 

https://doi.org/10.1038/nn1050 

Bernal, B., & Ardila, A. (2009). The role of the arcuate fasciculus in conduction aphasia. 

Brain, 132(9), 2309–2316. https://doi.org/10.1093/brain/awp206 

Berthier, M. L., Starkstein, S. E., Leiguada, R., Ruiz, A., Mayberg, H. S., Wagner, H., … 

Robinson, R. G. (1991). Transcortical Aphasia: Importance of The Nonspeech 



 

 196 

Dominant Hemisphere In Language Repetition. Brain, 114(3), 1409–1427. 

https://doi.org/10.1093/brain/114.3.1409 

Berthier, M.L., De-Torres, I., Paredes-Pacheco, J., Roé-Vellvé, N., Thurnhofer-Hemsi, K., 

Torres-Prioris, M. J., … Dávila, G. (2017). Cholinergic potentiation and audiovisual 

repetition-imitation therapy improve speech production and communication deficits in 

a person with crossed aphasia by inducing structural plasticity in white matter tracts. 

Frontiers in Human Neuroscience, 11. https://doi.org/10.3389/fnhum.2017.00304 

Berthier, M.L., Dávila, G., García-Casares, N., & Moreno-Torres, I. (2014). Post-stroke 

Aphasia. In The Behavioral Consequences of Stroke (pp. 95–117). 

https://doi.org/10.1007/978-1-4614-7672-6_6 

Berthier, M. L. (1999). Transcortical aphasias. Psychology Press. 

Berthier, M. L, Froudist Walsh, S., Davila, G., Nabrozidis, A., Juarez Y Ruiz de Mier, R., 

Gutierrez, A., … Garcia-Casares, N. (2013). Dissociated repetition deficits in aphasia 

can reflect flexible interactions between left dorsal and ventral streams and gender-

dimorphic architecture of the right dorsal stream. Frontiers in Human Neuroscience, 7, 

873. https://doi.org/10.3389/fnhum.2013.00873 

Berthier, M. L, García-Casares, N., Walsh, S. F., Nabrozidis, A., Ruíz de Mier, R. J., Green, 

C., … Pulvermüller, F. (2011). Recovery from post-stroke aphasia: lessons from brain 

imaging and implications for rehabilitation and biological treatments. Discovery 

Medicine, 12(65), 275–289.  

Berthier, M. L, Lambon Ralph, M. A., Pujol, J., & Green, C. (2012). Arcuate fasciculus 

variability and repetition: the left sometimes can be right. Cortex; a Journal Devoted 

to the Study of the Nervous System and Behavior, 48(2), 133–143. 

https://doi.org/10.1016/j.cortex.2011.06.014 

Breier, J. I., Hasan, K. M., Zhang, W., Men, D., & Papanicolaou, A. C. (2008). Language 

Dysfunction After Stroke and Damage to White Matter Tracts Evaluated Using 

Diffusion Tensor Imaging. American Journal of Neuroradiology, 29(3), 483–487. 

https://doi.org/10.3174/ajnr.A0846 

Broca, P. (1861a). Nouvelle observation d’aphémie produite par une lésion de la moitié 

postérieure des deuxième et troisième circonvolutions frontales. Bulletins de La Société 

Anatomique de Paris, 36, 398–407. 

Broca, P. (1861b). Remarques sur le siège de la faculté du langage articulé, suivies d’une 

observation d’aphémie (perte de la parole). Bulletin et Memoires de La Societe 

Anatomique de Paris, 6, 330–357. 

Buchsbaum, B. R., Baldo, J., Okada, K., Berman, K. F., Dronkers, N., D’Esposito, M., & 

Hickok, G. (2011). Conduction aphasia, sensory-motor integration, and phonological 

short-term memory - an aggregate analysis of lesion and fMRI data. Brain and 

Language, 119(3), 119–128. https://doi.org/10.1016/j.bandl.2010.12.001 

Buchsbaum, B. R., Hickok, G., & Humphries, C. (2001). Role of left posterior superior 

temporal gyrus in phonological processing for speech perception and production. 

Cognitive Science, 25(5), 663–678. https://doi.org/10.1207/s15516709cog2505_2 

Busatto, G. F., Garrido, G. E. ., Almeida, O. P., Castro, C. C., Camargo, C. H. ., Cid, C. G., 

… Bottino, C. M. (2003). A voxel-based morphometry study of temporal lobe gray 

matter reductions in Alzheimer’s disease. Neurobiology of Aging, 24(2), 221–231. 

https://doi.org/10.1016/S0197-4580(02)00084-2 

Carrera, E., & Tononi, G. (2014). Diaschisis: past, present, future. Brain, 137(9), 2408–2422. 



 

 197 

https://doi.org/10.1093/brain/awu101 

Catani, M., Allin, M. P. G., Husain, M., Pugliese, L., Mesulam, M. M., Murray, R. M., & 

Jones, D. K. (2007). Symmetries in human brain language pathways correlate with 

verbal recall. Proceedings of the National Academy of Sciences, 104(43), 17163–

17168. https://doi.org/10.1073/pnas.0702116104 

Catani, M., & Thiebaut de Schotten, M. (2008). A diffusion tensor imaging tractography atlas 

for virtual in vivo dissections. Cortex, 44(8), 1105–1132. 

https://doi.org/10.1016/J.CORTEX.2008.05.004 

Catani, M., Jones, D. K., & Ffytche, D. H. (2005). Perisylvian language networks of the 

human brain. Annals of Neurology, 57(1), 8–16. https://doi.org/10.1002/ana.20319 

Catani, M., & Mesulam, M. (2008). The arcuate fasciculus and the disconnection theme in 

language and aphasia: history and current state. Cortex; a Journal Devoted to the Study 

of the Nervous System and Behavior, 44(8), 953–961. 

https://doi.org/10.1016/j.cortex.2008.04.002 

Catani, M., Mesulam, M. M., Jakobsen, E., Malik, F., Martersteck, A., Wieneke, C., … 

Rogalski, E. (2013). A novel frontal pathway underlies verbal fluency in primary 

progressive aphasia. Brain, 136(8), 2619–2628. https://doi.org/10.1093/brain/awt163 

Corballis, M. C. (2010). Mirror neurons and the evolution of language. Brain and Language, 

112(1), 25–35. https://doi.org/10.1016/J.BANDL.2009.02.002 

Cowan, N. (1999). An embedded-processes model of working memory. Models of Working 

Memory: Mechanisms of Active Maintenance and Executive Control, 20, 506. 

Crawford, J. R., Garthwaite, P. H., & Ryan, K. (2011). Comparing a single case to a control 

sample: Testing for neuropsychological deficits and dissociations in the presence of 

covariates. Cortex, 47(10), 1166–1178. 

https://doi.org/10.1016/J.CORTEX.2011.02.017 

Crisp, J., & Lambon Ralph, M. A. (2006). Unlocking the Nature of the Phonological–Deep 

Dyslexia Continuum: The Keys to Reading Aloud Are in Phonology and Semantics. 

Journal of Cognitive Neuroscience, 18(3), 348–362. 

https://doi.org/10.1162/089892906775990543 

Dell, G. (1986). A spreading-activation theory of retrieval in sentence production. 

Psychological Review, 93(3), 283–321.  

Dell, G. S. (1986). A spreading-activation theory of retrieval in sentence production. 

Psychological Review, 93(3), 283–321. https://doi.org/10.1037/0033-295X.93.3.283 

Dell, G. S. (1988). The retrieval of phonological forms in production: Tests of predictions 

from a connectionist model. Journal of Memory and Language, 27(2), 124–142. 

https://doi.org/10.1016/0749-596X(88)90070-8 

Dell, G. S., Schwartz, M. F., Nozari, N., Faseyitan, O., & Branch Coslett, H. (2013). Voxel-

based lesion-parameter mapping: Identifying the neural correlates of a computational 

model of word production. Cognition, 128(3), 380–396. 

https://doi.org/10.1016/J.COGNITION.2013.05.007 

Dronkers, N. F., Plaisant, O., Iba-Zizen, M. T., & Cabanis, E. A. (2007). Paul Broca’s historic 

cases: high resolution MR imaging of the brains of Leborgne and Lelong. Brain, 

130(5), 1432–1441. https://doi.org/10.1093/brain/awm042 

Duncan, E. S., & Small, S. L. (2016). Imitation-Based Aphasia Therapy. Neurobiology of 

Language, 1055–1065. https://doi.org/10.1016/B978-0-12-407794-2.00084-5 



 

 198 

Edelman, G. M., & Gally, J. A. (2001). Degeneracy and complexity in biological systems. 

Proceedings of the National Academy of Sciences, 98(24), 13763–13768. 

https://doi.org/10.1073/pnas.231499798 

Eling, P. (2011). Lichtheim’s golden shot. Cortex, 47(4), 501–508. 

https://doi.org/10.1016/J.CORTEX.2010.06.008 

Elmer, S, Hänggi, J., & Jäncke, L. (2014). Processing demands upon cognitive, linguistic, 

and articulatory functions promote grey matter plasticity in the adult multilingual brain: 

Insights from simultaneous interpreters. Cortex, 54(1), 179–189. 

https://doi.org/10.1016/j.cortex.2014.02.014 

Elmer, Stefan, Hänggi, J., Vaquero, L., Cadena, G. O., François, C., & Rodríguez-Fornells, 

A. (2019). Tracking the microstructural properties of the main white matter pathways 

underlying speech processing in simultaneous interpreters. NeuroImage, 191, 518–528. 

https://doi.org/10.1016/J.NEUROIMAGE.2019.02.056 

Elmer, Stephan, Hänggi, J., Meyer, M., & Jäncke, L. (2011). Differential language expertise 

related to white matter architecture in regions subserving sensory-motor coupling, 

articulation, and interhemispheric transfer. Human Brain Mapping, 32(12), 2064–2074. 

https://doi.org/10.1002/hbm.21169 

Fadiga, L., Craighero, L., Buccino, G., & Rizzolatti, G. (2002). Speech listening specifically 

modulates the excitability of tongue muscles: a TMS study. European Journal of 

Neuroscience, 15(2), 399–402. https://doi.org/10.1046/j.0953-816x.2001.01874.x 

Forkel, S. J., Thiebaut de Schotten, M., Dell’Acqua, F., Kalra, L., Murphy, D. G. M., 

Williams, S. C. R., & Catani, M. (2014). Anatomical predictors of aphasia recovery: a 

tractography study of bilateral perisylvian language networks. Brain, 137(7), 2027–

2039. https://doi.org/10.1093/brain/awu113 

Foygel, D., & Dell, G. S. (2000). Models of Impaired Lexical Access in Speech Production. 

Journal of Memory and Language, 43(2), 182–216. 

https://doi.org/10.1006/JMLA.2000.2716 

Fridriksson, J., Hubbard, H. I., Hudspeth, S. G., Holland, A. L., Bonilha, L., Fromm, D., & 

Rorden, C. (2012). Speech entrainment enables patients with Broca’s aphasia to 

produce fluent speech. Brain, 135(12), 3815–3829. 

https://doi.org/10.1093/brain/aws301 

Fridriksson, Julius, den Ouden, D.-B., Hillis, A. E., Hickok, G., Rorden, C., Basilakos, A., 

… Bonilha, L. (2018). Anatomy of aphasia revisited. Brain, 141(3), 848–862. 

https://doi.org/10.1093/brain/awx363 

Fridriksson, Julius, Yourganov, G., Bonilha, L., Basilakos, A., Den Ouden, D.-B., & Rorden, 

C. (2016). Revealing the dual streams of speech processing. Proceedings of the 

National Academy of Sciences of the United States of America, 113(52), 15108–15113. 

https://doi.org/10.1073/pnas.1614038114 

Friederici, A. D., & Gierhan, S. M. (2013). The language network. Current Opinion in 

Neurobiology, 23(2), 250–254. https://doi.org/10.1016/J.CONB.2012.10.002 

Friston, K. J., & Price, C. J. (2003). Degeneracy and redundancy in cognitive anatomy. 

Trends in Cognitive Sciences, 7(4), 151–152. 

Gaser, C., Schlaug, G., & Scott, S. K. (2011). Brain Structures Differ between Musicians and 

Non-Musicians. Journal of Neuroscience, 23(27), 9240–9245. 

https://doi.org/10.1523/jneurosci.3891-10.2011 

Gathercole, S. E., Service, E., Hitch, G. J., Adams, A.-M., & Martin, A. J. (1999). 



 

 199 

Phonological short-term memory and vocabulary development: further evidence on the 

nature of the relationship. Applied Cognitive Psychology, 13(1), 65–77.  

Gathercole, S. E., Willis, C. S., Emslie, H., & Baddeley, A. D. (1992). Phonological memory 

and vocabulary development during the early school years: A longitudinal study. 

Developmental Psychology, 28(5), 887–898. https://doi.org/10.1037/0012-

1649.28.5.887 

Geschwind, N. (1970). The organization of language and the brain. Science, Vol. 170, pp. 

940–944. https://doi.org/10.1126/science.170.3961.940 

Geschwind, N. (1974). Disconnexion Syndromes in Animals and Man. 

https://doi.org/10.1007/978-94-010-2093-0_8 

Geschwind, N., Quadfasel, F. A., & Segarra, J. (1968). Isolation of the speech area. 

Neuropsychologia, 6(4), 327–340. https://doi.org/10.1016/0028-3932(68)90005-5 

Geva, S., Correia, M. M., & Warburton, E. A. (2015). Contributions of bilateral white matter 

to chronic aphasia symptoms as assessed by diffusion tensor MRI. Brain and 

Language, 150, 117–128. https://doi.org/10.1016/J.BANDL.2015.09.001 

Giorgio, A., Watkins, K. E., Chadwick, M., James, S., Winmill, L., Douaud, G., … James, 

A. C. (2010). Longitudinal changes in grey and white matter during adolescence. 

NeuroImage, 49(1), 94–103. https://doi.org/10.1016/J.NEUROIMAGE.2009.08.003 

Goldstein, K. (1948). Language and language disturbances; aphasic symptom complexes and 

their significance for medicine and theory of language. 

Golestani, N., Price, C. J., & Scott, S. K. (2011). Born with an Ear for Dialects? Structural 

Plasticity in the Expert Phonetician Brain. Journal of Neuroscience, 31(11), 4213–

4220. https://doi.org/10.1523/JNEUROSCI.3891-10.2011 

Halwani, G. F., Loui, P., Rüber, T., & Schlaug, G. (2011). Effects of practice and experience 

on the arcuate fasciculus: comparing singers, instrumentalists, and non-musicians. 

Frontiers in Psychology, 2, 156. https://doi.org/10.3389/fpsyg.2011.00156 

Han, Y., Yang, H., Lv, Y.-T., Zhu, C.-Z., He, Y., Tang, H.-H., … Dong, Q. (2009). Gray 

matter density and white matter integrity in pianists’ brain: a combined structural and 

diffusion tensor MRI study. Neuroscience Letters, 459(1), 3–6. 

https://doi.org/10.1016/j.neulet.2008.07.056 

Hanley, R. J., Dell, G. S., Kay, J., & Baron, R. (2004). Evidence for the involvement of a 

nonlexical route in the repetition of familiar words: A comparison of single and dual 

route models of auditory repetition. Cognitive Neuropsychology, 21(2–4), 147–158. 

https://doi.org/10.1080/02643290342000339 

Hartwigsen, G., & Saur, D. (2017). Neuroimaging of stroke recovery from aphasia – Insights 

into plasticity of the human language network. NeuroImage. 

https://doi.org/10.1016/J.NEUROIMAGE.2017.11.056 

Henderson, V. W. (1992). Early concepts of conduction aphasia. In S. E. Kohn (Ed.), 

Conduction aphasia (pp. 23–38, Chapter ix, 167 Pages).  

Henseler, I., Regenbrecht, F., & Obrig, H. (2014). Lesion correlates of patholinguistic profiles 

in chronic aphasia: comparisons of syndrome-, modality- and symptom-level 

assessment. Brain, 137(3), 918–930. https://doi.org/10.1093/brain/awt374 

Herbet, G., Zemmoura, I., & Duffau, H. (2018, September 19). Functional Anatomy of the 

Inferior Longitudinal Fasciculus: From Historical Reports to Current Hypotheses. 

Frontiers in Neuroanatomy, Vol. 12. https://doi.org/10.3389/fnana.2018.00077 



 

 200 

Hickok, G., Buchsbaum, B., Humphries, C., & Muftuler, T. (2003). Auditory–Motor 

Interaction Revealed by fMRI: Speech, Music, and Working Memory in Area Spt. 

Journal of Cognitive Neuroscience, 15(5), 673–682. 

https://doi.org/10.1162/jocn.2003.15.5.673 

Hickok, G., Houde, J., & Rong, F. (2011). Sensorimotor Integration in Speech Processing: 

Computational Basis and Neural Organization. Neuron, 69(3), 407–422. 

https://doi.org/10.1016/j.neuron.2011.01.019 

Hickok, G., Okada, K., & Serences, J. T. (2009). Area Spt in the Human Planum Temporale 

Supports Sensory-Motor Integration for Speech Processing. Journal of 

Neurophysiology, 101(5), 2725–2732. https://doi.org/10.1152/jn.91099.2008 

Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. 

Trends in Cognitive Sciences, 4(4), 131–138. https://doi.org/10.1016/S1364-

6613(00)01463-7 

Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: a framework for understanding 

aspects of the functional anatomy of language. Cognition, 92(1–2), 67–99. 

https://doi.org/10.1016/j.cognition.2003.10.011 

Hickok, G., & Poeppel, D. (2007a). The cortical organization of speech processing. Nature 

Reviews Neuroscience, 8(5), 393–402. https://doi.org/10.1038/nrn2113 

Hickok, G., & Poeppel, D. (2007b). The corticall organization of speech processing. Nature 

Reviews. Neuroscience, 8, 393–402. 

Hillis, A. E., Kleinman, J. T., Newhart, M., Heidler-Gary, J., Gottesman, R., Barker, P. B., 

… Chaudhry, P. (2006). Restoring Cerebral Blood Flow Reveals Neural Regions 

Critical for Naming. Journal of Neuroscience, 26(31), 8069–8073. 

https://doi.org/10.1523/JNEUROSCI.2088-06.2006 

Hillis, Argye E., Beh, Y. Y., Sebastian, R., Breining, B., Tippett, D. C., Wright, A., … 

Fridriksson, J. (2018). Predicting recovery in acute poststroke aphasia. Annals of 

Neurology, 83(3), 612–622. https://doi.org/10.1002/ana.25184 

Hillis, Argye E., & Caramazza, A. (1991). Mechanisms for accessing lexical representations 

for output: Evidence from a category-specific semantic deficit. Brain and Language, 

40(1), 106–144. https://doi.org/10.1016/0093-934X(91)90119-L 

Hillis, Argye E., & Caramazza, A. (1995). Converging evidence for the interaction of 

semantic and sublexical phonological information in accessing lexical representations 

for spoken output. Cognitive Neuropsychology, 12(2), 187–227. 

https://doi.org/10.1080/02643299508251996 

Hope, T. M. H., Prejawa, S., Parker Jones,  â€˜ÅŒiwi, Oberhuber, M., Seghier, M. L., Green, 

D. W., & Price, C. J. (2014). Dissecting the functional anatomy of auditory word 

repetition. Frontiers in Human Neuroscience, 8, 246. 

https://doi.org/10.3389/fnhum.2014.00246 

Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. 

(1999). Cortical Mechanisms of Human Imitation. Science, 286(5449), 2526–2528. 

https://doi.org/10.1126/science.286.5449.2526 

Imfeld, A., Oechslin, M. S., Meyer, M., Loenneker, T., & Jancke, L. (2009). White matter 

plasticity in the corticospinal tract of musicians: a diffusion tensor imaging study. 

NeuroImage, 46(3), 600–607. https://doi.org/10.1016/j.neuroimage.2009.02.025 

James, C. E., Oechslin, M. S., Van De Ville, D., Hauert, C.-A., Descloux, C., & Lazeyras, F. 

(2014). Musical training intensity yields opposite effects on grey matter density in 



 

 201 

cognitive versus sensorimotor networks. Brain Structure & Function, 219(1), 353–366. 

https://doi.org/10.1007/s00429-013-0504-z 

Jehna, M., Becker, J., Zaar, K., von Campe, G., Mahdy Ali, K., Reishofer, G., … 

Deutschmann, H. (2017). Symmetry of the arcuate fasciculus and its impact on 

language performance of patients with brain tumors in the language-dominant 

hemisphere. Journal of Neurosurgery, 127(6), 1407–1416. 

https://doi.org/10.3171/2016.9.JNS161281 

Kappes, J., Baumgaertner, A., Peschke, C., & Ziegler, W. (2009). Unintended imitation in 

nonword repetition. Brain and Language, 111(3), 140–151. 

https://doi.org/10.1016/J.BANDL.2009.08.008 

Kasselimis, D., Potagas, C., Kourtidou, E., & Evdokimidis, I. (2012). Classification of the 

Aphasias: Maybe It’s Time for a Change. Procedia - Social and Behavioral Sciences, 

61, 161–162. https://doi.org/10.1016/j.sbspro.2012.10.127 

Kertesz, A. (1979). Aphasia and associated disorders: Taxonomy, localization, and recovery. 

Klingbeil, J., Wawrzyniak, M., Stockert, A., & Saur, D. (2019). Resting-state functional 

connectivity: An emerging method for the study of language networks in post-stroke 

aphasia. Brain and Cognition, 131, 22–33. https://doi.org/10.1016/j.bandc.2017.08.005 

Kohler, E., Keysers, C., Umiltà, M. A., Fogassi, L., Gallese, V., & Rizzolatti, G. (2002). 

Hearing sounds, understanding actions: action representation in mirror neurons. 

Science (New York, N.Y.), 297(5582), 846–848. 

https://doi.org/10.1126/science.1070311 

Kohn, S. E. (1992). Conduction aphasia. Lawrence Erlbaum Associates, Inc, Hillsdale, NJ. 

Kümmerer, D., Hartwigsen, G., Kellmeyer, P., Glauche, V., Mader, I., Klöppel, S., … Saur, 

D. (2013). Damage to ventral and dorsal language pathways in acute aphasia. Brain, 

136(2), 619–629. https://doi.org/10.1093/brain/aws354 

Lahav, A., Saltzman, E., & Schlaug, G. (2007). Action representation of sound: audiomotor 

recognition network while listening to newly acquired actions. The Journal of 

Neuroscience : The Official Journal of the Society for Neuroscience, 27(2), 308–314. 

https://doi.org/10.1523/JNEUROSCI.4822-06.2007 

Laine, M., & Martin, N. (2012). Cognitive Neuropsychology Has Been, Is, And Will Be 

Significant To Aphasiology. Aphasiology, 26(11), 1362–1376. 

https://doi.org/10.1080/02687038.2012.714937 

Lee, J., Fowler, R., Rodney, D., Cherney, L., & Small, S. L. (2010). IMITATE: An intensive 

computer-based treatment for aphasia based on action observation and imitation. 

Aphasiology, 24(4), 449–465. https://doi.org/10.1080/02687030802714157 

Leonard, M. K., Cai, R., Babiak, M. C., Ren, A., & Chang, E. F. (2019). The peri-Sylvian 

cortical network underlying single word repetition revealed by electrocortical 

stimulation and direct neural recordings. Brain and Language, 193, 58–72. 

https://doi.org/10.1016/J.BANDL.2016.06.001 

López-Barroso, D., Catani, M., Ripolles, P., Dell’Acqua, F., Rodriguez-Fornells, A., & de 

Diego-Balaguer, R. (2013). Word learning is mediated by the left arcuate fasciculus. 

Proceedings of the National Academy of Sciences, 110(32), 13168–13173. 

https://doi.org/10.1073/pnas.1301696110 

López-Barroso, D., De Diego-Balaguer, R., Cunillera, T., Camara, E., Münte, T. F., & 

Rodríguez-Fornells, A. (2011). Language learning under working memory constraints 

correlates with microstructural differences in the ventral language pathway. Cerebral 



 

 202 

Cortex (New York, N.Y. : 1991), 21(12), 2742–2750. 

https://doi.org/10.1093/cercor/bhr064 

López-Barroso, D., Ripollés, P., Marco-Pallarés, J., Mohammadi, B., Münte, T. F., Bachoud-

Lévi, A.-C., … de Diego-Balaguer, R. (2015). Multiple brain networks underpinning 

word learning from fluent speech revealed by independent component analysis. 

NeuroImage, 110, 182–193. https://doi.org/10.1016/J.NEUROIMAGE.2014.12.085 

Majerus, S. (2013). Language repetition and short-term memory: an integrative framework. 

Frontiers in Human Neuroscience, 7, 357. https://doi.org/10.3389/fnhum.2013.00357 

Marangolo, P., Fiori, V., Sabatini, U., De Pasquale, G., Razzano, C., Caltagirone, C., & Gili, 

T. (2016). Bilateral Transcranial Direct Current Stimulation Language Treatment 

Enhances Functional Connectivity in the Left Hemisphere: Preliminary Data from 

Aphasia. Journal of Cognitive Neuroscience, 28(5), 724–738. 

https://doi.org/10.1162/jocn_a_00927 

Marchina, S., Zhu, L. L., Norton, A., Zipse, L., Wan, C. Y., & Schlaug, G. (2011). Impairment 

of speech production predicted by lesion load of the left arcuate fasciculus. Stroke, 

42(8), 2251–2256. https://doi.org/10.1161/STROKEAHA.110.606103 

Mårtensson, J., Eriksson, J., Bodammer, N. C., Lindgren, M., Johansson, M., Nyberg, L., & 

Lövdén, M. (2012). Growth of language-related brain areas after foreign language 

learning. NeuroImage, 63(1), 240–244. 

https://doi.org/10.1016/j.neuroimage.2012.06.043 

Mashal, N., Solodkin, A., Dick, A. S., Chen, E. E., & Small, S. L. (2012). A Network Model 

of Observation and Imitation of Speech. Frontiers in Psychology, 3, 84. 

https://doi.org/10.3389/fpsyg.2012.00084 

McCarthy, R., & Warrington, E. K. (1984). A two-route model of speech production. 

Evidence from aphasia. Brain : A Journal of Neurology, 107 ( Pt 2, 463–485. 

McKinnon, E. T., Fridriksson, J., Glenn, G. R., Jensen, J. H., Helpern, J. A., Basilakos, A., 

… Bonilha, L. (2017). Structural plasticity of the ventral stream and aphasia recovery. 

Annals of Neurology, 82(1), 147–151. https://doi.org/10.1002/ana.24983 

Nadeau, S. E. (2001). Phonology: A Review and Proposals from a Connectionist Perspective. 

Brain and Language, 79(3), 511–579. https://doi.org/10.1006/BRLN.2001.2566 

Noppeney, U., Friston, K. J., & Price, C. J. (2004). Degenerate neuronal systems sustaining 

cognitive functions. Journal of Anatomy, 205(6), 433–442. 

https://doi.org/10.1111/j.0021-8782.2004.00343.x 

Nozari, N., & Dell, G. S. (2013). How damaged brains repeat words: a computational 

approach. Brain and Language, 126(3), 327–337. 

https://doi.org/10.1016/j.bandl.2013.07.005 

Nozari, N., Kittredge, A. K., Dell, G. S., & Schwartz, M. F. (2010). Naming and repetition in 

aphasia: Steps, routes, and frequency effects. Journal of Memory and Language, 63(4), 

541–559. https://doi.org/10.1016/j.jml.2010.08.001 

Ogar, J. M., Baldo, J. V., Wilson, S. M., Brambati, S. M., Miller, B. L., Dronkers, N. F., & 

Gorno-Tempini, M. L. (2011). Semantic dementia and persisting Wernicke’s aphasia: 

Linguistic and anatomical profiles. Brain and Language, 117(1), 28–33. 

https://doi.org/10.1016/J.BANDL.2010.11.004 

Parker Jones, ’Ōiwi, Prejawa, S., Hope, T. M. H., Oberhuber, M., Seghier, M. L., Leff, A. P., 

… Price, C. J. (2014). Sensory-to-motor integration during auditory repetition: a 

combined fMRI and lesion study. Frontiers in Human Neuroscience, 8, 24. 



 

 203 

https://doi.org/10.3389/fnhum.2014.00024 

Patterson, K., Shewell, C., Coltheart, M., Sartori, G., & Job, R. (1987). Speak and spell: 

Dissociations and word-class effects. The Cognitive Neuropsychology of Language. 

Lawrence Erlbaum Associates, Inc, 273–294. 

Pick, A. (1924). On the Pathology of Echographia. Brain, 47(4), 417–429. 

https://doi.org/10.1093/brain/47.4.417 

Pilkington, E., Keidel, J., Kendrick, L. T., Saddy, J. D., Sage, K., & Robson, H. (2017). 

Sources of Phoneme Errors in Repetition: Perseverative, Neologistic, and Lesion 

Patterns in Jargon Aphasia. Frontiers in Human Neuroscience, 11, 225. 

https://doi.org/10.3389/fnhum.2017.00225 

Price, C. J. (2012). A review and synthesis of the first 20years of PET and fMRI studies of 

heard speech, spoken language and reading. NeuroImage, 62(2), 816–847. 

https://doi.org/10.1016/j.neuroimage.2012.04.062 

Price, C. J., & Friston, K. J. (2002). Degeneracy and cognitive anatomy. Trends in Cognitive 

Sciences, 6(10), 416–421. https://doi.org/10.1016/S1364-6613(02)01976-9 

Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: nonhuman 

primates illuminate human speech processing. Nature Neuroscience, 12(6), 718–724. 

https://doi.org/10.1038/nn.2331 

Ripamonti, E., Frustaci, M., Zonca, G., Aggujaro, S., Molteni, F., & Luzzatti, C. (2018). 

Disentangling phonological and articulatory processing: A neuroanatomical study in 

aphasia. Neuropsychologia, 121, 175–185. 

https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2018.10.015 

Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E., Perani, D., & Fazio, F. 

(1996). Localization of grasp representations in humans by PET: 1. Observation versus 

execution. Experimental Brain Research, 111(2), 246–252. 

https://doi.org/10.1007/BF00227301 

Rizzolatti, G., & Craighero, L. (2004). THE MIRROR-NEURON SYSTEM. Annual Review 

of Neuroscience, 27(1), 169–192. 

https://doi.org/10.1146/annurev.neuro.27.070203.144230 

Rizzolatti, Giacomo, Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms 

underlying the understanding and imitation of action. Nature Reviews Neuroscience, 

2(9), 661–670. https://doi.org/10.1038/35090060 

Roelofs, A. (2014). A dorsal-pathway account of aphasic language production: The 

WEAVER++/ARC model. Cortex, 59, 33–48. 

https://doi.org/10.1016/J.CORTEX.2014.07.001 

Rogalsky, C., Poppa, T., Chen, K.-H., Anderson, S. W., Damasio, H., Love, T., & Hickok, 

G. (2015). Speech repetition as a window on the neurobiology of auditory–motor 

integration for speech: A voxel-based lesion symptom mapping study. 

Neuropsychologia, 71, 18–27. 

https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2015.03.012 

Ruigrok, A. N. V, Salimi-Khorshidi, G., Lai, M.-C., Baron-Cohen, S., Lombardo, M. V, Tait, 

R. J., & Suckling, J. (2014). A meta-analysis of sex differences in human brain 

structure. Neuroscience & Biobehavioral Reviews, 39, 34–50. 

Salis, C., Kelly, H., & Code, C. (2015). Assessment and treatment of short-term and working 

memory impairments in stroke aphasia: a practical tutorial. International Journal of 

Language & Communication Disorders, 50(6), 721–736. https://doi.org/10.1111/1460-



 

 204 

6984.12172 

Saur, D., Lange, R., Baumgaertner, A., Schraknepper, V., Willmes, K., Rijntjes, M., & 

Weiller, C. (2006). Dynamics of language reorganization after stroke. Brain, 129(6), 

1371–1384. https://doi.org/10.1093/brain/awl090 

Saur, Dorothee, Kreher, B. W., Schnell, S., Kümmerer, D., Kellmeyer, P., Vry, M.-S., … 

Weiller, C. (2008). Ventral and dorsal pathways for language. Proceedings of the 

National Academy of Sciences of the United States of America, 105(46), 18035–18040. 

https://doi.org/10.1073/pnas.0805234105 

Schlaug, G., Marchina, S., & Norton, A. (2008). From Singing to Speaking: Why Singing 

May Lead to Recovery of Expressive Language Function in Patients with Broca’s 

Aphasia. Music Perception, 25(4), 315–323. 

https://doi.org/10.1525/MP.2008.25.4.315 

Schlaug, G., Marchina, S., & Norton, A. (2009). Evidence for plasticity in white-matter tracts 

of patients with chronic Broca’s aphasia undergoing intense intonation-based speech 

therapy. Annals of the New York Academy of Sciences, 1169, 385–394. 

https://doi.org/10.1111/j.1749-6632.2009.04587.x 

Schmahmann, J. D., Pandya, D. N., Wang, R., Dai, G., D’Arceuil, H. E., de Crespigny, A. J., 

& Wedeen, V. J. (2007). Association fibre pathways of the brain: parallel observations 

from diffusion spectrum imaging and autoradiography. Brain : A Journal of Neurology, 

130(Pt 3), 630–653. https://doi.org/10.1093/brain/awl359 

Schmithorst, V. J., & Wilke, M. (2002). Differences in white matter architecture between 

musicians and non-musicians: A diffusion tensor imaging study. Neuroscience Letters, 

321(1–2), 57–60. https://doi.org/10.1016/S0304-3940(02)00054-X 

Service, E. (1992). Phonology, Working Memory, and Foreign-language Learning. The 

Quarterly Journal of Experimental Psychology Section A, 45(1), 21–50. 

https://doi.org/10.1080/14640749208401314 

Shallice, T., & Warrington, E. K. (1977). Auditory-verbal short-term memory impairment 

and conduction aphasia. Brain and Language, 4(4), 479–491. 

Shuren, J. E., Schefft, B. K., Yeh, H. S., Privitera, M. D., Cahill, W. T., & Houston, W. 

(1995). Repetition and the arcuate fasciculus. Journal of Neurology, 242(9), 596–598. 

https://doi.org/10.1007/bf00868813 

Song, X., Dornbos, D. 3rd, Lai, Z., Zhang, Y., Li, T., Chen, H., & Yang, Z. (2011). Diffusion 

tensor imaging and diffusion tensor imaging-fibre tractograph depict the mechanisms 

of Broca-like and Wernicke-like conduction aphasia. Neurological Research, 33(5), 

529–535. https://doi.org/10.1179/016164111X13007856084322 

Sowell, E. R., Thompson, P. M., Tessner, K. D., & Toga, A. W. (2001). Mapping continued 

brain growth and gray matter density reduction in dorsal frontal cortex: Inverse 

relationships during postadolescent brain maturation. The Journal of Neuroscience : 

The Official Journal of the Society for Neuroscience, 21(22), 8819–8829. 

https://doi.org/10.1523/JNEUROSCI.21-22-08819.2001 

Tanabe, H., Sawada, T., Inoue, N., Ogawa, M., Kuriyama, Y., & Shiraishi, J. (1987). 

Conduction aphasia and arcuate fasciculus. Acta Neurologica Scandinavica, 76(6), 

422–427. 

Thiebaut de Schotten, M., Dell’Acqua, F., Ratiu, P., Leslie, A., Howells, H., Cabanis, E., … 

Catani, M. (2015). From Phineas Gage and Monsieur Leborgne to H.M.: Revisiting 

Disconnection Syndromes. Cerebral Cortex, 25(12), 4812–4827. 



 

 205 

https://doi.org/10.1093/cercor/bhv173 

Thiebaut de Schotten, M., ffytche, D. H., Bizzi, A., Dell’Acqua, F., Allin, M., Walshe, M., 

… Catani, M. (2011). Atlasing location, asymmetry and inter-subject variability of 

white matter tracts in the human brain with MR diffusion tractography. NeuroImage, 

54(1), 49–59. https://doi.org/10.1016/j.neuroimage.2010.07.055 

Ueno, T., Saito, S., Rogers, T. T., & Lambon Ralph, M. A. (2011). Lichtheim 2: Synthesizing 

Aphasia and the Neural Basis of Language in a Neurocomputational Model of the Dual 

Dorsal-Ventral Language Pathways. Neuron, 72(2), 385–396. 

https://doi.org/10.1016/J.NEURON.2011.09.013 

Ungerleider, L. G., & Haxby, J. V. (1994). “What” and “where” in the human brain. Current 

Opinion in Neurobiology, 4(2), 157–165. 

Vandermosten, M., Price, C. J., & Golestani, N. (2016). Plasticity of white matter 

connectivity in phonetics experts. Brain Structure and Function, 221(7), 3825–3833. 

https://doi.org/10.1007/s00429-015-1114-8 

Vaquero, L, Hartmann, K., Ripollés, P., Rojo, N., Sierpowska, J., François, C., … 

Altenmüller, E. (2016). Structural neuroplasticity in expert pianists depends on the age 

of musical training onset. NeuroImage, 126, 106–119. 

https://doi.org/10.1016/j.neuroimage.2015.11.008 

Vaquero, L., Ramos-Escobar, N., François, C., Penhune, V., & Rodríguez-Fornells, A. 

(2018). White-matter structural connectivity predicts short-term melody and rhythm 

learning in non-musicians. NeuroImage, 181, 252–262. 

https://doi.org/10.1016/j.neuroimage.2018.06.054 

Vaquero, L., Rodríguez-Fornells, A., & Reiterer, S. M. (2016). The Left, The Better: White-

Matter Brain Integrity Predicts Foreign Language Imitation Ability. Cerebral Cortex, 

27(8), 3906–3917. https://doi.org/10.1093/cercor/bhw199 

Wan, C. Y., & Schlaug, G. (2010, October). Music making as a tool for promoting brain 

plasticity across the life span. Neuroscientist, Vol. 16, pp. 566–577. 

https://doi.org/10.1177/1073858410377805 

Wang, W.Y., Yu, J.-T., Liu, Y., Yin, R.-H., Wang, H.-F., Wang, J., … Tan, L. (2015). Voxel-

based meta-analysis of grey matter changes in Alzheimer’s disease. Translational 

Neurodegeneration, 4(1), 6. https://doi.org/10.1186/s40035-015-0027-z 

Watila, M. M., & Balarabe, S. A. (2015). Factors predicting post-stroke aphasia recovery. 

Journal of the Neurological Sciences, 352(1–2), 12–18. 

https://doi.org/10.1016/j.jns.2015.03.020 

Weiller, C., Bormann, T., Saur, D., Musso, M., & Rijntjes, M. (2011). How the ventral 

pathway got lost – And what its recovery might mean. Brain and Language, 118(1–2), 

29–39. https://doi.org/10.1016/J.BANDL.2011.01.005 

Wernicke, C. (1874). The aphasic symptom complex: a psychological study on a neurological 

basis. Breslau: Kohn and Weigert. Reprinted in: Cohen RS, Wartofsky MW, Editors. 

Boston Studies in the Philosophy of Science, 4. 

Yoo, S., Chung, J.-Y., Jeon, H.-A., Lee, K.-M., Kim, Y.-B., & Cho, Z.-H. (2012). Dual routes 

for verbal repetition: Articulation-based and acoustic–phonetic codes for pseudoword 

and word repetition, respectively. Brain and Language, 122(1), 1–10. 

https://doi.org/10.1016/J.BANDL.2012.04.011 

Yourganov, G., Smith, K. G., Fridriksson, J., & Rorden, C. (2015). Predicting aphasia type 

from brain damage measured with structural MRI. Cortex; a Journal Devoted to the 



 

 206 

Study of the Nervous System and Behavior, 73, 203–215. 

https://doi.org/10.1016/j.cortex.2015.09.005 

Zhang, Y., Wang, C., Zhao, X., Chen, H., Han, Z., & Wang, Y. (2010). Diffusion tensor 

imaging depicting damage to the arcuate fasciculus in patients with conduction aphasia: 

a study of the Wernicke-Geschwind model. Neurological Research, 32(7), 775–778. 

https://doi.org/10.1179/016164109X1247830236265 

 

https://doi.org/10.1179/016164109X1247830236265


 

  



 

  

 


	parte1.pdf
	Study1_X.pdf
	Repetitive verbal behaviors are not always harmful signs: Compensatory plasticity within the language network in aphasia
	Introduction
	Conduite d’approche and mitigated echolalia
	Conduite d’approche and mitigated echolalia as compensatory behaviors

	Methods
	Index cases
	Neuroimaging method
	Structural magnetic resonance imaging acquisition
	Lesion-based approach to mapping disconnection
	PET image acquisition
	PET analysis


	Results
	Index cases: clinical information and language profile
	Neuroimaging results: Lesion location, lesion-based disconnection analysis and metabolic findings

	Discussion
	Statement of significance
	Funding
	References


	Study2_X.pdf
	Thinking on Treating Echolalia in Aphasia: Recommendations and Caveats for Future Research Directions
	Are Verbal Imitation And Repetition the Same?
	Echolalic Repetition and Its Subtypes
	Neural Mechanisms
	Broadening the Scope of Testing For Echolalia
	Do All types of Echolalia Require Treatment?
	Conclusions
	Author Contributions
	Acknowledgments
	References



	parte2.pdf
	Study1_X.pdf
	Repetitive verbal behaviors are not always harmful signs: Compensatory plasticity within the language network in aphasia
	Introduction
	Conduite d’approche and mitigated echolalia
	Conduite d’approche and mitigated echolalia as compensatory behaviors

	Methods
	Index cases
	Neuroimaging method
	Structural magnetic resonance imaging acquisition
	Lesion-based approach to mapping disconnection
	PET image acquisition
	PET analysis


	Results
	Index cases: clinical information and language profile
	Neuroimaging results: Lesion location, lesion-based disconnection analysis and metabolic findings

	Discussion
	Statement of significance
	Funding
	References


	Study2_X.pdf
	Thinking on Treating Echolalia in Aphasia: Recommendations and Caveats for Future Research Directions
	Are Verbal Imitation And Repetition the Same?
	Echolalic Repetition and Its Subtypes
	Neural Mechanisms
	Broadening the Scope of Testing For Echolalia
	Do All types of Echolalia Require Treatment?
	Conclusions
	Author Contributions
	Acknowledgments
	References






