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Abstract—This paper discusses the representation of Belief
Uncertainty in software models. This kind of uncertainty refers to
the situation in which the modeler, or any other belief agent, is
uncertain about the behavior of the system, or the statements
that the model expresses about it. In this work, we propose
to assign a degree of belief to model statements (let they be
constraints, or any other model expression), which is expressed by
a probability (called credence, in statistical terms) that represents
a quantification of such a subjective degree of belief. We discuss
how it can be represented using current modeling notations, and
how to operate with it in order to make informed decisions.

Index Terms—Software models, uncertainty, degree of belief.

I. INTRODUCTION

The explicit expression of Uncertainty in software models is 
gaining recognition as an effective means to faithfully repre-
sent and operate with the unknowns and imprecise information 
which are inherent to any system that works in a physical 
environment [1] or that integrates Artificial Intelligence (AI) 
components. Due to the “black-box” nature of AI, modeling 
and analyzing such systems typically requires accepting some 
uncertainties about their precise behavior.

In general, uncertainty applies to physical measurements, 
estimations, predictions of future events, or unknown proper-
ties of a system. It can be defined as “the quality or state that 
involves imperfect and/or unknown information” [2].

Despite this apparently clear definition, the term uncertainty 
still remains imprecise, since it embodies different kinds of 
uncertainties, each one requiring a different representation, and 
exhibiting different characteristics. For instance, measurement 
uncertainty (MU) refers to the inability to know with complete 
precision the value of a quantity [2], [3], and it is normally 
expressed by means of a number that represents the possible 
deviations of the values of the measured quantity; e.g., x = 
3.0 ± 0.01. Another example is occurrence uncertainty (OU), 
which refers to the likelihood that a physical entity represented 
in a model actually occurs in reality; it can be expressed by 
means of a real number in the range [0..1] that represents 
the probability assigned to such an occurrence [4]. In order to
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Horizon 2020 under grant No 737494.

describe and classify these types of uncertainty and others like

content, occurrence, time, environment, geographical location,

belief and indeterminacy uncertainty [5], a conceptual model

called U-Model has been proposed [1], and there is an OMG

effort to define a metamodel for Uncertainty Modeling [6].

In this paper we are interested in Belief Uncertainty (BU),

which refers to the situation where a belief agent is uncertain

about a statement made about the system. In this case, a

belief statement is normally subjective, and refers to current or

future states or properties of the system being modeled, or its

environment. For example, we can not be fully sure whether

the sensor providing the value of an attribute is operating

correctly, or whether the precision of the sensor is correct.

Furthermore, belief statements can also refer to the way in

which we have modeled the system. For example, a stake-

holder cannot be fully sure whether the formula employed to

compute a derived value in a system is correct, since we may

not have a complete understanding on how the system works.

This paper aims at answering the following questions:

• How can we explicitly specify the belief uncertainty that

a belief agent has about a system or about its model?

• How can we incorporate such information in the models,

using existing modeling notations?

• Once specified and represented, how can we operate with

belief uncertainty in order to be able to make informed

decisions, and to reason about the system behavior?

To represent belief uncertainty, we will use the degree of
belief that a belief agent assigns to a model statement [7]. In

general, such a degree of belief can be measured using quali-

tative or quantitative methods, such as a grade or a probability.

In this work, we will use Bayesian probabilities, which is the

classical model for quantifying subjective beliefs [8], and more

precisely the concept of credence. Credence is a statistical term
that refers to a measure of belief strength, which expresses

how much an agent believes that a proposition is true [9]. For

example, a modeler can be 99% sure about the behavior of

the rule that decides whether an alarm should be fired or not,

or that the type used to represent a given entity is correct.

Representing and operating with Belief Uncertainty in soft-

ware models is relevant in several situations, like for example:
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• When dealing with a physical system whose behavior is

not fully predictable.

• When our knowledge about the system is not accurate.

• When the model admits different interpretations, depend-

ing on the belief agent interacting with the system. For

instance, the credibility assigned by two different people

to the system functionality that decides if a room is hot

or cold may be different depending on subjective feelings

of each agent.

• When a model is automatically inferred by a machine

(either by performing model mining activities on soft-

ware/data repositories [10] or by Artificial Intelligence

techniques [11]) which may not be complete, accurate

or consistent. Our decisions about the way in which we

have modeled the system need to be qualified with some

degree of uncertainty.

In all these cases, the models may not be truthful enough,

and it is important to count on mechanisms that enable us to

assess such uncertainty and to measure somehow the possible

deviations between the actual system and the model that

represents it [12], as well as the differences between individual

interpretations or judgments made by separate belief agents

about the system.

This paper can be considered as an extension of our previous

work [4], where we used probabilities to represent the degree

of belief (we called it confidence) that the modeler assigns to

the actual occurrence of an entity, given that it appears as an

object or a link in a model.1 Thus, model elements can be

enriched with information that could assess their truthfulness.

In [4], beliefs were based on objective evidences. This paper

extends that work in three different dimensions. First, beliefs

are not limited to objects and links, but they can be applied

to any model element. Second, beliefs do not apply only to

the occurrence of these objects or links, but to any property

or state of the system, or of its individual elements. Third,

contrarily to the objective nature of occurrence uncertainty,

belief uncertainty can be completely subjective. It can also

be differently specified by individual belief agents. Our work

is also aligned with the U-Model [1] proposal and the OMG

PSUM RFP [6], providing a materialization of their concepts,

and hence trying to serve as a proof of concept for them.

This paper is structured in 8 sections. After this introduction,

Sect. II briefly presents the background of our work. Then,

Sect. III describes our proposal using an example to moti-

vate it, and to illustrate its main concepts and mechanisms.

Sections IV and V discuss how these concepts are mapped

into UML [13] and OCL [14], and Sect. VI deals with the

propagation of degrees of belief. Finally, Sect. VII relates our

work to other similar approaches and Sect. VIII concludes and

outlines some possible extensions and future lines of work.

1In this work, the word “model” refers to UML class diagrams.

II. BACKGROUND

A. Belief uncertainty

Uncertainty can be defined as the quality or state that

involves imperfect and/or unknown information. It applies

to predictions of future events, estimations, physical mea-

surements, or unknown properties of a system [2]. We can

distinguish between aleatory and epistemic uncertainty [12].

Aleatory uncertainty refers to the inherent variation associated

with the physical system under consideration, or its environ-

ment. In contrast, epistemic uncertainty refers to the potential

inaccuracy in any phase of the modeling process that is due

to the lack of knowledge.

In this paper we are interested in Belief Uncertainty (BU),

which is a particular kind of epistemic uncertainty that refers

to the situation where a belief agent is uncertain about a

statement made about something, in this case a system and

its environment.

To express such an uncertainty, the belief agent assigns

to a statement a degree of belief, which can be represented

using qualitative or quantitative methods, i.e., a grade or a

probability. In this paper, we will consider probabilities.

A statement qualified by a degree of belief is called a

belief statement. Examples of belief statements in our context

are: “Bob is 90% sure about the validity of the temperature

readings made by the sensor” (because he is not sure if the

sensor is working properly all the time), “Mary is only 20%

confident of the result returned by the method m()” (because

she is not sure of the formula used by the method to compute

it), or “the modeler has a confidence of 95% that the value

assigned to variable X is the correct one” (since it has been

derived from data which is not fully reliable).

Belief statements are always made by a belief agent, a

physical entity that holds one or more beliefs. It could be a

human individual or a group, an institution, or even a machine.

In general, any stakeholder of the system that expresses some

belief about it. It is essential to note here that a belief agent

should be capable of deriving judgments or of conducting

actions based on its beliefs [1], and hence the importance of

being able to reason about the belief statements and the degree

of belief assigned to them. Of course, different belief agents

may assign different degrees of belief to the same statement,

depending on their judgments, subjective reasons or particular

evidences.

B. Credence and Bayesian probabilities

Credence is a statistical term that refers to a measure of

belief strength, which expresses how much an agent believes

that a proposition is true [9]. It is normally expressed as a

percentage or a number in the range [0..1], and can be defined

and understood in the context of the subjective interpretation of

Probability [15], whereby a probability (a credence) represents

a quantification of a personal belief [8]. Bayesian probability

is the most classical model for expressing and operating

with subjective information, and hence for quantifying beliefs.

Credence values can be based entirely on subjective feelings.
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Fig. 1. A smart hotel with monitorizable rooms.

Moreover, credence is better understood in the context of

gambling, where this concept is directly related to the odds

at which a rational person would place a bet.

C. Uncertain OCL/UML datatypes

In [16], we extended the OCL/UML [13], [14] datatypes

to incorporate information about the uncertainty of their val-

ues. In particular, we applied subtyping to extend the types

UnlimitedNatural, Integer, Real, and Boolean and we defined

the new datatypes UUnlimitedNatural, UInteger, UReal and

UBoolean.

To capture the uncertainty of numeric values, they are

represented by pairs of numbers: (x, u) with x the expected

value and u the associated standard uncertainty [2]. For

instance, we can represent the height of a person that is

170 ± 0.5 cm with the uncertain integer value UInteger(170,
0.5). In UBoolean values, the uncertainty does not refer to

measurement uncertainty, but to confidence. Thus, a UBoolean
value is a pair (b, c) where b is a boolean value (true, false)
and c is a real number in the range [0..1], representing the

confidence that b is certain.

III. EXPRESSING BELIEF STATEMENTS IN MODELS

A. A motivating example

A hotel has rooms equipped with sensors that monitor

their temperature, level of CO (measured in parts per million,

PPM), and the presence of smoke. Devices (whose type is

AlarmCenter) are installed in the rooms, too. They provide four

indicators, one for each possible alarm that can be detected:

high temperature, high CO level, smoke, and fire alert. Fig. 1

shows the system modeled in the UML tool Papyrus [17]. The

values of the attributes of the AlarmCenter can be derived from

the values of the sensors, using the following derivation rules:

c o n t e x t AlarmCenter
highTemp : UBoolean d e r i v e :

s e l f .room .tempSensor .temperature > 30 .0
highCOLevel : UBoolean d e r i v e :

s e l f .room .coSensor .coPPM > 20
smoke : UBoolean d e r i v e :

s e l f .room .smokeDetector .smoke
fireAlert : UBoolean d e r i v e :
highTemp and highCOLevel and smoke

Additionally, rooms provide two query operations, to check

whether it is hot or cold inside:

c o n t e x t Room
isHot ( ) : UBoolean = s e l f .tempSensor .temperature>25
isCold ( ) : UBoolean = s e l f .tempSensor .temperature<18

The measurement uncertainty associated to the sensed val-

ues needs to be propagated through the operations. This is why

the derived attributes of class AlarmCenter and the operations

of class Room are of type UBoolean.
Further constraints are used to set bounds in some model

parameters. For example, the following invariant sets an upper

limit on the precision of the temperature sensors, e.g., based

on the information provided by the device technical manuals.

c o n t e x t TempSensor inv TempPrecision :
s e l f .temperature .uncertainty ( ) <= 0 . 2

The invariant uses the uncertainty() operation defined for

UReal numbers, which returns their precision [16].

B. Belief statements by example

In addition to the measurement uncertainties already spec-

ified in the model, the following are examples of belief

statements that represent the possible beliefs of two belief

agents, Bob and Mary, about the system:

1) We know that CO and smoke sensors have a reliability

of 90%; i.e., 10% of their readings are not meaningful.

2) We can only be 98% sure that the precision stated in the

manuals of TempSensor devices is 0.2 degrees. Such a

degree of belief goes down to 90% for the CO and smoke

sensors, since they are cheaper.

3) Both agents are only 95% confident that the presence of

high temperature, high level of CO and smoke means

that there is a fire; in other words, they have a 95%

degree of belief in the expression that derives the value

of attribute fireAlert of class AlarmCenter.
4) Bob does not trust the expressions used in the queries

isCold() and isHot(), because he is from the south: when

the room says it is hot, in fact he thinks the temperature

is fine; similarly, sometimes he feels cold but the room

says it is not. So he assigns just a 50% credibility

to these expressions. Mary, however, thinks that these

expressions are 99% accurate, because they both reflect

rather well how she always feels in the room.

5) Despite apparently connected, the cheap CO and smoke

sensors may be broken or with no battery, and hence it

is similar to not having them connected. So, they think

the chances that they are not working are 5%.

6) Since room number 3 is adjacent to the hotel kitchen,

temperature alerts are frequent in that room. This is why

everyone pays little attention to them, estimating that

90% of the alerts are false positives.

7) Bob doubts whether the type of attribute number of class
Room is Integer or not, since he thinks its values could

also contain characters different from digits.

8) Similarly, they also express their doubts about other

modeling elements and constraints such as the multiplic-

ity of some association ends: should a sensor always be

attached to exactly one room? Could it be attached to

none, or to several?
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C. Expressing degrees of belief

Although apparently similar, the previous belief statements

express various kinds of beliefs, in different ways.

1) The first one is about the validity of the value of an

attribute (temperature, coPPM or smoke). This is dif-

ferent from the precision of the value, which is already

expressed by means of the extended uncertain datatypes.

Expressing the degree of belief about the validity of an

attribute or return value of an operation can be realized

by assigning a credence to that attribute, or return value.

2) Statement number (2) is about the degree of belief that

the belief agents assign to a statement in the model; in

this case, to the OCL constraint TempPrecision.
3) The third case corresponds to assigning a credence to

an OCL expression, in this case the one to derive the

value of attribute fireAlert.
4) The fourth statement is similar to the previous one, the

only difference being that each agent assigns a different

credence to the expressions in the query operations.

5) Belief statement (5) can be expressed in two ways.

First, by assigning a credence to the multiplicity in

the associations between the room and the sensors that

forces that there should always be a sensor of each

kind connected to a room. Second, we could assign a

credence to the associations to represent the confidence

we have on their occurrence, as described in [4].

6) The previous belief statements were made in general for

all instances of a type (sensor, room, operation). Belief

statement (6) shows an example of a situation in which

the degree of belief of a statement is made about one

particular instance (the value of attribute HighTemp of

room r3), by all belief agents.

7) The last two belief statements refer to the model itself,

and how their elements have been used to represent the

physical system. In particular, the first one is unsure

about the type used for a variable, and the second one

about a multiplicity. Thus, the two examples mentioned

above can be expressed by assigning degrees of belief

to the corresponding OCL constraints:

c o n t e x t Room inv :
s e l f .number .oclIsTypeOf ( I n t e g e r )

c o n t e x t AlarmCenter inv :
s e l f .room−>s i z e ( ) = 1

In summary, we need to assign probabilities to the different

kinds of model elements present in UML class diagrams and

its OCL constraints:

• Classes and Associations. In this case, the probability

represents the degree of belief that an agent assigns to

the actual occurrence of an entity or a relationship, given

that it appeared as an object or a link in the model. This

is fully consistent with our proposal in [4].

• Attributes. Probabilities associated to attributes represent

the degree of belief assigned to the validity of that

attribute. Note how this semantics is consistent with the

one given to associations when regarding the attribute

Fig. 2. The UML Profile for representing belief statements.

Fig. 3. Using the Beliefs Profile in the Room example.

as a bidirectional association between the class and the

attribute’s datatype.

• Operations also need to be considered, and it should be

possible to assign degrees of beliefs to their return values.

• Probabilities assigned to OCL expressions and invariants

indicate the degree of belief we assign to them.

Note that, by convention, if no agent is explicitly stated, we

assume the degree of belief is shared by all of them. Similarly,

if a belief statement is made for particular types of objects

(e.g., sensors or rooms), we assume it applies to all instances

of those types.

IV. BELIEF STATEMENTS IN UML MODELS

To apply these concepts to software models, we need to

appropriately map them to the corresponding concepts used

in modeling notations.

The most obvious manner to add information to a UML

model is by applying a UML Profile, which permits enrich-

ing the model elements with extra information or additional

semantics. In this case, the information that we want to add

is the degree of belief assigned to model elements (by means
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of a credence) and the belief agent who is making the belief

statement. This is represented in the Belief UML profile we

have developed in Papyrus and show in Fig. 2. Fig. 3 shows

an example of an object model that applies the profile. It

corresponds to the hotel rooms described earlier in this section.

Additional OCL queries (with the proper credence assigned

to them) could then be used to express beliefs on particular

instances of the types.

The UML profile mechanism is expressive enough (at least,

based on the initial experiments that we have conducted) to

represent the kinds of belief statements that we have identified

in that example. It is also the way suggested to incorporate

uncertainty in UML models by other authors, e.g., [1], [5].

Nevertheless, it does not provide an easy way to operate

with the degrees of belief themselves, not to mention their

propagation. The next section covers how we have translated

and formalized the Papyrus UML models annotated with our

profile with the USE tool [18] and its SOIL language [19].

V. CALCULATING DEGREES OF BELIEF

The USE tool [18] provides an environment for the specifi-

cation and execution of systems enriched with behavior using

a high-level behavioral language called SOIL [19]. Operation

bodies (defined in begin...end blocks) can be specified with

SOIL constructs for the creation and deletion of objects

and links, variable assignment, loops, etc. USE specifications

enriched with SOIL can therefore be executed.

The strategy to explicitly assign belief degrees to the model

elements and OCL expressions will depend on the kind of

element, although in general we will use a common pattern.2

For each element X we will define two new elements:

• A set X_Beliefs of pairs (a, b) where a is a belief agent

and b ∈ [0..1] is the degree of belief that agent a assigns

to that element.

• A query operation X_credence(a:BeliefAgent):Real that
returns the degree of belief that the agent a has assigned

to that element. In case no agent has assigned a degree

of belief, it returns the value by default, which is 1.

To specify a degree of belief for all agents, we will simply

use the OCL special value null as belief agent.
Let us illustrate this process in the case of the isHot() query

operation. First, we define for it the corresponding set of pairs

that will store the agents’ credences:

isHot_Beliefs : S e t ( Tuple (beliefAgent :BeliefAgent ,
degreeOfBelief : Rea l ) )

This structure has an associated operation for adding pairs

to the set (to avoid duplicated assignments, it removes previous

beliefs by the same agent, if any, before adding the new one):

isHot_BeliefsAdd (ba :BeliefAgent ,d : Rea l )
begin
s e l f .isHot_Beliefs := s e l f .isHot_Beliefs−>
r e j e c t (t | t .beliefAgent=ba )−>
i n c l u d i n g ( Tuple {beliefAgent :ba ,degreeOfBelief :d} )

end

2This part of the USE specification could be automatically derived from
any input UML model annotated with the UML profile described above.

With this, the query operation that calculates the corre-

sponding credence assigned by each belief agent is as follows:

isHot_credence (a :BeliefAgent ) : Rea l =
l e t baBoD : S e t ( Tuple (beliefAgent :BeliefAgent ,

degreeOfBelief : Rea l ) ) =
s e l f .isHot_Beliefs−>s e l e c t (t | t .beliefAgent=a ) in

i f baBoD−>isEmpty then 1 . 0
e l s e baBoD−>c o l l e c t (degreeOfBelief )−>any (true )
e n d i f

If we have a system where r1 is a room, we can create

two belief agents, Bob and Mary, and specify their degrees of

belief on the operation isHot() of room r1, as well as a default

degree of belief of .95 for all agents different from Bob and

Mary as follows:

Hotel> !new BeliefAgent ('Bob' )
Hotel> !new BeliefAgent ('Mary' )
Hotel> !r1 .isHot_BeliefsAdd (Bob , 0 . 5 )
Hotel> !r1 .isHot_BeliefsAdd (Mary , 0 . 9 9 )
Hotel> !r1 .isHot_BeliefsAdd (null , 0 . 9 5 )

Note that the value by default, would be 1.0 if not specified.

If, now, assuming that the temperature of room r1 is 25.3, we
query the model with USE, we obtain:

Hotel> ?r1 .isHot ( )
−> UBoolean (true , 1 . 0 ) : UBoolean
Hotel> ?r1 .isHot_credence (Bob )
−> 0 . 5 : Rea l
Hotel> ?r1 .isHot_credence (Mary )
−> 0 .99 : Rea l
Hotel> ?r1 .isHot_credence (null )
−> 0 .95 : Rea l

Another operation, isHot_BeliefsRm(ba:BeliefAgent), can be

used to delete degrees of belief assigned by an individual agent

(the default value is adopted then). Finally, we can also use

the initialization value to set a default value for all agents:

isHot_Beliefs : S e t ( Tuple (beliefAgent : BeliefAgent ,
degreeOfBelief : Rea l ) )

i n i t : S e t { Tuple {beliefAgent : null ,
degreeOfBelief : 0 . 85}}

The same process we have shown here for an operation can

be followed to assign degrees of belief to the attributes of a

class, to the class itself (a generalization of the “prob” attribute
that we defined in [4]), and to OCL constraints.

The additions that we propose to incorporate belief uncer-

tainty to the other kinds of model elements are as follows:

• For a class C, a new attribute with the set C_Beliefs and

a new operation C_credence(a:BeliefAgent):Real will be
added. They will be used to store and query about the

degree of belief expressed by the corresponding agents

about the occurrence of the instances of the class.

• For an attribute x whose type is a datatype T ,
the new attributes x_Beliefs and the new operation

x_credence(a:BeliefAgent):Real will represent the validity
assigned to the values of the attribute (independently from

the values themselves).

• Similarly, in case of an attribute r whose type is a

classifier C (i.e., r is a reference to an object of class C),

the r_credence(a:BeliefAgent) operation will represent the
degree of belief that agent a has about such a reference.
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This also applies to the role ends of the associations

the class is engaged in. For example, role coSensor is

considered as another attribute of class Room.

• Operations f ():T are treated similarly: attribute f_Beliefs
and operation f_credence(a:BeliefAgent):Real represent

the validity assigned to the return values of the operations,

as in the case of attributes. If an operation has arguments

affected by belief uncertainty, the degrees of belief of

the arguments should be considered when executing the

operation, since the uncertainty should be propagated.

• Invariants will be represented by the equivalent Boolean

operations in the class that provides their context [20].

Thus, for every invariant “context C inv I”, a new op-

eration I():Boolean will be added to class C, together

with the corresponding attribute with the set I_Beliefs
and operation I_credence(a:BeliefAgent):Real.

• To assign a degree of belief to the results of an OCL

expression, we can convert it into an operation. How

the individual degrees of belief of the operands and

operations that comprise the expression are combined to

produce a degree of belief of the result, will be discussed

in Section VI.

• Expressions such as derive and init on attributes can be

treated as assignment expressions, and as such, they can

also have an associated degree of belief.

VI. PROPAGATING DEGREES OF BELIEF

Once we are able to express the degree of belief assigned

to the individual modeling elements, this section describes

how the associated credence can be propagated through the

operations. This is possible because we have provided an

operational specification of these assignments in the previous

section.

To illustrate how propagation works, let us look at the

attribute fireAlert of class AlarmCenter. First, it may have an

associated credence about its validity (fireAlert_Beliefs). Sec-
ond, its values are defined by a derived expression, to which

agents can assign degrees of belief (fireAlertExpr_Beliefs). And
third, the expression should aggregate the degrees of belief

of each one of its constituent components (HighTemp_Beliefs,
highCOLevel_Beliefs and smoke_Beliefs). In this case, the

aggregation function corresponds to an and operation. We

could simply assume the variables are independent, and then

multiply the corresponding degrees of belief.

Then, the credence of fileAlert is ‘qualified’ by the degree

of belief on the expression:

fireAlert_credence (ba :BeliefAgent ) : Rea l =
l e t baBoD : S e t ( Tuple (beliefAgent :BeliefAgent ,

degreeOfBelief : Rea l ) ) =
s e l f .fireAlert_Beliefs−>

s e l e c t (t | t .beliefAgent = ba ) in
( i f baBoD−>isEmpty then 1 . 0

e l s e baBoD−>c o l l e c t (degreeOfBelief )−>any (true )
e n d i f )

* s e l f .fireAlertDeriveExpr_credence (ba )

And, in turn, the degree of belief of the expression is

qualified by the aggregated credence of the operands:

fireAlertDeriveExpr_credence (ba :BeliefAgent ) : Rea l =
l e t baBoD : S e t ( Tuple (beliefAgent :BeliefAgent ,

degreeOfBelief : Rea l ) ) =
s e l f .fireAlertDeriveExpr_Beliefs−>

s e l e c t (t | t .beliefAgent = ba ) in
( i f baBoD−>isEmpty then 1 . 0

e l s e baBoD−>c o l l e c t (degreeOfBelief )−>any (true )
e n d i f )

* highTemp_credence (ba )

* highCOLevel_credence (ba )

* smoke_credence (ba )

The system can be simulated now with USE, and the

behavior of the operations checked. For example, the following

listing shows how the room is created, their sensors and alarm

center added, and agent Bob sets his degrees of belief.

Hotel> !new Room ('r1' )
Hotel> !r1 .number := 1
Hotel> !new COSensor ('co1' )
Hotel> !new TempSensor ('ts1' )
Hotel> !new SmokeDetector ('sd1' )
Hotel> !new AlarmCenter ('ac1' )
Hotel> !insert (r1 ,ts1 ) into Temp
Hotel> !insert (r1 ,co1 ) into CO
Hotel> !insert (r1 ,sd1 ) into Smoke
Hotel> !insert (r1 ,ac1 ) into RoomAlarmed
Hotel> !ts1 .temperature := UReal ( 3 1 . 0 , 0 . 1 )
Hotel> !co1 .coPPM := UInteger ( 5 0 , 0 . 1 )
Hotel> !sd1 .smoke := UBoolean (true , 0 . 9 9 )
Hotel> !new BeliefAgent ('Bob' )
Hotel> !new BeliefAgent ('Mary' )
Hotel> !r1 .isHot_BeliefsAdd (Bob , 0 . 5 )
Hotel> !r1 .isCold_BeliefsAdd (Bob , 0 . 5 )
Hotel> !r1 .correctRoomNumberType_BeliefsAdd (Bob , 0 . 8 )
Hotel> !r1 .alarmCenter .fireAlert_BeliefsAdd (Bob

↪→ , 0 . 9 9 )
Hotel> !r1 .alarmCenter .

↪→fireAlertDeriveExpr_BeliefsAdd (Bob , 0 . 9 5 )
Hotel> !r1 .alarmCenter .highTemp_BeliefsAdd (Bob , 0 . 9 9 )
Hotel> !r1 .alarmCenter .highCOLevel_BeliefsAdd (Bob

↪→ , 0 . 9 9 )
Hotel> !r1 .alarmCenter .smoke_BeliefsAdd (Bob , 0 . 9 9 )

Now, we can easily check the resulting confidence that each

agent has on the current value of the fireAlert attribute as

follows:

Hotel> ?r1 .alarmCenter .fireAlert
−> UBoolean (true , 0 . 9 9 ) : UBoolean
Hotel> ?r1 .alarmCenter .fireAlert_credence (Bob )
−> 0.9125662095 : Rea l
Hotel> ?r1 .alarmCenter .fireAlert_credence (Mary )
−> 1 . 0 : Rea l
Hotel> ?r1 .alarmCenter .fireAlert_credence (null )
−> 1 . 0 : Rea l

After taking into consideration all the different degrees of

belief that Bob has assigned to all elements and expressions,

the confidence that he has on the fire alert of room r1 is

reduced to 0.91. Interestingly, given that the high temperature

alert of room 3 had a confidence of 0.1 (since it was close

to the kitchen), based on Bob’s confidence on the rest of the

model elements, his credence on the fire alarm is only 0.09.

The UML profile as well as the Papyrus and USE/SOIL

files for our example are available for download from our Git

repository.3

3https://github.com/modelia/uncertainty
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VII. RELATED WORK

In [5] the authors propose a conceptual model, called Un-
certum, which is supported by a UML profile (UUP, the UML

Uncertainty Profile) that enables the inclusion of uncertainty

in test models. Uncertum is based on the U-Model [1] and

extends it for testing purposes. UUP is a very complete profile

that covers all different kinds of uncertainties. UUP was de-

fined mainly for test modeling, i.e., creating test-ready models

that can be used to generate executable test cases. Therefore

such type of modeling is merely descriptive, i.e., mainly for

annotation purposes. This is why most of the information it

captures is in textual form, i.e., using Strings. Instead, we are

interested in both representing belief statements and operating

with them, and therefore we need to be more precise.

Representing and reasoning about degrees of belief can be

done using different theories. In this initial work, we have

proposed the use of Probability theory [8], [21]. Other authors

have proposed other approaches including Possibility theory

(based on fuzzy logic [22], [23]), Plausibility (a measure in

the Dempster-Shafer theory of evidence [24]) or Uncertainty

theory [25]. The comparison among these theories falls out

of the scope of this paper, although an interesting discussion

can be found in [25]. Our decision was based on simplicity:

probability theory is well-known and understood by most

domain experts, who could more easily use it to represent

confidence in their model elements—particularly when the

betting analogy is used to determine the values of the degrees

of belief. In contrast, the complexity of the other approaches

could hinder their correct application and, therefore, risk their

potential benefits.

As mentioned in the introduction, this work can be con-

sidered as a generalization of our proposal for modeling

occurrence uncertainty of objects and links in a model [4]

using probabilities. In this work, we used the notion of

confidence—which is commonly used in the literature, for

example, Denney et al. [26] used it to describe and reason

about the credibility of safety claims. Here, we have extended

confidence to general beliefs, which can be subjective and

separately assigned by individual agents, and refer to any

statement about the system being modeled, and not only to

objects and links. Thus, instead of confidence, we use the

term credence, which is more precise and technically more

appropriate to represent subjective degrees of belief.

The OMG is working towards a metamodel for the precise

specification of uncertainty (PSUM) [6]. Our work is aligned

with the terms defined in the RFP, and aims at providing some

examples that could be used to validate the proposals.

There are other modeling works that deal with uncertainty

in models, but they usually focus on aspects of uncertainty

different from the ones we have described here. For instance,

some works focus on the uncertainty on the models themselves

and on the decision of right type of models to use depending

on the system properties that we want to capture [27]. Other

works deal with the uncertainty of the design decisions, of the

modeling process, or of the domain being modeled [28]–[31].

Our work does not deal with the possible modeling choices;

we just treat a model as a set of statements [7] and permit

assigning degrees of belief to them. Nevertheless, we believe

there is some overlap between the two notions of uncertainty

that we will explore as part of our further work.

VIII. CONCLUSIONS AND FUTURE WORK

This contribution proposes the explicit representation and

management of the information about the degree of belief that
an agent has on the statements expressed in a model about the

system it represents. We have discussed how such degrees of

belief can be represented, and illustrated our proposal with

one exemplar case study.

The initial ideas presented in this paper can be extended

and continued in various directions. First, we are now able

to assign degrees of belief to model elements, statements and

expressions, but we would like to assign belief to patterns,

paths in a model, etc. We would also like to make beliefs first

class concepts and be able to assign belief degrees to other

agents’ beliefs.

Moreover, we currently assign degrees of belief to modeling

elements regardless of their value, an assumption which may

not hold in a realistic setting. For instance, in our hotel

example, an agent may believe that false positives are more

likely than false negatives. Thus, we will explore how to define

degrees of belief for the possible values of an element, e.g.,

using continuous or discrete functions. Associating evidences
to belief statements would be interesting too, in addition to

credence and belief agents.

We also plan to represent and operate with degrees of belief

in other modeling elements not contemplated here, such as use

cases, state machines, pre and post conditions, activities, etc.

Bayesian probabilities is the most classical model for

quantifying beliefs. However, when it comes to reasoning

with beliefs under partial knowledge, Bayesian probabilities

have shown some limitations. To cope with these issues, the

Transferable Belief Model (TBM) [32] addresses the same

concepts, except it does not rely on probabilistic quantification,

but on a more general system based on belief functions. We

would like to investigate the use of the TBM on top of the

Bayesian model for representing degrees of belief.

More and larger case studies should give us more feedback

on the features and expressiveness of our approach. Moreover,

validation with industrial modelers and users would help us

validate its applicability, usability and effectiveness.

We are also working on the integrated support of all these

mechanisms within modeling tools. So far, we have used

Papyrus to create the UML models annotated with our profile

and USE/SOIL for the execution and propagation of belief.

We plan to (1) explore how to automatically generate the USE

specifications from the Papyrus UML models, and (2) how the

execution and propagation of belief could be fully integrated

in Papyrus using fUML4 and Moka5.

4https://www.omg.org/spec/FUML
5https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
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Finally, we also intend to use this work in the context of the

Modelia6 initiative. When the development of software relies

on Machine Learning or Artificial Intelligence components,

there is always some degree of confidence, precision or

uncertainty on the results. We will need to be able to represent

it and operate with it in our models.
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