7th Virtual Edition EUROPEAN SYMPOSIUM ON AEROBIOLOGY

Bioaerosols and Environmental Impacts

from 16 to 20 Nov 2020 Córdoba, Spain
LOCAL ORGANIZING COMMITTEE

| University of Córdoba |

President
Carmen Galán

Vice-Presidents
Purificación Alcázar
Herminia García-Mozo

Members
Carmen García-Llamas
Moisés Martínez-Bracero
José Antonio Oteros
María Pilar Plaza
María José Velasco-Jiménez
Rocío López-Orozco
Carmen Moreno

University Hospital Reina Sofia
Michel Thibaudon
Past-President of the EAS and 6th EAS organizer
ADVISORY COMMITTEE

| EAS WG on European Symposium |

Célia Antunes
University of Evora, Portugal

Maira Bonini
Service of Hygiene and Public Health, Milano, Italy

Moisés Martínez Bracero
University of Córdoba, Spain

Nicolas Bruffaerts
Scientific Institute of Public Health, Brussels, Belgium

Sevcan Celenk
University of Uludag, Turkey

Agnieszca Grinn- Gofron
University of Szczecin, Poland

Roy Kennedy
Warwickshire College, UK

Barbara Majkowska-Wojciechowska
University of Lodz, Poland

Olga Ritenberga
University of Latvia, Latvia

Helena da Costa Ribeiro
University of Porto, Portugal

Aycan Tosunoglu
University of Uludag, Turkey

Letty A. de Weger
Leiden University Medical Center, The Netherlands
SCIENTIFIC COMMITTEE

Jordina Belmonte
Autonomous University of Barcelona, Spain

Bernard Clot
Federal Office of Meteorology and Climatology MeteoSwiss, Payerne, Switzerland

Giuseppe Frenguelli
University of Perugia, Italy

Ángel Moral De Gregorio
Health Service of Castilla-La Mancha, Spain

Dorota Myszkowska
Jagiellonian University, Krakow, Poland

Javier Rodriguez-Rajo
University of Vigo, Campus Ourense, Spain

Ingrida Šaulienė
University of Šiauliai, Lithuania

Branko Sikoparija
University of Novi Sad, Serbia

Carsten Skjoth
University of Worcester, UK

Matt Smith
University of Worcester, UK

Mikhail Sofiev
Finnish Meteorological Institute, Finland

Michel Thibaudon
French Aerobiology Network (RNSA), France
O.051 | Different approaches for interpolating missing pollen data in aerobiology

Antonio Picornell¹, Jesús Rojo², Jose Oteros³, María del Mar Trigo¹, Rocío Ruiz-Mata¹, Baltasar Cabezudo¹, Marta Recio¹

1 Department of Botany and Plant Physiology, University of Málaga, Spain. Campus de Teatinos s/n 29071.
2 Center of Allergy & Environment (ZAUM), Technical University Munich, Germany & University of Castilla-La Mancha, Spain.
3 Department of Botany, Ecology and Plant Physiology, University of Córdoba. Campus de Rabanales 14014, Córdoba, Spain.

Keywords: interpolation, missing data, pollen databases, time-series, modeling

BACKGROUND AND OBJECTIVES
Pollen traps frequently are installed in not easily accessible places and, being the mechanism only tested once a week. Consequently, failures in the traps are not detected immediately and days with missing data are usually found in databases. Sometimes the lost data are not relevant for the research, but other times, these gaps may compromise results. The aim of this study is to test the effectiveness of different methods for interpolating missing data, searching for the most accurate strategy depending on the circumstances and pollen type.

MATERIAL AND METHODS
Interpolation was performed by using different strategies implemented in the “AeRobiology R package”: mathematical approaches, time series analysis and data from nearby stations. Each method was applied to 11 different pollen types searching for differences in the accuracy of the methods of interpolation, considering the abundance and the time period of the seasonal curve in which the data were lost. Aerobiological data from Ronda station (southern Spain) during 2017-2019 were used to test the accuracy of the different interpolation methods. For each pollen type, the natural year was split into five periods: pre-season, pre-peak, peak, post-peak and post-season, the main pollen season. Gaps of 3, 5, 7 and 10 days were considered. Errors were expressed as Mean Absolute Error (MAE).

RESULTS
For all the methods, the highest MAEs were obtained when the gaps affected the peak period. Regarding the pollen types, the highest MAEs were detected for the most abundant pollen types. These errors were also higher when 3-days gaps were used, and the lowest for 7-days gaps. Mathematical approaches obtained the lowest MAEs while the highest were obtained by using the data coming from nearby stations.

CONCLUSIONS
According to our results, mathematical approaches resulted to be the most accurate methods to interpolate missing data. Small gaps have a bigger influence of daily oscillations in pollen concentrations, being more difficult to predict than larger gaps, in which the general trend of the pollen concentrations could be observed, and daily fluctuations are smoothed. Abundant pollen types generally have bigger daily oscillations, obtaining a bigger MAE.