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Resumen 

Recientemente, los avances en computación, en miniaturización de componentes 

electrónicos, así como la creciente accesibilidad a dispositivos móviles, ha llevado a un 

aumento exponencial en el número de usuarios de computadores. Este cambio ha 

facilitado el acceso a una mayor parte de la población a tecnologías que hacen más 

cómodo el día a día. Desde mejorar la comunicación entre individuos hasta realizar 

recomendaciones sobre el consumo alimentario propio, los dispositivos móviles están 

permitiendo cada vez más una vida más sencilla, aunque aún hay margen de mejora. 

 

Uno de los hábitos que no han sido totalmente sustituidos por la tecnología es escribir 

a mano. Aunque sí existen sistemas refinados de Reconocimiento Óptico de Caracteres, 

su principal uso es sobre textos impresos, ya que los métodos clásicos no son tan 

robustos para reconocer el constante cambio de estilo de la escritura a mano. 

Gracias a los últimos avances en inteligencia artificial, principalmente en los sistemas 

de redes neuronales, existen tecnologías actuales que proporcionan una precisión mucho 

mayor en el Reconocimiento de Texto Escrito a Mano. Aun así, estos avances no han 

sido extensamente usados en aplicaciones actuales, como las creadas para toma de notas 

o escritura de documentos extensos; en estos casos, la facilidad y portabilidad de los 

documentos son factores decisivos. 

 

En el trabajo presente, se propone un sistema de reconocimiento de texto escrito a 

mano que tenga en cuenta el estilo y formato del documento. A diferencia de estudios 

anteriores, el reconocimiento del color y estilo del texto tiene un papel central en el 

sistema, de forma que se puedan mantener palabras subrayadas o secciones del 
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documento. Por último, y con el fin de dar soporte a textos escritos en castellano 

moderno, se crea un conjunto de datos novel, que también se libera para futuros 

avances. 

 

Palabras clave: reconocimiento de texto manuscrito, procesamiento de textos, 

procesamiento de color, redes neuronales, aprendizaje profundo  
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Abstract 

In recent years, the advances in computing power, miniaturization of electronic 

components, and accessibility to mobile computers have led to an exponential increase 

in the number of computer users. This change has increased the accessibility to modern 

technologies to a greater part of the population. From enabling faster communication 

among us to advising about our food consumption, mobile devices are being used to 

increasingly ease our daily life, although there is still room for improvement. 

 

One of the tasks that has not been replaced with technology is handwriting. Even 

though Optical Character Recognition systems have been greatly improved, they 

mainly focus on the recognition of printed texts, and therefore the algorithms used are 

not robust enough for the constantly changing styles of handwriting. 

Thanks to the latest advances in artificial intelligence, namely in the field of neural 

networks, current research is expected to greatly improve Handwriting Text 

Recognition accuracy. However, the application of such techniques has just started to 

be applied in modern forms of handwriting, like taking quick notes and writing down 

extensive documents, where the ease of use and portability are key issues. 

 

In this work, a handwriting text recognition pipeline, which also takes text style and 

layout into account, is proposed. Unlike previous research, color and style recognition 

plays a key role in the workflow, so that highlighted words or document sections can 

be kept mostly unchanged. Besides, with the aim to support modern handwritten 

Spanish, a novel dataset is created, which is also made available for future projects.  
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 Introduction 

In this chapter, the main concepts of the system and how it works, and the motivation 

behind each of them, will be detailed. In addition, to improve the reader’s 

understanding of the reach of the project, a brief background of the topic is given. 

Finally, a description of the State-of-The-Art research on the topic is given. 

 

1.1. Context 

The desire to reproduce written content to multiple forms has been a priority since the 

time of the printing press, back in the 16th century. Thanks to the advances of 

technology, nowadays we can keep the same content in multiple formats, like 

handwritten text, printed text, or digital text. As of today, the goal is now different: 

Can text information, presented in one format, be recognized, and extracted so that it 

can be moved to another format, directly? 

 

When it comes to the conversion from printed machine text to digital format, Optical 

Character Recognition (OCR) is the main approach. By using a set of image processing 

techniques, as well as expert typographic knowledge, software applications can pre-

process and extract information from a photography or a scan of printed text, and then 

process this information to find out what may be written in the paper, newspaper or 

document. This way of extracting information from text forms has become quite robust 

(Rice, Jenkins, and Nartker 1995) to different text fonts and use cases – uneven 

lighting, small font size, or unique text layout. Modern OCR applications range from 

car license plate recognition to searchable textbook databases (Google 2011), or 

commercial document text search tools. 
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Thanks to the latest advances in artificial intelligence (AI), a new approach, evolved 

from OCR, is being applied to allow conversions from handwritten text to digital text. 

Intelligent Character Recognition (ICR) leverages classical OCR techniques and applies 

AI to extract information from uneven writing styles (Filestack 2018), a common 

feature of handwritten or custom text fonts. 

 

A common approach to improve ICR results by means of AI is to use neural networks 

(NN): systems that recall biological neurons and can learn from experience (Lauzon 

2012) – allowing data to drive its learning. By combining multiple NN architectures, 

Figure 1.1: OCR system for plate recognition. 
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such as Convolutional Neural Networks (CNN) and Recurrent Neural Networks 

(RNN), this approach can learn about the visual properties of text, as well as the 

lexical, syntactical, and semantical attributes of the language.  

To enhance even more the results, this approach is usually combined with natural 

language processing (NLP) techniques, which seize the extracted properties and 

attributes to create a more realistic result.  

 

 

 

There are, however, two core subproblems in ICR: online recognition, which is based 

on data recorded by a digital notebook, like a tablet; and offline recognition, which 

works directly on pictures of handwritten text on paper. It is also important to note 

that the main datasets used in these subproblems are made up of English and French 

corpus (namely, the IAM and RIMES (Grosicki and El-Abed 2011; Marti and Bunke 

2003) datasets). Therefore, there is not only the issue of handling different languages, 

like Spanish, Portuguese, or Czech, but the restriction of not using common symbols, 

like $, @ or % is there as well. 

 

Besides, these datasets only use grayscale, pre-processed images (or digital records for 

online recognition) that are unable to represent color styles typically used in 

Figure 1.2: Sample from a language-processing module 
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handwritten text. Even though top-notch tools like Google Lens (Google 2020) still 

extract text from natural scene images, they cannot exploit its color properties. 

 

The scope of this project is to address some of the problems detailed before. On one 

side, it seeks to expand ICR advances to Spanish corpus, by creating a curated dataset 

and developing an ICR system capable of processing it. On the other side, it addresses 

the opportunity for leveraging text style and color, in such a way that the ICR system 

can reproduce the styling and layout of the original text. 

 

1.2. State of the Art 

To further realize how far the previous developments in the topic have gone, and how 

this project can fit in the timeline, it is essential to survey the most remarkable works. 

Nowadays, most NN-based ICR systems take the ideas from the concepts of Seq2Seq 

(Sutskever, Vinyals, and Le 2014) and CTC loss (Graves et al. 2006). 

Briefly, the Sequence-to-Sequence (Seq2Seq) pattern proposes an encoder-decoder 

architecture to predict the network result by relying on an internal state; this way, the 

network model can produce an output of a different shape from the input, and the 

network architecture and learned weights can be reused for other purposes (what is 

known as transfer learning (Pan and Yang 2010)). 

 

In a similar way, Connectionist Temporal Classification (CTC) loss looks at simplifying 

how a prediction can be matched to a sequence. Given an audio clip, we seek to predict 

its transcript. However, we do not know how words in the transcript align to the audio 
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shape. Moreover, as the speech rate varies from person to person, maybe z occupies 3 

timeslots in an audio and 1.2 timeslots in another one. 

Thus, the CTC algorithm makes a guess for each timestep from the input, in such a 

way that if the same character is predicted twice or more times in a row, it is later 

merged as a single one. If the word contains 2 equal characters in a row (e.g. hello, ll), 

a special character is used to separate these, so that they are not merged. 

 

 

By taking advantage of these concepts and multidimensional LSTM (Hochreiter and 

Schmidhuber 1997) layers, great improvements in the field of offline and online HTR 

at word level are obtained in the works of (Graves and Schmidhuber 2009) and (Graves 

2013). Thanks to the recent advances in GPU training, these architectures have been 

also applied to line level (Voigtlaender, Doetsch, and Ney 2016) and full-page level 

(Bluche, Louradour, and Messina 2017). 

 

However, recent works (Puigcerver 2017) suggest that using CNNs for feature 

extraction along with a unidimensional LSTM, instead of multidimensional LSTMs, 

greatly reduces the computing power requirements. Furthermore, a set of layer 

optimizations for RNNs and CNNs on dimensionality reduction (Chen et al. 2019; 

Laurent et al. 2016; Pham et al. 2014) and computing power reduction (Jacob et al. 

Figure 1.3: CTC algorithm, visually explained (Source) 
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2018; Narang et al. 2018) have allowed for huge improvements in training and inference 

speeds (Xu et al. 2018). 

 

These systems, which target to offline HTR recognition, are mostly based on 

standardized datasets, namely RIMES and IAM, which are composed of scripts from 

the 20th century written by more than 500 writers. Even though there are works that 

introduce Spanish or Catalan texts (Romero et al. 2013), these contain mainly scripts 

written by 2 or 3 writers using 16th-century forms and writing style of the given 

languages. 

To this date, however, there is no other equivalent dataset targeting the remaining 

Latin symbols, such as ñ, ý, or ÿ, so these cannot be guessed by the aforementioned 

systems. There have been works trying to extend the reach of these systems to new 

symbols (Al-Ma’adeed, Elliman, and Higgins 2002; Alonso, Moysset, and Messina 2019; 

Hull 1994). 

 

Besides this, a different track for improving OCR and ICR precision is to make the 

system flexible to scene changes. Typically, these changes influence text rotation, font 

and background color, and type font. This topic has been extensively researched for 

OCR systems (Saidane and Garcia 2007; Shi et al. 2016; Shi, Bai, and Yao 2017) but 

no work has been found for ICR systems. However, some works do not focus neither 

on OCR nor on ICR, and provide a generic framework for unconstrained document 

inputs (Li et al. 2008; Montreuil et al. 2009; Quirós 2018). 

 

A final point to highlight is that most recognition systems also implement language 

post-processing features. Namely, (Bluche et al. 2017; Chung and Delteil 2019) take 
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advantage of the contextual information from a sentence to correct guessing errors for 

each word (Kukich 1992). However, none of them exploit the information from the 

document layout, such as font size, emphasis, or indentation within each paragraph. 

 

In this project, the latest advances in NN-based, efficient ICR systems are combined 

with features from unconstrained document recognition systems. Finally, its output is 

enhanced by applying language-processing methods (Parr and Quong 1995) extensively 

used in modern compiler designs. 

 

1.3. Scope 

The goal of this project is to extend the latest advances on ICR systems based on Deep 

Neural Networks (DNN). Namely, it seeks to complete three objectives: 

1. Create a Spanish dataset for offline handwriting text recognition and deliver a 

trained ICR system on this dataset. 

2. Build up an AI system to extract color from words. 

3. Apply language processing and language compiling techniques to reproduce 

handwritten layout into a digital layout, through a markup language. 
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 Project Planning 

2.1. Task Descriptions 

In order to fulfill the project goals, a set of modules must be created to meet the 

requirements. Therefore, the same procedure will be carried out for each module: 

research about state-of-the-art schemes for the given topic, design a system based on 

the results of this research, and then implement it. Hence, the following tasks will be 

conducted: 

1. Research, design, and implementation of the handwritten text recognition 

module. 

2. Research, design, and implementation of the handwritten Spanish text database. 

3. Research, design, and implementation of the text color recognition module. 

4. Research, design, and implementation of the style and layout language processor 

module. 

Note that the way this module is implemented in the current work is by 

recognizing a defined handwritten markup language. 

 

Finally, to provide a minimum viable product or application prototype, a set of extra 

modules are created to bind the first four modules. 

5. Research, design, and implementation of a text segmentation module. 

6. Research, design, and implementation of an utility module. 
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A set of validation tests is created for each task, as a way to set a task milestone, 

except for the utility module. In addition, a validation test is conducted when the 

system is finished. 

 

2.2. Scheduling 

This project fits into the last stage of a bachelor’s degree. To this end, it is equivalent 

to 12 ECTS, which matches to 296 hours. Therefore, a thorough review of the stated 

stages and its nested milestones have been done to fit them into the schedule. In the 

following sections, a timetable that matches the schedule settings is detailed, and the 

methodology that will allow the researcher to follow such timetable is explained 

thereafter. 

 

2.2.1. Timetable 

 

STAGE HOURS 

Research about state-of-the-art schemes for HTR on word level.  20 

Research about state-of-the-art schemes for handwritten text color 

recognition (HTCR) on word level. 
20 

Research about state-of-the-art schemes for language processing. 10 

Research about state-of-the-art schemes for creating handwritten text 

databases. 
20 

Design of validation and final tests for the HTR, HTCR, and language 

processing modules. 
20 



23 

 

Create the main system. Apply the HTR scheme and extend it for full-

page recognition. 
20 

Validation tests on the main system. 11 

Creation of the database of handwritten text. 20 

Database integration with the main system. 20 

Validation tests on the main system. 15 

Extend the main system with the HTCR module. 20 

Validation tests on the main system. 15 

Design of the language processing layouts. 20 

Extend the main system with the language processing module. 20 

Validation tests on the main system. 10 

Final tests on the main system and results. 20 

Design and development of the main system’s demo. 15 

 296 

Table 2.1: Expected time planning for the project 

 

2.3. Methodology 

Given the aforementioned aims and time constraints, as well as the human resources 

constraints, an agile methodology is used to reach the goals within such a deadline. 

Namely, a version of the Feature-Driven Development (Ambler 2005) process is used: 
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 The project is structured by modules, each one addressing a required 

functionality. 

 The evolution of the project is measured on behalf of the progression of each 

module. Therefore, at the beginning of the project, the design and 

implementation of each functionality is planned. At the end of each module, a 

milestone is set to track the progress. 

 Absolute time is divided into 1-week blocks. To keep track of the changes made, 

and if help is needed right away, a report is delivered when shifting from one 

block to the next. 

 The schedule is open to modifications in case of having obstacles. 

 

Moreover, to monitor changes done throughout the project in each of the modules, 

particularly in the design and development, a git (Torvalds 2005) local repository is 

used to prevent from losing any progress. Likewise, to keep a record of the use of 

external source code, Anaconda environments (Anaconda 2012) are used. 

 

2.4. Obstacles and Risks 

In this section, the possible obstacles and risks that might appear throughout the 

development of the project are described. Additionally, for each obstacle, an alternative 

is detailed in the case the addressed problem arises. 
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2.4.1. Obstacles 

1. Learning curve of Machine-Learning methodologies 

Even though the project researcher has previous training in the latest machine learning 

techniques, there are new concepts, specific to language processing and model 

optimization, which may slow the research pace. 

To overcome this, the potential techniques that are new to the researcher are 

thoroughly reviewed during the Research stage of each task. 

 

2. Data generation inconsistency 

The need to create a dataset from scratch, and to extend (data-augment) it, puts 

pressure on producing a consistent, uniformly distributed dataset. However, the result 

can differ from the reference datasets (IAM, RIMES) in multiple factors: character 

properties, word resolution, image histogram balance, etc. 

To tackle this issue, the resulting samples from the dataset will be carefully selected 

according to the reference datasets, in such a way that the factors abovementioned do 

not pose a threat to the system performance. 

 

3. Error-prone machine learning packages 

Although the software packages used for the project are commonly used by the machine 

learning community, they are not flawless. Here, we have to take into account that this 

software has been created in the latest 5-10 years; hence, it is still experimental for 

some stages of the scheme and there is not a consistent interface. 
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As a way to solve this issue, two different software tools will be used to design the 

model architectures and train them. These tools share a common API for most of their 

features. 

 

4. Poor accuracy from using novel model architectures 

As some modules have no counterpart in previous research, there is a chance of not 

getting the desired output from the proposed, experimental schemes. To tackle this 

issue, classical techniques that have been long used for similar problems are also taken 

into account, and multiple configurations for each scheme are tested. 

 

2.4.2. Risks 

1. Poor accuracy from using the novel dataset 

One of the main drawbacks of creating a novel handwritten text dataset for offline 

recognition is the need to match the specifications of IAM or RIMES datasets, which 

are huge, and provide a high amount of text and writers. 

Since the novel dataset contains a low amount of text and writers compared to these 

datasets, there is a chance that the trained neural model yields poor accuracy from this 

fact. 

 

2. Unstable machine-learning architecture design 

Due to the fact that implementing neural network schemes right away can be tedious, 

and to the inexperience of the project researcher, some key attributes might be wrongly 

implemented. 
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3. Failure to get an MVP 

Due to the sophistication of the proposed project, as well as the need for extra modules 

to provide a minimum viable product (MVP), the complexity of the project might be 

higher than expected. Thus, there is a chance that project re-planning is needed to fit 

the deadline. 

 

2.5. Resources Used 

In this section, the software and hardware resources that have been used to attain the 

project goals are detailed. 

 

2.5.1. Hardware resources 

 Laptop PC: Intel i7-8565U CPU with Intel GPU 630, 8GB RAM 

 Google Collaboratory (Google Colab Team 2019) instance: Intel Xeon CPU, 

12GB RAM, Nvidia Tesla P4 GPU. 

Google Collaboratory provides an easy-to-use IDE to develop machine learning 

algorithms. However, user sessions have a limited time of 90 minutes, and all 

the uploaded or generated data is deleted when the time limit is reached. 

 

2.5.2. Software resources 

2.5.2.1. Python 3 

Python 3 (Python Team 2018) is a programming language that is widely used in the 

data science and machine learning fields. In short, it focuses in a simple syntax and a 

wide support of technologies, being currently used for server programming, data 
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processing pipelines and web development among others. In addition, the following 

python modules, known as packages, have been used in this project: 

1. 𝑛𝑢𝑚𝑝𝑦 provides a fast, numerical computation interface to Python. It is used 

all across the system, from image processing to data management. 

2. 𝑝𝑎𝑛𝑑𝑎𝑠 provides a SQL-like interface to Python, by loading structured datasets 

in tables and allowing to run queries on these datasets. 

3. 𝑂𝑝𝑒𝑛𝐶𝑉 is a framework, also available in other languages like 𝐶 + +, to simplify 

the tasks of image processing and computer vision. 

4. 𝑁𝑢𝑚𝑏𝑎 (Anaconda 2018) allows to compile Python by using a Just-In-Time 

(JIT) compiler. This allows the system to obtain the advantages of compiled 

code, such as lower time complexity, while retaining the advantages of Python, 

such a simpler syntax. 

5. 𝐽𝑢𝑝𝑦𝑡𝑒𝑟 𝑁𝑜𝑡𝑒𝑏𝑜𝑜𝑘 (Project Jupyter 2017) provides an interactive development 

environment to allow faster development times. 

 

2.5.2.2. Machine Learning Toolkit 

The following technologies have been used to design and implement the machine 

learning modules: 

1. 𝑠𝑐𝑖𝑘𝑖𝑡 − 𝑙𝑒𝑎𝑟𝑛 is a Python interface to the core machine learning algorithms, 

such as K-Means and Support Vector Machines. 

2. 𝑇𝑒𝑛𝑠𝑜𝑟𝑓𝑙𝑜𝑤 2.0 (Google Brain Team 2015) is the second revision of 𝑇𝑒𝑛𝑠𝑜𝑟𝑓𝑙𝑜𝑤, 

a toolkit for developing neural networks. It provides a basic interface, 𝐾𝑒𝑟𝑎𝑠, 

which allows the researcher to build the neural network model by layers. In 

addition, it has support for a wide range of devices, such as laptops or embedded 

devices, which is useful to test the reach of the project. 
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2.5.2.3. Language Processing Toolkit 

To be able to handle and process the complex text structure outputted by the Text 

Recognition and Color Recognition modules, the following technologies have been used: 

 𝑝𝑦𝑠𝑝𝑒𝑙𝑙𝑐ℎ𝑒𝑐𝑘𝑒𝑟 is a Python interface that provides a spell checker. This is used 

to ensure that the predicted text from the Text Recognition module is correct 

in form and syntax, and to correct it if necessary. 

3. 𝐴𝑁𝑇𝐿𝑅4  (Parr and Quong 1995) is a tool to create LL(*) parsers. It is used to 

ease the creation and modification of the markup language processor. 

 

2.6. Deviations from the original planning 

Multiple deviations have occurred during the development of the project. Firstly, due 

to the limited knowledge of the researcher in Deep Learning techniques applied to  

Natural Language Processing, the research and design stage of the text recognition 

module has been combined with its corresponding implementation stage, to ensure that 

a right model architecture is delivered. 

 

Secondly, on early versions of the novel dataset, the accuracy of the text recognition 

model when using the dataset to train it was poor. This may have been due to either 

the varying properties of the text images gathered or the contrast between the novel 

dataset and IAM and RIMES dataset. To improve these results, 2 extra weeks have 

been devoted to this stage, and the timetable has been reorganized so as to fit the new 

time constraints. 
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Thirdly, the initial models designed for text segmentation were faulty and difficult to 

implement. Namely, a deep learning architecture was proposed for the line and word 

segmentation blocks, which have been lately replaced by statistical models. This 

decision has been made attending to two additional metrics: lack of training data and 

robustness to unprocessed data. The findings are detailed in the corresponding sections.  
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 Theoretical Foundations 

In this chapter, the core of the technologies and methods used in this project are 

described. Firstly, an overview of the classical approaches to handwriting text 

recognition, mainly from the field of computer vision, is given. Secondly, the neural 

network model, which greatly improves the results of the classical approaches, is 

described thoroughly. 

 

3.1. Introduction to Handwriting Text Recognition 

Handwriting Text Recognition can be defined as the task to process a text source, 

usually in the form of an image, and transcribe its content to a digital form. It is a 

classical problem in the field of computer vision , and there are many ways to approach 

it. A common solution is to use an Optical Character Recognition algorithm, which 

recognizes the text content at character level, and forms the sentences upwards. It does 

so by carefully studying the features of each character, and their most common 

deviations to adapt to any text. 

 

However, this approach gets inconsistent results when dealing with unknown inputs. 

Think, for example, if the machine is dealing with a text source written with a slightly 

different alphabet, or with a cursive style. One of the reasons of this problem is that 

OCR algorithms do not implement, by themselves, a language engine that can handle 

contextual information at paragraph, line, or word level.  

A recent approach to this problem is to use algorithms, based on Artificial Intelligence, 

that both leverage the advantages of computer vision and contextual information. 
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3.1.1. Concepts based in Computer Vision 

To better understand the advanced algorithms that this project uses, it is recommended 

to learn in advance about some of the concepts from the field of computer vision that 

are used in this project: 

  

3.1.1.1. Vertical and Horizontal projection 

Given a 2D binary image, where a value of 0 represents information, how do we get 

the position of the bits holding information? A simple way to get it is to use the 

projections of the image. 

The vertical projection can be defined as the sequence of the sums of pixels grouped 

by its vertical coordinate. For example, for the following matrix 

1 0 1
0 0 1
1 0 1

 

with dimensions 𝑛 × 𝑛, 𝑛 = 3. The resulting sequence would be [2, 0, 3]. Similarly, the 

horizontal projection for this matrix would be [2,1,2]. 

In addition, we define the concepts of valley, being an element of the projection whose 

value is 𝑛, and peak, being an element of the projection whose value is lesser than 𝑘 ∈

[0 … 𝑛 − 1]. In Figure 3.1, a text image and its associated vertical projection is shown.  
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Figure 3.1: Text image and its associated vertical projection 

 

3.2. Foundations of Advanced Artificial Intelligence 

One of the key abstractions that has accelerated the improvement of HTR systems in 

the last one or two decades is the concept of neural networks (Rojas 1996). In simple 

terms, a neural network leverages the organic structure of neurons to improve feature 

learning. In Figure 3.2, a multilayer perceptron, one of the core neural network 

architectures, is shown. 

 

 

Figure 3.2: A Multilayer Perceptron (MLP) 
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To better understand the core ideas of the field neural networks, it is recommended to 

review the next widely used neural network models. 

 

3.2.1. Feed-forward Neural Network model 

One of the fundamental neural network models is the feed-forward neural network 

model. One of the key examples is the multilayer perceptron model shown in Figure 

3.2 

 

Mainly, each abstract neuron, which is represented by a circle, is grouped in a vertical 

set or layer, just like real neurons; in a similar manner, these layers are connected 

onwards, so that there can be no cycles. Therefore, the leftmost layer (red neurons) is 

referred to as input layer, whereas the rightmost layer (green neuron) is referred to as 

output layer. All the other intermediate layers are called hidden layers. Besides, each 

layer has a level of depth, being 0 for the input layer and 𝑛 for the output layer. Depth 

can be associated with an expression 𝑑𝑒𝑝𝑡ℎ(𝐴) for input layer 𝐴. 

 

Finally, all the neurons from a given layer are fully connected to all neurons in the next 

layer – for any given layers A and B such that 𝑑𝑒𝑝𝑡ℎ(𝐵) =  𝑑𝑒𝑝𝑡ℎ(𝐴) + 1, there is a 

link between each pair of neurons (𝑛 , 𝑛 ) | 𝑛  ∈ 𝐴, 𝑛 ∈ 𝐵. These links have an 

associated weight so that the network can learn which connections are more important 

for each neuron. Hence, the purpose of training a neural network, given a specific kind 

of data, is to learn which weights suit best each neuron so that the network can get a 

precise output representation from the inputted data. 
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3.2.1.1. Learning 

As explained before, each neural connection has an associated weight which tells the 

neuron how important that connection is with respect to the other connections the 

neuron has. The set of all connection weights among neurons of the layer 𝑛 and the 

layer 𝑛 + 1 are represented in a weight matrix. Usually, to ensure that the network is 

not pre-conditioned to learn the solution to a given problem, this matrix is initialized 

with random values. 

 

For example, imagine that a neural network is used to solve the following problem: 

split a set of 2D points in two groups: one must be over the line 𝑓(𝑥) = 𝑥 and other 

below it. We already know the groups for the following points: 

POINT GROUP VALUE 

(𝟏, 𝟎) Below 0 

(𝟎, 𝟏) Above 1 

(𝟓, 𝟒) Below 0 

(𝟓, 𝟏𝟎) Above 1 

Table 3.1: Sample dataset of 2D points 

Each neuron has a transfer function that is used to combine all its inputs and weights 

into a single output. This output is later passed onto the neurons of next layer, which 

determine, on behalf of its associated weights, if the output is meaningful or not. 

A trivial transfer function can be 

𝑓(ℎ) =
1, 𝑖𝑓 ℎ ≥ 𝜃
0, 𝑖𝑓 ℎ < 𝜃

  , ℎ = ∑𝑥 · 𝑤  , 𝜃 ∈  𝑅 
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Being ℎ the sum of the product between each input and its associated weight, and 𝜃 a 

threshold, which for this example can be 𝜃 = 0. 

 

With this in mind, note that the weights are updated each time a sample from the 

Table 3.1 of points comes in. To focus on the behavior of this step, the single 

perceptron, as shown in Figure 3.3, is more intuitive. 

 

Figure 3.3: A singleton perceptron 

To ease the task of updating the weights, we also need to define a learning rate 𝜂, a 

dynamic value, usually going from 1 to 0, that tells the significance of the next weight 

update. The reason behind this is to help the network to learn faster at the start and 

learn at a lower rate later, so that its results do not change drastically. 

We can define the variation of the weight 𝑤  at timestep 𝑘 as 

Δ𝑤 (𝑘) = 𝜂(𝑘) · 𝑧(𝑘) − 𝑦(𝑘) · 𝑥 (𝑘) 

Being 𝑧(𝑘) the expected group value and 𝑦(𝑘) the predicted group value. All the 

weights related to the connection from each input to the singleton perceptron can be 

grouped in a weight vector 𝑉. 

Finally, in order to know when to stop updating 𝑉, the network can keep track of the 

last 𝑚 updates of 𝑉, and if when comparing the last 𝑡 = 2 updates, the change from 

one to another is not above a threshold 𝜆: 
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∀ 𝑤 ∈ 𝑉 , ∀𝑤 ∈ 𝑉 , 𝑤 − 𝑤 ≤ 𝜆 

Where 𝑉  is the last update and 𝑉  is the last but one update. Then, it is said that 

the network is stable and the learning finishes. 

 

3.2.1.2. Backpropagation algorithm 

The learning stage on the singleton perceptron is simple, but to do it in the multilayer 

perceptron, an additional step is required. That is because the learning algorithm does 

not take into account the final output for intermediate neurons. In order for the 

learning stage to take into account this, the backpropagation algorithm is used. 

The backpropagation algorithm introduces the concept of gradient descent, which uses 

the update of the other neurons to which a particular neuron 𝑋 is connected, to 

influence the update of this neuron 𝑋. In this algorithm, the weight update function is 

Δ𝑤 = 𝜂 · σ · 𝑆 , Δ𝑤 = 𝜂 · σ · 𝑥  

Being 𝑎 the depth of the layer for the weight between the neuron 𝑗 and the neuron 𝑖, 

𝑆  the output of the transfer function in i-th neuron in the a-th layer, and 𝜎  the error 

update of the j-th neuron in the a-th layer. Note that in the multilayer perceptron 

there is a weight vector 𝑉 for each neuron. To keep it simple, all the weight vectors 

from a layer can be grouped in a weight matrix 𝑊. 

We can define the error update in the output layer with depth 𝑁 as 

𝜎 = (𝑆 )′ · (𝑧 (𝑘) − 𝑦 (𝑘)) 

Which is the product of the first derivative of the output of the transfer function with 

the difference between the expected output and the real output for the i-th neuron at 

timestep 𝑘. For the other layers, the error update is 

𝜎 = 𝜎 · Σ  𝑤 · 𝜎  
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3.2.2. Deep Learning 

However, the exclusive use of one or more blocks of the multilayer perceptron model 

does not allow for state-of-the-art models. Instead, by combining it and other types of 

neural models in big schemes, much more complex problems, such as face recognition, 

can be addressed and solved. This is what it is called Deep Learning, referring to the 

total depth of the network in terms of layers, reaching depths in the order of hundreds 

(He et al. 2016; Huang et al. 2017). 

 

In order to be able to process and learn data representations of all kinds (from images, 

audio, text, etc.), specialized neural network models have been designed. Two of them 

are the Convolutional Neural Network model and the Recurrent Neural Network model. 

 

3.2.2.1. Convolutional Neural Network model 

One of the problems of the feed-forward model is that they are liable to overfitting 

data. Moreover, it struggles when dealing with large data inputs. For example, when 

using an image of dimensions 150 × 150, flattening it makes it a vector of size 22500, 

and just for the input layer, a feed-forward neural network with 𝑛 neurons would need 

22500 · 𝑛 connections. 

To solve this problem, the convolutional neural network (CNN) model (Zhou 2019a), 

also known as the space invariant neural network model, seizes the hierarchical 

structure of data to learn about smaller and simpler patterns, which are later summed 

up to learn complex patterns. In addition, they use a convolution function to update 

the weight matrix. 
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Take for example the following 4 × 4 image as an input, which represents a 𝑇: 

0 0
1 0

0 0
0 1

1 0
1 0

0 1
0 1

 

If we use a convolutional layer to learn the features of this image, instead of connecting 

each neuron to a vector of length 16, we will take advantage of the spatial uniqueness 

of images. Thus, we can apply a 2D convolution of size 2 × 2 to obtain a smaller 

representation  

 

Figure 3.4: A convolution step in a CNN layer 

 

Doing this step in sequence allows the convolutional model to learn about the features 

of an image without spending too much time nor space on computing the weights, as 

it happens in the feed-forward model. Thus, they are widely used in the computer 

vision field. 

 

In this project, there are used 3 variations of the common convolutional model: the 

depth-wise separable convolutional model (Chollet 2017), the gated convolutional 

model (Lin et al. 2019), and the octave convolutional model (Chen et al. 2019). Each 

variation deals with certain disadvantages of the original convolutional model, such as 
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the training and inference performance, the size of the weight matrix or the overall 

information processed by a convolution operation. 

 

3.2.2.2. Recurrent Neural Network model 

The Recurrent Neural Network (RNN) model (Zhou 2019b) thrives to model time-

based or sequence-based data. Namely, they are designed to learn the structure of 

sequential data by keeping a hidden state between every pair of steps (𝑛, 𝑛 + 1) in the 

sequence and combining these hidden states later on in the output. 

One of the main reasons to use the RNN model instead of the feed-forward model or 

the CNN model is that these two deal with fixed-size inputs and outputs, whereas the 

RNN model can work with a variable-length input and output. This renders useful for 

dealing with tasks such as language translation, where the input length may differ from 

the output length (for example, buenos días in Spanish and bonjour in French). 

 

The RNN model works by adding internal connections among the neurons in a layer; 

however, these connections are done sequentially, so that no cycle can be done. Take 

for example the task of language translation as an example. If the model takes hola as 

an input, we could look at the RNN layer and it would be like 

 

 

Figure 3.5: Representation of a RNN layer for a sample input 
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By keeping the internal state for each input character and updating the 𝑛𝑡ℎ internal 

state with the (𝑛 − 1)𝑡ℎ internal state, it can generate an output with a different length 

than the input length. 

In addition, the following variation of the RNN model are used in the project as well: 

 The Long-Short Term Memory (LSTM) model is better than vanilla RNN model 

when learning long sequences. This is due to the fact that the RNN model 

struggles with keeping information about the initial cells in the internal state 

when reaching the last cells of the layer, also known as the gradient vanishing 

problem. 
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 Design and Implementation of 

the proposed system 

In this chapter, an overview of how each module of the system has been designed and 

developed is given. Firstly, the proposed system is described, emphasizing which 

module covers which functionality, and the critical points to look out. Secondly, the 

design and implementation of each module is explained. 

Note that, as each functionality must cover a set of tests, these tests are also used to 

improve the design and implementation of each module. These tests are described in 

the following chapter, along with an analysis of the test results. 

  

4.1. Description of the proposed system 

In order to provide the reader with a broader view of the proposed system, a brief 

description of each module is provided, along with a full picture of how these modules 

are organized. 

 

Namely, the following modules are used, each one addressing a core functionality in 

the system: 

1. Image Input: a simple image processing module to convert an image to RGB, 

Grayscale or Binary mode. 

2. Text Segmentation: it solves the issue of having to process big text images 

containing paragraphs. To this end, it breaks paragraphs into line and word 

images, which are then inputted to the next modules. 
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3. Data Processing and Data Augmentation: an utility module to enable easy-to-

use data processing and data augmentation methods. In addition, it also 

contains the data generator for the Spanish dataset. 

4. Text Recognition: it addresses text recognition. Specifically, it contains the 

neural model that recognizes the inputted text source. Besides, it includes a spell 

checker to seize contextual information from lines. It produces UTF-8 text as 

output for each line. 

5. Color Recognition: it addresses color recognition by providing a neural model to 

recognize highlighted words and a color classification algorithm to transform 

RGB colors into color names (i.e. (255,255,255) to white). It produces a color 

tuple of (font color, background color) as output for each word. 

6. Language Processing: it provides a means for producing custom outputs by 

combining text and color information. Particularly, it provides a specification 

for the MiniDownColor language, which processes text and color information 

inputted from the previous modules to create a consistent HTML5 output.  

 

In Figure 4.1, a flowchart of the system is shown. 
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Figure 4.1: Flowchart of the proposed system 

 

In Figure 4.2, a flowchart detailing the behavior of the system is shown. 

 

Figure 4.2: Behavior of the proposed system 
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4.2. Design and Implementation of the system modules 

To ensure that the functionality tests are meaningful, the loss of information metric is 

used. It is defined as the L2 norm applied to image data, and it is stated in percentage 

values. Thus, a 100% loss of information given by a text image 𝑇 with respect to the 

expected text image 𝑇′ means that 𝑇 is completely white, while a 0% loss of information 

means that 𝑇 = 𝑇′. 

 

4.2.1. Image Input Module 

 

Figure 4.3: Flowchart of the Image Input Module 

 

This module uses two main classes: 

 ImageInput class, which defines the methods to convert a colored image to 

RGB mode and grayscale mode. 

 Binarizer class, which defines the methods to binarize an image. 
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The ImageInput class uses built-in methods from the OpenCV package to convert 

the colored image, which is usually in RGB mode, to grayscale and RGB mode. 

However, as some text images might contain highlighted words, these can appear 

darker or lighter depending on the highlight color. Therefore, instead of averaging the 

RGB channels when converting to grayscale, the three channels are separately and 

then averaged. 

 

The Binarizer class is somewhat more complex. As all HTR models use binarized or 

grayscale images for training or prediction, it is of vital importance to have a robust 

algorithm that can process raw input images.  

Moreover, a binarization technique is applied to each RGB channel. Due to the chance 

of having to process large images (2 megapixels and more), multiple adaptive threshold 

algorithms have been tested. For this step, qualitative testing is chosen as the 

validation testing method, as images also contain highlighted words, which are difficult 

to process for some algorithms. 

In Figure 4.4, a comparison among the used algorithms (Chen, Chen, and Chang 2012; 

Niblack 1985; Sauvola and Pietikäinen 2000) is shown. Note that all algorithms are 

designed specifically for processing grayscale text images. 
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Figure 4.4: Binarization algorithms 

The chosen algorithm is Illumination Compensation(Chen et al. 2012), as it proves to 

be more robust than the other ones, at the cost of higher time-based computational 

complexity. Moreover, Niblack and Sauvola thresholds are greatly influenced by the 

window size used, which inherently depends on the input image size. Lastly, Niblack 

and Sauvola cannot deal with highlighted words as elaborately as Illumination 

Compensation does.  

 

In Figure 4.5, a comparison among these algorithms for a paragraph image is shown. 

Note that the Niblack algorithm is discarded as it binarizes images but generates too 

much noise. Besides, multiple configurations for the window size 𝑊𝑍 parameter are 

used for the Sauvola algorithm. 
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Figure 4.5: Comparison of binarization algorithms 

 

Observe that while the Sauvola algorithm produces a correct output if window size 

value 𝑊𝑍 is between 20 − 40 (in Figure 4.5, 𝑊𝑍 = 25), it does not completely remove 

the highlight frame in highlighted words, while Illumination Compensation does it. Be 

that as it may, as shown in rows 1 and 3, the result may vary significantly if the input 

image does not have brightness uniformly distributed. Finally, another reason to choose 

Illumination Compensation over Sauvola is that parameters have not to be tweaked 

for each input. 
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The Illumination Compensation algorithm is implemented using the default parameters 

as stated in (Chen et al. 2012). 

 

4.2.2. Text Segmentation Module 

 

Figure 4.6: Flowchart of the Text Segmentation Module 

 

A text segmentation module should enable the system to split a handwritten document 

into smaller blocks, like word or line blocks. This is useful for multiple reasons: first, it 

gives contextual information about each block, which is later used for error correction 

and sorting; second, it eases the text recognition, as the guessing algorithms have to 

work with fewer blocks and this can reduce potential faults. 

 

Due to the need of the style recognition algorithm to work at word level, the text 

segmentation scheme must output word blocks. This could pose a setback on the error 

correction stage within the text recognition scheme, as the system loses contextual 

information from surrounding words. However, this can be solved by keeping the error 

correction stage outside of the text recognition scheme. 
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Multiple approaches have been tested for this module before deciding the final design. 

At first, a deep learning architecture, inspired by the findings from (Chung and Delteil 

2019) have been chosen. However, its implementation and setup was cumbersome and 

did not meet the time constraints of this project. Therefore, a classic approach has 

been used to solve these pitfalls. This approach is described in the following sections. 

 

4.2.2.1. Paragraph detection block 

The goal of this block is to group neighboring lines that might form a paragraph; this 

knowledge is used later on in the system to provide contextual information to the spell 

checker. 

To keep it simple and efficient, this block takes the output of the Line segmentation 

block and tries to group the lines by paragraphs on behalf of its Y coordinate. Therefore, 

this block uses a clustering algorithm that does not previously know the number of 

clusters, such as a hierarchical clustering algorithm or a kernel density estimation 

algorithm. 

 

The Kernel Density Estimation algorithm has been selected as the clustering algorithm 

for this block. The OPTICS algorithm has also been tested, but it has a higher 

computational complexity. The kernel hyperparameter is set to gaussian and the 

bandwidth hyperparameter is set to 0.75. 

 

4.2.2.2. Line segmentation block 

Following the guidelines of creating segmentation algorithms with excellent processing 

speed and good accuracy, the line segmentation algorithm described in (Arivazhagan, 
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Srinivasan, and Srihari 2007) is used. This algorithm is based on bivariate Gaussian 

densities to group characters and words to each line. 

 

In detail, the possible lines are detected by using a piece-wise projection profile of the 

document. Then, each character or word is modeled as a connected component, so that 

the task is to assign each connected component to the line above or below it. In order 

to do this, the bivariate Gaussian density for each line is calculated, hence the 

connected component belongs to a line according to the probability of it under each 

Gaussian. 

 

In Figure 4.7, a sample image from (Samir 2017) is shown, which is obtained after 

applying the line segmentation algorithm. In a similar manner to the image binarization 

block, qualitative testing is chosen as the validation testing method, as line 

segmentation model accuracy cannot be properly measured using bounding boxes. 

 

 

Figure 4.7: Results from the line segmentation algorithm 
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4.2.2.3. Word segmentation block 

The main problem exposed here is splitting up a group of characters separated from 

each other by a generous white space. Taking advantage of the fact that the input 

image is binarized, the vertical projection of the image is used to perform this task.  

Namely, the vertical projection highlights the areas of the image where a continuous 

set of white pixels are grouped, which are modeled as white spaces. The target size for 

a white pixel group to be considered white space is computed from the mean of the 

group’s sizes. Note, however, that header lines are also processed; these lines contain a 

big group at the end, which would unbalance the mean. Therefore, the last group is 

discarded. 

 

In Figure 4.8, an image and its associated vertical projection is shown. Qualitative 

testing is chosen as the validation testing method for this block. 

 

 

Figure 4.8: Vertical Projection for a text line 
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The implementation of the word detection block is straightforward, as the processing 

time is less than a second with the base Python performance. Firstly, the vertical 

projection of the line image is computed, by adding pixel values (which are either 0 or 

1). Whitespace blocks are contiguous set of vertical lines where the sum of pixels equals 

the image height. 

 

Then, the whitespace blocks are filtered out if their width is smaller than the average 

width. In the case that the processed image is a header line (which has a big trailing 

whitespace block at the end), the last block is discarded. Finally, words are split by 

using the filtered whitespace blocks as cut points. A minimum width of 11 lines is 

required for a whitespace block to be considered. 

 

4.2.3. Data Processing and Data Augmentation Module 

 

Figure 4.9: Flowchart of the Data Processing and Data Augmentation Module 

This module is an utility module, which means that it has no required functionality 

and its methods are used across other modules, mostly in the color recognition and text 

recognition modules. On one side, the Data Processing block contains methods to deal 

with raw datasets and obtain a processed and ready-to-use dataset; on the other side, 

the Data Augmentation block contains methods to increase the size of a given dataset 

or to create new datasets. 
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This module was originally centered around the creation of the Spanish handwritten 

text dataset and has evolved since then in a more complex and purposeful module. 

 

4.2.3.1. Spanish handwritten dataset 

Most popular datasets related to the HTR problem can be classified into two classes:  

 Modern text corpus: datasets tend to have more than 100 writers, text area 

blocks are evenly distributed throughout the document layout or structured 

document layouts, like form or letter layouts, are used. 

 Historical text corpus: datasets have 2 or 3 writers at most, text area blocks are 

unevenly distributed throughout the document layout, character set height and 

width are not uniformly distributed (some letters have a much larger ratio than 

others, blurring line separation). 

 

This project focuses on modern text corpora, and specifically, in modern Spanish text 

corpora. To this date, there are no modern Spanish text corpora – yet we can find some 

historical text corpora, such as (Fernández-Mota et al. 2014; Serrano, Castro, and Juan 

2010). Moreover, as document layout is described by a markup language, there is an 

additional need for recognizing special ASCII characters, such as @, #, or $. 

In Figure 4.10, the logarithmic character distribution for IAM and RIMES 2011 

datasets is shown. 
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Figure 4.10: Logarithmic character distribution for IAM and RIMES 2011 datasets 

 

Upon creating a new dataset, several conditions have been considered. Character 

distribution and word size ratios are one of the key factors that influence text 

recognition at later stages. This takes a major influence when resizing input images to 

fit the network constraints, thus some works (Chung and Delteil 2019) extend the 

resizing capabilities for words or lines to fit a certain zoom ratio. 

 

Other approaches include using data generators, which fundamentally apply image 

processing techniques, like zooming, shearing or rotation to a given image in order to 

generate n variations of the same image. This simple approach can level up the number 

of samples for a small dataset. A sophisticated alternative is posed when using synthetic 

data generators via RNNs (Graves 2013) or GANs (Alonso et al. 2019). In Figure 4.11, 

a synthetic data sample, with yellow color font and blue background color, generated 

via RNN can be seen. 

 

 

Figure 4.11: Synthetic data sample generated with RNNs 
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The final dataset is described hereunder, which has been created after weighting all of 

the explained options and gathering the experiment results.  

The Spanish handwritten text dataset or Spanish dataset, in short, comprises 

handwritten notes from 15 writers. Besides, a subset of 2 writers also added full-page 

documents matching the document layout in IAM; this data is later used for testing 

the paragraph and word detection models. In Table 4.1, the mean word width and 

height for this dataset is compared to that of IAM and RIMES 2011. 

 

Dataset Average height Average width 

IAM 70 155.75 

RIMES 72.18 186.14 

Spanish 106.75 223.58 

Table 4.1: Average image height and width in the datasets 

 

Moreover, data is augmented by adding multiple grid paper backgrounds, as shown in 

Figure 4.12 . This is however discarded in later experiments, as it makes the model 

learning and color recognition unstable, but it is noted as feasible future work. 

 

 

Figure 4.12: Grid paper augmentations for a sample word 
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Data is manually labeled using (Skalski 2012), and it is saved in two formats: as RGB 

images to be used in the color recognition block, and as grayscale images to be used in 

the text recognition block. 

 

In Figure 4.13, the logarithmic character distribution for IAM and RIMES 2011 is 

shown. In Figure 4.14, this logarithmic character distribution also takes into account 

the Spanish dataset, where an improvement in Spanish and French characters can be 

observed, as well as in special characters. 

 

 

Figure 4.13: Logarithmic character distribution for IAM and RIMES 2011 datasets 

 

 

Figure 4.14: Logarithmic character distribution for IAM, RIMES 2011 and Spanish datasets 
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4.2.3.2. Data preparation 

Input data is comprised of the IAM, RIMES 2011 and Spanish word datasets. 

Predefined indexes for selecting the training, validation and test subsets are used for 

IAM and RIMES 2011; these indexes are made available along with each dataset. In 

addition, the following augmentation techniques are applied to increase the training 

set size: 

 Width shifting by a 0.2 range 

 Height shifting by a 0.2 range 

 Zooming by a 0.2 range 

 Shearing by a 0.2 range 

Finally, all images are normalized. In Figure 4.15, a data augmentation sample is 

shown. 

 

 

Figure 4.15: Data augmentation samples 

 

In Figure 4.16, a comparison among an original word input and the set of augmented 

samples from it is shown. 
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Figure 4.16: Comparison between the original input source and the augmented data samples 

 

In order to unload data quickly in the Google Collab platform, input data is zipped 

into HDF5 file format, which reduces the total dataset size on disk by 53% and reduces 

the image load time by 92.5%. Note that this step is performed before data 

augmentation. 

 

4.2.4. Color Recognition Module 

 

Figure 4.17: Flowchart of the Color Recognition Module 

This module expects an unconstrained word image as input and produces a color tuple 

(font-color, background-color) as output. 
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To demonstrate the possibilities of recognizing handwritten, styled text, a subset of 

common text properties is selected for this work. Namely, font and background color, 

bold text, and emphasized text are text style properties detected by this system. 

However, bold text and emphasized text are modeled as supplementary characters 

added to such text, just like it is done in markup languages. Therefore, these properties 

are considered in the Language Processing module. 

 

In order to recognize the font and background color of a word, image processing 

techniques are used. The way it is done in this project is by setting some assumptions. 

Firstly, it is assumed that the default font color is black, and the default background 

color is white. Thus, the background color only changes if there is a highlighted word. 

Secondly, all colors are grouped into a smaller set of colors, so as to use the CSS3 

named colors specification (Çelik, Lilley, and Baron 2011). 

 

To provide a test dataset for this module, the handwritten Spanish dataset samples 

are also saved in RGB format, and at least half of the dataset are highlighted words.  

 

Besides, a simple NN-based model, composed of 2 convolutional layers and 2 feed-

forward layers, is used to detect if a word is highlighted or not. Its scheme is detailed 

in Figure 4.18. Categorical cross-entropy is used to compute the network loss. Input 

images are resized to 150 × 150 to speed up the network training and inference. 
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Figure 4.18: Highlighted word recognition model architecture 

 

The proposed network architecture is implemented with Keras. A subset of the original 

dataset which is class-balanced is used, with 277 samples on each class. Images are pre-

processed with a custom function and are later normalized. In Figure 4.19 and Figure 

4.20, two samples of the dataset are shown.  

 

 

Figure 4.19: Dataset sample with colored font 
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Figure 4.20: Dataset sample with colored background 

 

The custom pre-processing function performs the following steps: 

1. Brightness value is incremented by 20, gamma value is incremented by 0.05, 

and contrast is adjusted by 150%. This ensures that the word background is 

white and that the highlighting features are not turned into shades of white. 

2. A color quantization algorithm, implemented with K-means, reduces the color 

dimensions, and produces a faster and more stable inference. 𝐾 = {3,4} values 

have been tested and 𝐾 = 4 seems to deliver more consistent results, as the 

background stays white even for highlighted words. 

An alternative step is to choose the darkest RGB channel, as background stays white 

and the darkest channel is the one holding the highlighted color. 

 

In Figure 4.21 and Figure 4.23, two original samples are shown; in Figure 4.22 and 

Figure 4.24, respectively, the same samples after running the preprocessing step are 

shown. Qualitative improvements can be observed, as color representations for 

highlighted words are more consistent when quantization is applied. 
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Figure 4.21: Sample from highlighted words dataset 

 

Figure 4.22: Sample from highlighted words dataset after preprocessing 

 

 

Figure 4.23: Sample from highlighted words dataset 

 

 

Figure 4.24: Sample from highlighted words dataset after preprocessing 
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In Figure 4.25, a comparison between 𝐾 values is shown. 

 

 

Figure 4.25: Comparison between different K value for color quantization 

 

The recognition model uses categorical cross-entropy as loss function and the Adam 

optimizer with the parameters from (Kingma and Ba 2015). The model obtains a 

testing accuracy of 95%, so a further improvement and minification of the model is 

done. 

The following improvements are shown in Figure 4.26: convolutional layers are replaced 

with depth-wise spatial convolutional layers, which reduce network complexity at the 

cost of higher training time; and feed-forward layers are shrunk. This network now 

obtains a testing accuracy of 99.28% with 90% less parameters. 
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Figure 4.26: Final highlighting recognition network 

 

4.2.4.1. Color classification block 

As a means of making easier the recognition and classification of colors, the results 

from the XKCD color survey (Munroe 2010) are used to group them. The Modified 

Median Cut algorithm as presented by (Bloomberg 2008) is used to recognize the main 

3 colors: font color, background color, and highlight color (if any). Finally, a K-Means 

algorithm is used as a pre-processing step for reducing the color space of each sample 

to 3 colors. 
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At first, a simpler approach using Euclidean distance in the RGB and HSV color spaces 

is used to group colors. However, some shades of the color classes are closer to white, 

black, or gray, as the image acquisition system and brightness conditions when taking 

the photograph greatly influence the result at this stage. In Figure 4.27, a red patch is 

recognized as gray if this method is used. 

  

 

Figure 4.27: A shade of red is identified as gray 

A more reliable approach is to use the results from the XKCD color survey (Munroe 

2010), which contains over 5 million RGB color labels tagged by more than 200,000 

people; each label is mapped to one of the 12 color classes. In Figure 4.28, the label 

distribution per color class is shown. A K-Nearest-Neighbors clustering model with 𝐾 =

50 is used to predict a class for new color tuples. 
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Figure 4.28: Label distribution per color class 

 

For extracting the 3 main colors from a word image, a Modified Median Cut 

Quantization algorithm is implemented. Note that the previous image quantization at 

the pre-processing stage helps to speed up this stage as well. This is implemented using 

ColorThief (Dhakar 2017), and a Numba (Anaconda 2018) backend is used to obtain 

speed ratios close to a C implementation. In Figure 4.29, the extracted color palette 

for a word sample is shown. 

 

 

Figure 4.29: Color palette for a word image 
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4.2.5. Text Recognition Module 

 

Figure 4.30: Flowchart of the Text Recognition Module 

 

The grayscale word getter block is quite simple, as it already receives all the required 

information from the other modules. This block is designed in plain Python. Likewise, 

the spell checker block extends the pyspellchecker Python interface, which already 

provides ready-to-use configurations for processing sentences instead of words. 

Moreover, the Spanish, French and English dictionaries from (LibreOffice n.d.) have 

been added to the default dictionaries. 

  

As for the text recognition model, most HTR models are based on the seq2seq problem 

and use the CTC function for computing both the loss and prediction. The latest 

models are using either modifications of the CNN base layer to speed up feature 

dimensionality reduction or new approaches for the text prediction. Usually, these 

systems are evaluated with the following metrics: 

 Validation loss, which is a common metric to all deep learning problems. 

 Character Error Rate (CER), or the Levenshtein distance between a predicted 

label and a true label. 
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 Word Error Rate (WER), which is the weighted difference between two set of 

words, described by the formula 

𝑊𝐸𝑅 =  
𝑆 + 𝐷 + 𝐼

𝑆 + 𝐷 + 𝐶
 

Being: 

o 𝑆 the number of substitutions 

o 𝐷 the number of deletions 

o 𝐼 the number of insertions 

o 𝐶 the number of correct words 

 

Following these guidelines, the proposed architecture for the text recognition model is 

inspired by (Bluche and Messina 2017; Chung and Delteil 2019; Puigcerver 2017; 

Scheidl, Fiel Wien, and Scheidl Robert Sablatnig 2011) and performs multiple 

optimizations to allow faster training and inference, while offering comparable 

performance. Namely, the following modifications are introduced: 

 Recognition is reduced to word level, while keeping contextual line information 

outside of the network for character error correction. 

 A spelling corrector block inspired by (Norvig 2007) is used to seize contextual 

information from lines. This design is based on a language detection module that 

can identify if the text is in Spanish, French or English, and a spelling correction 

module that, given a sentence, checks if it has any incorrect spelling by looking 

it up in a dictionary, and returns the most probably correction based on the 

sentence context. 
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Moreover, the following configuration fields are tested with multiple values to find the 

most fitting setup: 

 Apply 8-bit quantization or not, to reduce the time complexity in the inference 

stage. 

 Sample down the input image size between a 25% and 50% factor, to reduce the 

time complexity in the training stage. 

 Use three types of convolutional layers: a common 2D convolutional layer, a gated 

2D convolutional layer (Lin et al. 2019) and an octave 2D convolutional layer (Chen 

et al. 2019). 

 Other common hyperparameters such as batch size, kernel size, learning rate or 

number of filters in the convolutional layers. 

 

In Figure 4.31, the proposed architecture that uses gated convolutional layers is shown. 
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Figure 4.31: Proposed scheme for handwriting text recognition model 

 

The proposed architecture is implemented with TensorFlow 2.0. As explained 

previously, this one uses the CTC loss function and CTC prediction function. The 

RMSProp function with a learning rate of 5  is used as the network optimizer. 

 

As for the network internal setup, a default character set comprising default ASCII 

characters plus Spanish and French special vowels is used. In Figure 4.32, a comparison 

between the ASCII and the extended Latin character set used for this network is shown; 

consider that longer character sets pose a limitation to the network, as the character 

probability is smaller. The maximum allowed output word length is dependent on the 

input size, as the network with smaller inputs produces a more consistent result with 
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smaller word lengths. This is due to the fact that information is more compressed on 

smaller image sizes, and thus is harder for the network to obtain all the character 

details. The default output word length is 34 and the default input size is 64 × 256. 

 

 

Figure 4.32: ASCII and Extended Latin character sets 

 

Labels are pre-processed as well, mapping each string to an integer vector of the same 

length of the output word length, where each integer corresponds to the character 

position in the character set. The epoch limit is set to 20 and the batch size is set to 

128. 

 

The spell checker is implemented by extending the pyspellchecker Python interface. 

 

4.2.6. Language Processor Module 

 

Figure 4.33: Flowchart of the Language Processor module 
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As far as the consulted sources go, there is no previous paper on the use of compiler 

tools to address the switchover of document layout to digital formats. For this reason 

and to simplify the process at this stage, only standard compiler tools are used. 

 

In short, compiler tools usually translate from a given programming language to either 

native or intermediate code, or another programming language – in the latter case, this 

is called transpiler. Generally, a compiler performs the following stages: pre-processing, 

lexical analysis, syntax analysis, semantic analysis, and conversion to the target code. 

Additional stages such as code optimization are optional. 

Popular compiler tools are (Adve and Lattner 2003; Johnson 1975; Parr and Quong 

1995). However, as ANTLR4 is the only one that provides a language-agnostic 

platform, along with a shorter learning curve and simpler interoperability with our 

Python environment, it is the tool used in this project. 

 

The expected input for this module is a set of tuples  

(word, line, paragraph, font color, background color) 

which is processed to generate HTML5 code. At a later stage, the target code can be 

exported to other formats using Pandoc (MacFarlane 2006), such as .pdf or .docx. By 

default, 𝑓𝑜𝑛𝑡 𝑐𝑜𝑙𝑜𝑟 is set to black and 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑙𝑜𝑟 is set to white. 

 

For the sake of keeping design minimal, a generic language, MinidownColor, has been 

created. It provides paragraph and header features from Markdown and adds the option 

to use color on text. 



75 

 

In Figure 4.34, the lexer and parser specifications for Minidown are provided. Note the 

following: 

 \𝑝{𝑐𝑎𝑡} refers to Unicode property escapes, as referred in (MDN Contributors 

2020); namely, \𝑝{𝑊ℎ𝑖𝑡𝑒_𝑆𝑝𝑎𝑐𝑒} which links to Unicode whitespace characters, 

and \𝑝{𝐼𝑛𝐿𝑎𝑡𝑖𝑛1_𝑆𝑢𝑝𝑝𝑙𝑒𝑚𝑒𝑛𝑡} which links to the ISO/IEC 8859-1 character set. 

 The COLOR lexer rule accepts 11 main colors and None, which is equivalent to 

white. 

 The word parser rule accepts a STYLE token around text; this allows us to use 

$, @ characters to give bold and emphasis styles, respectively. For example, 

$hello$ is compiled as 𝐡𝐞𝐥𝐥𝐨. 

 

 

Figure 4.34: Lexer and Grammar specification for MinidownColor 
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In Figure 4.35, the expected input for the current module is shown. In Figure 4.36, the 

desired output for the current module is shown. 

 

 

Figure 4.35: Expected input for the language processing module 

 

 

Figure 4.36: Desired output for the language processing module 

 

In addition, a pre-processor is required to merge the outputs from the Color Recognition 

and the Text Recognition modules. Note that background and highlighting color are 

the same at this stage, as the default page color is white. 

 

The development of this module is quite straightforward, once given the lexer and 

parser specification. In order to keep the specification language-agnostic, ANTLR 

provides two types of interfaces to traverse the AST tree: the Listener, which simply 

is activated when a the program enters and exits a tree node; and the Visitor, which 

extends the Listener by allowing to define a custom tree visiting method. These 

interfaces can be implemented in multiple programming languages, such as C, Java or 

Python. 
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For the sake of simplicity, only the Listener interface is implemented in Python. This 

way, tags can be directly matched to their equivalent tree nodes. For example, the   <

ℎ1 > HTML5 tag is written when entering the Header node, and the </ℎ1 > tag is 

written when exiting it. Additionally, in order to keep the font and background color, 

the default HTML5 colors are used (black for the font color and white for the 

background color). If a word uses a different color, then it is wrapped inside a < 𝑠𝑝𝑎𝑛 > 

tag which uses the 𝑠𝑡𝑦𝑙𝑒 attribute to assign the color. 

 

Even though this is not the most efficient method to build up large documents, it shows 

the possibilities of keeping color word by word when recognizing text from images. 

Moreover, it also exposes the possibility of using CSS3 stylesheets for HTML5 output 

format to define custom color names, header or paragraph styles. 

  



78 

 

  



79 

 

 Results 

 

5.1. Tests descriptions and results 

 

5.1.1. Input Image module tests 

The following tests are used to ensure the functionality is fulfilled:  

 T1.1: Given a RGB image, return a pair of images, one in RGB mode and 

another in grayscale mode. 

 T1.2: Given a grayscale image, return a binarized image, using the Sauvola 

algorithm. The resulting loss of information must be lower than 30%. 

 T1.3: Given a grayscale image, return a binarized image, using the Illumination 

Compensation algorithm. The resulting loss of information must be lower than 

15%. 

Moreover, the following tests are used to ensure that a comparable performance is 

obtained: 

 T1.4: Given a grayscale image, return a binarized image, using either the 

Sauvola or Illumination Compensation algorithm implemented in Numba. The 

resulting time complexity must be 50% less than the time complexity when the 

algorithm is implemented in native Python. 

 

 

 



80 

 

Test number Has passed Observations 

1 Yes - 

2 Yes The loss of information is in between 15 … 25% 

3 Yes The loss of information is in between 3 … 10%. 

4 Yes The performance gain ratio is always greater than 100 

Table 5.1: Test results for the Image Input Module 

In addition, in order to optimize the Illumination Compensation algorithm, a custom 

Python solution is used to speed up processing: the numba Python package is used to 

compile down Python code to C code. In Table 5.2, a comparison between default and 

Numba implementations is shown. All images are assumed to be already grayscale. 

 

Image size Default 

performance 

Numba 

performance 

Performance gain 

ratio 

164 × 588 2.45s ± 331ms 16.8ms ± 720µs 𝑥145.83 

209 × 2104 6.4s ± 227ms 57.9ms ± 1.31ms 𝑥110.54 

1542 × 1158 30.6s ± 778ms 303ms ± 31.1ms 𝑥101 

Table 5.2: Processing speeds improvements in the text segmentation module 

 

Finally, the implementation is tested against a set of RGB sample images to check if 

some preprocessing steps are needed. Surprisingly, it shows a robust behavior even 

under low light conditions. In Figure 5.1, a sample input image is processed. 
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Figure 5.1: Image binarization without pre-processing 

 

5.1.2. Text Segmentation module tests 

The following tests are used to ensure that the functionality is fulfilled: 

 T2.1: Given a binarized image, return a list of lines; its length must be equal to 

the expected number of lines, and the loss of information among each predicted 

line to its expected line must be lower than 25%.  

 T2.2: Given a list of lines, return a list of lists of words; each list of words must 

match each inputted line, the number of words for each line must match the 

expected number of words, and the loss of information among each predicted 

word to its expected word must be lower than 25%. 

 T2.3: Given a list of lines, return a singleton list of paragraphs; the number of 

paragraphs must be 1 and the number of expected lines must be equal to the 

the number of real lines. 
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 T2.4: Given an image with text content, return a nested list containing a list of 

paragraphs, each a list of lines and each a list of words. Each word must match 

the expected line and the loss of information for each predicted line with respect 

to its expected paragraph must not be greater than a 25%. 

 

Test 

number 

Has 

passed 

Observations 

1 Yes - 

2 Yes - 

3 Yes - 

4 Yes *1 

Table 5.3: Test results for the Text Segmentation module 

*1: The algorithm has a hard time dealing with paragraphs whose distance among them 

is small, and with lines whose distance among them is small. Sometimes, this is 

worsened by the zooming of the original image. In Figure 5.2, a sample of input text 

images with paragraphs which are correctly recognized is shown. In Figure 5.3, a sample 

of input text images with paragraphs that are wrongly recognized is shown. Notice the 

separation among paragraphs and the separation among lines in each sample. 
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Figure 5.2: Paragraphs rightly segmented by paragraphs and lines 

  

 

 

Figure 5.3: Paragraphs wrongly segmented by paragraphs and lines 

 

In addition, in order to reduce the time complexity of the line segmentation algorithm, 

it has been implemented using the numba package. In Table 5.4, a comparison between 

default and Numba implementations is shown. All images are assumed to be already 

binary. 
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Image size Default 

performance 

Numba 

performance 

Performance gain 

ratio 

738 × 640 3.9s ± 296ms 187ms ± 12.5ms 𝑥20.86 

1279 × 640 6.23s ± 403ms 279ms ± 23.7ms 𝑥22.33 

1542 × 1158 14.3s ± 450ms 366ms ± 3.65ms 𝑥39.07 

Table 5.4: Processing speeds improvements in the text segmentation module 

 

5.1.3. Data Processing and Data Augmentation module tests 

The tests implemented for this module are qualitative and thus cannot be tracked by 

a test specification. 

 

5.1.4. Color Recognition module tests 

The following tests are used to ensure that the functionality is fulfilled: 

 T4.1: Given a RGB image and a pair of (𝑤𝑜𝑟𝑑, 𝑙𝑖𝑛𝑒, 𝑝𝑎𝑟𝑎𝑔𝑟𝑎𝑝ℎ), the resulting 

RGB word must match the expected RGB word. 

 T4.2: Given a RGB word image, the loss of information between the resulting 

quantized word and the expected word must not be greater than 30%. 

 T4.3: Given a highlighted quantized word image, the highlight detection 

algorithm must detect it is highlighted. 

 T4.4: Given a non-highlighted quantized word image, the Highlight Detection 

algorithm must detect it is not highlighted. 

 T4.5: Given a quantized word image, the Color Recognition model must get a 

pair of font and page colors that are in the same color scale as the expected pair 

of font and page colors. 
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 T4.6: Given a pair of font and page colors, the resulting CSS name mapping 

must be in the same color scale as the expected pair of font and page colors. 

 

Test number Has passed Observations 

1 Yes - 

2 Yes A 𝐾 = 3 retrieves optimal results 

3 Yes - 

4 Yes - 

5 Yes - 

6 Yes - 

Table 5.5: Test results for the Color Recognition module 

 

5.1.5. Text Recognition module tests 

The following tests are used to ensure that the functionality is fulfilled. Here, the error 

is defined as the Levenshtein distance between two words: 

 T5.1: Given a binarized image and a pair of (𝑤𝑜𝑟𝑑, 𝑙𝑖𝑛𝑒, 𝑝𝑎𝑟𝑎𝑔𝑟𝑎𝑝ℎ) information, 

obtain a grayscale word image that must match the expected word image. 

 T5.2: Given a grayscale word image, the error between the result of the Text 

Recognition model, with respect to the expected result, must not be greater than 3, 

on average. 

 T5.3: Given a result of the Text Recognition model and a pair of (𝑤𝑜𝑟𝑑,

𝑙𝑖𝑛𝑒, 𝑝𝑎𝑟𝑎𝑔𝑟𝑎𝑝ℎ) information, the error between the resulting spell-checked word 

text and the expected word text must not be greater than 2, on average. 
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In addition, it is also required to compare the proposed model against some of State-

of-the-Art models exposed before. This comparison must also detail the hyperparameter 

configuration and the datasets used to train each of them. Note that a self-comparison 

of the model among the three main datasets (Spanish, French, English) is required. 

 

Test number Has Passed Observations 

1 Yes - 

2 Yes - 

3 Yes - 

Table 5.6: Test results for the Text Recognition module 

 

In addition, Table 5.7 shows the comparison of the final proposed model with State-of-

the-Art models, as well as multiple configurations of the proposed models. 

 

Configuration CER WER Speed-up Datasets 

Puigcerver 5.8 18.4 - English 

Bluche and Messina 3.2 10.5 - English 

Baseline 8.98 25.82 1x English + Spanish 

50% input size 10.04 27.2 1.7x English + Spanish 

Gated Convolution 7.9 23.77 0.85x English + Spanish 

Octave Convolution 7.5 21.60 1.15x English + Spanish 

8-bit quantization 9.05 28.04 2.2x English + Spanish 

Table 5.7: Comparison among multiple HTR models  
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5.1.6. Language Processor module tests 

The following tests are used to ensure that the functionality is fulfilled: 

 T6.1: Given an empty input, return a syntax error 

 T6.2: Given a malformed input, return a syntax error. 

 T6.3: Given a valid word, retrieve an HTML output with a paragraph tag. 

 T6.4: Given a valid sentence surrounded by $, retrieve an HTML output with a 

strong paragraph tag. 

 T6.5: Given a valid sentence surrounded by @, retrieve an HTML output with 

an emphasized tag. 

 T6.6: Given a valid sentence with a leading #, retrieve an HTML output with a 

header of level 1 tag. 

 T6.7: Given a valid sentence whose first string is at least one or more '#' 

characters, retrieve an HTML output with a header of level X tag, being  X the 

number of # characters. 

 T6.8: Given a valid sentence with a color different from black, retrieve an HTL 

output with a tag having a style with a color different from black. 

 T6.9: Given a valid set of sentences, retrieve an HTML output where each 

sentence is displayed with its appropriate tag, and they are separated by 

newlines. 

 T6.10: Given a valid set of sentences whose first sentence has a leading '#' 

string, retrieve an HTML output with a header tag followed by other HTML 

tags. This set of sentences must contain colors different from black, and these 

colors must be properly reflected in the HTML output as values within a tag 

with the style parameter. 
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Test number Has Passed Observations 

1 Yes −  

2 Yes − 

3 Yes − 

4 Yes − 

5 Yes − 

6 Yes − 

7 Yes − 

8 Yes − 

9 Yes − 

10 Yes − 

Table 5.8: Test results for the Language Processor module 

 

5.2. System demo 

In this section, the different modules are coupled so that we can get a final, single 

system to process data end-to-end. 

 

The demo expects an RGB page image as input, and it outputs an HTML5 file resulting 

from recognizing text and color from the input. The following steps are conducted by 

the demo web application: 
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1. A file input field is used to input document pages. Only one page is processed 

at a time. 

2. The image is binarized using Illumination Compensation with the default 

parameters. An RGB copy of the input image is kept for color processing. 

3. The paragraph detection block processes the grayscale image, which once 

cropped is fed into the word detection block. The resulting list of word bounding 

boxes is then used to obtain the lines. 

4. A list of cropped words from the RGB image using the word bounding boxes is 

created. The color recognition module processes each word and produces a (font, 

background) color tuple list. 

5. A list of cropped words from the grayscale image using the word bounding boxes 

is created. The text recognition module processes each word and produces a list 

of predicted words. 

6. Using the line contextual information, the error correction block processes the 

predicted word list. 

7. The color tuple list and word list are merged into a whitespace-separated string, 

which is then fed into the language processor module. A HTML5 file is created 

as the final output. 

 

In (Terrasa 2020), a scaffolding of the described demo can be seen. 
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 Conclusions and future work 

In this section, the results derived from the project are discussed. Additionally, the 

results are contrasted with the project goals in order to evaluate if such goals have 

been completed to some degree. The personal insight from the project researcher is left 

consecutively, and a final note on future work is written. 

 

6.1. Conclusions and future lines 

Once each system module is completed, module validation tests are gathered and 

compared. Overall, the validation tests have been fulfilled, and the proposed system 

achieves high processing times at training and testing stages while obtaining 

comparable accuracy to state-of-the-art systems. 

The need for an integrated solution and the proper refinement of each module as a way 

to improve the baseline results, in terms of precision and processing time, has been a 

key motif in the development stage, and hence the tight iterative improvement schedule 

in the recognition network. 

 

Despite this, the core advances made in this project prove the feasibility and potential 

of the system, which is reflected in the demo. For instance, style, lexical, and semantical 

information from words can be extracted by the system by means of simple yet effective 

algorithms. This is important in two senses: on one side, this allows to edit or extend 

the current modules right away, as all of them are based on a common interface; on 

the other side, it also enables the reuse of each independent module or its complete 

substitution. 
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6.2. Goal fulfillment 

6.2.1. Offline HTR for Spanish texts 

This goal has been partially fulfilled. On one side, the associated text dataset has been 

successfully created and labeled, and the augmentation feature is also done. On the 

other side, the required dataset size for the model to properly recognize the characters 

unique to the Spanish language is small. However, this is not within reach of this 

project. 

 

6.2.2. Color extraction from words 

This goal has been fulfilled, as style information can be extracted from text images, 

such as font, highlighting or background color. 

 

6.2.3. Apply language processing to reproduce layout 

This goal has been fulfilled, as document layout can be reproduced, by following a 

markup specification. 

 

6.3. Personal insight 

From my point of view, I think that this project has been an in-depth opportunity to 

try out what I have learnt and practiced in the bachelors. Not only I have been able 

to research and learn about computing algorithms and deep learning, but also about 

software engineering, information architecture and time management. Personally, I 

have not appreciated to which extent this project has helped me consolidate computer 

science skills until I have listed them. 
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On one side, I feel very proud about the work done here, and I value the expertise 

gained in computer vision, data processing and natural language processing. On the 

other, I cannot wait to finish the project to continue tinkering with the blocks needed 

to create a more perfect system. 

 

6.4. Skill set 

The knowledge and expertise that have been gathered for the entire length of this 

project is notorious. Moreover, most of the practices and methodologies learnt 

throughout the bachelor’s degree have been put to the test. 

 Image Processing and Computer Vision 

 Data Structures 

 Oriented-Object Programming 

 Neural Networks 

 Machine Learning 

 Scientific Computation and Data Management 

 Compilers and Language Processing 

 Computational Complexity and Optimization 

 Algebra and Calculus 

 Software Engineering 

 Analysis and Design of Algorithms 

 

Finally, there is also a set of skills needed that are not directly matched with the 

bachelor’s domain, such as scheduling, task sharing and attainment, commonly known 

as soft skills.  
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6.5. Future work 

In this section, the advances made in this project are reviewed from a different 

viewpoint. What can be done to enhance the quality of the research presented here? A 

set of improvements are described for future projects to inspire them. 

 

6.5.1. Improve the Handwritten Text Recognition module 

When pointing out the handwritten text recognition module, we must refer to the 

whole recognition process, this is, to text segmentation and text recognition. 

As of the text segmentation, processing speed enhances can be conducted for 

paragraph-level and line-level segmentation, and accuracy enhances for the word-level 

segmentation. As of the text recognition, some of the latest advances described in the 

State of the Art section, such as octave convolutions or transformers, can be 

implemented in future works, as they improve both accuracy and processing speed. 

Remember that the spell-checking functionality can be improved as well, either as a 

separate module or integrated in the network design. 

 

6.5.2. Extend the Modern Handwritten Spanish dataset 

The novel handwritten Spanish dataset is a good start for setting a standard dataset 

for the offline handwritten text recognition task on a Spanish corpus. However, it 

greatly differs from its inspirations. Unlike IAM or RIMES, it is not entirely built up 

from full-page forms, neither it contains forms written by, at least, more than 100 

writers. 
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An interesting approach for extending the current state of the dataset would be to 

apply synthetic sampling such as (Alonso et al. 2019; Graves 2013) – these samplers 

do not merely add noise to the data, but can also learn the text style and width to 

produce samples by combining multiple writer’s unique properties. 

 

6.5.3. Enhance Style Recognition 

The work presented shows the possibilities and weaknesses of current systems to handle 

text styles. Aside from Spanish-related characters and highlighted words, there are tons 

of text styles left, such as Slavic-related characters or strikethrough, underlined text 

styles. A good inspiration source is the UTF-8 encoding, which gathers multiple widely 

used encodings, such as Latin1 or Latin/Hebrew.   

 

6.5.4. Enhance Layout Recognition 

Document layout is approached in this work by using markup languages. However, as 

shown in the State of the Art section, there are different proposals, such as using 

template layouts or processing grid layouts. 

 

6.5.5. Add more Domain-Specific Languages 

Additionally, there is also the chance to extend the current markup language, which is 

in fact a quite small subset of the common Markdown language (Gruber and Swartz 

2004). Basic elements like unordered lists, tables or horizontal rules are not supported 

in this version. 

Otherwise, there are as well other markup languages, which use either different layout 

blocks (see YAML (Evans 2001)) or different symbols (see Asciidoctor (Rackham 
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2002)). In any way, a set of new symbols may be needed, so the current model should 

be trained to learn them. 

 

6.6. Legal information about the project 

The work presented in this project is released under Creative Commons license (CC-

BY-ND). 
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Appendices 

Appendix A: Installation Guide 

In order to keep the installation guide as minimal as possible, the required steps are 

also available at (Terrasa 2020). Note that the author of this research is using a 

Windows 10 OS, along with an Anaconda distribution for managing Python versions. 

Python 3.7 version has been used for the entire development of this work. 

 

Bear in mind that any operating system can be used, as long as Python 3.7 and Swig 

3.0 (Beazley 2007) can be installed. Other than that, you can find the package 

requirements at (Terrasa 2020). Just download the folder and open a terminal inside 

it; then, run pip install -e . to install the required packages, and you are ready to go. 

 

Note: not all models have pre-trained weights already available, due to large binary 

files needed to store the model parameters. Nevertheless, all machine learning models 

include a description explaining which dataset to use, how it should be pre-processed 

and the methods used to train and test the models. 
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