Abstracts of papers presented at the 2020 virtual meeting on NEURODEGENERATIVE DISEASES: BIOLOGY & THERAPEUTICS

December 2–December 4, 2020
Abstracts of papers presented at the 2020 virtual meeting on

NEURODEGENERATIVE DISEASES: BIOLOGY & THERAPEUTICS

December 2–December 4, 2020

Arranged by

Aaron Gitler, Stanford University
Richard Ransohoff, Third Rock Ventures
Scott Small, Columbia University
Li-Huei Tsai, Massachusetts Institute of Technology
Support for this meeting was provided in part by the National Institute on Aging, a branch of the National Institutes of Health; Chan Zuckerberg Initiative (CZI), IRBO/International Brain Research Organization; Regeneron; and Stem Cell Technologies.

Contributions from the following companies provide core support for the Cold Spring Harbor meetings program.

Corporate Benefactors
Estée Lauder Companies
Regeneron
Thermo Fisher Scientific

Corporate Sponsors
Agilent Technologies
Bayer
Bristol-Myers Squibb Company
Calico Labs
Celgene
Genentech, Inc.
Merck
New England BioLabs
Pfizer

Corporate Partners
Alexandria Real Estate
Enzo Life Sciences
Gilead Sciences
Lundbeck
Novartis Institutes for Biomedical Research
Sanofi

The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services; nor does mention by trade names, commercial practices, or organizations imply endorsement by the U.S. Government.

Cover: Image by Matheus Victor, Massachusetts Institute of Technology.
<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday</td>
<td>10:00 am–11:00 am</td>
<td>Keynote Speaker: Virginia Lee</td>
</tr>
<tr>
<td>Wednesday</td>
<td>11:00 am–1:00 pm</td>
<td>1 Genetics, Genomics and Target Identification in Neurodegenerative Disease</td>
</tr>
<tr>
<td>Wednesday</td>
<td>2:00 pm–5:00 pm</td>
<td>2 Neuroinflammation and Glial Biology of Neurodegeneration</td>
</tr>
<tr>
<td>Thursday</td>
<td>10:00 am–1:00 pm</td>
<td>3 Therapeutic Initiatives in Neurodegenerative Disease</td>
</tr>
<tr>
<td>Thursday</td>
<td>2:00 pm–5:00 pm</td>
<td>4 ApoE and Lipid Metabolism</td>
</tr>
<tr>
<td>Friday</td>
<td>10:00 am–12:45 pm</td>
<td>5 Endolysosomal Dysfunction in Neurodegeneration</td>
</tr>
<tr>
<td>Friday</td>
<td>1:30 pm–3:00 pm</td>
<td>Panel: Science, Society and COVID-19</td>
</tr>
<tr>
<td>Friday</td>
<td>3:00 pm–6:00 pm</td>
<td>6 New Technologies to Study Neurodegeneration</td>
</tr>
<tr>
<td>Throughout Meeting</td>
<td></td>
<td>Virtual Poster Session</td>
</tr>
</tbody>
</table>

Virtual Icebreaker, Wednesday, 5:30 pm

StemCell Technologies Workshop: Thursday, 5:30 pm (*p. T-1*)

Closing Social, Friday, 6:00 pm

All times shown are US EST: *Time Zone Converter*
Cold Spring Harbor Laboratory is committed to maintaining a safe and respectful environment for all meeting participants, and does not permit or tolerate discrimination or harassment in any form. By participating in this meeting, you agree to abide by the Code of Conduct, which is available both online and at the back of this book.

Abstracts are the responsibility of the author(s) and publication of an abstract does not imply endorsement by Cold Spring Harbor Laboratory of the studies reported in the abstract.

These abstracts should not be cited in bibliographies. Material herein should be treated as personal communications and should be cited as such only with the consent of the author(s).

Please note that photography or video/audio recording of oral presentations or individual posters is strictly prohibited except with the advance permission of the author(s), the organizers, and Cold Spring Harbor Laboratory.

Any discussion via social media platforms of material presented at this meeting requires explicit permission from the presenting author(s).
LONGITUDINAL ASSESSMENT OF TAU PET IMAGING AND ITS CORRELATION WITH NEUROPATHOLOGY AND CLINICAL SIGNS PROGRESSION.

Laura Vegas-Gomez¹, George A Edwards III², Omar Hasan², Nazaret Gamez², Jonathan Schulz², Claudio Soto², Paul E Schulz², Ines Moreno-Gonzalez¹,²

¹Universidad de Málaga/IBIMA/CIBERNED, Dpto. Biología Celular, Genética y Fisiología, Facultad de Ciencias, Málaga, Spain, ²The University of Texas Health Science Center at Houston, Department of Neurology, Houston, TX

Alzheimer’s disease (AD) and other associated dementias remain a consistent and unruly problem for the aging population and health. As the world’s population increases, so does the prevalence of age-related dementias. The neuropathology of AD is characterized by the extracellular deposition of beta-amyloid protein (Aβ) and the formation of intraneuronal neurofibrillary tangles (NFT) composed of hyperphosphorylated tau (p-tau), along with neuroinflammation and neuronal loss that ultimately induces noticeable cognitive impairments. Abnormal p-tau leads to the formation of insoluble, beta-sheet rich amyloid aggregates in tauopathies such as AD. Positron emission tomography (PET) imaging is a promising avenue that may identify tau aggregates in vivo cross-sectionally and longitudinally in various dementia conditions. The goal of this study is to characterize the longitudinal assessment of the tau tracer 18F-THK5351 by in vivo tau PET imaging concomitantly to behavior and tau pathology by histology and biochemistry from 6 to 12 months of age in tau transgenic P301S mice, a mouse model of tauopathies. Our results demonstrate an augmentation of overall gross brain tau pathology by in vivo PET imaging in P301S mice compared to age-matched wild-type (WT) animals accompanied by P301S-model associated pathological tau and phenotypic and behavioral deficits. This longitudinal study provides new insights on the relationship between imaging diagnostic tools, the in vivo neuropathological temporal pattern and the clinical signs observed in animal models of AD that could benefit early disease diagnosis.

This work was partially funded by Department of Defense Peer Reviewed Alzheimer’s Research Program Convergence Science. Research Award grant AZ160106 and Alzheimer’s Association New Investigator Research Grant NIRG-394284 to IMG.