AMYLOID- β SEEDING AND PROPAGATION PROCESSES IN A hAβ-KI MODEL OF ALZHEIMER'S DISEASE

Laura Trujillo-Estrada¹, Kelly Do Huynh², Marie Minh Thu Nguyen², Alwin Cheung², Janine Pham Tran², Cristina Nunez-Diaz¹, Stefania Forner², Alessandra C Martinie², Celia da Cunha², Mohammad Shahnawaz³, Claudio Soto³, Ines Moreno-Gonzalez¹, Antonia Gutierrez¹, Frank M LaFerla², David Baglietto-Vargas¹

¹University of Malaga/CIBERNED/IBIMA, Cell Biology, Malaga, Spain, ²University of California Irvine, Institute for Memory Impariments and Neurological disorders, Irvine, CA, ³University of Texas Health Science Center at Houston, The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, Houston, TX

Recent evidence indicates that $A\beta$ can misfold and aggregate into seeds that structurally corrupt native proteins, mimicking a prion-like process. Several studies using FAD animal models have demonstrated that intracerebral infusion of brain extracts from APP-transgenic mice or AD patients induce $A\beta$ deposition and cerebral amyloid angiopathy. To carry out most of these $A\beta$ -seeding studies, APP-transgenic animal have been used. Nevertheless, it remains to be elucidated whether $A\beta$ deposition can be induced by $A\beta$ -seeds in a sporadic AD model that does not overexpress APP and produces wild type human $A\beta$.

We used an innovative model to better understand the amyloidogenic events that occur in sporadic AD. This hA β -KI model, expresses wild-type human A β under the control of the endogenous mouse APP gene. A β -seeds from AD patients (stage C) from the AD Research Center (UCI) were administered into 7-8-month-old hA β -KI and as positive controls 3xTg-AD mice were employed.

We demonstrated that amyloid seeds can stimulate $A\beta$ aggregations in 3xTg-AD and $hA\beta-KI$ models. We found that $A\beta$ aggregates occur earlier in the 3xTg-AD vs $hA\beta-KI$ and that a longer term of treatment is necessary to accelerate diffusible $A\beta$ pathology in the $hA\beta-KI$ mice. Thereferoe, this $hA\beta-KI$ model represents an important step towards the development of next-generation animal models that will provide better predictive outcomes for human patients.

Grants support: UCI MIND Pilot project (DBV), Ministry of Science PID2019-108911RA-100 (DBV), U54 AG054349 (FML), Institute of Health Carlos III PI18/01557 (AG) co-financed by FEDER funds (European Union), NIH/NIA Grant P50 AG16573 (UCI-ADRC).