Durability and performance of CGO barriers and LSCF cathode deposited by spray-pyrolysis

L. dos Santos-Gómez, J. Hurtado, J.M. Porras-Vázquez, E.R. Losilla, D. Marrero-López

Universidad de Málaga, Departamento de Química Inorgánica, 29071, Málaga, Spain

A R T I C L E I N F O

Keywords:
Solid oxide fuel cells
La0.8Sr0.2MnO3-δ (LSM)
Zr0.84Y0.16O1.92 (YSZ)
CeO2
Spray-pyrolysis

A B S T R A C T

Ce0.9Gd0.1O1.95 (CGO) protective layers are prepared by two different methods to prevent the reaction between the Zr0.84Y0.16O1.92 (YSZ) electrolyte and the La0.8Sr0.2MnO3-δ (LSCF) cathode. In the first method, the CGO layers are deposited by an airbrushing technique from an ink containing CGO particles without and with cobalt as sintering aids. The second strategy consists in preparing both a dense CGO barrier layer and a porous LSCF cathode by spray-pyrolysis deposition, in order to further reduce the fabrication temperature and minimize the reaction between the cell components. The samples prepared by spray-pyrolysis exhibit better performance and durability than those obtained by conventional sintering methods. The results suggest that the interfacial reactivity between YSZ and LSCF as well as the Sr-enrichment at the cathode surface can be avoided by using low-temperature fabrication methods and by operating at temperatures lower than 650 °C.

1. Introduction

Solid Oxide Fuel Cells are considered as one of the most efficient technologies for electrical power generation. However, their high operating temperatures involve a number of disadvantages, regarding the durability and potential application of these devices [1–3]. In this context, the main research trends in SOFCs are focused on reducing their operation temperature.

Nowadays, it is considered that the SOFC performance is mainly limited by the cathode polarization resistance. The most commonly used cathode material, La0.8Sr0.2MnO3-δ (LSM), is physically and chemically compatible with the standard Zr0.84Y0.16O1.92 (YSZ) electrolyte [4]. However, it exhibits low catalytic activity for oxygen reduction reactions at low operating temperatures. More efficient cathodes could be used, such as La0.8Sr0.2Co0.2Fe0.8O3-δ (LSCF) [5–7]. Unfortunately, LSCF is well known to strongly react with YSZ, forming insulating secondary phases like SrZrO3 and La2Zr2O7 [8,9]. The formation of these low conducting phases at the cathode/electrolyte interface occurs during the SOFC fabrication and operation, resulting in a drastic loss of performance over time [10].

A possible solution to avoid the reaction between YSZ and LSCF is the introduction of a diffusion barrier layer of Ce0.9Gd0.1O1.95 (CGO) between both materials [11–14]. Such interlayer needs to be sufficiently thin and dense to avoid the introduction of additional ohmic resistance. The screen-printing is the most commonly used method to prepare the CGO interlayer. In this case, the sintering temperature is a crucial factor to ensure an adequate adhesion with the YSZ electrolyte. Moreover, according to recent studies, the Sr species from LSCF easily diffuse on the porous surface of the CGO grains and react with YSZ [15–17]. Sr diffusion across the grain boundary of dense CGO layers has been also observed, although the diffusion rate is much slower. In contrast, high sintering temperatures result in a dense CGO layer but also interdiffusion of Ce and Zr, leading to the formation of a solid solution (Zr1.4Ce0.4)O2.8 with lower conductivity than YSZ [18].

The use of sintering aids, such as Co, Zn and Li, is an alternative strategy to improve the densification of CGO at a lower sintering temperature. The effect of these additives on the densification and transport properties of CGO ceramic pellets has been widely investigated in different studies [19–21]. However, only few works have reported the influence of these additives on the performance of CGO interlayers [22,23].

Alternative physical and chemical deposition methods have been employed to fabricate dense CGO interlayers, including magnetron-sputtering [24–27], pulsed laser deposition [28] and spin-coating [29]. In general, most of these methods are usually expensive or less attractive from an industrial point of view as they require multiple steps in
the preparation of the cell. In contrast, spray-pyrolysis is an economic and industrially scalable technique to prepare thin films materials, which has been widely used to obtain different SOFC components [30–32]. The morphology of the films, e.g. their thickness and porosity, can be easily tailored by varying the deposition parameters, such as temperature and deposition time [33,34]. Several studies have reported the preparation of CGO interlayers by spray-pyrolysis [35–37]; however, the LSCF cathode is commonly deposited by traditional screen-printing at high sintering temperatures, favoring the cation interdiffusion between the materials layers.

In the present study, both the CGO interlayer and the LSCF cathode are prepared by spray-pyrolysis deposition to reduce the fabrication temperature at only 800 °C, and minimize the reaction between the cell components. For the sake of comparison, the CGO and LSCF layers were prepared by conventional deposition methods, airbrushing and screen-printing. The microstructure and polarization resistance evolution of the symmetrical cells are investigated as a function of the annealing time. Moreover, the results are compared with those obtained for cells without CGO interlayer.

2. Experimental

2.1. Materials preparation

For the preparation of the Ce0.8Gd0.2O1.95 (CGO) interlayers by airbrush deposition, an ink was obtained by mixing 1 g of CGO powder (particle diameter of 50 nm, Rhodia), 1 g of Decoflux™ as organic binder and 10 ml of ethanol as solvent. A suspension of particles was formed after ultrasonic agitation. The resulting ink was deposited symmetrically onto the YSZ pellets at 400 °C with a solution flow rate of 20 mL h⁻¹ at a pressure of 2 bar. The nozzle-substrate distance and deposition time were of 20 cm and 1 h, respectively. Afterwards, the CGO layers were treated at 650 °C for 2 h to remove the residual species. Finally, the LSCF cathode was deposited by spray-pyrolysis at 250 °C for 1 h, following the procedure described in [40]. The deposition parameters were optimized in order to obtain porous LSCF layers of ~3 μm thickness. Notice that the electrode thickness could be tailored by modifying the deposition parameters such as temperature and time. The symmetrical cells were finally treated at 800 °C for 2 h to improve the crystallization.

2.2. Materials characterization

The materials were analyzed by X-ray powder diffraction (XRD) with a PANalytical Empyrean diffractometer and CuKα1,2 radiation. The phase identification and structural analysis were performed by using the X’Pert HighScore Plus and GSAS software [41,42].

The chemical compatibility between YSZ and CGO was reexamined because the co-sintering temperature of CGO and YSZ layers varies in the literature in a broad range from 1100 to 1500 °C [43]. For this purpose, YSZ and CGO powders (weight ratio of 1:1 and average particle size of 100 nm) were intimately mixed in a ball-mill machine at 150 rpm for 1 h. The resulting mixture was calcined in a furnace between 800 and 1400 °C for 24 h and then analyzed by the XRD-Rietveld method [44].

The microstructure and cation interdiffusion at the LSCF/CGO/YSZ interfaces were analyzed by Field Emission SEM (FEI, Helios Nanolab 650) coupled with energy-dispersive X-ray microanalysis (EDX, Oxford instruments).

The polarization resistance was determined by impedance spectroscopy in symmetrical cells using a Solartron 1260 FRA. The data were acquired in the frequency range of 0.01–10⁶ Hz with 0.1 V ac amplitude. Platinum paste and meshes were used as current collectors. The measurements were initially performed on cooling process in the temperature range of 300–800 °C and then at isothermal temperatures of 650 and 800 °C for 300 h at open circuit voltage under air atmosphere. The spectra were analyzed by equivalent circuit models with the ZView software [45].

3. Results and discussion

3.1. Phase analysis and compatibility

Fig. 1a shows the XRD patterns of the CGO-YSZ powder mixture after calcining at different temperatures between 800 and 1400 °C for 24 h. No evidence of reaction is observed at temperatures below 1000 °C, and both the cells parameters and phase fractions remain similar to the pristine materials (Fig. 1b). However, reactivity is clearly observed after calcining at only 1100 °C, appearing new diffraction peaks associated with the formation of a new fluorite related phase. On the other hand, the diffraction peak intensity of the CGO decreases, confirming a significant cation interdiffusion between the materials. The XRD patterns are refined by the Rietveld method by considering different fluorite-type phases. In a first stage, the unit cell parameter and weight fraction of YSZ increase with the firing temperature, indicating that the Ce³⁺ is mainly incorporated in the YSZ lattice (Fig. 1b). Simultaneously, the weight fraction of CGO decreases with the firing temperature, and at last two reaction products with different Zr:Ce ratio appear between 1200 and 1300 °C. Finally, only a fluorite-type phase is observed above 1400 °C, confirming the complete reaction between the materials and the formation of a solid solution.

It is evident that the reaction between CGO and YSZ is favoured in an intimate mixture of submicrometric particles after long term annealing due to high contact area between the materials. However, the present results confirm a significant cation interdiffusion between YSZ and CGO at temperatures as low as 1100 °C, which would negatively affect the transport properties of a SOFC [18]. Thus, the co-sintering of YSZ and CGO needs to be limited at temperatures lower than 1100 °C.

Bearing in mind these results a stronger chemical reaction between YSZ and nanocrystalline CGO films is expected. For this reason, the compatibility between spray-pyrolysis CGO films and YSZ substrate was investigated. Fig. 1c shows the evolution of the XRD patterns after firing in a furnace between 600 and 1400 °C for 24 h. The intensity of the XRD peaks of CGO increases gradually with the firing temperature due to the improved crystallinity and the grain size growth; however, no appreciable bulk reactivity is detected up to 1100 °C. Moreover, the unit cell parameters remain almost constant with the temperature, suggesting that the reaction is limited at the CGO/YSZ interface (Fig. 1d). Above 1100 °C, the diffractions peaks become asymmetric due to the interdiffusion of cations between the material layers. Three different
fluorite-type phases are necessary to fit the data adequately, i.e. the YSZ substrate, the CGO protective layer and a reaction product. Above 1300 °C, the peak overlapping makes difficult the Rietveld analysis and the cell parameters are not determined. The unit cell variation clearly indicates that the bulk reaction is significant above 1100 °C (Fig. 1d).

The reactivity between YSZ and LSCF was also confirmed after annealing a powder mixture of both materials at 800 °C for 24 h. The corresponding XRD pattern showed an additional peak at 2θ = 31°, which is assigned to SrZrO3 (ICSD #650) (Fig. S1, supplementary information).

Fig. 2 shows the XRD patterns of the LSCF/CGO/YSZ cells prepared by conventional and spray-pyrolysis deposition methods at 1100 °C and 800 °C, respectively. The patterns show similar features and three different phases are identified. The most intense peaks correspond to the top LSCF layer and the less intense ones are assigned to the bottom CGO interlayer and YSZ substrate. Notice that the XRD peaks of the sample prepared by spray-pyrolysis are broad due to the lower preparation temperature, and consequently, the lower crystallinity and smaller particle size of the materials. It is also important to highlight that bulk reactivity with the presence of secondary phases are not detected. Moreover, the unit cell volume of CGO, YSZ and LSCF phases are similar to the pristine materials, indicating that the same compounds are obtained, independently on the deposition method used.

3.2. Microstructural characterization

Fig. 3 compares the microstructure of the CGO layers without and with 2 mol% of cobalt as sintering aid. The layers without Co are highly
porous, above 45%, and exhibit poor adhesion to the electrolyte, which makes them unsuitable for practical application in SOFCs (Fig. 2a and b). As a consequence, these layers are not further characterized in the present study.

In contrast, the layers with Co addition present lower porosity, ∼30%, and larger grain size of ∼500 nm due to the sintering effects of cobalt, which improves the densification and the grain growth. Notice that sintering temperatures above 1100 °C lead to a decrease of the relative density, which is explained by Co evaporation and the consequent loss of densification [20,21]. It is also important to comment that full dense CGO pellets with Co-addition are obtained at 1000 °C; however, the shrinkage of the analogous layers is mechanically constrained by the YSZ substrate, hindering their densification.

As commented in the experimental section, the LSCF cathode was symmetrically deposited by screen-printing and sintering at 1000 °C for 1 h on the CGO layers. Afterwards, the cells were annealed at 800 °C for 250 h and then analyzed by combined SEM and EDX (Fig. 4). The cross-sectional images reveal that the CGO layer has a thickness of approximately 4 μm and is well adhered to the electrolyte without delamination or cracks. The microstructure of LSCF cathode remains practically unchanged after the annealing treatment; thus significant grain growth and loss of porosity are not observed. The most remarkable difference with respect to the as-prepared sample is the presence of a reaction zone at the CGO/YSZ interface. The EDX analysis does not show any sign of reactivity, either cation interdiffusion at the interface between the different layers. Regarding the LSCF cathode, this exhibits high porosity and is comprised by nanometric particles of 100 nm of diameter. However, after the annealing treatment at 800 °C, the microstructure reveals noticeable changes (Fig. 5b). In particular, the grain size of CGO and LSCF grows to 150 nm and 250 nm, respectively, as a consequence of the coarsening effects after long term annealing at high temperatures. Moreover, despite the fact that the CGO layer is dense, Sr-segregation is observed in certain regions at the CGO/YSZ interface, possibly due to Sr diffusion through the grain boundaries of CGO barrier as other authors have reported [14,15]. It is also important to comment that the reaction zone in dense CGO barrier is significantly smaller compared to the porous CGO layer. These results are consistent with previous studies, where the Sr diffusion mechanism is faster though the porous than the grain boundary of CGO interlayer [14]. In addition, the EDX mapping reveals a negligible interdiffusion between Zr and Ce, contrary to the CGO barriers prepared by airbrushing at higher firing temperatures.

3.3. Polarization resistance over time

The polarization resistance of the symmetrical cells was determined by impedance spectroscopy in the temperature range of 300–800 °C. The as-prepared cell shows a CGO interlayer of 0.5-1 μm thickness (Fig. 5a). This layer is dense and is formed by fine particles of approximately 30 nm of diameter. The EDX analysis does not show any sign of reactivity, either cation interdiffusion at the interface between the different layers. The EDX analysis does not show any sign of reactivity, either cation interdiffusion at the interface between the different layers. The polarization resistance of the symmetrical cells was determined by impedance spectroscopy in the temperature range of 300–800 °C. The as-prepared cell shows a CGO interlayer of 0.5-1 μm thickness (Fig. 5a). This layer is dense and is formed by fine particles of approximately 30 nm of diameter. The EDX analysis does not show any sign of reactivity, either cation interdiffusion at the interface between the different layers. The EDX analysis does not show any sign of reactivity, either cation interdiffusion at the interface between the different layers. The EDX analysis does not show any sign of reactivity, either cation interdiffusion at the interface between the different layers.
somewhat higher than that of LSCF deposited on CGO electrolyte, 0.055 Ω cm² [46]. This result indicates that the possible reaction between LSCF and YSZ has not significant effects on the electrochemical properties during the fabrication process at 1000 °C for only 1 h. The conventional cell with CGO interlayer shows somewhat lower Rp, about 0.051 Ω cm² at 800 °C, which is possibly attributed to the oxygen incorporation improvement at the cathode/electrolyte interface as a consequence of the higher ionic conductivity of CGO compared to YSZ. This value of polarization resistance is almost identical to that obtained for LSCF in contact with the CGO electrolyte [46]. The cells with spray-pyrolysis layers exhibit the lowest Rp values, about 0.014 Ω cm² at 800 °C, which is clearly related to the fine particle size of these electrodes and the extended triple-phase-boundary length for the oxygen reduction reactions [32–34]. Regarding the activation energies, these vary between 1.71 and 1.43 eV with the highest value for the conventional cell without CGO interlayer and the lowest one for the cell with spray-pyrolysis electrodes. This last value is similar to that reported for LSCF in contact with CGO electrolyte, 1.47 eV [46].

The variation of the overall polarization resistance over time at isothermal annealing temperatures of 800 and 650 °C are shown in Fig. 7. In the high temperature range (Fig. 7a), the sample without CGO interlayer suffers a fast degradation of both the ohmic (Rohm) and polarization (Rp) resistances, nevertheless, the ohmic resistance is less affected than the polarization resistance, suggesting that the degradation is mainly associated with the alteration of the electrolyte/cathode interface. For instance, Rp increases from 0.1 to 3 Ω cm², while Rohm increases from 13.1 to 13.6 Ω cm during a period of time of 125 h (Fig. S2).
A more interesting finding, the cathode prepared by spray-pyrolysis directly onto YSZ electrolyte exhibits somewhat lower degradation rate, compared to the samples deposited by conventional methods, i.e. R_p increases from 0.04 to 0.21 $\Omega \cdot \text{cm}^2$. This behavior could be related to several factors, such as the lower fabrication temperature and lower crystallinity of the electrodes obtained by spray-pyrolysis, which limit the Sr diffusion at the electrolyte/electrode interface [47]. These issues are further discussed below.

The introduction of the CGO interlayer by airbrushing improves notably the performance and durability of the cell; however, degradation is still observed at high operating temperatures, i.e. R_p increases from 0.048 to 0.09 $\Omega \cdot \text{cm}^2$. In the case of the cell prepared by spray-pyrolysis, the polarization resistance increases significantly for the first 50 hours, due to microstructural changes, i.e. grain growth and densification, since this cell was prepared at a reduced temperature of only 800 °C. Afterwards, R_p increases more slowly from 0.016 to 0.039 $\Omega \cdot \text{cm}^2$.

It is also important to comment that the performance of LSCF decays over time at high operating temperatures due to phase segregations on the electrode surface, such as Sr-enrichment, which blocks the active sites for oxygen reduction reaction [48–50]. Thus, the performance degradation of these cells at high operating temperatures includes two different contributions, interfacial reactivity at the CGO/YSZ interface and surface phase segregation. This issue is further discussed below by studying separately the different processes to the electrode polarization.

Hence, it is evident that the potential application of LSCF should be restricted at the low temperature range. For this reason, the stability of the samples was also evaluated at 650 °C (Fig. 7b). Hereafter, only the samples prepared by spray-pyrolysis with improved performance are further analyzed. The polarization resistance of LSCF in contact with YSZ increases from 0.32 to 0.61 $\Omega \cdot \text{cm}^2$, indicating that the reaction between YSZ and LSCF is still significant at a reduced temperatures of 650 °C. In contrast, the sample with CGO interlayer exhibits a stable polarization resistance over time of 0.15 $\Omega \cdot \text{cm}^2$. Hence, the Sr-diffusion though the dense CGO barrier and the loss of performance associated with surface segregation are negligible at 650 °C for samples prepared...
by spray-pyrolysis. In addition, these samples exhibit improved performance and durability when compared to LSCF cathodes deposited on CGO electrolyte by conventional screen-printing technique in a previous work, i.e. R_p increased from 2.8 to 7 Ωcm^2 at 650 °C for 200 h [46].

In order to obtain further insights on the different processes of the electrode polarization, the impedance spectra of the samples prepared by spray-pyrolysis are analyzed by equivalent circuit models (Fig. 8a and b). Two different processes are distinguished at medium (MF) and low frequency (LF), which are fitting by considering two (RQ) elements, where R is a resistance in parallel with a pseudo-capacitance Q. A serial resistance (R_{ohm}) and an inductance (L) are also included to take into consideration the ohmic losses of the samples and parasitic inductance effects introduced by the setup, respectively (inset Fig. 8b).

The MF contribution appears at a relaxation frequency of approximately 15 kHz and possesses a capacitance of about 0.1 mFcm^{-2}, consistent with a charge transfer process at the electrode/electrolyte interface. The LF contribution at \sim100 Hz has a higher capacitance, \sim 10 mFcm^{-2}, and is assigned to the dissociation adsorption of oxygen molecules on the electrode surface [51-53].

The evolution of the resistance contributions, RMF and RHF, at a temperature of 800 °C is displayed in Fig. 8c. The HF contribution at \sim100 Hz has a higher capacitance, and is assigned to the dissociation adsorption of oxygen molecules on the electrode surface.

The phase segregation on the LSCF surface was another important degradation mechanism at high annealing temperatures, which was identified by studying separately the different contributions of the impedance spectra.

4. Conclusions

LSCF cathodes were subsequently deposited by spray-pyrolysis onto the YSZ electrolyte. Minor Sr-segregation was observed at the CGO/YSZ interface after annealing at 800 °C for 250 h, which was accompanied by an increase of the electrode polarization resistance.

Polarization resistance studies after long term annealing confirmed that the LSCF cathode deposited by spray-pyrolysis exhibit better...
stability than those prepared by conventional deposition methods. This was mainly attributed to its lower particle size and crystallinity, which partially suppress the interfacial reactivity and the surface phase segregation.

Acknowledgements

This work has been supported by EC2014-53906-R and MAT2016-77648-R research grants (Spain). L. dos Santos-Gómez thanks to the Spanish Ministry of Education, Culture and Sports for her FPU grant (FPU13/03030). J.M. Porras-Vázquez thanks the University of Malaga for the funding.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.jeurceramsoc.2018.03.024.

References

[30] L. dos Santos-Gómez, J.M. Porras-Vázquez, E.R. Losilla, P. Martín, J.R. Ramos-Barrado, D. Marrero-López, Stability and performance of La0.6Sr0.4Fe1−xFexO3−δ nanostructured cathodes with Ce0.7Gd0.3O1.95 surface coating, J. Power Sources 347 (2017) 178–185.

[33] S.J. Benson, D. Waller, J.A. Klüner, Degradation of La0.6Sr0.4Fe0.95Co0.05O3 in carbon dioxide and water atmospheres, J. Electrochem. Soc. 146 (1999) 1305–1309.

[37] H.-N. Im, M.-B. Choi, B. Singh, D.-K. Lim, S.-J. Song, Investigation of oxygen reduction reaction on La0.7Sr0.3Fe0.95Co0.05O3 electrode by electrochemical

[54] Y. Gong, R.L. Patel, X. Liang, D. Palacio, X. Song, J.B. Goodenough, K. Huang, Atomic layer deposition functionalized composite SOFC cathode La$_{0.6}$Sr$_{0.4}$Fe$_{0.8}$Co$_{0.2}$O$_{3-\delta}$-Gd$_{0.2}$Ce$_{0.8}$O$_{1.9}$: Enhanced long-term stability, Chem. Mater. 25 (2013) 4224–4231.
