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ABSTRACT In this work, a comparison between three broadband methods used to estimate the
propagation constant of planar transmission lines is presented. The goal of this comparison is to study
how possible random measurement errors can affect the use of the aforementioned methods commonly
used, since in ideal conditions the same solution is obtained from all of them. For this purpose, a sensitivity
analysis is carried out in order to study the similarities and differences and how errors in measured S-
parameters and in line lengths affect the attenuation and the phase constant obtained from each method.
Subsequently, a minimization approach that consists of a least-square estimation using a criteria to choose
the optimal line lengths is proposed to minimize measurement errors. Finally, an experiment has been
designed, manufactured using microstrip transmission lines, and measured to validate the developed theory.
Results corroborate the proposed theory and show an excellent agreement with electromagnetic simulations
in the 0.1- to 50-GHz frequency band, therefore assessing the suitability of the proposed error analysis.

INDEX TERMS Attenuation constant, broadband measurements, characterization, error analysis, mi-
crostrip line, phase constant, propagation constant, random errors, transmission line measurements.

I. INTRODUCTION

THE experimental determination of the propagation con-
stant of planar transmission lines is extremely important

in the design of microwave and millimeter-wave circuits. In
recent years, the imminent arrival of new materials, such as
printed materials, used to manufacture microwave circuits,
several studies have been based on the measurement of the
propagation constant to extract the electromagnetic prop-
erties of these materials [1]–[3]. The methods available to
obtain the propagation constant can be classified into several
categories depending on the sort of measurements considered
[4]. The first possible classification distinguishes between
broadband [5] and resonant methods [6]. On the one hand, the
former methods allow the characterization of the propagation
constant in a wide range of frequency points measured. Their
main drawback can be the accuracy, that depends on the

precision of the measurements, showing a worst behavior,
precisely, at resonances. On the other hand, resonant methods
allow an accurate estimation of the propagation constant in
a discrete set of frequency points, those where a resonance
on the test structure occurs. However, they cannot be useful
when broadband characterization is required. From another
point of view, another classification distinguishes between 1-
port [7] and 2-port [8], [9] measurements.

This work deals precisely with 2-port measurement meth-
ods for general transmission lines. The propagation con-
stant can be obtained, e.g., as a result of a TRL (Thru-
Reflect-Line) calibration using two lines or more lines of
different lengths [10]–[12]. Nevertheless, resonances due to
that length differences can degrade the resulting curves. In
this sense, several works have proposed improvements by
increasing the number of lines, as in [13]. This strategy was
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FIGURE 1. Measurement setup

used to define the multiline TRL calibration [11]. For this
reason, an over determination based on applying traditional
methods and increasing the number of lines and choosing
properly the length of the transmission lines is proposed in
this paper.

As the aforementioned TRL method, there are different
techniques based on invariant two-port [12], [14] that, in a
first look, bear a strong resemblance between them. These
several techniques for measuring the propagation constant
have been examined, showing that ideally they are similar,
but in the presence of measurement errors, their behavior is
completely different. In this work, the interface between the
Vector Network Analyzer (VNA) and the outer is a coaxial
port, so some fixture between that terminal and the Line
Under Test (LUT) must be included. The fixture produces
a discontinuity in the signal path that strongly affects the
measurement. The concept of algebraic invariant of networks
in linear embedding is a common tool in the theory of
linear active and non-reciprocal networks [15]. The use of an
invariant allows the extraction of the effects of the test-fixture
from the parameter estimated. This means that no VNA
calibration is necessary when using at least two transmission
lines measurements. This work deals with three different for-
mulations for broadband methods using 2-port S-parameters.
The main focus is on methods that use the invariant properties
of similar matrix transformations. These methods avoid the
systematic errors of other measurement techniques due to
mismatching between the characteristic impedance of the
VNA and the LUT using mathematical invariants. However,
this behavior does not occur with random errors.

A study on how random errors affect broadband meth-
ods for the characterization of the propagation constant of
transmission lines has been carried out. It is based on two-
port measurements of transmission lines and it is required
the use of a two-port VNA with no need of calibration. The
three analyzed methods are described in Section II. In order
to study how random errors affect each of the methods, a
sensitivity analysis has been performed and the results are
summarized in Section III. Section IV shows a technique

to minimize errors, based on the over determination of the
methods using a least-square estimation. The developed the-
ory is corroborated through real measurements in Section V.
Finally, conclusions are given in the last section.

II. DESCRIPTION OF THE METHODS
The methods treated in this work use a measurement setup
as shown in Fig. 1. The two-port S-parameters of two lines
with different lengths are measured and the transmission
parameters matrices, [M1] and [M2], are calculated. The
transmission matrices can be obtained easily from the mea-
sured S-parameters using the following expressions [16]:

T11 =
1

S21
T12 = −S22

S21

T21 =
S11

S21
T22 =

S12S21 − S11S22

S21
.

(1)

According to Fig. 1, the measured cascade matrices of
the two lines of different lengths can be written as [M1] =
[RA][L1][RB ] and [M2] = [RA][L2][RB ]. The matrices [L1]
and [L2] are the transmission matrix of the lines measured
excluding the transition between ports and the LUT, whose
effects are considered in matrices RA and RB . The Li
matrices for every line measured are given by

[Li] =

[
eγli 0
0 e−γli

]
. (2)

A. METHOD 1
The measured matrices can be combined in the following
way

[M1][M2]−1 = [RA][L1][L2]−1[RA]−1. (3)

Equation (3) is an eigenvalue equation that can be rewritten
as [M ] = [RA][L][RA]−1, where [M ] = [M1][M2]−1 and
[L] = [L1][L2]−1. [M ] and [L] are similar matrices and in
consequence their eigenvalues, traces and determinants coin-
cide. As [L] is a diagonal matrix, [L] = diag(e+γ∆l, e−γ∆l),
its eigenvalues are e+γ∆l-and e−γ∆l, respectively, and its
trace is e+γ∆l + e−γ∆l. These values are the same for [M ].
In order to obtain the propagation constant, the invariants
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FIGURE 2. Real (a) and imaginary (b) parts of the
argument of method functions.

mentioned above can be used. At this point, the three methods
that will be used to obtain the propagation constant must be
defined. On the one hand, due to that trace does not change
under a similarity transformation, the following equality
holds

trace([L]) = trace([M ]) = e−γ∆l + e+γ∆l, (4)

being ∆l = l2 − l1. Therefore, the propagation constant can
be calculated as

γ =
1

∆l
cosh−1

 trace
(

[M1] [M2]
−1
)

2

 . (5)

B. METHOD 2
On the other hand, the eigenvalues of [M ] are identical
to the eigenvalues of [L]. Therefore, if λ1 and λ2 are the
eigenvalues of [M ], they must be equals to e−γ∆l and e+γ∆l,
respectively [17]. Solving these equations for γ, it is obtained

γ =
1

∆l
ln

(
1

λ1

)
=

1

∆l
ln (λ2). (6)

In this case, two different values can be obtained for the
propagation constant, and an average of the eigenvalues of
[M ], 1/2 (1/λ1 + λ2), can be used to calculate γ, that is

γ =
1

∆l
ln

(
1/λ1 + λ2

2

)
. (7)

C. METHOD 3
Starting again in a different way [14], the sum of the mea-
sured matrices, [M1+2] = [M1] + [M2], instead of the

product, can be considered and expressed as

[M1+2] = RA

(
e+γl1

(
1 + e+γ∆l

)
0

0 e−γl1
(
1 + e−γ∆l

))RB.
(8)

Taking the determinant of the resulting matrix in Eq. (8) and
dividing it by the determinant of [M1], the result is

det ([M1+2])

det ([M1])
=
(
1 + e+γ∆l

) (
1 + e−γ∆l

)
. (9)

From Eq. (9), the propagation constant can be obtained as

γ =
1

∆l
cosh−1

(
det ([M1+2])

2 det ([M1])
− 1

)
. (10)

D. SIMPLIFIED EQUATIONS
As seen in the developed equations, port effects (RA and
RB) has been removed from the formulas. For this reason,
the methods will work in the same way with or without
VNA calibration. All these mathematical expressions can be
rewritten as a function of the measured S-Parameters instead
of T-parameters to fulfill the later sensitivity analysis. They
are shown in Appendix A. However, these complex equations
can be quite simplified in case Z0 = Zc, because S

(n)
11

and S
(n)
22 can be taken as 0. Furthermore, as the lines are

reciprocal devices, it must be fulfilled that S(n)
21 =S(n)

12 . Under
these ideal conditions, Eqs. (29)-(31) can be reduced to:

1) Method 1:

γ =
1

∆l
cosh−1


(
S

(1)
21

)2

+
(
S

(2)
21

)2

2S
(1)
21 S

(2)
21

. (11)

2) Method 2:

γ =
1

∆l
ln

(
S

(2)
21

S
(1)
21

)
. (12)

3) Method 3:

γ =
1

∆l
cosh−1


(
S

(1)
21 + S

(2)
21

)2

2S
(1)
21 S

(2)
21

− 1

. (13)

These simplified expressions are more practical than gen-
eral case equations, and will be used in the sensibility anal-
ysis to extract the variances of α and β as a function of the
S-parameters variances.

In order to evaluate the behavior of these methods, a
simulation of two lines using Rogers 4350B substrate, with
30 mil thickness, εr = 3.66, tan δ = 0.0031, and 17.5 µm
thick copper metallization. The line width is set to 1.65 mm,
to get a 50 Ω characteristic impedance, whereas the lengths
are 10 and 35 mm respectively. Figure 2 shows the real and
imaginary part of zi, being zi the argument of cosh−1 or ln
of the proposed methods (i = 1, 2, 3 indicates the method).
As it is seen, Methods 1 and 3 works in a similar way,
as (29) and (31) are exactly the same if operated in the ideal
case, whereas imaginary part of the argument of Method 2 is
completely different.
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It is important to consider that zi, the argument of method
functions, is a complex number defined as zi = rie

jθi .
cosh−1 can be rewritten as a logarithmic function given by

cosh−1(zi) = ln(zi +
√
zi − 1

√
zi + 1). (14)

Therefore, for every method, the propagation constant can be
expressed always as a logarithmic function given by

γ =
1

∆l
[ln(ri) + j(θi + 2nπ)] , (15)

being

α =
1

∆l
ln(ri)

β =
1

∆l
(θi + 2nπ).

(16)

In the context of a transmission line, ri and θi are the
attenuation and the electrical length of a line section whose
length is ∆l. In this point, it is important to mention that the
attenuation information depends exclusively on the absolute
value of ri, whereas β information is in θi. These expressions
will be the starting point of the sensitivity analysis of the next
section, to know how random errors affect the propagation
constant. It is noteworthy that α has an unique solution as
r ∈ R whereas β has an infinite number of solutions. This
fact will play a very important role in the implementation of
the methods using numerical algorithms.

III. SENSITIVITY ANALYSIS

For the sensitivity analysis, two error sources are considered.
They are errors in line lengths and in the argument of method
functions. For this purpose, and looking for the covariance of
α and β, the derivatives of (16) with respect to r, θ and ∆l
can be expressed as

∂α

∂r
=

1

r∆l
∂α

∂θ
= 0

∂α

∂∆l
= − ln (r)

∆l2
= − α

∆l
∂β

∂r
= 0

∂β

∂θ
=

1

∆l
∂β

∂∆l
= − θ

∆l2
.

(17)

From these expressions, and assuming that there is no covari-
ance between errors in the argument of method functions and
in the line lengths, the variances of the attenuation and phase
constants are given by

σ2
α =

∣∣∣∣ ∂α∂∆l

∣∣∣∣2 σ2
∆l +

∣∣∣∣∂α∂r
∣∣∣∣2 σ2

r

=
∣∣∣ α
∆l

∣∣∣2 σ2
∆l +

∣∣∣∣ 1

r∆l

∣∣∣∣2 σ2
r ,

(18)

σ2
β =

∣∣∣∣ ∂β∂∆l

∣∣∣∣2 σ2
∆l +

∣∣∣∣∂β∂θ
∣∣∣∣2 σ2

θ

=

∣∣∣∣ θ∆l2

∣∣∣∣2 σ2
∆l +

∣∣∣∣ 1

∆l

∣∣∣∣2 σ2
θ ,

(19)

respectively.
As seen in the developed expressions, choosing a bigger

∆l is the simplest way of reducing α and β variances.
However, r and θ are just the absolute value and the phase
of the argument of method functions. What can be measured
is the magnitude (σ2

|S21|) and phase (σ2
φS21

) variances of the
S-parameters, that are a characteristic of each VNA. Due to
the complexity of the equations obtained, it is impractical to
obtain an analytical solution for the variances in Eqs. (18),
(19) as a function of σ2

|S21| and phase σ2
φS21

. However, for
the ideal case of Method 2 shown in Eq. (12), σ2

α and the
phase σ2

β can be expressed as

σ2
α =

∣∣∣ α
∆l

∣∣∣2 σ2
∆l + 2

∣∣∣∣ 1

S21∆l

∣∣∣∣2 σ2
|S21|, (20)

σ2
β =

∣∣∣∣ θ∆l2

∣∣∣∣2 σ2
∆l + 2

∣∣∣∣ 1

∆l

∣∣∣∣2 σ2
φS21

. (21)

These equations have been calculated by taking Eq. (12) and
following the same procedure made in Eq. (17).

In order to cover all cases, using S-parameters and line
length errors, a Monte Carlo simulation has been performed.
The lines defined in the previous section, whose length was
10 and 35 mm respectively, were used. The standard devia-
tions were set to σ|S| = 0.1 dB, σφS = 5º and σ∆l = 0.02
mm and errors were generated using a Gaussian distribu-
tion [18]. Figures 3 and 4 show the influence of the magnitude
and phase error for each of the methods. As can be seen, there
is a resonant behavior in Methods 1 and 3. The resonances in
Method 1 are located at the points (n− 1)λ = ∆l, while
in Method 3 are located at

(
n−1

2

)
λ = ∆l, for n =1,2,3...

However, there is a greater variance in Method 3 than Method
1. On the other hand, Method 2 works in a completely
different way, because σ2

α is constant in frequency with the
magnitude error and 0 with the phase error, as expected in
the ideal case shown in Eq. (20). Furthermore, the variance
obtained using Eq. (20) is the same to the one shown in
Figs. 3 and 4. It is also important to mention that this is the
only method that allows negative solutions for the attenuation
constant, because only the positive square root solutions in
Eq. (14) are considered.

Regarding the phase constant, Figs. 3 and 4 depicts how
magnitude and phase error affect it. As seen, the effect pro-
duced is quite similar to the one of the attenuation constant.
Note that what is plotted is not the phase constant itself, but
the unwrapped one. This is because mathematical software
usually take just the principal value (first solution for n = 0)
in Eq. (16). That solution is between β = ±π/∆l and have
no physical sense, as β increases with frequency. For this
reason, a phase unwrap of β ·∆l must be performed to obtain
the estimated value of β. The unwrap function works great
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FIGURE 3. Attenuation and phase constants and their variances obtained by using σ|S| = 0.1 dB through Method 1:
(a), (b), Method 2: (c), (d), Method 3: (e), (f).
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(f)(e)

(d)(c)

1117.4

FIGURE 4. Attenuation and phase constants and their variances obtained by using σφS = 5◦ through Method 1: (a), (b),
Method 2: (c), (d), Method 3: (e), (f).
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(  )b

(a)

FIGURE 5. Attenuation (a) and phase (b) constants and
their variances obtained by using a line length variance
σ∆l = 0.02 mm through Method 1.

when there are no errors. However, when random errors are
introduced, it may occur that the function picks an incorrect
solution. This effect is more significant at very low frequency,
when the value of the phase constant is lower.

Finally, Fig. 5 show the influence of line length error.
Only Method 1 results are plotted, as they are equal to those
obtained through Methods 2 and 3. As expected in Eqs. (18)
and (19), this error results in a bias in the solution, and
the variance increased with α2 and θ2. However, it must
be taken into account that, because of the unwrap behavior
previously mentioned, the maximum and minimum values
of θ are ±π/∆l respectively, so the value of σ2

β will be
limited. The performance of the sensitivity analysis has been
validated through T-tests, showing that the attenuation and
phase constants have a Gaussian distribution. In addition,
and to show them, two histograms have been depicted in
Figs. 3 and 4.

IV. MINIMIZATION APPROACH

A. OVER DETERMINATION OF THE METHODS

The presence of random errors means that it is not possible
to determine the exact value of the propagation constant, so
the objective is to achieve the best estimation from available
measurements. In the previous section, it has been demon-
strated how these errors affect the different methods exam-
ined in this work. To improve the accuracy of the methods,
it is proposed to increase the number of lines to be measured
and use a least squares estimation. Thereby, the effects pro-
duced by random errors in measurements are minimized as
the Least-Mean-Square (LMS) is the maximum likelihood
estimator. The propagation constants can be obtained by
solving the equations:

Frequency [GHz]
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FIGURE 6. Histograms of fn for different line length
distributions.

1) Method 1:

min
α,β

1

2

N∑
n=1

∣∣trace([M ])−
(
e+γ∆l + e−γ∆l

)∣∣2, (22)

2) Method 2:

min
α,β

1

2

N∑
n=1

∣∣∣∣(1/λ1 + λ2

2

)
− e+γ∆l

∣∣∣∣2, (23)

3) Method 3:

minα,β
1
2

∑N
n=1

∣∣∣(det([M1+2])
det([M1]) − 2

)
−
(
e+γ∆l + e−γ∆l

)∣∣∣2,
(24)

where N is the number of possible combinations between
all the k lines, taken two by two. The measurements of S-
parameters of N lines, N > 2, get to M simultaneous non-
linear complex equation. The value of M is given by the
combinations of N lines taken 2 at a time: M = 1/2 ·
N(N − 1). Increasing slightly the number of lines, the total
number of combinations increase rapidly and so, the number
of estimations of the propagation constant is also increased.
In the experiment that has been carried out, a number of seven
lines has been used, providing 21 combinations of two lines
taken at a time. Increasing N is a reasonable way to reduce
uncertainty, but this increment should be accompanied by
different ∆l values, to achieve better results. Optimal line
lengths selection will be explored in the next section.

B. OPTIMAL LINE LENGTHS
One of the most important parts to reduce random errors is
the choice of the lengths of the lines employed. The length
distribution must be chosen so that the differences between
the increments in the length of the lines should be as small
as possible. In addition, the bigger the increments, the better.
Constant increments in length between different transmission
lines concentrate resonances in discrete number of frequency
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points. Small deviations from that pattern spread the reso-
nances through the band of interest. The selected lengths can
follow a quasi-linear distribution

li = l0 + ∆L

(
i− 1

N − 1

)q
, i = 1, 2, ...N, (25)

or a logarithmic one

li = l0 + ∆L
log
(
l0 + i−1

N−1∆L
)
− log (l0)

log (lN )− log (l0)
, i = 1, 2, ...N,

(26)
where l0 is the shortest line length, lN is the longest, and
∆L = lN − l0. In the quasi-linear one, the factor q just
need to be adjust to a value different of 1 (that is the linear
distribution). The frequencies where the phase difference of
measured S21 is zero can be easily obtained from

fn =
n · c

∆l
√
εr,eff

. (27)

Figure 6 compares histograms of the aggregation of fre-
quencies where the phase difference between measured S21

appears. As seen, q = 1.2 and the logarithmic one are the
most homogeneous distribution through the frequency band,
whereas q = 1 still shows a resonant behavior. Furthermore,
as the resulting covariance improves with larger length incre-
ments, the quasi-linear distribution has those increments and
will be the one chosen to perform the experimental validation
of the methods.

C. RESULTS
In order to assess how over determination affects random
errors, the experiment shown in Section III has been repeated
using 7 lines instead of 2. To choose the line lengths, the
three distributions set out in Fig. 6 were used. The minimum
(l0) and maximum (lN ) line lengths are set to 10 and 35 mm
respectively. All line lengths are depicted in Table 1.

Figures 7 and 8 show the variances of the attenuation (σ2
α)

and the phase (σ2
β) constants respectively for the aforemen-

tioned length strategies and the three proposed methods. In
these figures, the standard deviations were set to σ|S| = 0.1
dB and σφS = 5º, the same values used in Section III, in
order to evaluate the improvements produced by the over
determination of the methods. As seen, the fact of increasing
the number of lines significantly reduces errors in the prop-
agation constant. On the one hand, the values of σ2

α and σ2
β

are less than the ones using 2 lines. On the other hand, the
resonant behavior has disappeared when the two non-linear
length strategies are employed. By using these strategies, the
results of Methods 1 and 3 are considerably improved, and
can be comparable to the ones of Method 2. Furthermore,
and as expected, quasi-linear and logarithmic strategies work
in a similar way.

Regarding the length error, Fig. 9 shows the resultant vari-
ance of the propagation constant after applying the proposed
over determination of the methods to the aforementioned 7
lines. For this plot, the standard deviation of the length has

been set again σ∆l = 0.02 mm. The results are considerably
better than the ones in Fig. 5, when the methods were applied
to 2 lines. Furthermore, it is important to mention that, again,
the linear distribution maintains a resonant behavior, whereas
the quasi-linear and the logarithmic ones work in a similar
way.

V. REAL CASE METHOD ASSESSMENT BY
MEASUREMENTS
The developed theory has been tested using circuital simula-
tions in the previous sections. To validate it experimentally, a
set of 7 lines made of Rogers RO4350B has been manufac-
tured. This material, whose permittivity and dispersion are
known and given by the manufacturer [19], will be used to
assess the methods performance. This frequency-dependent
permittivity is imported into the full-wave simulator ANSYS
HFSS, to obtain a more realistic and accurate simulation that
can be compared with the experimental results. Considering
that similar results are obtained when using a quasi-linear or
a logarithmic distribution, the first one (q = 1.2) has been
chosen to design the line lengths. These lengths are depicted
in Table 1. S-parameters of the 7 lines are taken by using
the network analyzer Agilent PNA-X (N5247A), between
0.01 and 50 GHz. A photograph of the real measurement
setup is shown in Fig. 10. Figure 11 depicts the simulated
and measured results of the structure. The phase constant,
β, has been plotted in terms of effective relative permittivity,
εr,eff , in order to reduce the range of possible values and to
make easier to extract information from the graph. For this
purpose, the variance of the effective relative permittivity can
be obtained from the the transformation

σ2
εr,eff

= σ2
β

∣∣∣∣∂εr,eff

∂β

∣∣∣∣2 = 2σ2
β

c2

ω2
β. (28)

The confidence intervals shown in Fig. 11 have been cal-
culated from Eqs. (20) and (21). S-parameter magnitude
and phase variances have been extracted from the analyzer
datasheet [20], whereas length variance has been chosen by
taking 10 measures of the same line with a digital caliper,
and calculating the variance of these measurements, that was
σ2

∆l = 0.02 mm. As it can be seen, the confidence intervals
are discontinuous in frequency. This is due to the fact that the
analyzer manual specifies S-parameter variances for different
frequency ranges, so shifts in confidence intervals are located
in the frequency points in which an interval change occurs
in the analyzer, being more noticeable in the attenuation
constant.

As seen in Fig. 11, both the 2-lines and the 7-lines results
are within the confidence intervals. The attenuation constant
obtained by taking 2 lines shows quite well the difference
between the three proposed methods. Method 1 displays a
resonant behavior in more frequencies than the rest. How-
ever, these resonances are noisier when happening in Method
3, whereas Method 2 is the most insensitive to errors. How-
ever, it is important to mention that the over determination of
the three methods eliminates most of the noise and makes
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FIGURE 7. Attenuation and phase constants variances obtained for σ|S| = 0.1 dB and the three proposed methods
using a linear criteria (a), (b), quasi-linear criteria (c), (d) and logarithmic criteria (e), (f).
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FIGURE 8. Attenuation and phase constants variances obtained for σφS = 5◦ and the three proposed methods using a
linear criteria (a), (b), quasi-linear criteria (c), (d) and logarithmic criteria (e), (f).
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TABLE 1: Line lengths using different cutting strategies

Length strategy l1 (mm) l2 (mm) l3 (mm) l4 (mm) l5 (mm) l6 (mm) l7 (mm)
Linear 10 14.16 18.33 22.50 26.66 30.83 35

Quasi-linear (q = 1.2) 10 12.91 16.69 20.88 25.37 30.09 35
Logarithmic 10 16.95 22.09 26.18 29.57 32.47 35
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FIGURE 9. Attenuation (a) and phase constants (b)
variances obtained for σ∆l = 0.02 mm and the three
proposed methods.

FIGURE 10. Photograph of microstrip lines and the
measurement setup using vector network analyzer for
S-parameters measurement.

the measured attenuation constant quite similar to the one
obtained through electromagnetic simulation. The same rea-
soning can be applied to the effective relative permittivity.
Specifically, in the lower frequencies it is possible to see
that both Method 1 and 3 are much noisier than Method 2.
However, the methods are much more accurate for estimating
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FIGURE 11. Experimental results of the attenuation (a)
and phase (b) constants using the proposed methods
with 2 and 7 lines, in comparison with electromagnetic
simulation.

the phase constant. This is mainly due to the fact that the
phase variance of the analyzer is much smaller than the
magnitude one. Despite this, the experimental results show
an excellent agreement with the simulated ones, which points
out the use of this kind of over determined methods for the
estimation of the propagation constant.

VI. CONCLUSION
In the present work, we have studied how three different
methods used for the experimental characterization of the
propagation constant of transmission lines are affected by
random errors. Although it might be thought that these three
methods work in a similar way, it has been demonstrated
that they have a totally different behavior in presence of
random measurement errors. Specifically, the method based
on eigenvalues is the one that shows better tolerance to errors,
while the other two have resonant behaviors. For this reason,
it is considered the best option to use an eigenvalue-based
method to calculate the propagation constant when only two-
line measurements are available. In order to reduce errors in
the propagation constant, the proposed over determination of
the methods, based on a least-squares approximation, works
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better when the number of lines is increased. Furthermore,
resonant behavior can be eliminated by using the proposed
non-linear length selection criteria. If it is taken, all the meth-
ods work in a similar way regarding random errors. Finally,
the developed analysis carried out has been corroborated
by comparing electromagnetic simulations with uncalibrated
real measurements, showing an excellent agreement between
both attenuation and phase constants between simulated and
measured results up to 50 GHz. In addition, experimental re-
sults have shown that the behavior of the methods is different
in presence of errors, and that it is improved substantially
when the proposed over determination is applied.

.

APPENDIX A METHOD EQUATIONS AS FUNCTION OF
S-PARAMETERS
In this section, the analytical equations of the three proposed
methods are expressed as a function of the S-Parameters. For
this purpose, δ(n) must be taken as S(n)

12 S
(n)
21 − S

(n)
11 S

(n)
22 and

χ = δ(1) + δ(2) + S
(1)
11 S

(2)
22 + S

(2)
11 S

(1)
22 , being S(n) the S-

parameter matrix of line n.
Method 1:

γ =
1

∆l
cosh−1

(
χ

2S
(1)
21 S

(2)
12

)
. (29)
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