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ABSTRACT
In this work, we present novel results of the buoyancy driven

flow between two concentric cylinders, when an azimuthal ther-
mal gradient is imposed to the inner cylinder. To accomplish that,
angular-dependent temperature distribution (sinusoidal function)
is imposed at that surface so that a fourth parameter is added to
the problem (Λ). This new parameter accounts for the ratio of
amplitude of temperature (amplitude of sinusoidal function) in
the inner cylinder to the difference of temperature between the
inner and outer cylinder. When this new parameter is zero, one
retains the same solutions shown in J.J. Serrano-Aguilera et al.
[1] (isothermal conditions in both cylinders) but increasing this
parameter, the imposed angular gradient in the inner cylinder in-
duces flow structure changes and the subsequent modification in
the average equivalent conductivity.

INTRODUCTION
The flow between two concentric cylinders induced by buoy-

ancy is a very well-studied flow experimentally and numerically
[2-3]. It has a wide range of applications: from heat exchangers
to Concentrated Solar Power Systems (CSP). This is the case of
the UVAC receiver in Parabolic Solar Trough Collectors, which
are formed by a vacuum annulus to reduce convective thermal
losses. When the vacuum is partially lost due to leaks in the
sealing between the glass cover and the absorber tube, this sort
of flow takes place. Accurate modeling of this phenomenon is of
interest since it is responsible for a significant fraction of the total
thermal losses. Its simple geometry and well-defined boundary
conditions allow to characterize the phenomenon by two dimen-
sionless parameters: the Prandtl number (Pr) which is the ratio of
viscous diffusivity to thermal diffusivity and the Rayleigh num-
ber (Ra) which can be seen as the ratio of the gravitational poten-
tial energy to the energy due to viscous dissipation and thermal
diffusion. The aspect ratio A ≡ Di/L which is the ratio of in-
ner cylinder diameter Di to the gap width L constitutes the last
parameter of the problem.

The basic flow field from the natural convection heat transfer
in a horizontal cylindrical annulus for low value of Ra consists of

NOMENCLATURE

A [-] aspect ratio
Ra [-] Rayleigh number
Nu [-] Nusselt number
T [K] temperature
fm [N/kg] mass force
u [m/s] velocity field
R [-] cylinder radius ratio
k [W/(m·K)] thermal conductivity
R [m] radius
D [m] diameter
L [m] gap length
g [m/s2] gravitational acceleration
r [m] radial coordinate

Special characters
α [m2/s] thermal diffusivity
β [1/K] thermal volumetric expansion coefficient
∇ [-] differential operator nabla
Ψ [m2/s] stream function
Φ [K] temperature field with homogeneous boundary conditions
ρ [kg/m3] density
Λ [-] amplitude of the variation of temperature

on the inner cylinder
ξ [-] radial variable in the Chebyshev original domain
θ [-] angular coordinate

Subscripts
BC Boundary Conditions
B Boussinesq
eq equivalent
H hydrostatic
i inner
o outer
j iteration index

Superscripts
ˆ dimensionless form

average

two symmetric crescent-shaped eddies in which fluid rises near
the upper surface of the inner hotter cylinder and sinks near the
outer colder one. At high Ra, however, several kinds of con-
vective flows which are dependent on Pr and aspect ratio A can
be developed. According to Kuehn & Goldstein [4], the flow
in a horizontal cylindrical annulus is steady over the range of
Rayleigh number from 102 to 105. Kuehn & Goldstein [2] also
experimentally studied the flow patterns at Rayleigh numbers
from 2.2 · 102 to 7.7 · 107, and they found that the plume above
the inner cylinder began to oscillate when Rayleigh number was
near 2 · 105 and the entire plume was turbulent at Ra ≈ 2 · 106.
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Their results also showed that the local heat transfer coefficient
depended significantly on the eccentricity while the overall heat
transfer coefficients changed by less than 10% with the change of
eccentricity. Yoo [5] in his outstanding work, reported the occur-
rences of dual solutions at Ra larger than a critical value. Using
a vorticity-streamfunction formulation, he observed dual steady
solutions at Ra>Racrit ≈ 3800 for wide gap annuli (A= 2). Sim-
ilar results were provided later by Mizushima et al. [6,7], Xin et
al. [8], and Mercader et al. [9].

Recently, a comprehensive study of the steady solutions of
the buoyant flow between isothermal heated cylinders and their
global stability has been carried out [1]. Different solutions have
been obtained including regions of the parameter space (Ra-Pr)
where the flow presents two different solutions, with one or mul-
tiple plumes.

The aforementioned results can be applied to the comprehen-
sion of the underlying mechanisms of the existing heat losses in
Parabolic Trough Collectors. As a result of the concentrated solar
radiation pattern around the absorber tube, isothermal boundary
conditions are not fully realistic in this application. The bottom
half of the absorber receives most of the concentrated radiation
reflected by the parabolic mirror, which induces thermal gradi-
ents around the absorber (inner cylinder). This pattern causes
a thermal distribution which can be approximated with a sinu-
soidal function, whose maximum value is located at the bottom
(θ = π) of the absorber tube.

GOVERNING EQUATIONS
The problem of buoyancy (gravitational) induced motion of

a fluid in a two-dimensional annulus is formulated using the
Boussinesq approximation to solve the governing equations of
mass, momentum and energy. Note that in the Boussinesq ap-
proximation, density variations are assumed to have a fixed part
and another part that has a linear dependence on temperature:

ρB(T ) = ρ [1−β(T −To)] , (1)

where T is the temperature at a point within the fluid, β the ther-
mal volumetric expansion coefficient and To is the temperature
of the outer cylinder. Fig. 1 shows the geometry of the problem
along with the polar coordinate system adopted in which the ra-
dial coordinate r is measured from the center of the system and θ

is measured clockwise from the upward vertical line. Moreover,
the radial velocity u is positive radially outwards and the angular
velocity v is positive in the clockwise direction.

The governing equations for the natural convection in the re-
gion between horizontal concentric cylinders for an incompress-
ible fluid can be written as

∇ ·u = 0, (2)
Du
Dt

= −1
ρ

∇p+ν∇
2u+

ρB(T )
ρ

fm, (3)

DT
Dt

= α∇
2T. (4)
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Figure 1: Sketch of the problem.

where ν is the kinematic viscosity, α is the thermal diffusivity,
u = u(r, θ)er + v(r, θ)eθ, D

Dt ≡
∂

∂t +u ·∇ is the material deriva-
tive and fm is the body force per unit mass which corresponds
with gravity field for the case the annulus is not rotating.

For the situation in which the fluid is quiescent (u = 0) and at
uniform temperature the above equations simplify as

−∇pH +ρ fm = 0. (5)

Following the same development as in [3], two equations can
be obtained, one for the streamfunction, defined as,

u =
1
r

∂Ψ

∂θ
er−

∂Ψ

∂r
eθ, (6)

and the temperature field T (r,θ). Furthermore, by setting the
characteristic length and velocity of the problem as lc = L=Ro−
Ri and the free-fall velocity Vf =

√
gL β (Ti−To), respectively,

and using ˆ symbol to describe non-dimensional variables, the
final non-dimensional equations are:

∂∇̂2Ψ̂

∂t̂
+ J
(

∇̂
2
Ψ̂,Ψ̂

)
=

√
Pr
Ra

∇̂
4
Ψ̂+[

cosθ

r̂
∂T̂
∂θ

+ sinθ
∂T̂
∂r̂

]
, (7)

∂T̂
∂t̂

+ J(T̂ ,Ψ̂) =
1√

Pr Ra
∇̂

2T̂ . (8)

where Pr = ν

α
and Ra = gβL3(Ti−To)

να
are the Prandtl and Rayleigh

numbers, respectively, J(η,Ψ̂) ≡ 1
r̂

(
∂Ψ̂

∂θ

∂η

∂r̂ −
∂Ψ̂

∂r̂
∂η

∂θ

)
represents



the convective term and ω̂ = −∇̂2Ψ̂ is the dimensionless axial
vorticity.

The boundary conditions on the two impermeable isothermal
walls are given by

Ψ̂ =
∂Ψ̂

∂r̂
= 0, T̂ = 1−Λ cos θ, (9)

on the inner cylinder (r̂ = Ri/L) and

Ψ̂ =
∂Ψ̂

∂r̂
= 0, T̂ = 0, (10)

on the outer cylinder (r̂ = Ro/L). The dimensional inner cylinder
temperature is T (θ) = Ti−∆T cos(θ) and on the exterior cylinder
is fixed to T = To so the parameter Λ is defined as Λ = ∆T/(Ti−
To).

In case symmetry with respect to the y-axis is imposed, where
only half of the annulus is taken as the computational domain,
the following symmetric condition is applied along two vertical
lines of symmetry at θ = 0 and θ = π:

Ψ̂ =
∂Ψ̂

∂θ
=

∂T̂
∂θ

= 0. (11)

The solution of the heat equation with the same boundary con-
ditions (which is only function of the radial coordinate) is an im-
portant reference to measure heat transfer efficiency of natural
convection process. Therefore, in order to measure the conver-
gence of the system and compare our solutions with those pro-
vided by other authors [1], the local and average equivalent con-
ductivity [10] are defined as follows:

keq(r̂, θ) ≡ Nu
Nuc

=−r̂ ln(R )
∂T̂
∂n

, (12)

k̄eq(r̂) ≡
∮

keq(r̂, θ)ds
2π r̂

=
− ln(R )

2π

∮
∂T̂
∂n

ds, (13)

where Nuc ≡ 1
ln(R ) is the Nusselt number corresponding to the

pure conductive flow and R = Ro
Ri

= 1+2 L
Di

= 1+ 2
A is the radius

ratio. According to the geometric configuration we are dealing
with ( ∂T̂

∂n = ∂T̂
∂r and ds = r dθ), the above equation can be further

reduced to

k̄eq,i =
− ln(R )

2π(R −1)

∫ 2π

0

∂T̂
∂r̂

dθ. (14)

for the inner cylinder (r̂ = Ri
L ), and

k̄eq,o =
−R ln(R )

2π(R −1)

∫ 2π

0

∂T̂
∂r̂

dθ. (15)

for the outer cylinder (r̂ = Ro
L ).

Figure 2: Grid of the numerical domain and boundary condition
for the dimensionless temperature field imposed at the hot sur-
face.

Fig. 2 shows the computational grid used for solving the prob-
lem where periodic boundary condition is employed in the az-
imuthal direction, θ. Additionally, Chebyshev discretization al-
lows to radially concentrate the nodes near the walls (ξ =±1) in
order to accurately solving both the thermal and velocity bound-
ary layers.

NUMERICAL METHOD
We perform a spectral numerical method for the spatial vari-

ables using Chebyshev and Fourier discretizations for the ra-
dial and azimuthal variables, respectively. Boundary condi-
tions are directly implemented in the derivation matrices us-
ing the DM suite toolbox [11].The dimensionless radial domain
(r̂ ∈ [Ri/L, Ro/L]) is mapped (see Fig. 2) in the Chebyshev do-
main (ξ ∈ [−1, 1]) using the following path

r̂ =
1
2
(ξ+1)+

Ri

L
=

1
2
(ξ+1)+

A
2
→ ξ = 2 r̂− (A+1) .

(16)
Since the derivation matrices implemented in the DM suite

require Dirichlet boundary conditions for the temperature, we
have decomposed the temperature field as

T̂ (r̂, θ, t̂) = Φ̂(r̂, θ, t̂)+ T̂BC(r̂, θ) =

Φ̂(r̂, θ, t̂)+
(

1+
A
2
− r̂
)
(1−Λ cos θ) . (17)

Substituting the above equation in the vorticity and tempera-
ture equations (7-8), we obtain

∂∇̂2Ψ̂

∂t̂
+ J

(
∇̂

2
Ψ̂,Ψ̂

)
=

√
Pr
Ra

∇̂
4
Ψ̂

+

[
cosθ

r̂
∂Φ̂

∂θ
+ sinθ

∂Φ̂

∂r̂

]
+

[
cosθ

r̂
∂T̂BC

∂θ
+ sinθ

∂T̂BC

∂r̂

]
,(18)

∂T̂
∂t̂

+ J(Φ̂,Ψ̂)+ J(T̂BC,Ψ̂) =
1√

Pr Ra

(
∇̂

2
Φ̂+ ∇̂

2T̂BC

)
. (19)



The main advantage of the above formulation is that the devi-
atoric temperature field Φ̂, has homogeneous Dirichlet boundary
conditions at both the inner (r̂ =Ri/L or ξ=−1) and outer (Ro/L
or ξ = 1) walls. Once defined the vector q = [Ψ̂,Φ̂]T , the system
of equations to solve can be written as

A
∂q
∂t̂

+F1(t̂,q)+
√

Pr
Ra

F2(t̂,q)+
1√

Pr Ra
F3(t̂,q) =

f1(t̂,q)+
1√

Pr Ra
[f2(t̂,q)+Λ f3(t̂,q)]+Λ f4(t̂,q) (20)

with

A =

(
∇̂2 0
0 1

)
, (21)

F1(t̂,q) =
1
r̂

(
∂Ψ̂

∂θ

∂∇̂2Ψ̂

∂r̂ −
∂Ψ̂

∂r̂
∂∇̂2Ψ̂

∂θ

∂Ψ̂

∂θ

∂Φ̂

∂r̂ −
∂Ψ̂

∂r̂
∂Φ̂

∂θ

)
(22)

F2(t̂,q) =
(
−∇̂4Ψ̂

0

)
(23)

F3(t̂,q) =
(

0
−∇̂2Φ̂

)
(24)

f1(t̂,q) =

(
1
r̂ cosθ

∂Φ̂

∂θ
+ sinθ

(
∂Φ̂

∂r̂ −1
)

1
r̂

∂Ψ̂

∂θ

)
(25)

f2(t̂,q) =
(

0
− 1

r̂

)
(26)

f3(t̂,q) =

(
0

cos(θ)
r̂2

(
1+ A

2

)) (27)

f4(t̂,q) =
1
r̂

(
cosθ sinθ

(
1+ A

2

)
−cosθ

∂Ψ̂

∂θ
+ sinθ

(
1+ A

2 − r̂
)

∂Ψ̂

∂r̂

)
(28)

Steady solver
To obtain the steady solution [Ψ̂s,Φ̂s]

T of Eq.(20), a Newton-
Raphson solver has been implemented as

q j+1 = q j− [∇qf(q j)]
−1 f j = q j− [B(q j)+ΛBΛ(q j)]

−1 f j,

where

B =

(
B11 B12
B21 B22

)
, (29)

BΛ =
1
r̂

(
0 0

−cosθ
∂

∂θ
+ sinθ

(
1+ A

2 − r̂
)

∂

∂r̂ 0

)
(30)

B11 = −1
r̂

(
∂Ψ̂ j

∂θ

∂∇̂2

∂r̂
+

∂∇̂2Ψ̂ j

∂r̂
∂

∂θ
−

∂Ψ̂ j

∂r̂
∂∇̂2

∂θ
−

∂∇̂2Ψ̂ j

∂θ

∂

∂r̂

)

+

√
Pr
Ra

∇̂
4, (31)

B12 =
1
r̂

cosθ
∂

∂θ
+ sinθ

∂

∂r̂
, (32)

B21 = −1
r̂

(
∂Φ̂ j

∂r̂
∂

∂θ
−

∂Φ̂ j

∂θ

∂

∂r̂
− ∂

∂θ

)
, (33)

B22 = −1
r̂

(
∂Ψ̂ j

∂θ

∂

∂r̂
−

∂Ψ̂ j

∂r̂
∂

∂θ

)
+

1√
Pr Ra

∇̂
2, (34)

being f j = f(t̂,q j) and j marks the index for each iteration of
the algorithm. It is worth mentioning that the steady solu-
tions have been sought taking advantage of their symmetry (anti-
symmetric Ψ̂s and symmetric Φ̂s) with respect to the vertical axis
(θ = 0). It has been implemented by means of folding the dif-
ferentiation matrices, which has allowed a significant reduction
of the required computing resources by solving only within the
θ ∈ [0, π] range. A steady solution is considered converged if
max(|f j|)< 10−8.

NUMERICAL RESULTS
In order to evaluate the effects of the temperature gradient

forced on the inner border, one pair of solutions found by [1] are
used. Particularly, located at Pr = 0.2792 and Ra = 7.2025 ·104,
this pair of solutions show different values of the average equiv-
alent conductivity (k̄eq). One of them, displayed in Fig. 3(b),
is stable (S) whilst the second one on Fig. 3(e) is unstable (U).
As previously defined, Λ accounts for the amplitude of the si-
nusoidal function describing the angular evolution of the tem-
perature in the inner boundary. When Λ > 0, it means that the
temperature at the bottom of the inner cylinder is higher than in
the upper half. Otherwise, if Λ < 0, the highest temperature of
the inner cylinder is located on the top (θ = 0).

As shown in Fig. 4(a), the dependence between k̄eq and Λ

is virtually linear. A set of solutions have been found within
the range Λ ∈ [−1,0.11] where Λ < 1 leads to a heat transfer
enhancement since a higher value in k̄eq is achieved. On the other
hand, if positive values of Λ are considered, a reduction in k̄eq
is observed. An analogous tendency is displayed in Fig. 4(b)
for the unstable steady solution, where a set of solutions have
been identified within the range Λ ∈ [−0.805,0.805]. A linear
dependency can also be identified withing the left hand-side of
the plot (Λ < 0) whereas the value of k̄eq is stabilized beyond
(Λ> 0.2). Regardless of the case, it has also been verified that the
average equivalent conductivity is equal in both radial borders
(k̄eq,i = k̄eq,o), which proves that the solutions found are steady.

Complementary information can be obtained from Fig. 3.
Both stream function and temperature in dimensionless form are
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Figure 3: Steady results for the pair of solutions considered as function of the additional parameter Λ. Dimensionless temperature (T̂ ) is
displayed in color-scale along with the isocontours of dimensionless stream function (Ψ̂).



provided in each subfigure. According to figures 3 (a), (b) and
(c), it can be noticed that the angular distribution of temperature
in the inner border has a determinant role on the intensity of the
upright plume. If higher temperatures are located in the bottom
half of the inner cylinder (Λ> 0), Fig. 3 (c) shows how the vortex
intensity is counteracted by the fact that fluid departing from the
bottom of the inner cylinder has to circulate around colder parts
of the inner border, which leads to a significant reduction on the
heat transferred between the inner and outer cylinder. In contrast,
subfigure 3 (a) describes a positive impact, where buoyant flow
is enhanced, meaning that hot air departing from the hottest point
of the inner cylinder directly departs to the outer cylinder.

Similar results can be compiled from the analysis if the Un-
stable steady solution (figures 3 (d), (e) and (f)), where a concen-
tration of the hottest region in the upper half of the inner cylinder
improves heat transfer. However, in this case, it can also be ob-
served an angular shift of the heat plumes. As a matter of fact,
if the region of highest temperature is located on the bottom of
the inner cylinder (θ = π in Fig. 3 (f)), the main heat plumes are
displaced to the bottom half of the fluid domain.
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(a) Stable solution

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
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3
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3.4

3.6

3.8

(b) Unstable solution

Figure 4: Dependence of the average equivalent conductivity
(k̄eq) on the Λ parameter for the Stable steady solution (a) and
Unstable steady solution (b).

CONCLUSIONS
The proposed numerical model have already been used and

validated to draw a map of solutions in the Ra−Pr space. This
work aims to add a fourth parameter (Λ) accounting for the ther-

mal gradients taking place in the absorber tube of a Parabolic
Trough Collectors.

It was found that the distribution of temperature around the
inner cylinder plays a significant role in the average equivalent
conductivity (k̄eq). As long as the positive part of the sinusoidal
function is located on the upper half of the inner cylinder (Λ< 0),
heat transfer is significantly improved respect to the opposite sce-
nario (Λ > 0). Not only heat transfer coefficient, but the angular
position of the heat plumes are affected by temperature distribu-
tion imposed on the inner border, particularly in the case of the
unstable steady solution, which shows non-vertical plumes. The
dependency k̄eq vs Λ is virtually linear in the negative range of Λ.
On the other hand, a nonlinear dependence between these vari-
ables has been reported for the unstable steady solution within
the positive range of Λ. This fact, could be justified as a result of
the significant angular displacement of the plumes.
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