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ABSTRACT

In this paper, we propose a novel approach for data-driven decision-making under uncertainty in the
presence of contextual information. Given a finite collection of observations of the uncertain parame-
ters and potential explanatory variables (i.e., the contextual information), our approach fits a parametric
model to those data that is specifically tailored to maximizing the decision value, while accounting for
possible feasibility constraints. From a mathematical point of view, our framework translates into a bilevel
program, for which we provide both a fast regularization procedure and a big-M-based reformulation that
can be solved using off-the-shelf optimization solvers. We showcase the benefits of moving from the tra-
ditional scheme for model estimation (based on statistical quality metrics) to decision-guided prediction
using three different practical problems. We also compare our approach with existing ones in a realistic
case study that considers a strategic power producer that participates in the Iberian electricity market. Fi-
nally, we use these numerical simulations to analyze the conditions (in terms of the firm’s cost structure

and production capacity) under which our approach proves to be more advantageous to the producer.

© 2021 The Authors. Published by Elsevier Ltd.
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1. Introduction

In the last couple of decades, the field of decision-making under
uncertainty has regained momentum, spurred by the new opportu-
nities that the Digital Age has brought to modern economies. As a
result, this field has been prolific in the design and development
of new tools capable of exploiting the vast amount of informa-
tion that human societies currently generate, compile and record,
mainly in the form of data.

From among all the exciting advances that have been achieved
in the realm of decision making under uncertainty in recent years,
we highlight the so-called data-driven optimization under uncer-
tainty, which endows the decision maker with a powerful and ver-
satile mathematical framework to hedge her decisions against both
the intrinsic risk of an uncertain world and the limited and incom-
plete knowledge of the random phenomena that can be retrieved
from a finite set of observations or data.

Data-driven optimization under uncertainty has been applied to
a broad range of contexts and problems, for instance, inventory
management [1,2], nurse staffing [3], portfolio optimization [4-6],
shipment planning [4], network flow [5], power dispatch [7], and
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vehicle routing [8], just to name a few. For a recent survey on the
topic and its applications, we refer the reader to [9,10].

In this paper, we first compare the proposed methodology
with existing ones using two classical conditional stochastic opti-
mization problems, namely, the newsvendor problem [3,11,12] and
the product placement problem [1]. Additionally, we consider the
problem of a strategic firm that has to decide the generation quan-
tity that maximizes its expected profit while facing the uncertainty
related to market conditions. This problem has a long tradition
in the Economics and Management Science literature (see, for in-
stance, [13-15]). In particular, we take electricity as the homoge-
neous good to be produced and thus, we place ourselves in the
context of electricity markets, where this problem has received a
great deal of attention since the deregularization of the power sec-
tor [16,17]. Most existing models address this problem by forecast-
ing, as accurately as possible, the electricity market behavior. Then,
such forecasts are used to compute the decision that maximizes
the producer’s profit. Here we present a novel and alternative data-
driven procedure that considers the problem structure and lever-
age available auxiliary data to enhance market participation and
increase profits. Our approach is formulated as a bilevel program
that, under convexity assumptions, can be efficiently solved using
commercially available optimization solvers. We demonstrate the
superior performance of the proposed approach on a realistic case
study that uses data from the Iberian electricity market.

0305-0483/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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In short, our contributions are threefold, namely:

- From a methodological point of view, we propose a novel

data-driven framework for conditional stochastic optimization,

whereby the parameters that are input to the decision-making
problem are formulated as a function of some covariates or fea-

tures. This function is, in turn, estimated factoring in its im-

pact on the decision value. Finally, by way of this function, we

construct a deterministic (single-scenario) surrogate optimiza-
tion model that delivers decisions that are good in terms of the
original conditional stochastic program. In Section 2, we intro-
duce and mathematically formalize our proposal along with al-
ternative state-of-the-art approaches available in the technical
literature. Our approach is formulated as a bilevel optimization
problem that can be reformulated as a single-level optimization
problem and solved using off-the-shelf optimization solvers as

discussed in Section 3.

From a theoretical perspective, we compare our approach with

existing ones in Section 4 for three different applications,

namely, the newsvendor problem, the product placement prob-
lem, and the strategic producer problem.

- From a more practical point of view, Section 5 provides sim-
ulation results for the strategic producer problem using both
an illustrative example and a realistic case study based on
the Iberian electricity market. The numerical experiments show
that our proposal can significantly increase the competitive
edge of the strategic producer depending on her cost structure
and the market demand elasticity.

We conclude the paper with a brief compilation of the most
relevant observations in Section 6.

2. Mathematical framework and related work

In decision making we often model the uncertainty as a ran-
dom vector of parameters (y € Y € R™) governed by a real un-
known distribution Y and, typically, some relevant contextual in-
formation (x € X € RP) ~ X is available before the decision is to
be made. Following this scenario, the decision maker is interested
in solving the conditional stochastic optimization problem

nznizn E[f(z;Y)|X =X] (1)

where f:R" x R™ — R is a known function in the decision z € R",
and Z € R" is a nonempty, compact set known with certainty (i.e.,
independent of Y), to which the decision z must belong. In prac-
tice, neither the joint distribution of X and Y, nor the conditional
distribution of Y given X =x are known and therefore, problem
(1) cannot be solved. On top of that, even if the true distribution
were known and the decision z were fixed, problem (1) would typ-
ically require to compute the expectation of a function of a contin-
uous random vector (i.e., a multivariate integral), which is, in itself,
a hard task in general. Instead, the only information that the de-
cision maker typically has is a sample S = {(y;,x;), Vi € '} where
y; € R™ is a particular outcome of the uncertainty Y recorded un-
der the context x; € X, and NV denotes the set of available samples.
Against this background, problem (1) is alternatively replaced
with a surrogate optimization problem, in the hope that the solu-
tion to the latter is good enough for the former. In this line, differ-
ent approaches have been proposed to construct such a surrogate
optimization problem. For instance, the traditional modus operandi
follows the rule “first predict, then optimize,” which results in the
following surrogate problem to approximate the solution to (1):

min  f(z ) (2)
zeZ
where y denotes an estimate of the outcome of the uncertainty Y

under the contextual information x € X € RP. The surrogate prob-
lem (2) is attractive for several reasons. First and foremost, it is
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much simpler and faster to solve than (1). Actually, it is a deter-
ministic optimization problem that, as opposed to (1), only requires
evaluating the cost function f(z;-) at the single value or scenario
y. Furthermore, problem (2) seems intuitive and natural, especially
when j represents “the most likely value” for Y given X = x. In-
deed, the single scenario y is often chosen as an estimate of the
expected value of the uncertainty Y conditional on X = x, that is,
y ~ E[Y|X = x], where, logically, the approximation is built from
the available sample S = {(y;,x;), Vi € N'}. In the realm of forecast-
ing, the estimate y is usually referred to as a point prediction.

In order to build the estimate § ~ E[Y|X = x], a function gf© :
X xR? — R™ is normally chosen from a w-parameterized fam-
ily G, with weRY, to construct the forecasting model j=
g0 (x; w). The goodness of a certain parameter vector w is quan-
tified in terms of a loss function IT0(y, §) :  x R™ — R that mea-
sures the accuracy of the estimate. Then, given the sample S =
{i, %), Vi e N}, the choice of w is driven by the minimization of
the in-sample loss, as expressed below:

FO . FO (1), oFO (y..
w eargvrggRI}Zl ¥i. &7 (xi:w)) (3)

ieN

In this framework, the optimal decision zf® under the context
X = x is thus obtained by solving the following deterministic prob-
lem:

Z9(x) e arg min  f(z; g0 (x; w)) (4)

We refer to this approach, which relies on a good forecast of
the uncertainty Y (in particular, an estimate of E[Y|X =x]), as
FO (short for FOrecasting). Even though this approach is intuitive
and may perform relatively well in many situations, it is funda-
mentally flawed for the following two basic reasons. First, since
¥y~ E[Y|X =x] in FO, the surrogate problem (2) works as a proxy
of the problem

min f(ZE[Y|X =x]) (5)

which, in general, is not equivalent to (1). Second, even in those
cases where these two problems are indeed equivalent, the loss
function IO that is typically used to compute wfO (for example,
the squared error) is solely intended to get a statistically good es-
timate of E[Y|X = x] and does not account for the nominal objec-
tive f or the constraints that the decision z must satisfy. For in-
stance, approach (3) and (4) is unable to capture that overestimat-
ing E[Y|X = x] might worsen the objective function f much more
than underestimating it.

In view of these design flaws, a number of works have
proposed to replace the problem-agnostic IO that is gener-
ally used in (3) with a problem-aware loss function ISP(y,y) =
fGZ@);y) where ISP:R"xR™ >R and z:Y — Z defined as
2(y) = argmin,.z f(z; y). Therefore, function ISP evaluates the loss
of optimality associated with the decision z(j) that is prescribed
by the surrogate decision-making problem (2) for the single value
. Accordingly, the optimal parameter vector wS is obtained as the
one that minimizes the in-sample optimality loss, that is:

w e argmin  ° f(2(g% (xi: w)): i) (6)

ieN

where the function g : X x RT — R™ is chosen from a family of
functions GSP. We use the acronym SP, which stands for “Smart
Predict”, to refer to this setup. Solving problem (6) using descent
optimization methods requires to compute the gradient of the loss
function ISP (y, ) with respect to w. This may not be feasible, since
it involves the differentiation of the discontinuous function z(y)
[18]. To overcome this difficulty, a great deal of research has been
devoted to finding methods to approximate the gradient of (6) for
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particular instances. The work developed in [19], for example, de-
scribes a procedure to solve (6) under the following three condi-
tions: (i) f is quadratic, (ii) the uncertainty is only present in the
coefficients of the linear terms of f, and (iii) no constraints are
imposed on the decision z, which means Z = R". Some years later,
the authors [2] proposed a heuristic gradient-based procedure to
solve (6) for strongly convex problems with deterministic equality
constraints and inequality chance constraints. Almost concurrently,
reference [5] discusses the difficulties of solving (6) in the case of
linear problems, since such a formulation may lead to an uninfor-
mative loss function. To overcome this issue, they successfully de-
velop a convex surrogate that allows to efficiently train g5F (x;; w)
in the linear case. More recently, the authors in [20] suggest a sim-
ilar approach as in [2] to combinatorial problems with a regular-
ized linear objective function.

In summary, the four references above propose ad-hoc gradient
methods for specific instances of (6). However, the technical litera-
ture lacks, to the best of our knowledge, a general-purpose proce-
dure to solve such a problem using available optimization solvers.
To fill this gap, we propose the following bilevel program [21] as a
generic mathematical formulation of (6):

wP e arg min_ )" f(Z;y:) (7a)
welR9; Z; N
st. Zeargmin f(z g (x;w)), VieN (7b)
zeZ

where gBL : ¥ x RT — R™ is selected similarly to gf® and g°°. Prob-
lem (7) is formulated as a bilevel optimization model commonly
used to mathematically characterize non-cooperative and sequen-
tial Stackelberg games in which the leader makes her decisions an-
ticipating the reaction of the follower [22]. In this sense, the upper-
level problem determines the optimal parameter vector w antici-
pating the decision provided by each lower-level problem (7b) if
the value y; is given by gBl(x;; w). We denote this approach based
on bilevel programming as BL (acronym of BiLevel). In Section 3,
we discuss the assumptions that problem (1) must satisfy so that
problem (7) can be reformulated as a single-level optimization
problem to be solved using off-the-shelf optimization solvers. Al-
though solving the bilevel problem (7) may be computationally ex-
pensive, this is a task that can be performed offline. Once wBL is
determined, the optimal decision zBL under context X = x is com-
puted by solving the following problem:

2L(x) e arg min  f(z; g (x; whh)) (8)

The bilevel program (7a)-(7b) computes the value for the pa-
rameter vector w that maximizes the in-sample performance of the
surrogate decision-making model (8). For this estimation to be of
use, it must be guaranteed that under two contexts x;, x;, such
that x; =x;, it holds 2; =Z}, i.e, under equal contexts, equal de-
cisions. This is a condition that is reminiscent of the notion of
non-anticipativity in Stochastic Programming. Importantly, this con-
dition is automatically satisfied if the solution to the lower-level
problem (7b) is unique for any value of w. Otherwise, the bilevel
program (7a)-(7b) would choose the Z; from the optimal solu-
tion set of (7b) that minimizes the upper-level objective function
(7a) given —i.e., by anticipating— the uncertainty outcome y;. This
is so because the bilevel program (7a)-(7b), as we have formulated
it, delivers the optimistic Stackelberg solution. For instance, let us
assume that there exists a value W such that f(z; gBL(x;; W)) = ¢
for all i e A/, where ¥ is a constant. In this case, the lower-levels
(7b) boil down to feasibility problems imposing that z € Z and
therefore, 2; can violate non-anticipativity and adapt to realiza-
tion y; for all i e . More importantly, using W in (8) would lead
to degenerate and highly suboptimal decisions under any context
X = x. This issue is reported in [5] for linear objective functions,
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where authors propose a convex surrogate function of ISP to train
meaningful instances of model g5F (-; wP). Similarly, we propose in
Section 4.3 a modified lower-level surrogate model for the strate-
gic producer problem in order to ensure non-anticipativity for any
parameter vector w.

Next, we discuss other surrogate decision-making models differ-
ent from (2), which have also been recently proposed to approxi-
mate the solution of (1). For this purpose, notice first that problem
(1) can be equivalently recast as

min E[f(zY)|X =x]=min Eo [f(z:Y)] (9)

where Q). represents the conditional probability distribution of Y
given X =x. Thus, a second family of surrogate decision-making
models can be introduced with the following general form:

r?EiZn Eg,[f(z:Y)] (10)

where §|X is an approximation of the unknown probability mea-
sure Q). that is constructed from the available sample S=
{(y;,x;), Vi e N}. For the surrogate problem (10) to be computa-
tionally tractable, the proxy §|X is often built as a discrete prob-
ability distribution supported on a finite number of points, more
specifically, on the y-locations of the sample, i.e., {y;, Vi € N'}. This
way, the solution to (10) under context X = x, which we denote as
ZML(x), can be generically expressed as:

M (x) e argmin )" g"(x, x;; w) f(z: yi) (11)
zez ieN

with {gML(x, x;; w), Vi e N'} being the probability masses that the
specific proxy Q|X that is used places on {y;, Vi € N'}. These masses
or weights are determined as a function gMt: ¥ x X x R? — R of
the historical contextual information x;, the current context x, and
some parameters w.

In essence, this scheme adapts the Sample Average Approxima-
tion (a well-known data-driven solution strategy in Stochastic Pro-
gramming [23,24]) to the case of conditional stochastic programs.
It was first formalized in [1] and, since then, has been subject
to a number of improvements (e.g., regularization procedures for
bias-variance reduction [25]; robustification [26]; and algorithmic
upgrades [27]) and extensions, e.g., to a dynamic decision-making
setting [4]. Recently, the work in [11] introduces a bilevel for-
mulation to optimally tune the parameters w that determine the
weights gMt(x, x;; w). Using our notation, the method proposed in
[11] can be formulated as follows:

WML ¢ arg min Ziyi 12a

€ gweRq;zi g\;f( i .Vl) (12a)

st. zieargmin Y g, x:w)f(zyy), VieN  (12b)
zeZ

PN i

where the function gMl: X x X x R - R used to compute the
weights can be chosen from a catalog of several classical machine
learning algorithms GML such as k-nearest neighbors, Nadaraya-
Watson kernel regression or Random Forest. The author of [11] re-
sorts to tailor-made approximations and greedy algorithms for
each machine learning technique that is used to construct func-
tion gML, but do not provide a general-purpose solution strategy
valid for any function gML. This approach, which is based on ma-
chine learning techniques, is called ML (stands for Machine Learn-
ing). After solving (12), the optimal decision zML(x) under context
X = x is obtained by solving (11) with w = wML,

The surrogate problems (2) and (10) are, by design, differ-
ent, in part because they are the result of distinct frameworks
to address the conditional stochastic program (1). The surrogate
problem (2) is based on the assumption that it is possible to
find a good decision z in terms of the conditional expected cost
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E[f(z;Y)|X = x] by optimizing that decision for a single scenario y
of the uncertainty Y. Naturally, all the complexity of this approach
lies in how to infer, from the data sample S, the single scenario
y that unlocks the best decision z. This inference process makes
use of global methods that consider all data points in the sam-
ple to obtain more robust decision mappings. In contrast, all the
difficulty of the surrogate problem (10) rests on how to retrieve a
good approximation of the true conditional distribution Q), from
the sample S. Such an approximation is performed using local ma-
chine learning methods that only employ data close to the given
context x and consequently, a large amount of data is required
to avoid overfitting. In more practical terms, embedding local ma-
chine learning methods into the estimation problem (12) makes
this problem computationally intractable in most cases. Besides,
the surrogate problem (2) is computationally less demanding than
(10), because the latter requires evaluating the cost function f(z; )
for multiple values of the uncertainty Y.

Finally, there is a third class of surrogate decision-making mod-
els that arises from the idea of using the sample S to directly
learn the optimal decision z as a function of the context x, this
way bypassing the need for constructing the estimate j or the
proxy distribution Q‘x. Following this logic, we seek a decision
rule or mapping gPR: X x R — R" from a family GPR so that
argmin,; E[f(z;Y)|X = x] ~ Z = gPR(x; w). Particularizing for the
empirical distribution of the data, this approach renders:
wPR e argmin } * f (g% (xi: w): 1)

ieN

(13a)

st. gRxpw)eZ VieN (13b)

One clear advantage of directly learning the optimal decision
policy is that, after solving (13), the decision zPR to be imple-
mented under context X = x is efficiently computed as follows:

Z2PR(x) = gPR(x; wPR) (14)

Actually, the mapping (14) constitutes the surrogate decision-
making model itself. This method, which aims at determining an
optimal decision rule, is denoted as DR (acronym of Decision Rule).
Nevertheless, feasibility issues may arise as this approach does
not necessarily guarantee that the resulting zPR obtained through
(14) belongs to Z for any plausible context x. The authors of
[3] propose and investigate this approach for the popular newsven-
dor problem, for which they consider a linear decision rule. Their
newsvendor formulation does not involve any constraint and there-
fore, decisions yielded by (14) are always valid. However, the use of
this approach is questionable for many other practical applications
in which decisions must satisfy a set of constraints.

In summary, the contributions of the proposed bilevel model
(7) with respect to the other approaches presented in this section
are:

Unlike the traditional approach (3), ours provides estimations
of y by leveraging information about the optimization problem
to be solved.

Unlike the existing “predict-then-optimize” methodology (6),
our approach is formulated as a generic bilevel optimization
that, under convexity assumptions, is reformulated as a single-
level optimization problem that can be solved using off-the-
shelf optimization software.

Unlike approach (12), ours makes uses of global estimation
methods that use all available data to infer the point forecast
of the uncertainty that unlocks the best decision. Therefore, our
approach is less prone to overfitting, especially for small data
samples. In addition, formulation (12) is more difficult to solve
than (7).

- Unlike approach (13), ours guarantees the feasibility of the re-
sulting optimal decision under any context.
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3. Solution strategy

In this section, we elaborate on how to solve the general-
purpose bilevel program (7) we propose to compute the best single
scenario y to be fed into the surrogate problem (2). To do so, we
particularize the generic formulation (1) as follows:

m(lyrg E[fo(z,s(Y); Y)|X =] (15a)
st fi(z,s(Y);Y) <0, VjeJ (15b)
he(z,s(Y);:Y) =0, VkeK (15¢)

where z constitutes the vector of here-and-now variables indepen-
dent of the uncertainty, s(Y) represents the wait-and-see decisions,
and constraints (15b), (15¢) must be satisfied for Q|,-almost all y
(i.e., with probability one). We also assume that fy, f; are convex
functions with respect to all variables, h; are affine functions, and
function gB is continuous in the parameter vector w.

Our method solves the following bilevel optimization prob-
lem:

whl e argwgllgg}fi Yien fo (21', §i§.Vi) (16a)
st. fi(Zi.S;y) <0, VjelVie~N (16b)
he(Gi.$:y) =0, VkeKVieN (16¢)

Zi e {argmin  fo(z.5: 8% (xi: w)) (16d)

st. fizs;8%(x;w)) <0, Vje] (16e)

he(z,s: g% (x;; w)) =0, VkeK},Vie N (16f)

On the assumption that the lower-level minimization problems
(16d)-(16f) satisfy some constraint qualification, the classical strat-
egy to solve (16) is to replace each lower level (16d)-(16f) with its
equivalent Karush-Kuhn-Tucker (KKT) conditions [28], that is,

BL i 5. &y
wicarg min g;fo(zl, 5 1) (172)
s.t. fj(fi, sﬁ-;y,) <0, V] 6_], VieN (17b)
hk(f,', §j;y1‘) =0, VkeKVie~N (17C)

V fo (2, si 88 (xis w)) + Z )»jivfj@h 53 82 (xis W)+

+ ) v Vhi (2 si; gBLqu; w)) =0, VieN (17d)

keK
fi(Z. s 8 (xiw)) <0, VjelVieN (17e)
hi(Zi. si: 88 (xsw)) =0, VkeK Vie N (17)
Ai=0, Vje]VieN (17g)
ifj(Zi5i: 8% (xi; w)) =0, Vje]VieN (17h)
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where A j;, vy; € R are, respectively, the Lagrange multipliers related
to constraints (16e) and (16f) for each lower-level problem; (17a)-
(17c) are, in that order, the objective function and constraints of
the upper-level problem, and constrains (17d)-(17g), (17h), are, re-
spectively, the stationarity, primal feasibility, dual feasibility and
slackness conditions of the lower-level problems. As discussed in
[29], problem (17) violates the Mangasarian-Fromovitz constraint
qualification at every feasible point and therefore, interior-point
methods fails to find even a local optimal solution to this prob-
lem. To overcome this issue, a regularization approach was first
introduced in [30] and further investigated in [31]. This method
replaces all complementarity constraints (17h) with inequality
(18c) below:

BL i 5 &
wiearg min ;;fo(z,-, Sy (18a)
s.t. (17b) — (17g) (18b)
_Z)Lﬁfj(fi,si;gm(xi;w)) <€, VieN (18¢)

JjeJ

where € is a small non-negative scalar that allows to refor-
mulate (17) as the parametrized nonlinear optimization problem
(18), which typically satisfies a constraint qualification and can
be then efficiently solved by standard non-linear optimization
solvers. Scholtes [30] prove that, as € tends to 0, the solution of
(18) tends to a local optimal solution of (17). In the remaining of
the manuscript, we will refer to this approach as BL-R.

Alternatively, the complementarity slackness conditions can be
linearized according to Fortuny-Amat [32] as follows:

whk eargwen@g;nf,i,r)l\ﬁ,u,-, ;fo(fi, i i) (19a)
s.t. (17b) — (17g) (19b)
Aji <upMP, Vje] VieN (19¢)

fi(Zsi: & (xsw)) = (w — 1)MP, Vje]VieN (19d)

u; €{0,1}, Vje]Vie~N (19e)

where uj; are binary variables, and MP MP ¢ R* are large enough
constants whose values can be determined as proposed in [33].
The resulting model (19) is a single-level mixed-integer non-linear
problem. We denote this method as BL-M.

Solving the bilevel problem (7) using either BL-R or BL-M is
valid for a conditional stochastic problem that satisfies the condi-
tions described in this section. Nonetheless, the complexity of solv-
ing the regularized non-linear problem (18) or the mixed-integer
non-linear program (19) highly depends on functions fy, f;, hy., gBr.
In some cases (see, for instance, the particular applications dis-
cussed in Section 4), problem (19) can be reformulated as a mixed-
integer linear/quadratic optimization problem that can be solved to
global optimality using standard optimization solvers. In the gen-
eral case, problems (18) and (19) can also be solved using off-the-
shelf optimization solvers, but global optimality may not be guar-
anteed. Notwithstanding this, local optimal solutions of the pro-
posed bilevel formulation (7) may still lead to optimal decisions
that are significantly better than those computed by FO or DR.
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4. Applications

In Section 2, we introduce a common mathematical framework
to present five different approaches for contextual decision-making
under uncertainty, namely, the predict-then-optimize strategies FO,
SP, and BL; method ML, which relies on a proxy of the true condi-
tional distribution that is built using machine-learning techniques,
and the decision-rule approach DR. Unfortunately, in the techni-
cal literature, methods SP and ML have only been applied to con-
ditional stochastic optimization problems with a specific structure
and they both lack a solution strategy for more general conditional
stochastic programs. For this reason, in this section, we limit our-
selves to comparing approaches FO, BL, and DR on various contex-
tual decision-making problems under uncertainty, each of which il-
lustrates a certain relevant aspect of our proposal. Section 4.1 com-
pares these methodologies using the newsvendor problem, a well-
known stochastic programming problem with simple recourse. The
proposed methodology is also applied in Section 4.2 to the prod-
uct placement problem, a two-stage stochastic programming prob-
lem with full recourse. Finally, Section 4.3 presents a strategic pro-
ducer problem formulated as a one-stage stochastic programming
in which the uncertainty only affects the objective function.

4.1. Newsvendor problem

We start with the popular newsvendor problem in the spirit of
Ban and Rudin [3], a work that elicited renewed interest [11,12] in
the solution to the conditional stochastic program (1). In the
newsvendor problem, the goal of the decision maker is to find the
optimal ordering quantity for a product with unknown random de-
mand Y. In turn, this (positive) demand may be influenced by a
random vector of features X representing, for instance, product in-
formation, weather conditions, customer profiles, etc. The decision
maker has, therefore, a collection of observations {(x;,y;), Vi e N},
which s/he would like to exploit to make an informed ordering
quantity z under the context X =x. Let d and r, with r>d > 0,
be the cost and revenue of manufacturing and selling one product
unit, respectively. This problem can be formulated as the following
conditional stochastic program:

miRn E[dz — rmin(z,Y)|X = X] (20)
Ze

Approaches FO and BL both follow a “predict-then-optimize”
strategy, whereby the ordering quantity is obtained as the solution
to the following surrogate decision-making model:

min dz - rmin(z,y) (21)
zeR

We can use an auxiliary variable s to get rid of the inner minimiza-
tion and write instead:

min dz-—rs (22a)
z,s

st. s<z (22b)

s<y (22¢)

whose solution is trivial, namely, z* = s* = .

FO and BL differ in the particular single value or scenario y that
each of them uses. In the case of FO, y is an estimate of E[Y|X = x].
Consequently, it becomes apparent that, for the newsvendor prob-
lem, approach FO is fundamentally inconsistent, because it is well-
known that the solution to (20) corresponds to the quantile %
of the demand distribution Y conditional on X = x. Naturally, this
quantile is generally different from E[Y|X = x].
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Now, if we take y = gBL(x; w) = wTx in our approach, the opti-
mal vector of linear coefficients wBl is computed as follows:

BL i 5 _ inG:. v:
wb e argvrvré]er; Zdz, rmin(Z;, y;) (23a)
ieN
s.t. Z e {arg r?lsn dz; —rs; (23b)
st. si<z (23¢)
si<wlx),VieN (23d)
which, based on our previous argument, boils down to:
BL ; 5 _ rmin(s. v
w e argmrgRI} ;;dz, rmin(z;, y;) (24a)
st. Zi=wlx;, VieN (24b)

Therefore, our approach coincides exactly with that proposed
in [3], which, in turn, is given by problem (13) in Section 2 when
PR (x; w) = wlx. This equivalence is far from being general though,
as we will see with the other applications below.

4.2. Product placement problem

Given a graph G = (B, A) with node-arc matrix A, in the prod-
uct placement problem, the goal is to decide the amount z, € R* of
a certain product to be placed in each node b € B of the grid [1].
After this decision is made, the demand for the product at each
node y, is realized, and the inventories of product throughout the
network are shipped across the arcs A so as to satisfy the actually
observed nodal demands. As in the newsvendor problem, these de-
mands may be affected by some exogenous factors X that may be
also random, but that are disclosed before the product placement
decision is to be made. Let h € RI8 and g € RM!I be the cost of ini-
tially placing products in the nodes of the network and the cost
of shipping products through the edges of the graph, respectively.
The product placement problem under uncertain demand, but with
contextual information, can be formulated as follows:

miéq E[c(z; Y)|X = x] (25)
z=
where
c(zy)=h"z+ min g'f+r'p (26a)
f=0,p=0
st. Af<z-y+p (26b)

In problem (26), we have included a variable vector p e RLBOI
to allow for unsatisfied demand, with the associated penalty cost
r € RIBl. Furthermore, the decision vector f e R represents the
amount of product shipped across the arcs of the network. The cost
function (26a) takes the form of a two-stage linear cost, with the
integration of a recourse problem. More importantly, unlike in the
newsvendor problem, the recourse is given by a full-fledged (lin-
ear) minimization problem. The surrogate decision-making model
associated with the predict-then-optimize strategies FO and BL is as
follows:

: T T T 27
ZZO?;SPZO hz+g f+r'p (27a)
st. Af<z—-3y+p (27b)

To ease the exposition and the notation that follows, we make
the additional assumption that r > h > 0, where the inequality
holds component-wise. In this case, variable vector p in (27) is zero
at the optimum and the surrogate model can be simplified to:

min  h'z+g'f (28a)

z>0,f>0
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st. Af<z—-J (28b)

As previously discussed, problem (28) is a deterministic mathe-
matical program whereby the decision z is solely optimized for the
point prediction of demand y. While the traditional FO approach
sets such a prediction to E[Y|X = x], the rationale behind the ap-
proach BL is to compute a W-parameterized function such that the
surrogate problem (28) delivers the decision z that minimizes the
in-sample cost, that is:

WB carg min Y h'z +g fi+rTp; (29a)
WeRIE:p ieN
st. Afi<z-yi+p. VieN (29b)
fipi=0, VieN (29¢)
2;cf{arg min  h'zi+g'fi (29d)
220, f;=0
st. Afi<zi—Wx;}, VieN (29e)

where we have taken § = gBL(x; W) = Wx with W e RIBI>P, As dis-
cussed in Section 2, the lower-level problem (29d) and (29e) must
have a unique solution. This can be guaranteed if, for example, all
the shipping routes that can be taken to satisfy each demand in
the graph entail a different cost. If this condition is not satisfied,
the degeneracy of the lower-level problem can be eliminated by
using classical results from the linear programming literature as
described in [34]. As stated in Section 3, the solution to (29) can
be addressed by replacing the lower-level linear program (29d) and
(29e) with its KKT optimality conditions:

WL ¢ argwrel;kiurﬂlxp g\;hTfi +& fi+ 1P (30a)
st. Afi<zi—yi+p. VieN (30b)

fupi=0, Vien (30c)
O<th-a)Lz=>0 Vie~N (30d)

0<(g+AToy) L fi=0, VieN (30e)
0<Gi—Af—~Wx) La;>0, VieN (30f)

where «; € RI8! is the vector of Lagrange multipliers associated
with constraint (29e). Thus, problem (30) can be solved by regu-
larizing the complementary slackness conditions or by using their
Fortuny-Amat big-M reformulation. In the latter case, we arrive to
a MIP problem that can be solved using commercial optimization
software such as CPLEX or GUROBL.

Finally, if we also take a linear decision mapping z(x) =
PR (x; W) = Wx where W ¢ RIBIxP, the DR approach solves the fol-
lowing minimization problem to compute the optimal matrix of
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linear coefficients WPR:

WPR ¢ arg min g W'z + g fi+ 17 p; (31a)
st. Afi<zi—yi+pi. VieN (31b)

fipi=0, Vien (31¢)

>0, Vie~N (31d)

Zi=Wx;, VieN (31e)

It is apparent that the estimation problems (30) and (31), which
BL and DR solve, respectively, are structurally different and so are
WBL and WPR in general. For instance, think of a graph for which
min{g,}eea > max{h,},cz. This represents a network where it is al-
ways cheaper to satisfy the nodal demand y,, b € B, through the
amount z, of product that is initially placed at the demand lo-
cation, that is, a graph where product shipping would be uneco-
nomical if the nodal demands were certainly known in advance.
Indeed, take the ¢ — th row of g+ ATq; in Eq. (30e) for any i € N,
that is, g + &o(¢),i — Xe(r),i» Where o(¢) and e(¢) denote the origin
and end nodes of arc ¢, respectively. We have that inf{g; + oty i —
Ce().i * o(e).i € [0, Mooy ] eey.i €10, ey I} = 8¢ — he(ry > 0. Hence,
fe=0,Vee A and the system of inequalities (30d)-(30f) boils
down to:

O<th—-a)Lz>0 Vie~N (32a)

0<(Z-Wx) La; >0, VieN (32b)

which, unlike (31d) and (31e), allows for feasible solutions in the
form Z,; = 0 with ngi <0 (and «;}, = 0), where w,, is the b — th
row of matrix W. Furthermore, recasting (31e) as Z; — Wx; = 0 and
setting o; = h, Vie N, it is trivial to see that any feasible point
of DR is also feasible for BL. Since the feasible region of (31) is
contained in the feasible region of (30), but the opposite is not
true, the optimum of (30) is in general lower than that of (31).

4.3. Strategic producer problem

Here we apply our decision-making framework to the prob-
lem of a strategic producer partaking in a forward market [16].
This strategic player must decide the produced quantity g € R that
maximizes her profits while facing some uncertainty on market
conditions. Let c(q) : R — R* denote the generation cost function
whose parameters are assumed to be known with certainty. Let
p(q:Y) : R x R™ — R represent the inverse demand function ex-
pressing the impact of the generation quantity q on the good’s
price. For some goods such as electricity, the inverse demand func-
tion varies depending on the season of the year, the day of the
week, or the hour of the day. Besides, this function is also uncer-
tain when producers must make their generation decisions g, since
it may depend, for example, on weather conditions. If Q represents
the known feasible region of variable q according to technical or
economic constraints, the strategic producer must solve the follow-
ing conditional stochastic optimization problem:

rgleiqn E[c(q) — p(q; Y)qIX =X] (33)
As it is customary, we assume that the price and the demand

are linearly related as p(q; «, 8) = o — Bq where ¢ e R and 8 € R
are unknown parameters. Similarly, we assume that the production
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cost is computed through a quadratic cost function c(q) = cyq? +
c1q where cq, c; > 0 are known parameters related, respectively, to
proportional production costs (such as fuel cost) and the increase
of marginal costs due to technological factors (such as efficiency
loss) [35]. In order to ease the notation, we define o’ = o — ¢; and
B’ = B + c,. Finally, we consider that the production quantity q is
bounded by known capacity limits, ie., ¢ <q <q with ¢,q e R*.
Thus, problem (33) can be reformulated as:
min  E[B'q? — a'q|X = X] (34)
q=q4<q

Since the quantity decision q is independent of the outcome of
the uncertainty (8’, o), the above can be further simplified to:
min  E[B'|X =x]¢*> - E[e/|X =x]q (35)
9=q=<q

Therefore, the optimal solution g* is driven by the conditional
expected values of o’ and B’. To be more precise, since 8’ > 0, ¢*
could be equivalently computed as follows:

q*(x) € arg min
4=9=q

2 _ Elo'|x] . Ela'[x] _
TR 17 W {q’ 2E[,B’|x]’q}

(36)

Unfortunately, E[o’|x] and E[B’|x] are both unknown and there-
fore, they need to be estimated somehow. As explained further in
Section 5.2.1, the producer has available a set of historical obser-
vations S = {(oel.’, Bi.x),Vie /\/} with of € R, B/ e R* and x; € RP
in order to accomplish such a task. At this point, it should be un-
derlined that the strategic producer problem (33) is of a distinctly
different nature from that of the newsvendor problem (20) and the
product placement problem (25). Indeed, the conditional stochastic
program (33) has no recourse and the uncertain parameters appear
only in its objective function. Consequently, solving (33) is appar-
ently as “simple” as estimating the two conditional expectations
E[e’|x] and E[B’|x]. Our claim, however, is that the way the pro-
ducer draws decisions from a finite data sample (all we usually have
in practice) may have a significant impact on the actual expected
performance of the producer’s strategy. Actually, the best estimates
of E[a’|x] and E[B’|x] from a statistical sense do not necessarily re-
sult in the best offer q.

According to the predict-then-optimize strategies, the surrogate
model of this problem is formulated as follows:
min B'¢®-d'q (37)
q9<q<q

As explained in Section 2, the traditional approach aims at
learning the uncertain parameters o/, 8] as a function of the avail-
able information x;. If we assume the family of linear functions,

T

that is, &/ = whx;, B = wpx; with we, wp € RP, and we choose the

squared error as the loss function IO, then the standard imple-
mentation of (3) is:

wiP ¢ argvgneirr{;pZ(a{ —wlx;)? (38a)
“ ieN
FO . / Ty N\2
wp e argvg?elﬂg;pg(ﬁi - Wpx;) (38b)

The optimal quantity under context X = x is the solution to the
following optimization problem:

a7 (x) e arg min W) xq” — (W) xq
WFO TX _
- g € :q, 2((wFﬁO))qu} (39)
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Alternatively, wy, and wg can be determined following the pro-
posed approach by solving the following bilevel formulation:

> B - ofd;

ieN

BL ,,BL :
wWoo, Wz € arg  min 40a
> p gwa,wﬂe]RP (40a)

s.t. §; € arg min wﬁxlql —wlxq, VieN

q=qi=

(40Db)

For this particular application, the bilevel optimization problem
rendered by the proposed approach has a significant drawback, be-
cause the global optimal solution of (40) is wy = wg = 0. Conse-
quently, the lower-level problem (40b) can be replaced by the fea-
sibility condition q < §; < q, and the optimal values of §; are de-
termined as if uncertain parameters o’ and B’ were known in ad-
vance, which violates non-anticipativity. While this solution does
lead to the minimum value of objective function (40a), it is use-
less to determine the optimal decisions for any context X = x. This
degenerate solution of the proposed approach occurs because all
coefficients of the objective function (37) are uncertain. Interest-
ingly, this shortcoming does not affect the newsvendor and prod-
uct placement problems, because the uncertainty only affects the
feasible region in those applications.

In this paper, we propose to ensure non-anticipativity by for-
mulating a bilevel optimization problem that considers the follow-
ing modified surrogate model:

min ¢*> - yq (41)
4=q<q
where y = 2. For known values of o’ and A, the optimal solution

of (37) and (41) coincide. However, surrogate model (41) is simpler
since it only includes one uncertain parameter instead of two. As-
suming a linear relationship between the new uncertain parame-
ter y and the contextual information, the proposed methodology
yields the following bilevel problem:

BL : A2 ~
wyrearg min > i} - ofd; (422)
ieN
s.t. §; € arg min q, —wl VXidi, VieN (42b)

q=qi=

Formulation (42) has the following advantages with respect to
(40): (i) it includes fewer parameters and therefore, it is less prone
to overfitting, (ii) it ensures non-anticipativity for any parameter
vector wy, and (iii) under certain conditions, it is able to retrieve
the true model that relates random variable y and the context X
and the optimal solution to (34) as the sample size || grows to
infinity, as shown in Proposition 1 in Appendix A. By replacing the
lower-level problem with its KKT conditions, we obtain the follow-
ing single-level problem:

wh e arg 1 mln > Bla; (43a)
ieN

st 2 —whxi—Ai+XA;=0, VieN (43b)

0<(Gi—q) L2=>0 VieN (43c)

0<(@—G)LA>0, VieN (43d)

where A;, A; are the dual variables corresponding to the capac-
ity limit constraints. Notice that if complementarity conditions
(43c) and (43d) are reformulated using the Fortuny-Amat ap-
proach, problem (43) can be solved to global optimality as a
quadratic mixed-integer program using off-the-shelf optimization
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Table 1

Data sample S for the illustrative example.
i Xi o B Vi
1 2 2 10 0.20
2 4 17 10 1.70
3 8 8 3 2.67
4 9 16 6 2.67

software. According to this procedure, optimal decisions under
context X = x are made by solving:
WEhTx
_ q
2

(44)

q*(x) e arg min g% — (W5H)"

xq= qt(x) € {q,
q=q= q

Finally, we can directly learn the optimal production as a func-
tion of the known information as proposed in [3]. Assuming the
linear mapping §; = ng,- with wg € RP, problem (13) for this par-
ticular application is formulated as:

weR e arg r m1n Z,B (Wix;)* — ajwgx; (45a)
ieN
st. gq=wyx;<q VieN (45b)

Formulation (45) is a convex quadratic optimization problem
and can be then solved using commercial software such as CPLEX.
In line with (14), the optimal quantity under context X = x is di-
rectly computed as:

"R (x) = W®)Tx (46)

Although not true in general, approaches (43) and (45) may
lead to the same solution under specific conditions. For instance,
if the produced quantity g is not limited by minimum/maximum
bounds, then constraint (43b) boils down to §; :ng,-/z. Conse-
quently, the solutions of (43) and (45) satisfy that wg® = w3 /2 and
therefore, gBL(x) = qPR(x) for any context X = x. As we show in the
following section, the decisions gB- delivered by our approach are
significantly more profitable than gPR in the constrained case.

5. Numerical simulations

As an additional contribution, we assess and compare the
performance of the proposed approach for the strategic pro-
ducer problem using numerical simulations. In Section 5.1 we il-
lustrate the advantages of BL with respect to FO and DR us-
ing a small example with a reduced data sample. Additionally,
Section 5.2 presents the numerical results of a realistic case study
that uses real data from the Iberian Electricity Market and the
Spanish Transmission System Operator [36,37].

5.1. Hllustrative example

This section aims at gaining insight into the performance of
the proposed approach with a small example of the strategic pro-
ducer problem. For the sake of simplicity, we only consider four
realizations of the uncertain parameters «;, 8/ and a single fea-
ture x; € [0, 10], whose values are shown in Table 1. Approach FO
predicts the uncertam parameters usmg linear functions in the
form &; —wFo +W 1X; and /3, = ﬂ0+wﬁ1x,, approach BL as-
sumes that 7 _W}B;%0+W§F1xi; and approach DR considers §; =
wg% + wgl}xi. These three approaches are compared with a bench-
mark method (BN) that assumes perfect knowledge of the uncer-
tain parameters «’, 8’ and, consequently, yields the best possible
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(a) Unconstrained case.

(b) Constrained case.

Fig. 1. Decision quantity q versus feature x for the illustrative example.

Table 2

Optimal offer and income for the unconstrained illustrative
example (in-sample results). Parameter vectors w are: wfo) =
5A000.w(‘”;'5_’1 =1.000, W;% = 12A298,w;’?] = 70.878,W‘;F0 = —0.138,

wh = 0.341, wP¥ = —0.069, wl% = 0.170.

qQ q2 a3 q4 1€ RI(%)

BN 0.10 0.85 1.33 1.33 23.33 100.0
FO 0.33 0.51 1.23 1.59 21.21 91.0
DR 0.27 0.61 1.29 1.46 22.36 95.9
BL 0.27 0.61 1.29 1.46 22.36 95.9

offer for each time period. Obviously, this method cannot be im-
plemented in practice and, accordingly, is just used here for com-
parison purposes. Given the reduced size of this example, methods
BL-R and BL-M provide the same results and are thus jointly re-
ferred to as BL.

First, we deal with the unconstrained case, that is, the case
in which the capacity constraints are disregarded. Table 2 shows
the in-sample results obtained from methods BN, FO, DR, and BL,
namely, the optimal production quantity for each time period g;,
the absolute income (I), and the relative income with respect to
the benchmark (RI). Notice that the income for each time period
can be computed as —,B,.’qi2 + @/q;. As discussed in Section 4.3, in
connection with the unconstrained case, coefficients wPR are equal
to wBL/2 and the decisions and incomes obtained by DR and BL
are the same as a result. It is also interesting that the income of
these two methods is 5% higher than that of FO. To explain this,
we refer to Fig. 1a, which depicts the optimal production quanti-
ties given by the different methods as a function of the context
x € [0, 10], namely,

BL BL
qFO (X) — WE(,)O + Wfl(,)lx qBL (X) _ W}’vo + WV~1X

2 (W;}(,)o + wg‘?lx) 2
q7R(x) = W + wiix (47)

This figure shows that methods BL and DR can return deci-
sions much closer to the benchmark ones than method FO for the
four data points in the sample. Therefore, even for unconstrained
optimization problems, the proposed methodology may outper-
form the classical “first-predict-then-optimize” approach, which is
purely based on reducing the error of forecasting the uncertain pa-
rameters, simply because minimizing this error is not necessarily
aligned with maximizing the decision value.

Now we consider the constrained case, that is, we bring the ca-
pacity constraints back into this small example. In particular, the

Table 3

Optimal offer and income for the constrained illustrative
example (in-sample results). Parameter vectors w are: W) =
5.000, w, = 1.000, wg% =12.298, w;ﬁ =-0.878, wp', = —1.300,

Wi, = 0.750, wp = 0.158, g = 0.094.

[ qQ a3 q4 () RI(%)

BN 0.10 0.85 1.00 1.00 22.33 100.0
FO 0.33 0.51 1.00 1.00 20.65 92.5
DR 0.35 0.53 0.91 1.00 20.50 91.8
BL 0.10 0.85 1.00 1.00 22.33 100.0

minimum and maximum outputs of the strategic producer are set
to 0 and 1, respectively. Similarly to Table 2, the in-sample results
obtained in the capacity-constrained case are collated in Table 3,
where we can see that the optimal quantity g; reaches its maxi-
mum value for some time periods and methods FO, DR and BL all
provide different results. Methods FO and DR achieve an income
7.5% and 8.2% lower than the benchmark. This poor in-sample per-
formance is better understood by means of Fig. 1b, which similarly
to Fig. 1a, represents the optimal quantities as a function of the
context for the constrained case according to (39), (44) and (46).
First, since method FO is unaware of the feasibility region of the
original conditional stochastic problem, it provides the same pre-
diction of the uncertain parameters «, § in the unconstrained and
constrained cases. However, using these forecasts in the surrogate
model (37) enforces g =1 for x > 7.1 in the constrained case. As
observed, reducing the forecast error of «, 8 does not lead to the
maximization of the decision value in the constrained case either.
Second, method DR must ensure feasible solutions for all samples,
a condition that also leads to quite poor approximations of the
optimal quantities for most values of the context x. Furthermore,
this approach would return infeasible solutions q > 1 for x > 9 as
shown in Fig. 1b. On the contrary, the proposed approach BL can
find a linear relation between y and x to be used in the surrogate
model (41) that results in decisions g that perfectly match those
provided by the benchmark for the four data points and therefore,
this method achieves the highest possible income in sample.

In summary, this small example sheds light on the reasons why
the proposed methodology outperforms existing ones for both un-
constrained and constrained optimization problems under uncer-
tainty: Our approach provides forecasts of the uncertain parame-
ters that take into account the objective function and feasible re-
gion of the decision maker. Such enhanced forecasts translate into
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p
)
e . pi(q) = ai — Biq
p(r) * . /

r

Fig. 2. Inverse residual demand curve p(r) (solid) and fitted inverse demand func-
tion p;(q) (dashed) in the interval [0, §]. The intercept and slope of the fitted line
are «; and —f;, respectively.

decisions that are much closer to those obtained in the ideal per-
fect information instance.

5.2. Case study

In this section, we compare the proposed approach with exist-
ing ones using realistic data from the Iberian electricity market, as
described in detail in Section 5.2.1. Sections 5.2.2-5.2.4 investigate
how the type of generation portfolio, the quadratic cost term cy,
and the residual demand elasticity impact the performance of the
proposed methodology, respectively. These three sections only in-
clude the global optimal solutions given by method BL-M. Finally,
Section 5.2.5 provides computational solution times for all the ap-
proaches and discusses the differences between BL-R and BL-M in
that respect.

5.2.1. Experimental setup

In order to test our proposal, we consider a realistic case study
based on actual data from the Iberian electricity market. We con-
struct a data set of the form {(x;, &;, B;), Vi e N'} from which we
derive the rest of the parameters required for our simulations as
explained in Section 4.3. We gather raw market data from the
forward market OMIE [36] to compute parameters «;, B; of the
inverse demand function. Furthermore, we collect wind and so-
lar power forecasts of the aggregated production of Spain to be
used as a vector of contextual information x;. The wind and solar
forecasts, originally published by the Spanish TSO, are downloaded
from the ENTSO-e Transparency Platform [37].

Historical raw hourly block-wise bids and offers submitted by
buyers and sellers to the Iberian day-ahead energy market are pro-
cessed to obtain parameters «;, B; as follows. For each hour of
the year, we have access to the set of bids and offers defined as
{(4p. Pp). Vb € B}, {(qo. Po), Vo € O}, respectively, where qy,, is the
amount of energy to buy/sell at price pj,. Thus, the residual de-
mand r to be potentially covered by a new producer entering the
market for each possible price p is defined as r := ZbeB:prp qp —
> 0c0:po<p Jo» that is, the aggregated demand minus the aggregated
production. The step-wise function relating the residual demand r
and the electricity price p is plotted in Fig. 2 for illustrative pur-
poses.

Now consider that a new strategic producer enters the mar-
ket with an offer to sell quantity q at offer price 0. If we as-
sume that the remaining bids and offers stay unaltered, the market
price would decrease following the right-hand part of the step-
wise function depicted in Fig. 2. Therefore, a strategic producer

10
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aiming at maximizing her profit is interested in modeling the de-
pendence between her offered quantity g and the market price
p in the shaded area, with parameter § being a constant suffi-
ciently larger than the producer’s maximum generation capacity.
In connection with Section 4.3, we approximate said dependency
using a linear function such that p;(q) = «; — B;q as illustrated in
Fig. 2 and therefore, the values of «;, B; for each hour are ob-
tained by determining the linear function that best approximates
the blocks shaded in gray.

We collect data from November 2018 to October 2019 in order
to build a data set of 8600 h (almost one year), which is divided
into 43 bins of 200 consecutive samples. Each bin is randomly split
into training and test sets with a ratio of 80%/20%, respectively.
This process is repeated five times for each bin. Therefore, each ap-
proach is solved for 215 different training sets of 160 samples, and
the obtained solutions are evaluated using the corresponding 215
test sets of 40 samples each. The out-of-sample results provided in
Sections 5.2.2-5.2.5 are obtained by averaging the outcomes over
these 215 test sets. We select a value of § equal to 5 GW in order
to encompass enough bids and offers to obtain accurate approxi-
mations of p;(q) throughout the whole data set. We determine the
optimal parameters w through problems (38), (43), and (45), which
we denote FO, BL and DR, respectively. More specifically, we name
BL-M the Fortuny-Amat big-M reformulation of model (43) and
BL-R the regularized counterpart, which are a particularization of
(17) and (18), respectively.

Each bin is executed in parallel with the following resources:
1 CPUs Intel E5-2670 @ 2.6 GHz and 1 Gb of RAM. Each instance
of model BL-M is solved using the MIQP solver CPLEX [38] for a
maximum time of 20 min or a relative gap of 10-8. On the other
hand, BL-R is executed using the NLP solver CONOPT [39] without
time limit.

5.2.2. Impact of the generation portfolio

As previously stated, the main advantage of our approach is
that it yields forecast values for the uncertain parameters that are
tailored to the optimization problem by which the strategic power
producer determines her optimal market sale. However, such an
advantage may translate into higher or lower incomes depend-
ing on the firm’'s generation portfolio. In this section, therefore,
we evaluate the performance of the various approaches for three
generic power plants characterized by different linear costs (c;)
and capacities (q).

Table 4 provides the values of ¢y, ¢; and g for these three
generic units. For simplicity, the minimum output g of all units is
assumed equal to 0 and the value of ¢, is set to 0.005 € [MWh?
[35]. The base unit can represent a nuclear power station and is
characterized by low fuel cost and high capacity. The medium unit
can be, for example, a carbon-based power station with a lower
capacity and higher fuel costs. Finally, peak units, such as com-
bined cycle power plants, typically have the highest fuel cost and a
smaller generation capacity. Table 4 also includes the percentage of
time periods in which ¢BN = 0, 0 < ¢BN < g and ¢BN = g denoted as
Ngen_gr No_geng» and Nen_g, respectively, where gBN represents
the optimal quantity that the strategic firm would place into the
market under the true inverse demand function (that is, the so-
lution given by the benchmark approach). It is observed that the
base unit generates at maximum capacity for most times periods
and is only shut down in 8% of the cases. The medium generating
unit is idle 32% of the time (if prices are too low) and is at maxi-
mum capacity during the 39% of the time periods. Finally, the peak
unit is not dispatched most of the time since electricity prices are
usually below its marginal production cost.

Table 5 provides the out-of-sample results computed by av-
eraging over the 215 test sets of 40 samples each described in
Section 5.2.1. These results include the absolute income for the
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Table 4
Generation technology data.
ci(€ MWh)  cp(€ [MWh2)  GIMW)  Nm_o(%)  Noogmnog(%)  Now_g(%)
Base 10 0.005 1000 8 16 76
Medium 35 0.005 500 32 29 39
Peak 50 0.005 250 79 12 9
Table 5 Table 6
Impact of generation technology (Out-of-sample results). Income distribution for the peak generating
unit (Out-of-sample results).
IBN(M€)  RIFO(%) RIPR(%)  RIBUM(%)  INFESPR(%) ( P )
Base 176.7 96.1 94.6 96.3 49 BN Fo DR BLM
Medium  20.9 77.4 62.5 80.0 1.7 No(%) 206 9.0 6.6 10.1
Peak 1.2 44.1 18.9 58.7 0.1 Nio(%) 00 37 3.0 3.4
Nieo(%) 794 873 904 864
I*(Me) 123 073 037 087
I-(Me) 000 -019 -014 -0.15
benchmark approach (IBN) for the considered time horizon, the rel-
ative income (RI) for methods FO, DR and BL-M, and the percent- Table 7
age of time periods for which method DR provides infeasible solu- Operating regime of a medium generating unit (c; = 35€
tions (INFESPR). A first obvious observation is that, as expected, the [MWh, g = 500MW).
absolute income is higher_for bage units and lower for peak' units. (€ MW?)  N_o(®)  No_gn_o(%)  Nim_g(%)
A second, probably more interesting remark relates to the impact o001 2 P s
of the uncertainty about the inverse demand function on the mar- 0.005 3 29 39
ket revenues accrued by each generating technology. Since the base 0.001 32 15 53
unit is at full capacity most of the time, the uncertainty pertaining
to the residual demand does not affect revenues that much, and
the three methods obtain relative incomes above 94%. On the con- Table 8 ) ) )
trary, the participation of the medium and peak units highly de- Impact of parameter ¢, on a medium generating unit (Out-of-sample results).
pends on market conditions and therefore, this very same uncer- co(€ [MWh2)  IBN(Me) RIFO(%)  RIPR(%)  RIB-M(%)  INFESPR(%)
tainty remarkably c!eterlorates.ma_rket revenues, with the eventual 001 163 739 60.0 76.4 11
result that the maximum relative incomes amount to 80% and 59%, 0.005 20.9 77.4 62.5 80.0 1.7
respectively, for the method featuring the best performance (which 0.001 25.5 81.2 65.6 83.0 1.0

is BL-M).

On a different front, the DR approach produces infeasible of-
fers in a considerable number of time periods, whereas FO and BL-
M are guaranteed to provide feasible production quantities in all
cases. The percentage of periods for which method DR results in
an infeasible q is higher for the base unit because the medium and
peak units are idle more frequently. For this particular application,
making DR decisions feasible can be easily achieved by computing
min(max(g;, q), ). However, this post-processing step to guarantee
feasibility can be much more challenging in applications with gen-
eral convex feasible sets. It is also apparent that the DR approach
provides the lowest RI for the three cases considered and therefore,
this method is not even recommended for decision-making models
where the decision vector is simply bounded component-wise.

Finally, we notice that, for the three generation technologies,
the proposed method BL-M always provides higher incomes than
the FO approach. However, relative income improvements vary
widely for each case. For the base unit, the relative income of BL-
M is only 0.2% higher than that of FO. This is understandable since
this power plant is at full capacity most of the time and thus, the
impact of the uncertainty is comparatively minor, as we mentioned
before. For the peak unit, in contrast, the relative income of BL-M
is 14.6% higher than that of FO. Note that, unlike for base units,
making small errors in the forecasts of the market conditions can
be catastrophic for peak units, because such deviations may mean
the difference between producing nothing or producing at max-
imum capacity. The ability of BL-M to reduce the forecast error
when consequences are worse, together with the lower absolute
incomes of peak units, explains this high difference in percentage.
The gain of BL-M with respect to FO for the medium unit has an
intermediate value of 2.6%.

To conclude this section, Table 6 includes, for the peak gener-
ating unit, the percentage of periods with a positive income, with

1

a negative income and with an income equal to zero, denoted as
Ms0, Mo and M_g, in that order. The total sum of positive and
negative incomes is also provided in the last two rows, represented
by the symbols [T and I~, respectively. Interestingly, BL-M achieves
the highest percentage of periods with a positive income and suc-
ceeds in providing the highest value of I*.

5.2.3. Impact of parameter ¢,

While parameter c; basically depends on the cost of the fuel
used by each unit, the interpretation of ¢, is not as straightfor-
ward. Indeed, this parameter measures the decrease in the plant
marginal cost as production increases and is connected to techno-
logical aspects of the plant’s economy of scale, like the way the
plant efficiency varies for different operating points. For this rea-
son, in this section, we investigate the impact of c, on the per-
formance of the proposed method. Notice that, if ¢ =0 MW, then
the unit marginal costs range from c; to ¢; + ¢q. In a similar way,
as Table 4 does, Table 7 shows the operating regime of a medium
generating unit with ¢; = 35€ /MWh, g =500 MW and different
values of c,. As expected, a decrease in ¢, entails a reduction in the
marginal production cost of the plant and, as a result, the amount
of electricity the strategic firm places into the market increases.

Table 8 provides the same results as Table 5, but for different
values of ¢, and the medium generating unit only. Naturally, re-
ducing the plant marginal costs increases both the absolute income
for the benchmark approach and also the relative income achieved
by all methods. Nevertheless, BL-M proves to be between 1.8% and
2.6% more profitable to the producer than the traditional FO ap-
proach for the values of ¢, considered.
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Table 9
Impact of residual demand elasticity (Out-of-sample results).
IBN(Me)  RIFO(%)  RIPR(%)  RIBUM(%)  INFESPR(%)
Normal 20.9 774 62.5 80.0 1.7
Low-elast  18.6 74.7 60.0 77.1 1.7
Table 10
Comparison of BL-M and BL-R (Out-of-sample results).
RIBEM(%) RIBIR(%)
Base 96.3 96.3
Medium 80.0 79.2
Peak 58.7 58.4

5.2.4. Impact of the residual demand elasticity

So far we have centered our study on the cost structure of the
generation portfolio owned by the strategic firm. Here, on the con-
trary, we focus on the elasticity of the market residual demand.
Roughly speaking, this elasticity is inversely proportional to pa-
rameter $ of the inverse demand function. Bearing this in mind,
we compare the next two market situations, namely, the “Normal”
and the “Low-elast” instances. The former corresponds to the val-
ues of B in the original data set, while the latter is obtained by
multiplying these B-values by two.

Table 9 shows the incomes provided by each of the considered
methods relative to those of the benchmark. The numbers corre-
spond to the medium power plant of Table 4. The overall effect of
increasing the residual demand elasticity (lower B-values) is analo-
gous to that of decreasing parameter c;, i.e., the involvement of the
strategic producer in the market augments, thus leading to higher
revenues. Results in Table 9 show that the proposed BL approach
outperforms FO and DR for different values of the residual demand
elasticity, improving the competitive edge of the strategic producer
in more than 2% with respect to FO in terms of relative income.

5.2.5. Computational results

In Sections 5.2.2-5.2.4 we have only included results from BL-
M, and not from BL-R, because the former variant of the bilevel
framework we propose guarantees global optimality for the strate-
gic producer problem for appropiate values of large constants
MP, MP. However, solving model BL-M can be computationally very
expensive. Alternatively, local optimal solutions of the proposed
bilevel model (43) can be efficiently found by way of the particu-
larization of the regularization approach (18) that we named BL-R.

Next, we first compare the solutions given by methods BL-
M and BL-R. In order to solve model BL-R, we iteratively shrink
the regularization parameter € taking values from the discrete set
{106,104, 102, 1,10-1,1072, 0}. In each iteration, we initialize the
model with the solution provided by the previous problem. It is
also worth mentioning that method BL-M is warm-started with the
solution delivered by BL-R.

Results in Table 10 are intended to compare the relative in-
comes of BL-M and BL-R for each generating unit whose data is
collated in Table 4. Although method BL-R logically yields lower
incomes, the differences with respect to BL-M are below 0.8%. This
means that if model (40) does not satisfy the conditions to be re-
formulated as a MIQP or the computational resources are limited,
then a good solution (i.e., a solution with a small loss of optimal-
ity) can be efficiently computed by solving the regularized NLP ver-
sion of our approach.

Finally, we compare the computational burden of methods FO,
DR, BL-M, and BL-R. The average simulation time invested in solv-
ing problems (38), (43) and (45) for the three generation technolo-
gies are indicated in Table 11, where the maximum solution time
has been limited to 20 min for all methods. These results high-
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Table 11
Average computing time.
FO(s)  DR(s) BL-R(s) BL-M(s)
Base 0.24 0.65 3.90 197.77
Medium  0.35 1.06 6.80 149.89
Peak 0.26 0.78 4.62 22.68

light the higher computational burden required by BL-M to ensure
global optimality. On the other hand, the computing times of BL-
R are very affordable, especially considering the competitive edge
that this method gives to the strategic firm.

6. Conclusions

In this paper, we have addressed the problem of data-driven
decision-making under uncertainty in the presence of contextual
information. More precisely, our ultimate purpose has been to con-
struct a parametric model to predict, based on some covariate in-
formation, the uncertain parameters that are input to the optimiza-
tion model by which the decision is made. To this end, we have
proposed a bilevel framework whereby such a parametric model
is estimated taking into account the impact of its outputs on the
feasibility and value of the decision. Under convexity assumptions,
we have provided two single-level reformulations of the bilevel
program, namely, a non-linear regularized optimization problem
and a mixed-integer non-linear reformulation based on the use of
large enough constants. When compared to alternative approaches
available in the technical literature, ours features two major ad-
vantages: it guarantees feasibility in constrained decision-making
problems, and its solution can be directly tackled using off-the-
shelf optimization solvers under convexity assumptions.

We have theoretically compared our approach with existing
ones for three different applications, namely, the newsvendor
problem, the product placement problem, and the strategic pro-
ducer problem. Additionally, we have evaluated the performance
of our approach and its practical relevance through a realistic case
study of a strategic producer that participates in the Iberian elec-
tricity market. Specifically, numerical results show that our frame-
work not only significantly increases the revenue streams of the
firm in general, but also proves to be critical to generation port-
folios mainly consisting of peak power units. Indeed, the market
revenues of a strategic peak generation portfolio are specially sen-
sitive to the uncertainty in the inverse demand function. Therefore,
in this case, the strategic firm may put at risk the bulk of its mar-
ket incomes, by being left out of the market or trading in deficit.
Our approach, however, is, by construction, aware of that sensitiv-
ity and thus, is able to retain most of the profit the firm would
make under a perfectly predictable inverse demand function.

Potential extensions of this work would include the use of more
advanced techniques in the resolution of our bilevel framework
such as those employed in more general MPCC problems. Likewise,
the generalization of our approach to multi-stage decision-making
problems under uncertainty requires further analysis.
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Appendix A. Asymptotic consistency

Proposition 1. Let S = {(a{, /,x), Vie N} be an i.i.d sample of size
N and suppose that there exists a linear relationship between o’ and
B’ > 0 given by %—; =aTx+ &, with & being a zero-mean noise inde-
pendent of x, ' and ', and that the expectations E[a’], E[B’] and
E[a’x] are all finite. Then, it almost surely holds in the limit N — oo
that the optimizer of the problem

s 1 1452 14
min  — g7 — ol q; Ala
o g gﬂlql o/d; (A1a)
st. g earg min g7 —w]xq;, VieN (A.1b)
q=qi=q

with W c RP being a compact set containing a, is attained at
wy =a.
Y

Proof. First, notice that %—; =a'x+& implies that Eg:m =a'x,

since o’ = B’ a’x+ B’€, and thus, E[a’|x] = aTxE[B’|x] given the
independent nature of the noise &.

The true expectation problem associated with the sample aver-
age approximation (A.1) is given by:

min / (BE(x) - '4())Q(dx. df’ o) (A2a)
wy eW; §(x) X xR+ xR
st. g(x) e arg min ¢° —wjxq, VxeX (A.2b)
q=q=<q

where Q is the joint probability law governing the random param-
eters B’ and «’ and the feature vector X.

We first show that a is the unique solution to problem (A.2). To
this end, we note that the lower-level problem (A.2b) renders the
following decision mapping for almost all x € X:

. [ wix
4(x) = max | g, min T,q

which is a continuous function in w,,.
Now let Qx be the probability measure of X. Consider the fol-
lowing optimization problem, which is a relaxation of (A.2).

(B'a*(x) —/q(0))Q(dx. dB’.da’) =

min /
q(x)elg.ql. VxeX  JxxR+xR

| (@ GoBIB ] — gl 1) Qx () =

min
q(x)€lq.q], Vxex

13

Omega 108 (2022) 102575

/ min
x \dx)e€lg.q]

The inner pointwise minimum results in the following optimal de-
cision rule:

q(x) = max (q, min (mﬁ) = max (q, min (?q))

for almost all x € X.

Therefore, since w), = a is feasible in the true expectation prob-
lem (A.2), then it is also an optimal solution to this problem. Fur-
thermore, this solution is unique, if there exists a subset of X with

a*(OE[B'|x] - CI(X)IEIOl’IX])Qx(dX)

measure greater than zero such that q < ZI?E[E%/,'TJ] <q.
In addition, note that all the samples in S are i.i.d.
and that B’q*(x) —a’q(x) is dominated by the function

max (ﬂ’ﬁz—a’ﬁ,ﬁ’gz—a’g, 2‘—5) which is integrable be-
cause the expectations E[a’], E[f’] and E[a'x] are all fi-

nite. Indeed, since % a'x+& by assumption, we have that

B~
B[ %] = 1B’ ] = JE[0/ (a'x + £)] = G E[a'x]

Therefore, by invoking Theorems 5.3 and 7.48 in [40], we have
that the minimizer of the sample average approximation problem
(A1) converges to a almost surely as the sample size N grows to
infinity. O
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