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a b s t r a c t 

In this paper, we propose a novel approach for data-driven decision-making under uncertainty in the 

presence of contextual information. Given a finite collection of observations of the uncertain parame- 

ters and potential explanatory variables (i.e., the contextual information), our approach fits a parametric 

model to those data that is specifically tailored to maximizing the decision value, while accounting for 

possible feasibility constraints. From a mathematical point of view, our framework translates into a bilevel 

program, for which we provide both a fast regularization procedure and a big-M-based reformulation that 

can be solved using off-the-shelf optimization solvers. We showcase the benefits of moving from the tra- 

ditional scheme for model estimation (based on statistical quality metrics) to decision-guided prediction 

using three different practical problems. We also compare our approach with existing ones in a realistic 

case study that considers a strategic power producer that participates in the Iberian electricity market. Fi- 

nally, we use these numerical simulations to analyze the conditions (in terms of the firm’s cost structure 

and production capacity) under which our approach proves to be more advantageous to the producer. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In the last couple of decades, the field of decision-making under 

ncertainty has regained momentum, spurred by the new opportu- 

ities that the Digital Age has brought to modern economies. As a 

esult, this field has been prolific in the design and development 

f new tools capable of exploiting the vast amount of informa- 

ion that human societies currently generate, compile and record, 

ainly in the form of data . 

From among all the exciting advances that have been achieved 

n the realm of decision making under uncertainty in recent years, 

e highlight the so-called data-driven optimization under uncer- 

ainty , which endows the decision maker with a powerful and ver- 

atile mathematical framework to hedge her decisions against both 

he intrinsic risk of an uncertain world and the limited and incom- 

lete knowledge of the random phenomena that can be retrieved 

rom a finite set of observations or data. 

Data-driven optimization under uncertainty has been applied to 

 broad range of contexts and problems, for instance, inventory 

anagement [1,2] , nurse staffing [3] , portfolio optimization [4–6] , 

hipment planning [4] , network flow [5] , power dispatch [7] , and 
� This manuscript was processed by Associate Editor Alexander Nikolaev. 
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ehicle routing [8] , just to name a few. For a recent survey on the

opic and its applications, we refer the reader to [9,10] . 

In this paper, we first compare the proposed methodology 

ith existing ones using two classical conditional stochastic opti- 

ization problems, namely, the newsvendor problem [3,11,12] and 

he product placement problem [1] . Additionally, we consider the 

roblem of a strategic firm that has to decide the generation quan- 

ity that maximizes its expected profit while facing the uncertainty 

elated to market conditions. This problem has a long tradition 

n the Economics and Management Science literature (see, for in- 

tance, [13–15] ). In particular, we take electricity as the homoge- 

eous good to be produced and thus, we place ourselves in the 

ontext of electricity markets, where this problem has received a 

reat deal of attention since the deregularization of the power sec- 

or [16,17] . Most existing models address this problem by forecast- 

ng, as accurately as possible, the electricity market behavior. Then, 

uch forecasts are used to compute the decision that maximizes 

he producer’s profit. Here we present a novel and alternative data- 

riven procedure that considers the problem structure and lever- 

ge available auxiliary data to enhance market participation and 

ncrease profits. Our approach is formulated as a bilevel program 

hat, under convexity assumptions, can be efficiently solved using 

ommercially available optimization solvers. We demonstrate the 

uperior performance of the proposed approach on a realistic case 

tudy that uses data from the Iberian electricity market. 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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In short, our contributions are threefold, namely: 

- From a methodological point of view, we propose a novel 

data-driven framework for conditional stochastic optimization, 

whereby the parameters that are input to the decision-making 

problem are formulated as a function of some covariates or fea- 

tures . This function is, in turn, estimated factoring in its im- 

pact on the decision value. Finally, by way of this function, we 

construct a deterministic (single-scenario) surrogate optimiza- 

tion model that delivers decisions that are good in terms of the 

original conditional stochastic program. In Section 2 , we intro- 

duce and mathematically formalize our proposal along with al- 

ternative state-of-the-art approaches available in the technical 

literature. Our approach is formulated as a bilevel optimization 

problem that can be reformulated as a single-level optimization 

problem and solved using off-the-shelf optimization solvers as 

discussed in Section 3 . 

- From a theoretical perspective, we compare our approach with 

existing ones in Section 4 for three different applications, 

namely, the newsvendor problem, the product placement prob- 

lem, and the strategic producer problem. 

- From a more practical point of view, Section 5 provides sim- 

ulation results for the strategic producer problem using both 

an illustrative example and a realistic case study based on 

the Iberian electricity market. The numerical experiments show 

that our proposal can significantly increase the competitive 

edge of the strategic producer depending on her cost structure 

and the market demand elasticity. 

We conclude the paper with a brief compilation of the most 

elevant observations in Section 6 . 

. Mathematical framework and related work 

In decision making we often model the uncertainty as a ran- 

om vector of parameters ( y ∈ Y ⊆ R 

m ) governed by a real un-

nown distribution Y and, typically, some relevant contextual in- 

ormation (x ∈ X ⊆ R 

p ) ∼ X is available before the decision is to 

e made. Following this scenario, the decision maker is interested 

n solving the conditional stochastic optimization problem 

in 

z∈ Z 
E [ f (z;Y ) | X = x ] (1) 

here f : R 

n × R 

m → R is a known function in the decision z ∈ R 

n ,

nd Z ⊆ R 

n is a nonempty, compact set known with certainty (i.e., 

ndependent of Y ), to which the decision z must belong. In prac- 

ice, neither the joint distribution of X and Y , nor the conditional 

istribution of Y given X = x are known and therefore, problem 

1) cannot be solved. On top of that, even if the true distribution 

ere known and the decision z were fixed, problem (1) would typ- 

cally require to compute the expectation of a function of a contin- 

ous random vector (i.e., a multivariate integral), which is, in itself, 

 hard task in general. Instead, the only information that the de- 

ision maker typically has is a sample S = { (y i , x i ) , ∀ i ∈ N } where 

 i ∈ R 

m is a particular outcome of the uncertainty Y recorded un- 

er the context x i ∈ X , and N denotes the set of available samples.

Against this background, problem (1) is alternatively replaced 

ith a surrogate optimization problem, in the hope that the solu- 

ion to the latter is good enough for the former. In this line, differ-

nt approaches have been proposed to construct such a surrogate 

ptimization problem. For instance, the traditional modus operandi 

ollows the rule “first predict, then optimize,” which results in the 

ollowing surrogate problem to approximate the solution to (1) : 

in 

z∈ Z 
f (z; ˆ y ) (2) 

here ˆ y denotes an estimate of the outcome of the uncertainty Y 

nder the contextual information x ∈ X ⊆ R 

p . The surrogate prob- 

em (2) is attractive for several reasons. First and foremost, it is 
2 
uch simpler and faster to solve than (1) . Actually, it is a deter- 

inistic optimization problem that, as opposed to (1) , only requires 

valuating the cost function f (z; ·) at the single value or scenario 

ˆ  . Furthermore, problem (2) seems intuitive and natural, especially 

hen ˆ y represents “the most likely value” for Y given X = x . In- 

eed, the single scenario ˆ y is often chosen as an estimate of the 

xpected value of the uncertainty Y conditional on X = x , that is, 

ˆ  ≈ E [ Y | X = x ] , where, logically, the approximation is built from

he available sample S = { (y i , x i ) , ∀ i ∈ N } . In the realm of forecast- 

ng, the estimate ˆ y is usually referred to as a point prediction . 

In order to build the estimate ˆ y ≈ E [ Y | X = x ] , a function g FO :

 × R 

q → R 

m is normally chosen from a w -parameterized fam- 

ly G 

FO , with w ∈ R 

q , to construct the forecasting model ˆ y =
 

FO (x ; w ) . The goodness of a certain parameter vector w is quan-

ified in terms of a loss function l FO (y, ̂  y ) : Y × R 

m → R that mea-

ures the accuracy of the estimate. Then, given the sample S = 

 

(y i , x i ) , ∀ i ∈ N } , the choice of w is driven by the minimization of 

he in-sample loss, as expressed below: 

 

FO ∈ arg min 

w ∈ R q 
∑ 

i ∈N 
l FO (y i , g 

FO (x i ; w )) (3) 

In this framework, the optimal decision z FO under the context 

 = x is thus obtained by solving the following deterministic prob- 

em: 

 

FO (x ) ∈ arg min 

z∈ Z 
f (z; g FO (x ; w 

FO )) (4) 

We refer to this approach, which relies on a good forecast of 

he uncertainty Y (in particular, an estimate of E [ Y | X = x ] ), as

O (short for FOrecasting). Even though this approach is intuitive 

nd may perform relatively well in many situations, it is funda- 

entally flawed for the following two basic reasons. First, since 

ˆ  ≈ E [ Y | X = x ] in FO, the surrogate problem (2) works as a proxy

f the problem 

in 

z∈ Z 
f (z; E [ Y | X = x ]) (5) 

hich, in general, is not equivalent to (1) . Second, even in those 

ases where these two problems are indeed equivalent, the loss 

unction l FO that is typically used to compute w 

FO (for example, 

he squared error) is solely intended to get a statistically good es- 

imate of E [ Y | X = x ] and does not account for the nominal objec-

ive f or the constraints that the decision z must satisfy. For in- 

tance, approach (3) and (4) is unable to capture that overestimat- 

ng E [ Y | X = x ] might worsen the objective function f much more

han underestimating it. 

In view of these design flaws, a number of works have 

roposed to replace the problem-agnostic l FO that is gener- 

lly used in (3) with a problem-aware loss function l SP (y, ̂  y ) = 

f ( ̇ z ( ̂  y ) ; y ) where l SP : R 

m × R 

m → R and ˙ z : Y → Z defined as

˙  (y ) = arg min z∈ Z f (z; y ) . Therefore, function l SP evaluates the loss 

f optimality associated with the decision ˙ z ( ̂  y ) that is prescribed 

y the surrogate decision-making problem (2) for the single value 

ˆ  . Accordingly, the optimal parameter vector w 

SP is obtained as the 

ne that minimizes the in-sample optimality loss, that is: 

 

SP ∈ arg min 

w ∈ R q 
∑ 

i ∈N 
f ( ̇ z (g SP (x i ; w )) ; y i ) (6) 

here the function g SP : X × R 

q → R 

m is chosen from a family of

unctions G 

SP . We use the acronym SP, which stands for “Smart 

redict”, to refer to this setup. Solving problem (6) using descent 

ptimization methods requires to compute the gradient of the loss 

unction l SP (y, ̂  y ) with respect to w . This may not be feasible, since

t involves the differentiation of the discontinuous function ˙ z (y ) 

18] . To overcome this difficulty, a great deal of research has been 

evoted to finding methods to approximate the gradient of (6) for 
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articular instances. The work developed in [19] , for example, de- 

cribes a procedure to solve (6) under the following three condi- 

ions: (i) f is quadratic, (ii) the uncertainty is only present in the 

oefficients of the linear terms of f , and (iii) no constraints are 

mposed on the decision z, which means Z = R 

n . Some years later, 

he authors [2] proposed a heuristic gradient-based procedure to 

olve (6) for strongly convex problems with deterministic equality 

onstraints and inequality chance constraints. Almost concurrently, 

eference [5] discusses the difficulties of solving (6) in the case of 

inear problems, since such a formulation may lead to an uninfor- 

ative loss function. To overcome this issue, they successfully de- 

elop a convex surrogate that allows to efficiently train g SP (x i ; w ) 

n the linear case. More recently, the authors in [20] suggest a sim- 

lar approach as in [2] to combinatorial problems with a regular- 

zed linear objective function. 

In summary, the four references above propose ad-hoc gradient 

ethods for specific instances of (6) . However, the technical litera- 

ure lacks, to the best of our knowledge, a general-purpose proce- 

ure to solve such a problem using available optimization solvers. 

o fill this gap, we propose the following bilevel program [21] as a 

eneric mathematical formulation of (6) : 

 

BL ∈ arg min 

w ∈ R q ; ˆ z i 

∑ 

i ∈N 
f ( ̂ z i ; y i ) (7a) 

.t. ˆ z i ∈ arg min 

z∈ Z 
f 
(
z; g BL ( x i ; w ) 

)
, ∀ i ∈ N (7b) 

here g BL : X × R 

q → R 

m is selected similarly to g FO and g SP . Prob-

em (7) is formulated as a bilevel optimization model commonly 

sed to mathematically characterize non-cooperative and sequen- 

ial Stackelberg games in which the leader makes her decisions an- 

icipating the reaction of the follower [22] . In this sense, the upper- 

evel problem determines the optimal parameter vector w antici- 

ating the decision provided by each lower-level problem (7b) if 

he value ˆ y i is given by g BL (x i ; w ) . We denote this approach based

n bilevel programming as BL (acronym of BiLevel). In Section 3 , 

e discuss the assumptions that problem (1) must satisfy so that 

roblem (7) can be reformulated as a single-level optimization 

roblem to be solved using off-the-shelf optimization solvers. Al- 

hough solving the bilevel problem (7) may be computationally ex- 

ensive, this is a task that can be performed offline. Once w 

BL is 

etermined, the optimal decision z BL under context X = x is com- 

uted by solving the following problem: 

 

BL (x ) ∈ arg min 

z∈ Z 
f (z; g BL (x ; w 

BL )) (8) 

The bilevel program (7a) –(7b) computes the value for the pa- 

ameter vector w that maximizes the in-sample performance of the 

urrogate decision-making model (8) . For this estimation to be of 

se, it must be guaranteed that under two contexts x i , x ′ 
i 
, such

hat x i = x ′ 
i 
, it holds ˆ z i = ˆ z ′ 

i 
, i.e., under equal contexts, equal de-

isions. This is a condition that is reminiscent of the notion of 

on-anticipativity in Stochastic Programming. Importantly, this con- 

ition is automatically satisfied if the solution to the lower-level 

roblem (7b) is unique for any value of w . Otherwise, the bilevel 

rogram (7a) –(7b) would choose the ˆ z i from the optimal solu- 

ion set of (7b) that minimizes the upper-level objective function 

7a) given —i.e., by anticipating— the uncertainty outcome y i . This 

s so because the bilevel program (7a) –(7b) , as we have formulated 

t, delivers the optimistic Stackelberg solution. For instance, let us 

ssume that there exists a value ˜ w such that f (z; g BL (x i ; ˜ w )) = ϑ
or all i ∈ N , where ϑ is a constant. In this case, the lower-levels

7b) boil down to feasibility problems imposing that z ∈ Z and 

herefore, ˆ z i can violate non-anticipativity and adapt to realiza- 

ion y i for all i ∈ N . More importantly, using ˜ w in (8) would lead

o degenerate and highly suboptimal decisions under any context 

 = x . This issue is reported in [5] for linear objective functions,
3 
here authors propose a convex surrogate function of l SP to train 

eaningful instances of model g SP (·; w 

SP ) . Similarly, we propose in 

ection 4.3 a modified lower-level surrogate model for the strate- 

ic producer problem in order to ensure non-anticipativity for any 

arameter vector w . 

Next, we discuss other surrogate decision-making models differ- 

nt from (2) , which have also been recently proposed to approxi- 

ate the solution of (1) . For this purpose, notice first that problem 

1) can be equivalently recast as 

in 

z∈ Z 
E [ f (z;Y ) | X = x ] = min 

z∈ Z 
E Q | x [ f (z;Y )] (9) 

here Q | x represents the conditional probability distribution of Y 

iven X = x . Thus, a second family of surrogate decision-making 

odels can be introduced with the following general form: 

in 

z∈ Z 
E ̂ Q | x [ f (z;Y )] (10) 

here ̂ Q | x is an approximation of the unknown probability mea- 

ure Q | x that is constructed from the available sample S = 

 

(y i , x i ) , ∀ i ∈ N } . For the surrogate problem (10) to be computa- 

ionally tractable, the proxy ̂ Q | x is often built as a discrete prob- 

bility distribution supported on a finite number of points, more 

pecifically, on the y -locations of the sample, i.e., { y i , ∀ i ∈ N } . This

ay, the solution to (10) under context X = x , which we denote as

 

ML (x ) , can be generically expressed as: 

 

ML (x ) ∈ arg min 

z∈ Z 

∑ 

i ∈N 
g ML (x, x i ; w ) f (z; y i ) (11) 

ith { g ML (x, x i ; w ) , ∀ i ∈ N } being the probability masses that the

pecific proxy ̂ Q | x that is used places on { y i , ∀ i ∈ N } . These masses

r weights are determined as a function g ML : X × X × R 

q → R of

he historical contextual information x i , the current context x , and 

ome parameters w . 

In essence, this scheme adapts the Sample Average Approxima- 

ion (a well-known data-driven solution strategy in Stochastic Pro- 

ramming [23,24] ) to the case of conditional stochastic programs. 

t was first formalized in [1] and, since then, has been subject 

o a number of improvements (e.g., regularization procedures for 

ias-variance reduction [25] ; robustification [26] ; and algorithmic 

pgrades [27] ) and extensions, e.g., to a dynamic decision-making 

etting [4] . Recently, the work in [11] introduces a bilevel for- 

ulation to optimally tune the parameters w that determine the 

eights g ML (x, x i ; w ) . Using our notation, the method proposed in

11] can be formulated as follows: 

 

ML ∈ arg min 

w ∈ R 

q ; ˆ z i 

∑ 

i ∈N 
f 
(

ˆ z i ; y i 
)

(12a) 

.t. ˆ z i ∈ arg min 

z∈ Z 

∑ 

i ′ ∈N : i ′ 
 = i 
g ML (x i , x i ′ ; w ) f (z; y i ′ ) , ∀ i ∈ N (12b) 

here the function g ML : X × X × R 

q → R used to compute the 

eights can be chosen from a catalog of several classical machine 

earning algorithms G 

ML such as k -nearest neighbors, Nadaraya–

atson kernel regression or Random Forest. The author of [11] re- 

orts to tailor-made approximations and greedy algorithms for 

ach machine learning technique that is used to construct func- 

ion g ML , but do not provide a general-purpose solution strategy 

alid for any function g ML . This approach, which is based on ma- 

hine learning techniques, is called ML (stands for Machine Learn- 

ng). After solving (12) , the optimal decision z ML (x ) under context 

 = x is obtained by solving (11) with w = w 

ML . 

The surrogate problems (2) and (10) are, by design, differ- 

nt, in part because they are the result of distinct frameworks 

o address the conditional stochastic program (1) . The surrogate 

roblem (2) is based on the assumption that it is possible to 

nd a good decision z in terms of the conditional expected cost 
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 [ f (z;Y ) | X = x ] by optimizing that decision for a single scenario ŷ

f the uncertainty Y . Naturally, all the complexity of this approach 

ies in how to infer, from the data sample S, the single scenario 

ˆ  that unlocks the best decision z. This inference process makes 

se of global methods that consider all data points in the sam- 

le to obtain more robust decision mappings. In contrast, all the 

ifficulty of the surrogate problem (10) rests on how to retrieve a 

ood approximation of the true conditional distribution Q | x from 

he sample S. Such an approximation is performed using local ma- 

hine learning methods that only employ data close to the given 

ontext x and consequently, a large amount of data is required 

o avoid overfitting. In more practical terms, embedding local ma- 

hine learning methods into the estimation problem (12) makes 

his problem computationally intractable in most cases. Besides, 

he surrogate problem (2) is computationally less demanding than 

10) , because the latter requires evaluating the cost function f (z; ·) 
or multiple values of the uncertainty Y . 

Finally, there is a third class of surrogate decision-making mod- 

ls that arises from the idea of using the sample S to directly 

earn the optimal decision z as a function of the context x , this 

ay bypassing the need for constructing the estimate ˆ y or the 

roxy distribution 

̂ Q | x . Following this logic, we seek a decision 

ule or mapping g DR : X × R 

q → R 

n from a family G 

DR so that

rg min z∈ Z E [ f (z;Y ) | X = x ] ≈ ˆ z = g DR (x ; w ) . Particularizing for the

mpirical distribution of the data, this approach renders: 

 

DR ∈ arg min 

w ∈ R q 
∑ 

i ∈N 
f (g DR (x i ; w ) ; y i ) (13a) 

.t. g DR (x i ; w ) ∈ Z, ∀ i ∈ N (13b) 

One clear advantage of directly learning the optimal decision 

olicy is that, after solving (13) , the decision z DR to be imple- 

ented under context X = x is efficiently computed as follows: 

 

DR (x ) = g DR (x ; w 

DR ) (14) 

ctually, the mapping (14) constitutes the surrogate decision- 

aking model itself. This method, which aims at determining an 

ptimal decision rule, is denoted as DR (acronym of Decision Rule). 

evertheless, feasibility issues may arise as this approach does 

ot necessarily guarantee that the resulting z DR obtained through 

14) belongs to Z for any plausible context x . The authors of 

3] propose and investigate this approach for the popular newsven- 

or problem, for which they consider a linear decision rule. Their 

ewsvendor formulation does not involve any constraint and there- 

ore, decisions yielded by (14) are always valid. However, the use of 

his approach is questionable for many other practical applications 

n which decisions must satisfy a set of constraints. 

In summary, the contributions of the proposed bilevel model 

7) with respect to the other approaches presented in this section 

re: 

- Unlike the traditional approach (3) , ours provides estimations 

of y by leveraging information about the optimization problem 

to be solved. 

- Unlike the existing “predict-then-optimize” methodology (6) , 

our approach is formulated as a generic bilevel optimization 

that, under convexity assumptions, is reformulated as a single- 

level optimization problem that can be solved using off-the- 

shelf optimization software. 

- Unlike approach (12) , ours makes uses of global estimation 

methods that use all available data to infer the point forecast 

of the uncertainty that unlocks the best decision. Therefore, our 

approach is less prone to overfitting, especially for small data 

samples. In addition, formulation (12) is more difficult to solve 

than (7) . 

- Unlike approach (13) , ours guarantees the feasibility of the re- 
sulting optimal decision under any context. 

4 
. Solution strategy 

In this section, we elaborate on how to solve the general- 

urpose bilevel program (7) we propose to compute the best single 

cenario ˆ y to be fed into the surrogate problem (2) . To do so, we 

articularize the generic formulation (1) as follows: 

min 

,s (Y ) 
E [ f 0 (z, s (Y ) ;Y ) | X = x ] (15a) 

s.t. f j (z, s (Y ) ;Y ) ≤ 0 , ∀ j ∈ J (15b) 

h k (z, s (Y ) ;Y ) = 0 , ∀ k ∈ K (15c) 

here z constitutes the vector of here-and-now variables indepen- 

ent of the uncertainty, s (Y ) represents the wait-and-see decisions, 

nd constraints (15b), (15c) must be satisfied for Q | x -almost all y 

i.e., with probability one). We also assume that f 0 , f j are convex 

unctions with respect to all variables, h k are affine functions, and 

unction g BL is continuous in the parameter vector w . 

Our method solves the following bilevel optimization prob- 

em: 

 

BL ∈ arg min 

w ∈ R 

q ; ˆ z i 

∑ 

i ∈N f 0 
(

ˆ z i , ̂  s i ; y i 
)

(16a) 

s.t. f j ( ̂ z i , ̂  s i ; y i ) ≤ 0 , ∀ j ∈ J, ∀ i ∈ N (16b) 

h k ( ̂ z i , ̂  s i ; y i ) = 0 , ∀ k ∈ K, ∀ i ∈ N (16c) 

ˆ z i ∈ { arg min 

z,s 
f 0 (z, s ; g BL (x i ; w )) (16d) 

s.t. f j (z, s ; g BL (x i ; w )) ≤ 0 , ∀ j ∈ J (16e) 

h k (z, s ; g BL (x i ; w )) = 0 , ∀ k ∈ K} , ∀ i ∈ N (16f) 

On the assumption that the lower-level minimization problems 

16d) –(16f) satisfy some constraint qualification, the classical strat- 

gy to solve (16) is to replace each lower level (16d) –(16f) with its 

quivalent Karush–Kuhn–Tucker (KKT) conditions [28] , that is, 

 

BL ∈ arg min 

w ∈ R q ; ˆ z i ,λ ji 

∑ 

i ∈N 
f 0 ( ̂ z i , ̂  s i ; y i ) (17a) 

s.t. f j ( ̂ z i , ̂  s i ; y i ) ≤ 0 , ∀ j ∈ J, ∀ i ∈ N (17b) 

h k ( ̂ z i , ̂  s i ; y i ) = 0 , ∀ k ∈ K, ∀ i ∈ N (17c) 

∇ f 0 ( ̂ z i , s i ; g BL (x i ; w )) + 

∑ 

j∈ J 
λ ji ∇ f j ( ̂ z i , s i ; g BL (x i ; w ))+ 

+ 

∑ 

k ∈ K 
υki ∇h k ( ̂ z i , s i ; g BL (x i ; w )) = 0 , ∀ i ∈ N (17d) 

f j 
(

ˆ z i , s i ; g BL ( x i ; w ) 
)

≤ 0 , ∀ j ∈ J, ∀ i ∈ N (17e) 

h k 

(
ˆ z i , s i ; g BL ( x i ; w ) 

)
= 0 , ∀ k ∈ K, ∀ i ∈ N (17f) 

λji ≥ 0 , ∀ j ∈ J, ∀ i ∈ N (17g) 

λji f j 
(

ˆ z i , s i ; g BL ( x i ; w ) 
)

= 0 , ∀ j ∈ J, ∀ i ∈ N (17h) 
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here λ ji , υki ∈ R are, respectively, the Lagrange multipliers related 

o constraints (16e) and (16f) for each lower-level problem; (17a) –

17c) are, in that order, the objective function and constraints of 

he upper-level problem, and constrains (17d) –(17g), (17h) , are, re- 

pectively, the stationarity, primal feasibility, dual feasibility and 

lackness conditions of the lower-level problems. As discussed in 

29] , problem (17) violates the Mangasarian–Fromovitz constraint 

ualification at every feasible point and therefore, interior-point 

ethods fails to find even a local optimal solution to this prob- 

em. To overcome this issue, a regularization approach was first 

ntroduced in [30] and further investigated in [31] . This method 

eplaces all complementarity constraints (17h) with inequality 

18c) below: 

 

BL ∈ arg min 

w ∈ R q ; ˆ z i ,λ ji 

∑ 

i ∈N 
f 0 ( ̂ z i , ̂  s i ; y i ) (18a) 

s.t. (17 b) − (17 g) (18b) 

−
∑ 

j∈ J 
λ ji f j ( ̂ z i , s i ; g BL (x i ; w )) ≤ ε, ∀ i ∈ N (18c) 

here ε is a small non-negative scalar that allows to refor- 

ulate (17) as the parametrized nonlinear optimization problem 

18) , which typically satisfies a constraint qualification and can 

e then efficiently solved by standard non-linear optimization 

olvers. Scholtes [30] prove that, as ε tends to 0, the solution of 

18) tends to a local optimal solution of (17) . In the remaining of

he manuscript, we will refer to this approach as BL-R. 

Alternatively, the complementarity slackness conditions can be 

inearized according to Fortuny–Amat [32] as follows: 

 

BL ∈ arg min 

w ∈ R q ; ˆ z i ,λ ji ,u ji 

∑ 

i ∈N 
f 0 ( ̂ z i , ̂  s i ; y i ) (19a) 

s.t. (17 b) − (17 g) (19b) 

λ ji ≤ u ji M 

D , ∀ j ∈ J, ∀ i ∈ N (19c) 

f j 
(

ˆ z i , s i ; g BL ( x i ; w ) 
)

≥
(
u ji − 1 

)
M 

P , ∀ j ∈ J, ∀ i ∈ N (19d) 

u ji ∈ { 0 , 1 } , ∀ j ∈ J, ∀ i ∈ N (19e) 

here u ji are binary variables, and M 

P , M 

D ∈ R 

+ are large enough

onstants whose values can be determined as proposed in [33] . 

he resulting model (19) is a single-level mixed-integer non-linear 

roblem. We denote this method as BL-M. 

Solving the bilevel problem (7) using either BL-R or BL-M is 

alid for a conditional stochastic problem that satisfies the condi- 

ions described in this section. Nonetheless, the complexity of solv- 

ng the regularized non-linear problem (18) or the mixed-integer 

on-linear program (19) highly depends on functions f 0 , f j , h k , g 
BL .

n some cases (see, for instance, the particular applications dis- 

ussed in Section 4 ), problem (19) can be reformulated as a mixed- 

nteger linear/quadratic optimization problem that can be solved to 

lobal optimality using standard optimization solvers. In the gen- 

ral case, problems (18) and (19) can also be solved using off-the- 

helf optimization solvers, but global optimality may not be guar- 

nteed. Notwithstanding this, local optimal solutions of the pro- 

osed bilevel formulation (7) may still lead to optimal decisions 

hat are significantly better than those computed by FO or DR. 
5 
. Applications 

In Section 2 , we introduce a common mathematical framework 

o present five different approaches for contextual decision-making 

nder uncertainty, namely, the predict-then-optimize strategies FO, 

P, and BL; method ML, which relies on a proxy of the true condi- 

ional distribution that is built using machine-learning techniques, 

nd the decision-rule approach DR. Unfortunately, in the techni- 

al literature, methods SP and ML have only been applied to con- 

itional stochastic optimization problems with a specific structure 

nd they both lack a solution strategy for more general conditional 

tochastic programs. For this reason, in this section, we limit our- 

elves to comparing approaches FO, BL, and DR on various contex- 

ual decision-making problems under uncertainty, each of which il- 

ustrates a certain relevant aspect of our proposal. Section 4.1 com- 

ares these methodologies using the newsvendor problem, a well- 

nown stochastic programming problem with simple recourse. The 

roposed methodology is also applied in Section 4.2 to the prod- 

ct placement problem, a two-stage stochastic programming prob- 

em with full recourse. Finally, Section 4.3 presents a strategic pro- 

ucer problem formulated as a one-stage stochastic programming 

n which the uncertainty only affects the objective function. 

.1. Newsvendor problem 

We start with the popular newsvendor problem in the spirit of 

an and Rudin [3] , a work that elicited renewed interest [11,12] in 

he solution to the conditional stochastic program (1) . In the 

ewsvendor problem, the goal of the decision maker is to find the 

ptimal ordering quantity for a product with unknown random de- 

and Y . In turn, this (positive) demand may be influenced by a 

andom vector of features X representing, for instance, product in- 

ormation, weather conditions, customer profiles, etc. The decision 

aker has, therefore, a collection of observations { (x i , y i ) , ∀ i ∈ N } ,
hich s/he would like to exploit to make an informed ordering 

uantity z under the context X = x . Let d and r, with r > d > 0 ,

e the cost and revenue of manufacturing and selling one product 

nit, respectively. This problem can be formulated as the following 

onditional stochastic program: 

in 

z∈ R 
E [ dz − r min (z, Y ) | X = x ] (20) 

Approaches FO and BL both follow a “predict-then-optimize”

trategy, whereby the ordering quantity is obtained as the solution 

o the following surrogate decision-making model: 

in 

z∈ R 
dz − r min (z, ̂  y ) (21) 

e can use an auxiliary variable s to get rid of the inner minimiza-

ion and write instead: 

in 

z,s 
dz − rs (22a) 

.t. s ≤ z (22b) 

s ≤ ˆ y (22c) 

hose solution is trivial, namely, z ∗ = s ∗ = ˆ y . 

FO and BL differ in the particular single value or scenario ˆ y that 

ach of them uses. In the case of FO, ˆ y is an estimate of E [ Y | X = x ] .

onsequently, it becomes apparent that, for the newsvendor prob- 

em, approach FO is fundamentally inconsistent, because it is well- 

nown that the solution to (20) corresponds to the quantile r−d 
r 

f the demand distribution Y conditional on X = x . Naturally, this 

uantile is generally different from E [ Y | X = x ] . 
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Now, if we take ˆ y = g BL (x ; w ) = w 

T x in our approach, the opti-

al vector of linear coefficients w 

BL is computed as follows: 

 

BL ∈ arg min 

w ∈ R p 
∑ 

i ∈N 
d ̂  z i − r min ( ̂ z i , y i ) (23a) 

s.t. ˆ z i ∈ { arg min 

z i ,s i 
dz i − rs i (23b) 

s.t. s i ≤ z i (23c) 

s i ≤ w 

T x i } , ∀ i ∈ N (23d) 

hich, based on our previous argument, boils down to: 

 

BL ∈ arg min 

w ∈ R p 
∑ 

i ∈N 
d ̂  z i − r min ( ̂ z i , y i ) (24a) 

.t. ˆ z i = w 

T x i , ∀ i ∈ N (24b) 

Therefore, our approach coincides exactly with that proposed 

n [3] , which, in turn, is given by problem (13) in Section 2 when

 

DR (x ; w ) = w 

T x . This equivalence is far from being general though,

s we will see with the other applications below. 

.2. Product placement problem 

Given a graph G = (B, A ) with node-arc matrix A , in the prod-

ct placement problem, the goal is to decide the amount z b ∈ R 

+ of

 certain product to be placed in each node b ∈ B of the grid [1] .

fter this decision is made, the demand for the product at each 

ode y b is realized, and the inventories of product throughout the 

etwork are shipped across the arcs A so as to satisfy the actually 

bserved nodal demands. As in the newsvendor problem, these de- 

ands may be affected by some exogenous factors X that may be 

lso random, but that are disclosed before the product placement 

ecision is to be made. Let h ∈ R 

|B| and g ∈ R 

|A| be the cost of ini-

ially placing products in the nodes of the network and the cost 

f shipping products through the edges of the graph, respectively. 

he product placement problem under uncertain demand, but with 

ontextual information, can be formulated as follows: 

in 

z≥0 
E [ c(z;Y ) | X = x ] (25) 

here 

(z; y ) = h 

T z+ min 

f≥0 ,p≥0 
g T f + r T p (26a) 

s.t. A f ≤ z − y + p (26b) 

In problem (26) , we have included a variable vector p ∈ R 

|B| 
≥0 

o allow for unsatisfied demand, with the associated penalty cost 

 ∈ R 

|B| . Furthermore, the decision vector f ∈ R 

|A| represents the 

mount of product shipped across the arcs of the network. The cost 

unction (26a) takes the form of a two-stage linear cost, with the 

ntegration of a recourse problem. More importantly, unlike in the 

ewsvendor problem, the recourse is given by a full-fledged (lin- 

ar) minimization problem. The surrogate decision-making model 

ssociated with the predict-then-optimize strategies FO and BL is as 

ollows: 

min 

≥0 , f≥0 ,p≥0 
h 

T z + g T f + r T p (27a) 

.t. A f ≤ z − ˆ y + p (27b) 

To ease the exposition and the notation that follows, we make 

he additional assumption that r > h > 0 , where the inequality 

olds component-wise. In this case, variable vector p in (27) is zero 

t the optimum and the surrogate model can be simplified to: 

min 

≥0 , f≥0 
h 

T z + g T f (28a) 
6 
.t. A f ≤ z − ˆ y (28b) 

As previously discussed, problem (28) is a deterministic mathe- 

atical program whereby the decision z is solely optimized for the 

oint prediction of demand ˆ y . While the traditional FO approach 

ets such a prediction to E [ Y | X = x ] , the rationale behind the ap-

roach BL is to compute a W -parameterized function such that the 

urrogate problem (28) delivers the decision z that minimizes the 

n-sample cost, that is: 

 

BL ∈ arg min 

W ∈ R |B|×p 

∑ 

i ∈N 
h 

T ˆ z i + g T ˆ f i + r T ˆ p i (29a) 

s.t. A ̂

 f i ≤ ˆ z i − y i + 

ˆ p i , ∀ i ∈ N (29b) 

ˆ f i , ˆ p i ≥ 0 , ∀ i ∈ N (29c) 

ˆ z i ∈ { arg min 

z i ≥0 , f i ≥0 
h 

T z i + g T f i (29d) 

s.t. A f i ≤ z i − W x i } , ∀ i ∈ N (29e) 

here we have taken ˆ y = g BL (x ;W ) = W x with W ∈ R 

|B|×p . As dis-

ussed in Section 2 , the lower-level problem (29d) and (29e) must 

ave a unique solution. This can be guaranteed if, for example, all 

he shipping routes that can be taken to satisfy each demand in 

he graph entail a different cost. If this condition is not satisfied, 

he degeneracy of the lower-level problem can be eliminated by 

sing classical results from the linear programming literature as 

escribed in [34] . As stated in Section 3 , the solution to (29) can

e addressed by replacing the lower-level linear program (29d) and 

29e) with its KKT optimality conditions: 

 

BL ∈ arg min 

W ∈ R |B|×p 

∑ 

i ∈N 
h 

T ˆ z i + g T ˆ f i + r T ˆ p i (30a) 

s.t. A ̂

 f i ≤ ˆ z i − y i + 

ˆ p i , ∀ i ∈ N (30b) 

ˆ f i , ˆ p i ≥ 0 , ∀ i ∈ N (30c) 

0 ≤ (h − αi ) ⊥ 

ˆ z i ≥ 0 , ∀ i ∈ N (30d) 

0 ≤ (g + A 

T αi ) ⊥ f i ≥ 0 , ∀ i ∈ N (30e) 

0 ≤ ( ̂ z i − A f i − W x i ) ⊥ αi ≥ 0 , ∀ i ∈ N (30f) 

here αi ∈ R 

|B| is the vector of Lagrange multipliers associated 

ith constraint (29e) . Thus, problem (30) can be solved by regu- 

arizing the complementary slackness conditions or by using their 

ortuny-Amat big-M reformulation. In the latter case, we arrive to 

 MIP problem that can be solved using commercial optimization 

oftware such as CPLEX or GUROBI. 

Finally, if we also take a linear decision mapping z(x ) = 

 

DR (x ;W ) = W x where W ∈ R 

|B|×p , the DR approach solves the fol-

owing minimization problem to compute the optimal matrix of 
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inear coefficients W 

DR : 

 

DR ∈ arg min 

W ∈ R |B|×p 

∑ 

i ∈N 
h 

T ˆ z i + g T ˆ f i + r T ˆ p i (31a) 

s.t. A ̂

 f i ≤ ˆ z i − y i + 

ˆ p i , ∀ i ∈ N (31b) 

ˆ f i , ˆ p i ≥ 0 , ∀ i ∈ N (31c) 

ˆ z i ≥ 0 , ∀ i ∈ N (31d) 

ˆ z i = W x i , ∀ i ∈ N (31e) 

It is apparent that the estimation problems (30) and (31) , which 

L and DR solve, respectively, are structurally different and so are 

 

BL and W 

DR in general. For instance, think of a graph for which 

in { g � } � ∈A > max { h b } b∈B . This represents a network where it is al-

ays cheaper to satisfy the nodal demand y b , b ∈ B, through the

mount z b of product that is initially placed at the demand lo- 

ation, that is, a graph where product shipping would be uneco- 

omical if the nodal demands were certainly known in advance. 

ndeed, take the � − th row of g + A 

T αi in Eq. (30e) for any i ∈ N ,

hat is, g � + αo(� ) ,i − αe (� ) ,i , where o(� ) and e (� ) denote the origin

nd end nodes of arc � , respectively. We have that inf { g � + αo(� ) ,i −
e (� ) ,i : αo(� ) ,i ∈ [0 , h o(� ) ] , αe (� ) ,i ∈ [0 , h e (� ) ] } = g � − h e (� ) > 0 . Hence,

f � = 0 , ∀ � ∈ A and the system of inequalities (30d) –(30f) boils

own to: 

0 ≤ (h − αi ) ⊥ 

ˆ z i ≥ 0 , ∀ i ∈ N (32a) 

0 ≤ ( ̂ z i − W x i ) ⊥ αi ≥ 0 , ∀ i ∈ N (32b) 

hich, unlike (31d) and (31e) , allows for feasible solutions in the 

orm ˆ z b,i = 0 with w 

T 
b 

x i < 0 (and αi,b = 0 ), where w b is the b − th

ow of matrix W . Furthermore, recasting (31e) as ˆ z i − W x i = 0 and

etting αi = h, ∀ i ∈ N , it is trivial to see that any feasible point

f DR is also feasible for BL. Since the feasible region of (31) is

ontained in the feasible region of (30) , but the opposite is not 

rue, the optimum of (30) is in general lower than that of (31) . 

.3. Strategic producer problem 

Here we apply our decision-making framework to the prob- 

em of a strategic producer partaking in a forward market [16] . 

his strategic player must decide the produced quantity q ∈ R that 

aximizes her profits while facing some uncertainty on market 

onditions. Let c(q ) : R → R 

+ denote the generation cost function 

hose parameters are assumed to be known with certainty. Let 

p(q ;Y ) : R × R 

m → R represent the inverse demand function ex- 

ressing the impact of the generation quantity q on the good’s 

rice. For some goods such as electricity, the inverse demand func- 

ion varies depending on the season of the year, the day of the 

eek, or the hour of the day. Besides, this function is also uncer- 

ain when producers must make their generation decisions q , since 

t may depend, for example, on weather conditions. If Q represents 

he known feasible region of variable q according to technical or 

conomic constraints, the strategic producer must solve the follow- 

ng conditional stochastic optimization problem: 

in 

q ∈ Q 
E [ c(q ) − p(q ;Y ) q | X = x ] (33) 

As it is customary, we assume that the price and the demand 

re linearly related as p(q ;α, β) = α − βq where α ∈ R and β ∈ R 

+ 

re unknown parameters. Similarly, we assume that the production 
7 
ost is computed through a quadratic cost function c(q ) = c 2 q 
2 +

 1 q where c 1 , c 2 > 0 are known parameters related, respectively, to 

roportional production costs (such as fuel cost) and the increase 

f marginal costs due to technological factors (such as efficiency 

oss) [35] . In order to ease the notation, we define α′ = α − c 1 and
′ = β + c 2 . Finally, we consider that the production quantity q is 

ounded by known capacity limits, i.e., q ≤ q ≤ q with q , q ∈ R 

+ . 
hus, problem (33) can be reformulated as: 

min 

 ≤q ≤q 
E [ β ′ q 2 − α′ q | X = x ] (34) 

Since the quantity decision q is independent of the outcome of 

he uncertainty (β ′ , α′ ) , the above can be further simplified to: 

min 

 ≤q ≤q 
E [ β ′ | X = x ] q 2 − E [ α′ | X = x ] q (35) 

Therefore, the optimal solution q ∗ is driven by the conditional 

xpected values of α′ and β ′ . To be more precise, since β ′ > 0 , q ∗

ould be equivalently computed as follows: 

 

∗(x ) ∈ arg min 

q ≤q ≤q 
q 2 − E [ α′ | x ] 

E [ β ′ | x ] q ⇒ q ∗(x ) ∈ 

{
q , 

E [ α′ | x ] 
2 E [ β ′ | x ] , q 

}
(36) 

Unfortunately, E [ α′ | x ] and E [ β ′ | x ] are both unknown and there-

ore, they need to be estimated somehow. As explained further in 

ection 5.2.1 , the producer has available a set of historical obser- 

ations S = 

{
(α′ 

i 
, β ′ 

i 
, x i ) , ∀ i ∈ N 

}
with α′ 

i 
∈ R , β ′ 

i 
∈ R 

+ and x i ∈ R 

p 

n order to accomplish such a task. At this point, it should be un- 

erlined that the strategic producer problem (33) is of a distinctly 

ifferent nature from that of the newsvendor problem (20) and the 

roduct placement problem (25) . Indeed, the conditional stochastic 

rogram (33) has no recourse and the uncertain parameters appear 

nly in its objective function. Consequently, solving (33) is appar- 

ntly as “simple” as estimating the two conditional expectations 

 [ α′ | x ] and E [ β ′ | x ] . Our claim, however, is that the way the pro-

ucer draws decisions from a finite data sample (all we usually have 

n practice) may have a significant impact on the actual expected 

erformance of the producer’s strategy. Actually, the best estimates 

f E [ α′ | x ] and E [ β ′ | x ] from a statistical sense do not necessarily re-

ult in the best offer q . 

According to the predict-then-optimize strategies, the surrogate 

odel of this problem is formulated as follows: 

min 

 ≤q ≤q 

ˆ β ′ q 2 − ˆ α′ q (37) 

As explained in Section 2 , the traditional approach aims at 

earning the uncertain parameters α′ 
i 
, β ′ 

i 
as a function of the avail- 

ble information x i . If we assume the family of linear functions, 

hat is, ˆ α′ 
i 
= w 

T 
αx i , ˆ β ′ 

i 
= w 

T 
β

x i with w α, w β ∈ R 

p , and we choose the

quared error as the loss function l FO , then the standard imple- 

entation of (3) is: 

 

FO 
α ∈ arg min 

w α∈ R p 
∑ 

i ∈N 
(α′ 

i − w 

T 
αx i ) 

2 (38a) 

 

FO 
β ∈ arg min 

w β∈ R p 
∑ 

i ∈N 
(β ′ 

i − w 

T 
βx i ) 

2 (38b) 

The optimal quantity under context X = x is the solution to the 

ollowing optimization problem: 

 

FO (x ) ∈ arg min 

q ≤q ≤q 
(w 

FO 
β ) T xq 2 − (w 

FO 
α ) T xq 

⇒ q FO (x ) ∈ 

{ 

q , 
(w 

FO 
α ) T x 

2(w 

FO 
β

) T x 
, q 

} 

(39) 
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Table 1 

Data sample S for the illustrative example. 

i x i α′ 
i 

β ′ 
i 

γi 

1 2 2 10 0.20 

2 4 17 10 1.70 

3 8 8 3 2.67 

4 9 16 6 2.67 
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Alternatively, w α and w β can be determined following the pro- 

osed approach by solving the following bilevel formulation: 

 

BL 
α , w 

BL 
β ∈ arg min 

w α,w β∈ R p 
∑ 

i ∈N 
β ′ 

i ̂  q 2 i − α′ 
i ̂  q i (40a) 

.t. ˆ q i ∈ arg min 

q ≤q i ≤q 
w 

T 
βx i q 

2 
i − w 

T 
αx i q i , ∀ i ∈ N (40b) 

For this particular application, the bilevel optimization problem 

endered by the proposed approach has a significant drawback, be- 

ause the global optimal solution of (40) is w α = w β = 0 . Conse-

uently, the lower-level problem (40b) can be replaced by the fea- 

ibility condition q ≤ ˆ q i ≤ q , and the optimal values of ˆ q i are de- 

ermined as if uncertain parameters α′ and β ′ were known in ad- 

ance, which violates non-anticipativity. While this solution does 

ead to the minimum value of objective function (40a) , it is use- 

ess to determine the optimal decisions for any context X = x . This

egenerate solution of the proposed approach occurs because all 

oefficients of the objective function (37) are uncertain. Interest- 

ngly, this shortcoming does not affect the newsvendor and prod- 

ct placement problems, because the uncertainty only affects the 

easible region in those applications. 

In this paper, we propose to ensure non-anticipativity by for- 

ulating a bilevel optimization problem that considers the follow- 

ng modified surrogate model: 

min 

 ≤q ≤q 
q 2 − γ q (41) 

here γ = 

α′ 
β ′ . For known values of α′ and β ′ , the optimal solution 

f (37) and (41) coincide. However, surrogate model (41) is simpler 

ince it only includes one uncertain parameter instead of two. As- 

uming a linear relationship between the new uncertain parame- 

er γ and the contextual information, the proposed methodology 

ields the following bilevel problem: 

 

BL 
γ ∈ arg min 

w γ ∈ R p 
∑ 

i ∈N 
β ′ 

i ̂  q 2 i − α′ 
i ̂  q i (42a) 

.t. ˆ q i ∈ arg min 

q ≤q i ≤q 
q 2 i − w 

T 
γ x i q i , ∀ i ∈ N (42b) 

Formulation (42) has the following advantages with respect to 

40) : (i) it includes fewer parameters and therefore, it is less prone 

o overfitting, (ii) it ensures non-anticipativity for any parameter 

ector w γ , and (iii) under certain conditions, it is able to retrieve 

he true model that relates random variable γ and the context X

nd the optimal solution to (34) as the sample size |N | grows to

nfinity, as shown in Proposition 1 in Appendix A . By replacing the 

ower-level problem with its KKT conditions, we obtain the follow- 

ng single-level problem: 

 

BL 
γ ∈ arg min 

w γ ∈ R p 
∑ 

i ∈N 
β ′ 

i ̂  q 2 i − α′ 
i ̂  q i (43a) 

s.t. 2 ̂

 q i − w 

T 
γ x i − λi + λi = 0 , ∀ i ∈ N (43b) 

0 ≤ ( ̂  q i − q ) ⊥ λi ≥ 0 , ∀ i ∈ N (43c) 

0 ≤ ( q − ˆ q i ) ⊥ λi ≥ 0 , ∀ i ∈ N (43d) 

here λi , λi are the dual variables corresponding to the capac- 

ty limit constraints. Notice that if complementarity conditions 

43c) and (43d) are reformulated using the Fortuny–Amat ap- 

roach, problem (43) can be solved to global optimality as a 

uadratic mixed-integer program using off-the-shelf optimization 
8 
oftware. According to this procedure, optimal decisions under 

ontext X = x are made by solving: 

 

BL (x ) ∈ arg min 

q ≤q ≤q 
q 2 − (w 

BL 
γ ) T xq ⇒ q BL (x ) ∈ 

{
q , 

(w 

BL 
γ ) T x 

2 

, q 

}
(44) 

Finally, we can directly learn the optimal production as a func- 

ion of the known information as proposed in [3] . Assuming the 

inear mapping ˆ q i = w 

T 
q x i with w q ∈ R 

p , problem (13) for this par-

icular application is formulated as: 

 

DR 
q ∈ arg min 

w q ∈ R p 
∑ 

i ∈N 
β ′ 

i (w 

T 
q x i ) 

2 − α′ 
i w 

T 
q x i (45a) 

.t. q ≤ w 

T 
q x i ≤ q ∀ i ∈ N (45b) 

Formulation (45) is a convex quadratic optimization problem 

nd can be then solved using commercial software such as CPLEX. 

n line with (14) , the optimal quantity under context X = x is di-

ectly computed as: 

 

DR (x ) = (w 

DR 
q ) T x (46) 

Although not true in general, approaches (43) and (45) may 

ead to the same solution under specific conditions. For instance, 

f the produced quantity q is not limited by minimum/maximum 

ounds, then constraint (43b) boils down to ˆ q i = w 

T 
γ x i / 2 . Conse-

uently, the solutions of (43) and (45) satisfy that w 

DR 
q = w 

BL 
γ / 2 and

herefore, q BL (x ) = q DR (x ) for any context X = x . As we show in the

ollowing section, the decisions q BL delivered by our approach are 

ignificantly more profitable than q DR in the constrained case. 

. Numerical simulations 

As an additional contribution, we assess and compare the 

erformance of the proposed approach for the strategic pro- 

ucer problem using numerical simulations. In Section 5.1 we il- 

ustrate the advantages of BL with respect to FO and DR us- 

ng a small example with a reduced data sample. Additionally, 

ection 5.2 presents the numerical results of a realistic case study 

hat uses real data from the Iberian Electricity Market and the 

panish Transmission System Operator [36,37] . 

.1. Illustrative example 

This section aims at gaining insight into the performance of 

he proposed approach with a small example of the strategic pro- 

ucer problem. For the sake of simplicity, we only consider four 

ealizations of the uncertain parameters α′ 
i 
, β ′ 

i 
and a single fea- 

ure x i ∈ [0 , 10] , whose values are shown in Table 1 . Approach FO

redicts the uncertain parameters using linear functions in the 

orm ˆ αi = w 

FO 
α, 0 

+ w 

FO 
α, 1 

x i and 

ˆ βi = w 

FO 
β, 0 

+ w 

FO 
β, 1 

x i ; approach BL as-

umes that ˆ γi = w 

BL 
γ , 0 

+ w 

BL 
γ , 1 

x i ; and approach DR considers ˆ q i = 

 

DR 
q, 0 

+ w 

DR 
q, 1 

x i . These three approaches are compared with a bench- 

ark method (BN) that assumes perfect knowledge of the uncer- 

ain parameters α′ , β ′ and, consequently, yields the best possible 
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Fig. 1. Decision quantity q versus feature x for the illustrative example. 

Table 2 

Optimal offer and income for the unconstrained illustrative 

example (in-sample results). Parameter vectors w are: w 

FO 
α, 0 

= 

5 . 0 0 0 , w 

FO 
α, 1 

= 1 . 0 0 0 , w 

FO 
β, 0 

= 12 . 298 , w 

FO 
β, 1 

= −0 . 878 , w 

BL 
γ , 0 = −0 . 138 , 

w 

BL 
γ , 1 = 0 . 341 , w 

DR 
q, 0 = −0 . 069 , w 

DR 
q, 1 = 0 . 170 . 

q 1 q 2 q 3 q 4 I( €) RI(%) 

BN 0.10 0.85 1.33 1.33 23.33 100.0 

FO 0.33 0.51 1.23 1.59 21.21 91.0 

DR 0.27 0.61 1.29 1.46 22.36 95.9 

BL 0.27 0.61 1.29 1.46 22.36 95.9 
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Table 3 

Optimal offer and income for the constrained illustrative 

example (in-sample results). Parameter vectors w are: w 

FO 
α, 0 

= 

5 . 0 0 0 , w 

FO 
α, 1 

= 1 . 0 0 0 , w 

FO 
β, 0 

= 12 . 298 , w 

FO 
β, 1 

= −0 . 878 , w 

BL 
γ , 0 = −1 . 300 , 

w 

BL 
γ , 1 = 0 . 750 , w 

DR 
q, 0 = 0 . 158 , w 

DR 
q, 1 = 0 . 094 . 

q 1 q 2 q 3 q 4 I( €) RI(%) 

BN 0.10 0.85 1.00 1.00 22.33 100.0 

FO 0.33 0.51 1.00 1.00 20.65 92.5 

DR 0.35 0.53 0.91 1.00 20.50 91.8 

BL 0.10 0.85 1.00 1.00 22.33 100.0 
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ffer for each time period. Obviously, this method cannot be im- 

lemented in practice and, accordingly, is just used here for com- 

arison purposes. Given the reduced size of this example, methods 

L-R and BL-M provide the same results and are thus jointly re- 

erred to as BL. 

First, we deal with the unconstrained case , that is, the case 

n which the capacity constraints are disregarded. Table 2 shows 

he in-sample results obtained from methods BN, FO, DR, and BL, 

amely, the optimal production quantity for each time period q i , 

he absolute income (I), and the relative income with respect to 

he benchmark (RI). Notice that the income for each time period 

an be computed as −β ′ 
i 
q 2 

i 
+ α′ 

i 
q i . As discussed in Section 4.3 , in

onnection with the unconstrained case, coefficients w 

DR are equal 

o w 

BL / 2 and the decisions and incomes obtained by DR and BL 

re the same as a result. It is also interesting that the income of 

hese two methods is 5% higher than that of FO. To explain this, 

e refer to Fig. 1 a, which depicts the optimal production quanti- 

ies given by the different methods as a function of the context 

 ∈ [0 , 10] , namely, 

 

FO (x ) = 

w 

FO 
α, 0 + w 

FO 
α, 1 x 

2(w 

FO 
β, 0 

+ w 

FO 
β, 1 

x ) 
q BL (x ) = 

w 

BL 
γ , 0 + w 

BL 
γ , 1 x 

2 

 

DR (x ) = w 

DR 
q, 0 + w 

DR 
q, 1 x (47) 

This figure shows that methods BL and DR can return deci- 

ions much closer to the benchmark ones than method FO for the 

our data points in the sample. Therefore, even for unconstrained 

ptimization problems, the proposed methodology may outper- 

orm the classical “first-predict-then-optimize” approach, which is 

urely based on reducing the error of forecasting the uncertain pa- 

ameters, simply because minimizing this error is not necessarily 

ligned with maximizing the decision value. 

Now we consider the constrained case , that is, we bring the ca- 

acity constraints back into this small example. In particular, the 
9 
inimum and maximum outputs of the strategic producer are set 

o 0 and 1, respectively. Similarly to Table 2 , the in-sample results 

btained in the capacity-constrained case are collated in Table 3 , 

here we can see that the optimal quantity q i reaches its maxi- 

um value for some time periods and methods FO, DR and BL all 

rovide different results. Methods FO and DR achieve an income 

.5% and 8.2% lower than the benchmark. This poor in-sample per- 

ormance is better understood by means of Fig. 1 b, which similarly 

o Fig. 1 a, represents the optimal quantities as a function of the 

ontext for the constrained case according to (39), (44) and (46) . 

irst, since method FO is unaware of the feasibility region of the 

riginal conditional stochastic problem, it provides the same pre- 

iction of the uncertain parameters α, β in the unconstrained and 

onstrained cases. However, using these forecasts in the surrogate 

odel (37) enforces q = 1 for x ≥ 7 . 1 in the constrained case. As

bserved, reducing the forecast error of α, β does not lead to the 

aximization of the decision value in the constrained case either. 

econd, method DR must ensure feasible solutions for all samples, 

 condition that also leads to quite poor approximations of the 

ptimal quantities for most values of the context x . Furthermore, 

his approach would return infeasible solutions q > 1 for x > 9 as 

hown in Fig. 1 b. On the contrary, the proposed approach BL can 

nd a linear relation between γ and x to be used in the surrogate 

odel (41) that results in decisions q that perfectly match those 

rovided by the benchmark for the four data points and therefore, 

his method achieves the highest possible income in sample. 

In summary, this small example sheds light on the reasons why 

he proposed methodology outperforms existing ones for both un- 

onstrained and constrained optimization problems under uncer- 

ainty: Our approach provides forecasts of the uncertain parame- 

ers that take into account the objective function and feasible re- 

ion of the decision maker. Such enhanced forecasts translate into 
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Fig. 2. Inverse residual demand curve p(r) (solid) and fitted inverse demand func- 

tion p i (q ) (dashed) in the interval [0 , δ] . The intercept and slope of the fitted line 

are αi and −βi , respectively. 
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ecisions that are much closer to those obtained in the ideal per- 

ect information instance. 

.2. Case study 

In this section, we compare the proposed approach with exist- 

ng ones using realistic data from the Iberian electricity market, as 

escribed in detail in Section 5.2.1 . Sections 5.2.2 –5.2.4 investigate 

ow the type of generation portfolio, the quadratic cost term c 2 , 

nd the residual demand elasticity impact the performance of the 

roposed methodology, respectively. These three sections only in- 

lude the global optimal solutions given by method BL-M. Finally, 

ection 5.2.5 provides computational solution times for all the ap- 

roaches and discusses the differences between BL-R and BL-M in 

hat respect. 

.2.1. Experimental setup 

In order to test our proposal, we consider a realistic case study 

ased on actual data from the Iberian electricity market. We con- 

truct a data set of the form { (x i , αi , βi ) , ∀ i ∈ N } from which we

erive the rest of the parameters required for our simulations as 

xplained in Section 4.3 . We gather raw market data from the 

orward market OMIE [36] to compute parameters αi , βi of the 

nverse demand function. Furthermore, we collect wind and so- 

ar power forecasts of the aggregated production of Spain to be 

sed as a vector of contextual information x i . The wind and solar 

orecasts, originally published by the Spanish TSO, are downloaded 

rom the ENTSO-e Transparency Platform [37] . 

Historical raw hourly block-wise bids and offers submitted by 

uyers and sellers to the Iberian day-ahead energy market are pro- 

essed to obtain parameters αi , βi as follows. For each hour of 

he year, we have access to the set of bids and offers defined as 

 (q b , p b ) , ∀ b ∈ B } , { (q o , p o ) , ∀ o ∈ O } , respectively, where q b/o is the

mount of energy to buy/sell at price p b/o . Thus, the residual de- 

and r to be potentially covered by a new producer entering the 

arket for each possible price p is defined as r := 

∑ 

b∈ B : p b ≥p q b −
 

o∈ O : p o ≤p q o , that is, the aggregated demand minus the aggregated 

roduction. The step-wise function relating the residual demand r

nd the electricity price p is plotted in Fig. 2 for illustrative pur- 

oses. 

Now consider that a new strategic producer enters the mar- 

et with an offer to sell quantity q at offer price 0. If we as-

ume that the remaining bids and offers stay unaltered, the market 

rice would decrease following the right-hand part of the step- 

ise function depicted in Fig. 2 . Therefore, a strategic producer 
10 
iming at maximizing her profit is interested in modeling the de- 

endence between her offered quantity q and the market price 

p in the shaded area, with parameter δ being a constant suffi- 

iently larger than the producer’s maximum generation capacity. 

n connection with Section 4.3 , we approximate said dependency 

sing a linear function such that p i (q ) = αi − βi q as illustrated in

ig. 2 and therefore, the values of αi , βi for each hour are ob- 

ained by determining the linear function that best approximates 

he blocks shaded in gray. 

We collect data from November 2018 to October 2019 in order 

o build a data set of 8600 h (almost one year), which is divided 

nto 43 bins of 200 consecutive samples. Each bin is randomly split 

nto training and test sets with a ratio of 80% / 20% , respectively. 

his process is repeated five times for each bin. Therefore, each ap- 

roach is solved for 215 different training sets of 160 samples, and 

he obtained solutions are evaluated using the corresponding 215 

est sets of 40 samples each. The out-of-sample results provided in 

ections 5.2.2 –5.2.5 are obtained by averaging the outcomes over 

hese 215 test sets. We select a value of δ equal to 5 GW in order

o encompass enough bids and offers to obtain accurate approxi- 

ations of p i (q ) throughout the whole data set. We determine the 

ptimal parameters w through problems (38), (43) , and (45) , which 

e denote FO, BL and DR, respectively. More specifically, we name 

L-M the Fortuny–Amat big-M reformulation of model (43) and 

L-R the regularized counterpart, which are a particularization of 

17) and (18) , respectively. 

Each bin is executed in parallel with the following resources: 

 CPUs Intel E5-2670 @ 2.6 GHz and 1 Gb of RAM. Each instance 

f model BL-M is solved using the MIQP solver CPLEX [38] for a 

aximum time of 20 min or a relative gap of 10 −8 . On the other

and, BL-R is executed using the NLP solver CONOPT [39] without 

ime limit. 

.2.2. Impact of the generation portfolio 

As previously stated, the main advantage of our approach is 

hat it yields forecast values for the uncertain parameters that are 

ailored to the optimization problem by which the strategic power 

roducer determines her optimal market sale. However, such an 

dvantage may translate into higher or lower incomes depend- 

ng on the firm’s generation portfolio. In this section, therefore, 

e evaluate the performance of the various approaches for three 

eneric power plants characterized by different linear costs ( c 1 ) 

nd capacities ( q ). 

Table 4 provides the values of c 1 , c 2 and q for these three 

eneric units. For simplicity, the minimum output q of all units is 

ssumed equal to 0 and the value of c 2 is set to 0.005 € /MWh 

2 

35] . The base unit can represent a nuclear power station and is 

haracterized by low fuel cost and high capacity. The medium unit 

an be, for example, a carbon-based power station with a lower 

apacity and higher fuel costs. Finally, peak units, such as com- 

ined cycle power plants, typically have the highest fuel cost and a 

maller generation capacity. Table 4 also includes the percentage of 

ime periods in which q BN = 0 , 0 < q BN < q and q BN = q denoted as

 q BN =0 , N 0 <q BN < q , and N q BN = q , respectively, where q BN represents 

he optimal quantity that the strategic firm would place into the 

arket under the true inverse demand function (that is, the so- 

ution given by the benchmark approach). It is observed that the 

ase unit generates at maximum capacity for most times periods 

nd is only shut down in 8% of the cases. The medium generating 

nit is idle 32% of the time (if prices are too low) and is at maxi-

um capacity during the 39% of the time periods. Finally, the peak 

nit is not dispatched most of the time since electricity prices are 

sually below its marginal production cost. 

Table 5 provides the out-of-sample results computed by av- 

raging over the 215 test sets of 40 samples each described in 

ection 5.2.1 . These results include the absolute income for the 
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Table 4 

Generation technology data. 

c 1 ( € /MWh) c 2 ( € /MWh 2 ) q (MW) N q BN =0 (%) N 0 <q BN < q (%) N q BN = q (%) 

Base 10 0.005 1000 8 16 76 

Medium 35 0.005 500 32 29 39 

Peak 50 0.005 250 79 12 9 

Table 5 

Impact of generation technology (Out-of-sample results). 

I BN (M €) RI FO (%) RI DR (%) RI BL-M (%) INFES DR (%) 

Base 176.7 96.1 94.6 96.3 4.9 

Medium 20.9 77.4 62.5 80.0 1.7 

Peak 1.2 44.1 18.9 58.7 0.1 
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Table 6 

Income distribution for the peak generating 

unit (Out-of-sample results). 

BN FO DR BL-M 

N I > 0 (%) 20.6 9.0 6.6 10.1 

N I < 0 (%) 0.0 3.7 3.0 3.4 

N I =0 (%) 79.4 87.3 90.4 86.4 

I + (M €) 1.23 0.73 0.37 0.87 

I −(M €) 0.00 -0.19 -0.14 -0.15 

Table 7 

Operating regime of a medium generating unit ( c 1 = 35 €
/MWh, q = 500 MW). 

c 2 ( € /MWh 2 ) N q BN =0 (%) N 0 <q BN < q (%) N q BN = q (%) 

0.01 32 43 25 

0.005 32 29 39 

0.001 32 15 53 

Table 8 

Impact of parameter c 2 on a medium generating unit (Out-of-sample results). 

c 2 ( € /MWh 2 ) I BN (M €) RI FO (%) RI DR (%) RI BL-M (%) INFES DR (%) 

0.01 16.3 73.9 60.0 76.4 1.1 

0.005 20.9 77.4 62.5 80.0 1.7 

0.001 25.5 81.2 65.6 83.0 1.0 
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enchmark approach (I BN ) for the considered time horizon, the rel- 

tive income (RI) for methods FO, DR and BL-M, and the percent- 

ge of time periods for which method DR provides infeasible solu- 

ions (INFES DR ). A first obvious observation is that, as expected, the 

bsolute income is higher for base units and lower for peak units. 

 second, probably more interesting remark relates to the impact 

f the uncertainty about the inverse demand function on the mar- 

et revenues accrued by each generating technology. Since the base 

nit is at full capacity most of the time, the uncertainty pertaining 

o the residual demand does not affect revenues that much, and 

he three methods obtain relative incomes above 94%. On the con- 

rary, the participation of the medium and peak units highly de- 

ends on market conditions and therefore, this very same uncer- 

ainty remarkably deteriorates market revenues, with the eventual 

esult that the maximum relative incomes amount to 80% and 59%, 

espectively, for the method featuring the best performance (which 

s BL-M). 

On a different front, the DR approach produces infeasible of- 

ers in a considerable number of time periods, whereas FO and BL- 

 are guaranteed to provide feasible production quantities in all 

ases. The percentage of periods for which method DR results in 

n infeasible q is higher for the base unit because the medium and 

eak units are idle more frequently. For this particular application, 

aking DR decisions feasible can be easily achieved by computing 

in ( max ( ̂  q i , q ) , q ) . However, this post-processing step to guarantee 

easibility can be much more challenging in applications with gen- 

ral convex feasible sets. It is also apparent that the DR approach 

rovides the lowest RI for the three cases considered and therefore, 

his method is not even recommended for decision-making models 

here the decision vector is simply bounded component-wise. 

Finally, we notice that, for the three generation technologies, 

he proposed method BL-M always provides higher incomes than 

he FO approach. However, relative income improvements vary 

idely for each case. For the base unit, the relative income of BL- 

 is only 0.2% higher than that of FO. This is understandable since 

his power plant is at full capacity most of the time and thus, the 

mpact of the uncertainty is comparatively minor, as we mentioned 

efore. For the peak unit, in contrast, the relative income of BL-M 

s 14.6% higher than that of FO. Note that, unlike for base units, 

aking small errors in the forecasts of the market conditions can 

e catastrophic for peak units, because such deviations may mean 

he difference between producing nothing or producing at max- 

mum capacity. The ability of BL-M to reduce the forecast error 

hen consequences are worse, together with the lower absolute 

ncomes of peak units, explains this high difference in percentage. 

he gain of BL-M with respect to FO for the medium unit has an

ntermediate value of 2.6%. 

To conclude this section, Table 6 includes, for the peak gener- 

ting unit, the percentage of periods with a positive income, with 
11 
 negative income and with an income equal to zero, denoted as 

 I > 0 , N I < 0 and N I =0 , in that order. The total sum of positive and

egative incomes is also provided in the last two rows, represented 

y the symbols I + and I −, respectively. Interestingly, BL-M achieves 

he highest percentage of periods with a positive income and suc- 

eeds in providing the highest value of I + . 

.2.3. Impact of parameter c 2 
While parameter c 1 basically depends on the cost of the fuel 

sed by each unit, the interpretation of c 2 is not as straightfor- 

ard. Indeed, this parameter measures the decrease in the plant 

arginal cost as production increases and is connected to techno- 

ogical aspects of the plant’s economy of scale, like the way the 

lant efficiency varies for different operating points. For this rea- 

on, in this section, we investigate the impact of c 2 on the per- 

ormance of the proposed method. Notice that, if q = 0 MW, then 

he unit marginal costs range from c 1 to c 1 + c 2 q . In a similar way,

s Table 4 does, Table 7 shows the operating regime of a medium 

enerating unit with c 1 = 35 € /MWh, q = 500 MW and different 

alues of c 2 . As expected, a decrease in c 2 entails a reduction in the

arginal production cost of the plant and, as a result, the amount 

f electricity the strategic firm places into the market increases. 

Table 8 provides the same results as Table 5 , but for different 

alues of c 2 and the medium generating unit only. Naturally, re- 

ucing the plant marginal costs increases both the absolute income 

or the benchmark approach and also the relative income achieved 

y all methods. Nevertheless, BL-M proves to be between 1.8% and 

.6% more profitable to the producer than the traditional FO ap- 

roach for the values of c considered. 
2 
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Table 9 

Impact of residual demand elasticity (Out-of-sample results). 

I BN (M €) RI FO (%) RI DR (%) RI BL-M (%) INFES DR (%) 

Normal 20.9 77.4 62.5 80.0 1.7 

Low-elast 18.6 74.7 60.0 77.1 1.7 

Table 10 

Comparison of BL-M and BL-R (Out-of-sample results). 

RI BL-M (%) RI BL-R (%) 

Base 96.3 96.3 

Medium 80.0 79.2 

Peak 58.7 58.4 
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Table 11 

Average computing time. 

FO(s) DR(s) BL-R(s) BL-M(s) 

Base 0.24 0.65 3.90 197.77 

Medium 0.35 1.06 6.80 149.89 

Peak 0.26 0.78 4.62 22.68 
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.2.4. Impact of the residual demand elasticity 

So far we have centered our study on the cost structure of the 

eneration portfolio owned by the strategic firm. Here, on the con- 

rary, we focus on the elasticity of the market residual demand. 

oughly speaking, this elasticity is inversely proportional to pa- 

ameter β of the inverse demand function. Bearing this in mind, 

e compare the next two market situations, namely, the “Normal”

nd the “Low-elast” instances. The former corresponds to the val- 

es of β in the original data set, while the latter is obtained by 

ultiplying these β-values by two. 

Table 9 shows the incomes provided by each of the considered 

ethods relative to those of the benchmark. The numbers corre- 

pond to the medium power plant of Table 4 . The overall effect of

ncreasing the residual demand elasticity (lower β-values) is analo- 

ous to that of decreasing parameter c 2 , i.e., the involvement of the 

trategic producer in the market augments, thus leading to higher 

evenues. Results in Table 9 show that the proposed BL approach 

utperforms FO and DR for different values of the residual demand 

lasticity, improving the competitive edge of the strategic producer 

n more than 2% with respect to FO in terms of relative income. 

.2.5. Computational results 

In Sections 5.2.2 –5.2.4 we have only included results from BL- 

, and not from BL-R, because the former variant of the bilevel 

ramework we propose guarantees global optimality for the strate- 

ic producer problem for appropiate values of large constants 

 

P , M 

D . However, solving model BL-M can be computationally very 

xpensive. Alternatively, local optimal solutions of the proposed 

ilevel model (43) can be efficiently found by way of the particu- 

arization of the regularization approach (18) that we named BL-R. 

Next, we first compare the solutions given by methods BL- 

 and BL-R. In order to solve model BL-R, we iteratively shrink 

he regularization parameter ε taking values from the discrete set 

 10 6 , 10 4 , 10 2 , 1 , 10 −1 , 10 −2 , 0 } . In each iteration, we initialize the

odel with the solution provided by the previous problem. It is 

lso worth mentioning that method BL-M is warm-started with the 

olution delivered by BL-R. 

Results in Table 10 are intended to compare the relative in- 

omes of BL-M and BL-R for each generating unit whose data is 

ollated in Table 4 . Although method BL-R logically yields lower 

ncomes, the differences with respect to BL-M are below 0.8%. This 

eans that if model (40) does not satisfy the conditions to be re- 

ormulated as a MIQP or the computational resources are limited, 

hen a good solution (i.e., a solution with a small loss of optimal- 

ty) can be efficiently computed by solving the regularized NLP ver- 

ion of our approach. 

Finally, we compare the computational burden of methods FO, 

R, BL-M, and BL-R. The average simulation time invested in solv- 

ng problems (38), (43) and (45) for the three generation technolo- 

ies are indicated in Table 11 , where the maximum solution time 

as been limited to 20 min for all methods. These results high- 
12 
ight the higher computational burden required by BL-M to ensure 

lobal optimality. On the other hand, the computing times of BL- 

 are very affordable, especially considering the competitive edge 

hat this method gives to the strategic firm. 

. Conclusions 

In this paper, we have addressed the problem of data-driven 

ecision-making under uncertainty in the presence of contextual 

nformation. More precisely, our ultimate purpose has been to con- 

truct a parametric model to predict, based on some covariate in- 

ormation, the uncertain parameters that are input to the optimiza- 

ion model by which the decision is made. To this end, we have 

roposed a bilevel framework whereby such a parametric model 

s estimated taking into account the impact of its outputs on the 

easibility and value of the decision. Under convexity assumptions, 

e have provided two single-level reformulations of the bilevel 

rogram, namely, a non-linear regularized optimization problem 

nd a mixed-integer non-linear reformulation based on the use of 

arge enough constants. When compared to alternative approaches 

vailable in the technical literature, ours features two major ad- 

antages: it guarantees feasibility in constrained decision-making 

roblems, and its solution can be directly tackled using off-the- 

helf optimization solvers under convexity assumptions. 

We have theoretically compared our approach with existing 

nes for three different applications, namely, the newsvendor 

roblem, the product placement problem, and the strategic pro- 

ucer problem. Additionally, we have evaluated the performance 

f our approach and its practical relevance through a realistic case 

tudy of a strategic producer that participates in the Iberian elec- 

ricity market. Specifically, numerical results show that our frame- 

ork not only significantly increases the revenue streams of the 

rm in general, but also proves to be critical to generation port- 

olios mainly consisting of peak power units. Indeed, the market 

evenues of a strategic peak generation portfolio are specially sen- 

itive to the uncertainty in the inverse demand function. Therefore, 

n this case, the strategic firm may put at risk the bulk of its mar-

et incomes, by being left out of the market or trading in deficit. 

ur approach, however, is, by construction, aware of that sensitiv- 

ty and thus, is able to retain most of the profit the firm would 

ake under a perfectly predictable inverse demand function. 

Potential extensions of this work would include the use of more 

dvanced techniques in the resolution of our bilevel framework 

uch as those employed in more general MPCC problems. Likewise, 

he generalization of our approach to multi-stage decision-making 

roblems under uncertainty requires further analysis. 

RediT authorship contribution statement 

M.A. Muñoz: Data curation, Software, Methodology, Inves- 

igation, Formal analysis, Validation, Writing – original draft. 

. Pineda: Conceptualization, Methodology, Investigation, Formal 

nalysis, Writing – original draft, Supervision. J.M. Morales: Con- 

eptualization, Methodology, Investigation, Formal analysis, Writing 

original draft, Supervision, Funding acquisition. 



M.A. Muñoz, S. Pineda and J.M. Morales Omega 108 (2022) 102575 

A

C

t

M

t

d

R

P

b

t

g

w

c

F

s

(

M

A

P

N

β  

p  

E  

t

w

s

w

P  

s  

i

a

w

s

w

e

 

t

f

q

w

l

T

c

q

f

l

t

m

a

m

c  

n

E

t

(

i

R

 

 

 

 

 

[

 

 

 

[

[

[  
cknowledgments 

This work was supported in part by the European Research 

ouncil (ERC) under the EU Horizon 2020 research and innova- 

ion program (grant agreement No. 755705), in part by the Spanish 

inistry of Science and Innovation (AEI/10.13039/50110 0 011033) 

hrough project PID2020-115460GB-I00, and in part by the Junta 

e Andalucía (JA), the Universidad de Málaga and the European 

egional Development Fund (FEDER) through the research projects 

20_00153 and UMA2018-FEDERJA-001. M.Á. Muñoz is also funded 

y the Spanish Ministry of Science, Innovation and Universities 

hrough the State Training Subprogram 2018 of the State Pro- 

ram for the Promotion of Talent and its Employability in R&D&I, 

ithin the framework of the State Plan for Scientific and Techni- 

al Research and Innovation 2017–2020 and by the European Social 

und. Finally, the authors thankfully acknowledge the computer re- 

ources, technical expertise, and assistance provided by the SCBI 

Supercomputing and Bioinformatics) center of the University of 

álaga. 

ppendix A. Asymptotic consistency 

roposition 1. Let S = 

{
(α′ 

i 
, β ′ 

i 
, x i ) , ∀ i ∈ N 

}
be an i.i.d sample of size 

and suppose that there exists a linear relationship between α′ and 
′ > 0 given by α′ 

β ′ = a T x + ξ , with ξ being a zero-mean noise inde-

endent of x , α′ and β ′ , and that the expectations E [ α′ ] , E [ β ′ ] and

 [ α′ x ] are all finite. Then, it almost surely holds in the limit N → ∞
hat the optimizer of the problem 

min 

 γ ∈W; ˆ q i 

1 

N 

∑ 

i ∈N 
β ′ 

i ̂  q 2 i − α′ 
i ̂  q i (A.1a) 

.t. ˆ q i ∈ arg min 

q ≤q i ≤q 
q 2 i − w 

T 
γ x i q i , ∀ i ∈ N (A.1b) 

with W ⊂ R 

p being a compact set containing a , is attained at 

 γ = a . 

roof. First, notice that α′ 
β ′ = a T x + ξ implies that E [ α′ | x ] 

E [ β ′ | x ] = a T x ,

ince α′ = β ′ a T x + β ′ ξ , and thus, E [ α′ | x ] = a T x E [ β ′ | x ] given the

ndependent nature of the noise ξ . 

The true expectation problem associated with the sample aver- 

ge approximation (A.1) is given by: 

min 

 γ ∈W; ˆ q (x ) 

∫ 
X×R + ×R 

(
β ′ ˆ q 2 (x ) − α′ ˆ q (x ) 

)
Q(d x, d β ′ , d α′ ) (A.2a) 

.t. ˆ q (x ) ∈ arg min 

q ≤q ≤q 
q 2 − w 

T 
γ xq, ∀ x ∈ X (A.2b) 

here Q is the joint probability law governing the random param- 

ters β ′ and α′ and the feature vector X . 

We first show that a is the unique solution to problem (A.2) . To

his end, we note that the lower-level problem (A.2b) renders the 

ollowing decision mapping for almost all x ∈ X : 

ˆ 
 (x ) = max 

(
q , min 

(
w 

T 
γ x 

2 

, q 

))
hich is a continuous function in w γ . 

Now let Q X be the probability measure of X . Consider the fol- 

owing optimization problem, which is a relaxation of (A.2) . 

min 

q (x ) ∈ [ q , q ] ,∀ x ∈X 

∫ 
X×R + ×R 

(
β ′ q 2 (x ) − α′ q (x ) 

)
Q(d x, d β ′ , d α′ ) = 

min 

q (x ) ∈ [ q , q ] ,∀ x ∈X 

∫ 
X 

(
q 2 (x ) E [ β ′ | x ] − q (x ) E [ α′ | x ] )Q X (dx ) = 
13 
∫ 
X 

(
min 

q (x ) ∈ [ q , q ] 
q 2 (x ) E [ β ′ | x ] − q (x ) E [ α′ | x ] 

)
Q X (dx ) 

he inner pointwise minimum results in the following optimal de- 

ision rule: 

 (x ) = max 

(
q , min 

(
E [ α′ | x ] 

2 E [ β ′ | x ] , q 
))

= max 

(
q , min 

(
a T x 

2 

, q 

))
or almost all x ∈ X . 

Therefore, since w γ = a is feasible in the true expectation prob- 

em (A.2) , then it is also an optimal solution to this problem. Fur- 

hermore, this solution is unique, if there exists a subset of X with 

easure greater than zero such that q < 

E [ α′ | x ] 
2 E [ β ′ | x ] < q . 

In addition, note that all the samples in S are i.i.d. 

nd that β ′ q 2 (x ) − α′ q (x ) is dominated by the function 

ax 

(
β ′ q 2 − α′ q , β ′ q 2 − α′ q , α′ 2 

4 β ′ 
)

, which is integrable be- 

ause the expectations E [ α′ ] , E [ β ′ ] and E [ α′ x ] are all fi-

ite. Indeed, since α′ 
β ′ = a T x + ξ by assumption, we have that 

 [ α
′ 2 

4 β ′ ] = 

1 
4 E [ α′ α′ 

β ′ ] = 

1 
4 E [ α′ (a T x + ξ )] = 

a T 

4 E [ α′ x ] . 
Therefore, by invoking Theorems 5.3 and 7.48 in [40] , we have 

hat the minimizer of the sample average approximation problem 

A.1) converges to a almost surely as the sample size N grows to 

nfinity. �
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