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We consider a positive invertible Lamperti operator T with positive inverse. Our 
result concerns the averages Ak,n, 0 ≤ k, n ∈ Z, and the ergodic maximal operator

MT f = sup
k,n≥0

|Ak,nf | = sup
k,n≥0

∣∣∣∣∣∣ 1
k + n + 1

n∑
j=−k

T jf

∣∣∣∣∣∣ ,
the ergodic Hilbert transform defined by HT f(x) = limn→∞

∑n
j=1

1
j

(
T jf(x) −

T−jf(x)
)
and the ergodic power functions defined by Pr,T f(x) =

(∑∞
n=0 |An+1,0f(x)

−An,0f(x)|r+|A0,n+1f(x) −A0,nf(x)|r
)1/r, for 1 < r < +∞. Several authors proved 

that if the averages are uniformly bounded in Lp, 1 < p < ∞, then these operators 
are bounded in Lp [23,24,27,28,21]. Regarding the case p = 1, Gillespie and Torrea 
[12] showed that this condition is not sufficient to assure MT is of weak type (1, 1). 
We provide two sufficient conditions that recall the assumptions in the Dunford-
Schwartz theorem: if the averages are uniformly bounded in L1 and in L∞ then MT , 
HT and Pr,T apply L1 into weak-L1 and the corresponding sequences of functions 
in L1 converge a.e. and in measure. Furthermore, we reach the same conclusions by 
assuming a weaker condition: we replace the uniform boundedness of the averages 
An,n in L∞ by the assumption that, for a fixed p ∈ (1, ∞), the averages associated 
with a modified operator Tp, related with T , are uniformly bounded in Lp. We end 
the paper showing examples of nontrivial operators satisfying the assumptions of 
the two main results.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We start establishing our setting. Let (X, M, μ) be a σ-finite measure space and let M(μ) be the space of 
measurable functions f : (X, M) → R. As usual, we identify functions which are equal almost everywhere. 
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By Lp := Lp(μ), 1 ≤ p < ∞, we denote the set of measurable functions f such that 
∫
X
|f |p dμ < ∞. For 

f ∈ Lp, we write ||f ||p = ||f ||Lp(dμ) =
(∫

X
|f |p dμ

)1/p. As usual, for p = ∞,

||f ||∞ = inf
{
M ≥ 0 : μ({x ∈ X : |f(x)| > M}) = 0

}
and L∞ := L∞(μ) is the set of measurable functions f such that ||f ||∞ < ∞.

Let T : M(μ) → M(μ) (or alternatively T : Lp → Lp) a linear operator. The classical ergodic theorems 
refer to the averages

Anf = 1
n + 1

n∑
j=0

T jf, (1.1)

and the ergodic maximal operator

M+
T f = sup

n≥0
|Anf |. (1.2)

Roughly speaking, Dunford-Schwartz ergodic theorem [8,9] establishes that if T is a contraction in L1 and 
a contraction in L∞ then the following statements hold:

(1) M+
T applies L1 into weak-L1, more precisely,

μ({x : M+
T f(x) > λ}) ≤ 1

λ
||f ||1

for all functions f ∈ L1 and all λ > 0.
(2) The sequence of averages Anf converges a.e. for all f ∈ L1.

Akcoglu’s theorem [2] says that if 1 < p < ∞ and T is a positive contraction on Lp then

(1) ||M+
T f ||p ≤ p

p−1 ||f ||p for all f ∈ Lp.
(2) The sequence of averages Anf converges a.e. and in the norm of Lp for all f ∈ Lp.

(We recall that in this setting an operator T is positive if Tf ≥ 0 a.e. for all f ≥ 0 a.e.). The proof of 
Akcoglu’s theorem follows from the particular case of positive isometries which was previously proved by 
A. Ionescu-Tulcea [14]. The proof of Ionescu-Tulcea’s result in Krengel’s book [17] follows the lines of the 
proofs by Kan [16] and de la Torre [31]. It is based on the following key fact: if 1 < p < ∞ and T is a positive 
linear isometry on Lp then T is a Lamperti operator or, in other words, T separates supports (fg = 0 a.e. 
⇒ TfTg = 0 a.e.).

As we have noticed, Lamperti operators are a very important case; we point out that these operators 
have a very special structure [16,18] that we resume in Section 2.

It was proved in [24] a kind of generalization of Akcoglu’s theorem (see also [29]). On the one hand, more 
restrictive assumptions are considered: the authors work with positive invertible Lamperti operators with 
positive inverse. On the other hand, the authors treat with a more general assumption: they do not assume 
that T is a positive contraction but the averages are uniformly bounded in Lp, 1 < p < ∞, that is, there 
exists a positive constant C such that

sup ||Anf ||p ≤ C||f ||p

n
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for all f ∈ Lp. Under these assumptions, it is proved that the maximal operator M+
T is bounded in Lp and 

the sequence of averages Anf converges a.e. and in Lp for all f ∈ Lp.
In what follows, we shall work in the setting of [24] (or [29]). Therefore, T will be a positive invertible 

Lamperti operator with positive inverse (see the definitions and properties in Section 2). Since T is invertible, 
it is natural to consider, for 0 ≤ k, n ∈ Z, the averages

Ak,nf = 1
k + n + 1

n∑
j=−k

T jf, (1.3)

and the ergodic maximal operator

MT f = sup
k,n≥0

|Ak,nf |. (1.4)

In fact, earlier results are obtained under the assumption

sup
n

||An,nf ||p ≤ C||f ||p (f ∈ Lp)

not only for the ergodic maximal operator MT [23,24] but also for the ergodic Hilbert transform [27] and the 
ergodic power function [21,28]. We recall the definitions of these operators. The ergodic Hilbert transform 
is defined as

HT f(x) = lim
n→∞

Hnf(x),

where

Hnf(x) =
n∑

j=−n

′
1
j
T jf(x) :=

n∑
j=1

1
j

(
T jf(x) − T−jf(x)

)
,

and the maximal ergodic Hilbert transform is

H∗
T f(x) = sup

n≥0
|Hnf(x)|.

This operator was introduced by Cotlar [4] for operators induced by measure preserving transformations.
For 1 < r < +∞ the ergodic power functions are defined by

P+
r,T f(x) =

( ∞∑
n=0

|A0,n+1f(x) −A0,nf(x)|r
)1/r

, and

Pr,T f(x) =
( ∞∑

n=0
|An+1,0f(x) −An,0f(x)|r + |A0,n+1f(x) −A0,nf(x)|r

)1/r

.

P+
r,T was introduced by Roger L. Jones [15]. We collect these results in the next theorem (see also [29] for 

the ergodic maximal operator and the ergodic Hilbert transform).

Theorem A ([23,24,27,28,21]). Let 1 < p, r < +∞. Let T be a positive invertible Lamperti operator with 
positive inverse. Assume that the averages are uniformly bounded in Lp, i.e., there exists C > 0 such that

sup ||An,nf ||p ≤ C||f ||p for all f ∈ Lp.

n
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Then

(a) The operators MT , H∗
T , HT and Pr,T are bounded in Lp.

(b) The sequences An,nf and Hnf and the series Pr,T f converge a.e. and in Lp for all f ∈ Lp.

It could be reasonable to think that if the averages are uniformly bounded in L1 then the maximal 
operator MT is of weak type (1, 1). However, it was noticed in [12, Example 2.11] that this is not the 
case in general. It was left open the problem of finding an additional condition in such a way that this 
condition together with the uniform boundedness of the averages in L1 implies that the ergodic maximal 
operator is of weak type (1, 1). A cursory discussion of the problem studied in this paper for the continuous 
version of the ergodic maximal operator M+

T appears in [22]. We show in this paper that if the averages 
are uniformly bounded in L1 and in L∞ then MT is of weak type (1, 1) (which resembles Dunford-Schwartz 
ergodic theorem) but, not only that, we also show that under the same assumptions we have that H∗

T , HT

and Pr,T are of weak type (1, 1) and the sequences An,nf , Hnf converge a.e. and in measure for all f ∈ L1. 
In fact, we are able to prove that the same conclusions hold under weaker assumptions, by changing the 
assumption in L∞ by the uniform boundedness in some Lp, 1 < p < +∞, of the averages associated to an 
operator Tp which is a modification of the operator T (see Theorem 3.4). This modified operator Tp is the 
operator T in the limit case p = ∞ and the natural isometry in L1 when p = 1. Notice that these weaker 
assumptions imply that there exists s ∈ (1, ∞) such that the averages An,n of the operator T are uniformly 
bounded in Lp for all p ∈ [1, s] while the stronger assumptions imply that the same is true for s = +∞.

The paper is organized in the following way: Section 2 is devoted to establish in a more precise way the 
setting of the paper; in particular we resume the structure and properties of Lamperti operators. Section 3
contains the main results and the proofs of the results are in the following sections. The last section is 
devoted to provide examples of operators which satisfy the assumptions of the theorems.

1.1. Notations

Throughout the paper, we will use some standard notations that we detail in what follows. If E ⊂ R is 
a Lebesgue-measurable set then |E| stands for the Lebesgue measure of the set E. In the same way, if A is 
a subset of integer numbers then #A denotes the cardinal or the counting measure of A. When we work in 
the real line and U : R → R is a nonnegative measurable function then Lp(U) is the Lebesgue space Lp(μ), 
where μ is the measure with density U with respect to Lebesgue measure. Also, �p(u) is the Lebesgue space 
Lp(μ) where μ is the measure with density u with respect to counting measure on Z.

It is said that an operator L applies Lp(μ) into Lp(μ) if there exists a positive constant C such that

||Lf ||p ≤ C||f ||p for all functions f ∈ Lp(μ).

The space weak-Lp(μ), denoted by Lp,∞(μ), is the space of functions f such that

||f ||p.∞ := sup
λ>0

λ (μ({x : |f(x)| > λ}))
1
p < ∞.

Finally, it is said that the operator L applies Lp(μ) into weak-Lp(μ) if there exists C > 0 such that

||Lf ||p,∞ ≤ C||f ||p for all functions f ∈ Lp(μ).

2. Lamperti operators

In this section we state the setting of our paper (which is the same as in [29] and we follow the notations 
introduced in [3]). A Lamperti operator on M(μ) is a map T : M(μ) → M(μ) of the form
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Tf(x) = h(x)Φf(x), (2.1)

where h ∈ M(μ) and Φ : M(μ) −→ M(μ) is linear and multiplicative, that is,

(1) Φ(αf + βg) = αΦ(f) + βΦ(g)
(2) Φ(fg) = Φ(f)Φ(g)

Throughout the paper we always assume that T is positive and invertible with positive inverse. It follows 
that 0 < h(x) < ∞ a.e. and Φ is invertible and positive. Other properties are Φ1 = 1, Φ(|f |r) = |Φ(f)|r for 
positive r and the following ones (see e.g. [16] and [18]):

(1) There exists a sequence of measurable functions hj such that

T jf = hjΦjf (2.2)

where h1 = h, h0 = 1 and hj+k = hj Φjhk, for any j, k ∈ Z.
(2) By the Radon-Nikodym theorem, for every j ∈ Z there exists a positive function Jj ∈ M(μ) such that 

if f ≥ 0 then

∫
X

Jj Φjf dμ =
∫
X

f dμ and Jj+k = Jj ΦjJk, for any j, k ∈ Z. (2.3)

The function J1 will be simply denoted by J .

3. Statement of the main results

A Cesàro bounded operator in Lp is a linear operator such that the averages are uniformly bounded in 
Lp, that is, supn∈N ‖A0,n‖Lp < ∞. Assume that T is invertible. T and its inverse T−1 are Cesàro bounded 
operators in Lp if and only if supn∈N ‖An,n‖Lp < ∞ (the averages An,n are uniformly bounded operators 
in Lp). The next theorem establishes the weak type (1, 1) inequality for the ergodic maximal operator, 
the maximal ergodic Hilbert transform and the ergodic power operator and the a.e. convergence of the 
corresponding sequences of functions in L1, assuming that T and T−1 are Cesàro bounded operators in L1

and in L∞.

Theorem 3.1. Let Tf(x) = h(x)Φf(x) be a positive invertible Lamperti operator. Let 1 < r < ∞. If the 
averages An,n are uniformly bounded operators in L1 and in L∞ then the following statements hold:

(i) The maximal operator MT applies L1 into weak-L1, i.e., there exists C > 0 such that

μ({x ∈ X : MT f(x) > λ}) ≤ C

λ

∫
X

|f | dμ (f ∈ L1, λ > 0)

and the sequences of averages An,nf , A0,nf and An,0f converge a.e. and in measure for all f ∈ L1.
(ii) The maximal ergodic Hilbert transform H∗

T applies L1 into weak-L1 and the sequence Hnf converges 
a.e. and in measure for all f ∈ L1; therefore, the ergodic Hilbert transform HT f exists in the a.e. sense 
and belongs to weak-L1 for all f ∈ L1.
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(iii) The ergodic power operator Pr,T applies L1 into weak-L1 and the series

Pr,T f(x) =
( ∞∑

n=0
|An+1,0f(x) −An,0f(x)|r + |A0,n+1f(x) −A0,nf(x)|r

)1/r

converges a.e. and in measure for all f ∈ L1.

Remark 3.2. Observe that we can take symmetric means in the maximal definition, and Theorem 3.1 (i) 
holds. Indeed, if we define

M c
T f(x) = sup

n≥0
|An,nf(x)|,

it is clear that M c
T f ≤ MT f ≤ 2M c

T f , so MT applies L1 into weak-L1 if and only if M c
T applies L1 into 

weak-L1.

Remark 3.3. R. Sato proved [26] that if T is a positive operator such that the averages An (see the definition 
in (1.1)) are uniformly bounded in L1 and in L∞ then the sequence Anf converges a.e. for all f ∈ L∞. 
Earlier, Derriennic and Lin [7] proved that there exist a positive linear operator T on L1 of a finite measure 
space, with supn∈N ||Tn||L1 < ∞ and T1 = 1, and a function f in L1 such that Anf does not converge 
a.e. Therefore, for this operator T , the averages An are uniformly bounded in L1 and in L∞, the sequence 
Anf converges a.e. for all functions f in a dense class (L∞) in L1 but the ergodic maximal operator 
M+

T f = supn≥0 |Anf | is not of weak type (1, 1) because there exists a function in L1 such that Anf does 
not converge a.e.

The assumption on L∞ can be weakened by assuming the uniform boundedness of the averages of a 
modified operator Tp related to T . This result is stated in the following theorem.

Theorem 3.4. Let Tf(x) = h(x)Φf(x) be a positive invertible Lamperti operator and let J be the func-
tion defined in (2.3). Let 1 < p < ∞ and let Tp be the positive invertible Lamperti operator Tpf(x) =(

J(x)
h(x)

) 1
p

Tf(x). If the averages An,n are uniformly bounded operators in L1 and the averages An,n,Tp
de-

fined by

An,n,Tp
f = 1

2n + 1

n∑
j=−n

T j
pf (3.1)

are uniformly bounded operators in Lp, 1 < p < ∞, then the following statements hold:

(i) The maximal operator MT , the maximal ergodic Hilbert transform H∗
T and the ergodic power operator 

Pr,T , 1 < r < ∞ apply L1 into weak-L1.
(ii) The sequences An,nf , A0,nf , An,0f and Hnf and the series Pr,T f , 1 < r < ∞, converge a.e. and in 

measure for all f ∈ L1.

As it is shown in Remark 3.6, the assumptions in this theorem are weaker than the ones in Theorem 3.1. 
We notice that the assumptions in Theorem 3.1 imply that the averages are uniformly bounded in Lp for 
all p ∈ [1, +∞] while the assumptions in Theorem 3.4 imply that there exists s ∈ (1, +∞) such that the 
averages are uniformly bounded in Lp for all p ∈ [1, s] (see the proof of Theorem 3.4 (ii) at the end on 
Section 7).
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In order to prove Theorem 3.1 and Theorem 3.4, a key result is the following lemma which characterizes 
the positive invertible Lamperti operators such that T and T−1 are Cesàro bounded in Lp, 1 ≤ p ≤ ∞. Before 
stating it, we introduce some notations: if a : Z → R is a sequence of real numbers, the Hardy-Littlewood 
maximal function of a is defined by

ma(j) = sup
k,n≥0

∣∣∣∣∣ 1
k + n + 1

n∑
i=−k

a(j + i)

∣∣∣∣∣ . (3.2)

It is clear that m = MT where Ta(j) = a(j + 1). It is said that a nonnegative function u : Z → R satisfies 
the discrete Muckenhoupt A1(Z) condition if there exists C > 0 such that

mu(n) ≤ Cu(n) for all n ∈ Z, (3.3)

and the minimum of all these positive constants is denoted by [u]A1(Z). We also say that u belongs to A1(Z). 
We recall that the discrete Hardy-Littlewood maximal operator m applies the weighted space �1(u) into 
weak-�1(u) if and only if u ∈ A1(Z). It is said that u satisfies the Ap(Z) condition or u belongs to Ap(Z), 
1 < p < +∞, if there exists C > 0 such that⎛⎝∑

j∈I

u(j)

⎞⎠⎛⎝∑
j∈I

u−1/(p−1)(j)

⎞⎠p−1

≤ C(#(I))p (3.4)

for all bounded intervals I. The minimum of all these positive constants is denoted by [u]Ap(Z). It is said that 
u satisfies A∞(Z), belongs to A∞(Z) or simply u ∈ A∞(Z), if there exists p ∈ [1, ∞) such that u ∈ Ap(Z)
(we also write A∞(Z) =

⋃
p∈[1,∞)

Ap(Z)). We recall that m applies the weighted space �p(u) into �p(u) if and 

only if u ∈ Ap(Z). These discrete results can be found in [13].

Lemma 3.5. Let Tf(x) = h(x)Φf(x) be a positive invertible Lamperti operator and let Jj and hj be the 
functions defined in (2.3) and (2.2), respectively. Let 1 < p, p′ < ∞, 1

p + 1
p′ = 1 and let Tp be the positive 

invertible Lamperti operator Tpf(x) =
(

J(x)
h(x)

) 1
p

Tf(x).

(i) The averages An,n are uniformly bounded operators in L1 if and only if for almost every x ∈ X, the 
functions qx : Z → R, qx(j) = Jj(x)h−1

j (x), belong to the discrete Muckenhoupt A1(Z) class with a 
uniform constant, that is, there exists C > 0 such that for a.e. x ∈ X

mqx(j) ≤ Cqx(j) for all j ∈ Z. (3.5)

More precisely, the constant C = supn ||An,n||1 satisfies the above inequality.
(ii) The averages An,n are uniformly bounded operators in L∞ if and only if for almost every x ∈ X, the 

functions hx : Z → R, hx(j) = hj(x), belong to the discrete Muckenhoupt A1(Z) class with a uniform 
constant, that is, there exists C > 0 such that for a.e. x

mhx(j) ≤ Chx(j) for all j ∈ Z . (3.6)

More precisely, the constant C = supn ||An,n||∞ satisfies the above inequality.
(iii) ([24,23]) The averages An,n are uniformly bounded operators in Lp if and only if for almost every 

x ∈ X, the functions qx : Z → R, qx(j) = Jj(x)h−p
j (x) belong to the discrete Muckenhoupt Ap(Z)

class with a uniform constant, that is, there exists C > 0 such that for a.e. x ∈ X
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⎛⎝ m∑
j=n

qx(j)

⎞⎠⎛⎝ m∑
j=n

q−1/(p−1)
x (j)

⎞⎠p−1

≤ C(n + m + 1)p

for all integers n and m with n ≤ m.
(iv) The averages An,n,Tp

defined in (3.1) are uniformly bounded operators in Lp if and only if for almost 
every x ∈ X, the functions hx : Z → R, hx(j) = hj(x) belong to the discrete Muckenhoupt Ap′(Z)
class with a uniform constant.

Remark 3.6. It is known that the class A1(Z) is included in Ap′(Z), 1 < p′ < ∞. Then it follows that the 
assumptions in Theorem 3.1 are stronger than the ones in Theorem 3.4.

Proof of Lemma 3.5. (iii) is proved in [24,23], and (iv) is an immediate consequence of (iii) since Tpf(x) =
h(x)

1
p′ J(x)

1
p Φf(x).

Proof of (i). (3.5) holds if and only if for a.e. x

sup
n≥0

1
2n + 1

n∑
i=−n

Jj+i(x)h−1
i+j(x) ≤ CJj(x)h−1

j (x) for all j ∈ Z.

By (2.2) and (2.3) the above inequality holds if and only if for a.e. x

sup
n≥0

1
2n + 1

n∑
i=−n

Ji(x)h−1
i (x) ≤ C.

The last inequality is equivalent to

sup
n≥0

1
2n + 1

n∑
i=−n

∫
X

f(x)Ji(x)
hi(x)dμ(x) ≤ C

∫
X

f(x)dμ(x)

for all non negative measurable functions. Applying again (2.3), we get

sup
n≥0

1
2n + 1

n∑
i=−n

∫
X

Φ−if(x)Φ−iJi(x)
Φ−ihi(x)J−i(x)dμ(x) ≤ C

∫
X

f(x)dμ(x).

By properties (2.2) and (2.3) we deduce h−i(x)Φ−ihi(x) = 1 and J−i(x)Φ−iJi(x) = 1. Therefore, all the 
inequalities are equivalent to

sup
n≥0

1
2n + 1

n∑
i=−n

∫
X

h−i(x)Φ−if(x)dμ(x) ≤ C

∫
X

f(x)dμ(x).

This inequality means that the averages An,n are uniformly bounded in L1. This finishes the proof of (i). It 
follows from the proof that we can take the constant C = supn ||An,n||1 in (3.5).

Proof of (ii). Assume (3.6) holds. Then there exists C > 0 such that for a.e. x and for all n ≥ 0,

1
2n + 1

n∑
i=−n

hi+j(x) ≤ Chj(x) for all j ∈ Z. (3.7)

By using (2.2) the last inequality is equivalent to
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1
2n + 1

n∑
i=−n

Φjhi(x) ≤ C a.e.x, for all n ≥ 0 and for all j ∈ Z,

or, equivalently,

1
2n + 1

n∑
i=−n

hi(x) ≤ C a.e.x, for all n ≥ 0. (3.8)

It follows that for all n ∈ N

|An,nf(x)| ≤ 1
2n + 1

n∑
i=−n

hi(x)|Φif(x)|

≤ ||f ||∞
1

2n + 1

n∑
i=−n

hi(x) ≤ C||f ||∞ a.e.x.

Therefore,

sup
n≥0

||An,nf ||∞ ≤ C||f ||∞. (3.9)

Conversely, assume that (3.9) holds. Applying this inequality to f(x) = 1 we obtain (3.8) which, as we 
said above, holds if and only if for almost every x ∈ X, the functions hx belong to the discrete Muck-
enhoupt A1(Z) class with a uniform constant. It follows from the proof that we can take the constant 
C = supn ||An,n||∞ in (3.7). �
4. Proof of Theorem 3.1

The proof follows by transference arguments from some results in the integers. Due to the similarity of 
the proofs of the statements of Theorem 3.1 (the key steps of the transference argument are essentially the 
same), we will show the first one in detail and the others more concisely.

4.1. Proof of Theorem 3.1(i)

We start stating the result we need on the integers. This kind of inequalities is sometimes called a mixed 
weak type (1, 1) inequality for the operator m.

Theorem 4.1. Let u, v : Z → R be non negative measurable functions. If u, v ∈ A1(Z) then there exists a 
constant C such that for all λ > 0 and all functions a : Z → R,∑

{n∈Z:ma(n)>λv(n)}
u(n)v(n) ≤ C

λ

∑
n∈Z

|a(n)|u(n),

where C depends only on [u]A1(Z) and [v]A1(Z).

The proof follows from the corresponding result in [30]. For reasons of completeness, we give the proof 
of this result in Section 5.

Proof of Theorem 3.1(i). We may assume without loss of generality that f ≥ 0. We establish some notation 
that we will reuse throughout the paper. Let LT be the maximal operator M c

T and let L denote the Hardy-
Littlewood maximal operator m on the integers. We set Ln = An,n for any natural number n. Then by 
definition,
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LT f = sup
n≥0

Lnf.

Let N be a positive integer and let us consider the truncated operator

LT,Nf(x) = sup
0≤n≤N

Lnf(x).

Since {LT,Nf}∞N=1 is an increasing sequence and lim
N→∞

LT,Nf(x) = LT f(x), by the monotone convergence 

theorem, it suffices to prove that there exists C > 0 independent of N such that

μ({x ∈ X : LT,Nf(x) > λ}) ≤ C

λ

∫
X

fdμ. (4.1)

Proof of (4.1). Let Oλ,N := {x ∈ X : LT,Nf(x) > λ}. Let K be any positive integer. Then, by (2.3),

μ(Oλ,N ) = 1
K + 1

K∑
j=0

∫
X

JjΦjχOλ,N
dμ = 1

K + 1

∫
X

K∑
j=0

JjΦjχOλ,N
dμ,

where χA denotes the characteristic function of A. Let E0 = {x : f(x) > λ} and if 0 < n ≤ N let

En = {x : Lnf(x) > λ} ∩ (X \ ∪n−1
i=1 Ei).

It is clear that the sets En are disjoint and Oλ,N = ∪N
n=0En. From the definition of the sets,

λχOλ,N
≤

N∑
n=0

LnfχEn
.

Therefore,

λΦjχOλ,N
≤

N∑
n=0

Φj(Lnf)ΦjχEn
.

Observe, by applying (2.2), that Φj(Lnf) = h−1
j T j(Lnf), and a direct computation yields T j(Lnf) =

Ln(T jf), so it follows that

λhjΦjχOλ,N
≤

N∑
n=0

Ln(T jf)ΦjχEn
.

For fixed x ∈ X, let px : Z → R, px(i) = T if(x). Since 0 ≤ j ≤ K, a simple observation yields Ln(T jf) ≤
L(pxχ[−N,N+K])(j), where [−N, N + K] = {j ∈ Z : −N ≤ j ≤ N + K}. Then

λhjΦjχOλ,N
≤

N∑
n=0

Ln(T jf)ΦjχEn
≤ L(pxχ[−N,N+K])(j)ΦjχOλ,N

.

Since ΦjχOλ,N
= χΦjOλ,N

≤ 1 (see [16]), the above inequality yields,
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K∑
j=0

Jj(x)ΦjχOλ,N
(x) ≤

∑
{j∈Z:L(pxχ[−N,K+N])(j)>λhj(x)}

Jj(x)

=
∑

{j∈Z:L(pxχ[−N,K+N])(j)>λhj(x)}
(Jj(x)h−1

j (x))hj(x).

Since the averages An,n are uniformly bounded operators in L1 and L∞, Lemma 3.5 implies that for almost 
every x ∈ X, the functions hx(j) ∈ A1(Z) and qx(j) = Jj(x)h−1

j (x) ∈ A1(Z) with uniform constants 
(independent of x). Then, by applying Theorem 4.1, there exists C > 0 such that for a.e. x

∑
{j∈Z:L(pxχ[−N,K+N])(j)>λhj(x)}

(Jj(x)h−1
j (x))hj(x) ≤ C

λ

∑
j∈Z

T j(f)(x)χ[−N,K+N ](j)Jj(x)h−1
j (x)

= C

λ

N+K∑
j=−N

Φj(f)(x)Jj(x).

Therefore,

μ(Oλ,N ) = 1
K + 1

∫
X

K∑
j=0

JjΦjχOλ,N
dμ ≤ 1

K + 1
C

λ

N+K∑
j=−N

∫
X

Φj(f)(x)Jj(x)dμ(x)

= 2N + K + 1
K + 1

C

λ

∫
X

f(x)dμ(x),

where the last equality is due to (2.3). By taking limit as K goes to infinity, (4.1) holds.
By Marcinkiewizc interpolation theorem the averages An,n, An,0 and A0,n are uniformly bounded 

operators in Lp, 1 < p < ∞. By the result in [23,24] (see Theorem A), the sequences of averages An,nf , 
A0,nf and An,0f converge a.e. for all f ∈ Lp. Therefore we have that the averages converge a.e. for all 
functions f in Lp ∩L1 which is a dense set in L1. Moreover, we have just proved that LT = MT applies L1

into weak-L1. Then Banach principle yields that the sequences of averages converge in a.e. for all f ∈ L1.
Regarding the convergence in measure of the sequences of averages An,nf , A0,nf and An,0f , we proceed 

in the same way; we only have to observe that it follows from Theorem A that these sequences converge in 
the Lp norm, therefore in measure, for all f ∈ Lp, 1 < p < ∞. �
4.2. Proof of Theorem 3.1(ii)

Before prove it, we establish some notation: if a : Z → R is any function then the maximal function 
Hilbert transform h∗ of a is defined as follows:

h∗a(i) = sup
n≥0

∣∣∣∣∣∣
∑

1≤|j|≤n

a(i + j)
j

∣∣∣∣∣∣ = sup
n≥0

∣∣∣∣∣∣
n∑

j=1

1
j

(a(i + j) − a(i− j))

∣∣∣∣∣∣ . (4.2)

We point out that h∗ = H∗
T , where Ta(i) = a(i + 1).

The proof follows by transference arguments from the next result in the integers.

Theorem 4.2. Let u, v : Z → R be non negative measurable functions. If u, v ∈ A1(Z) then there exists a 
constant C > 0 such that for all λ > 0 and all functions a : Z → R,
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∑
{n∈Z:h∗a(n)>λv(n)}

u(n)v(n) ≤ C

λ

∑
n∈Z

|a(n)|u(n),

where C depends only of [u]A1(Z) and [v]A1(Z).

This theorem follows from the results in [5]. We provide a proof in Section 5.

Proof of Theorem 3.1(ii). The inequality

μ({x ∈ X : H∗
T f(x) > λ}) ≤ C

λ

∫
X

|f | dμ (f ∈ L1, λ > 0) (4.3)

is proved by following the same argument of the proof of Theorem 3.1(i), by taking the maximal operator 
LT = H∗

T , the operator on the integers L = h∗ and the partial sums Ln = |Hn|, and by applying Theorem 4.2
instead of Theorem 4.1.

Now we prove the results about the convergence of Hn. By Marcinkiewizc interpolation theorem, the 
averages An,n are uniformly bounded operators in Lp, 1 < p < ∞. Moreover, Theorem A yields that the 
sequence Hnf converges a.e. and in Lp (and therefore in measure) for all f ∈ Lp and then it converges a.e. 
and in measure for all functions f ∈ Lp ∩ L1 which is a dense set in L1. In addition, we have just proved 
that H∗

T applies L1 into weak-L1, so Banach principle yields that Hnf converges a.e. and in measure for all 
f ∈ L1. Therefore the ergodic Hilbert transform HTf exists in the a.e. sense and belongs to weak-L1 for all 
f ∈ L1. �
4.3. Proof of Theorem 3.1(iii)

For 1 < r < ∞, let Qr,T be the operator defined by the following expression

Qr,T (f) =
( ∞∑

k=−∞

(
|T kf |
|k| + 1

)r
) 1

r

= lim
n→∞

Qr,nf, (4.4)

where Qr,nf =
(

n∑
k=−n

(
|T kf |
|k| + 1

)r
) 1

r

. The argument of our proof is based in the following key inequality

Pr,T f ≤ CMT f + Qr,T f, r > 1 (4.5)

(see [15,28]). Then in order to prove Theorem 3.1(iii) it is enough to show the following result.

Theorem 4.3. Let Tf(x) = h(x)Φf(x) a positive invertible Lamperti operator. Let 1 < r < ∞. If the 
averages An,n are uniformly bounded operators in L1 and in L∞ then the ergodic operator Qr,T applies L1

into weak-L1, i.e. there exists C > 0 such that

μ({x ∈ X : Qr,T f(x) > λ}) ≤ C

λ

∫
X

|f | dμ (f ∈ L1, λ > 0).

When T is the operator defined on functions a : Z → R by Ta(i) = a(i +1), we denote the operator Qr,T

simply by Qr, that is,

Qr(a)(j) =
( ∞∑ (

|a(k + j)|
|k| + 1

)r
) 1

r

.

k=−∞
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The proof of Theorem 4.3 follows by transference arguments from the next result in the integers.

Theorem 4.4. Let u, v : Z → R be non negative measurable functions. If u, v ∈ A1(Z) then there exists a 
constant C > 0 such that for all λ > 0 and all functions a : Z → R,

∑
{n∈Z:Qra(n)>λv(n)}

u(n)v(n) ≤ C

λ

∑
n∈Z

|a(n)|u(n),

where C depends only on [u]A1(Z) and [v]A1(Z).

The proof of this result will be given in Section 6. Unlike Theorems 4.1 and 4.2, and as far as we know, 
this theorem does not follow from any known result in the continuous setting, that is, in Harmonic Analysis. 
This is the reason why the proof of this result will be more involved and we dedicate the entire Section 6
to it.

Proof of Theorem 4.3. We only have to follow the proof of Theorem 3.1(i) by taking the maximal operator 
LT = Qr,T , the operator defined on functions on the integers L = Qr and Ln = Qr,n. In this case there are 
some slight differences that can make the proof simpler, for example, it is enough to consider the truncated 
operator LT,N = Qr,N . Moreover we point out that we apply Theorem 4.4 instead of Theorem 4.1. �
Proof of Theorem 3.1(iii). By inequality (4.5), Theorem 4.3 and Theorem 3.1(i), we obtain that Pr,T applies 
L1 into weak-L1. Now, we point out that Marcinkiewizc interpolation theorem yields that the averages An,n

are uniformly bounded operators in Lp, 1 < p < ∞, so by Theorem A the sequence Pr,T f converges in a.e. 
and in Lp (therefore in measure) for all f ∈ Lp. This fact together with the weak type (1, 1) inequality gives 
that Pr,T f converges a.e and in measure for all f ∈ L1. �
5. Proof of Theorems 4.1 and 4.2

In order to prove Theorems 4.1, and 4.2 we follow the ideas in [13] which allow to transfer weighted 
inequalities from the real line to the integers. In the next sections we shall need some notations, definitions 
and results that we include here. Given a measurable function f : R → R, the Hardy-Littlewood maximal 
function is defined as

Mf(x) = sup
h,k>0

1
h + k

x+k∫
x−h

|f |.

The maximal Hilbert transform is defined as

H∗f(x) = sup
ε>0

∣∣∣∣∣∣∣
∫

|x−y|>ε

f(y)
x− y

dy

∣∣∣∣∣∣∣
when the integrals make sense. It is said that a nonnegative function U : R → R satisfies the Muckenhoupt 
A1 condition if there exists C > 0 such that

MU(x) ≤ CU(x) for almost every x ∈ R,

and the minimum of all these positive constants is denoted by [U ]A1 . We also say that U belongs to A1 or 
U ∈ A1. We recall that M applies the weighted space L1(U) into weak-L1(U) if and only if U ∈ A1 ([25]). 
The same result holds for the maximal Hilbert transform H.
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Moreover it is said that a nonnegative function U : R → R satisfies the Muckenhoupt Ap condition, 
1 < p < +∞ if there exists C > 0 such that

⎛⎝∫
I

U(x) dx

⎞⎠⎛⎝∫
I

U−1/(p−1)(x) dx

⎞⎠p−1

≤ C|I|p

for all bounded intervals I. The minimum of all these positive constants is denoted by [U ]Ap
. We also say 

that U belongs to Ap or U ∈ Ap.
It is said that U satisfies A∞, belongs to A∞ or simply U ∈ A∞, if there exists p ∈ [1, ∞) such that 

U ∈ Ap (we also write A∞ =
⋃

p∈[1,∞)
Ap). We recall that M applies the weighted space Lp(U) into Lp(U) if 

and only if U ∈ Ap [25]. The same result holds for the maximal Hilbert transform H∗.
Further, a weight U ∈ Ap, 1 ≤ p < ∞, satisfies the Reverse Hölder Inequality: there exist C > 0 and 

γ > 1, that depend only on p and [U ]Ap
such that

⎛⎝ 1
|I|

∫
I

U(x)γ dx

⎞⎠
1
γ

≤ C

⎛⎝ 1
|I|

∫
I

U(x) dx

⎞⎠ . (5.1)

As a consequence, U ∈ Ap for some 1 ≤ p < ∞ if and only if there exist positive constants C and δ that 
depend only on p and [U ]Ap

such that

U(F ) ≤ C

(
|F |
|I|

)δ

U(I) (5.2)

for all bounded intervals I and all measurable subsets F ⊂ I, where, as usual, U(E) stands for 
∫
E
U(x) dx.

We point out [10] as a general reference for results about Muckenhoupt Ap weights.
In the proofs of Theorems 4.1 and 4.2 we shall need the following result for M and H∗ (the result for M

can be found in [30] while the corresponding one for the maximal Hilbert transform follows from Theorems 
1.7 and 1.3 in [5]).

Theorem B ([30,5]). Let U, V ∈ A1. Let L be the Hardy-Littlewood maximal operator M or the maximal 
Hilbert transform H∗. Then there exists a positive constant C, depending only on [U ]A1 and [V ]A1 , such 
that ∫

{x∈R:Lf(x)>λV (x)}

UV ≤ C

λ

∫
R

|f |U

for all λ > 0 and all measurable functions f .

Proof of Theorem 4.1. We assume without loss of generality that a(n) ≥ 0, n ∈ Z. For all x ∈ R, let [x] be 
the greatest integer less than or equal to x. Let U(x) = u([x]), V (x) = v([x]) and f(x) = a([x]), x ∈ R. Let 
us observe that u, v ∈ A1(Z) if and only if U, V ∈ A1 and the constant [U ]A1 and [V ]A1 depend on [u]A1(Z)
and [v]A1(Z), respectively. Moreover, ma([x]) ≤ Mf(x). Indeed, if k, m ≥ 0, and x ∈ [n, n + 1)

1
m + k + 1

m∑
j=−k

a(n + j) = 1
m + k + 1

m∑
j=−k

n+j+1∫
n+j

f(y)dy = 1
m + k + 1

m+n+1∫
n−k

f(y)dy ≤ Mf(x).
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Then Theorem B yields

∑
{n∈Z:ma(n)>λv(n)}

u(n)v(n) =
∑
n∈Z

n+1∫
n

χ{j∈Z:ma(j)>λv(j)}(n)U(y)V (y)dy

≤
∑
n∈Z

n+1∫
n

χ{x∈R:Mf(x)>λV (x)}(y)U(y)V (y)dy

=
∫

{x∈R:Mf(x)>λV (x)}

U(y)V (y)dy

≤ C

λ

∫
R

f(x)U(x)dx = C

λ

∑
n∈Z

n+1∫
n

f(x)U(x)dx = C

λ

∑
n∈Z

a(n)u(n). �

Proof of Theorem 4.2. Assume without loss of generality that a(n) ≥ 0, n ∈ Z. Let f =
∑
i∈Z

a(i)χ(i− 1
4 ,i+

1
4 ), 

U =
∑
i∈Z

u(i)χ(i− 1
4 ,i+

1
4 ) and V =

∑
i∈Z

v(i)χ(i− 1
4 ,i+

1
4 ). It is easy to see that U, V ∈ A1 and the constant [U ]A1

and [V ]A1 depend on [u]A1(Z) and [v]A1(Z), respectively. We also have that for x ∈ (i − 1
4 , i +

1
4 ) the inequality 

h∗a(i) ≤ 8Mf(x) + 2H∗f(x) holds (see [13]). Then Theorem B yields

∑
{n∈Z:h∗a(n)>λv(n)}

u(n)v(n) = 2
∑
n∈Z

n+ 1
4∫

n− 1
4

χ{j∈Z:h∗a(j)>λv(j)}(n)U(y)V (y)dy

≤ 2
∑
n∈Z

n+ 1
4∫

n− 1
4

χ{x∈R:8Mf(x)+2H∗f(x)>λV (x)}(y)U(y)V (y)dy

≤ 32C
λ

∫
R

|f(x)|U(x)dx + 8C
λ

∫
R

|f(x)|U(x)dx = C ′

λ

∑
n∈Z

|a(n)|u(n). �

6. Proof of Theorem 4.4

In order to prove Theorem 4.4 it is convenient to introduce the one-sided versions of the operator Qr, 
denoted by Q+

r and Q−
r , defined on functions a : Z → R, by

Q+
r a(j) =

( ∞∑
k=0

(
|a(j + k)|
k + 1

)r
) 1

r

and Q−
r a(j) =

( ∞∑
k=0

(
|a(j − k)|
k + 1

)r
) 1

r

; r > 1.

It is clear that

max{Q−
r a,Q

+
r a} ≤ Qra ≤ Q−

r a + Q+
r a.

We shall study the operator Q+
r (similar results hold for Q−

r ) and the corresponding theorems for Qr are 
obtained putting together the results for Q+

r and Q−
r .

We start with a good-λ inequality for Q+
r . To state it we introduce the one-sided Hardy-Littlewood 

maximal operator m+ on functions a : Z → R defined by
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m+a(j) = sup
n≥0

1
n + 1

n∑
k=0

|a(j + k)|.

Theorem 6.1. Let a : Z → R, a ∈ �1. Then there exists C > 0 such that for all β > 1 and all γ < 1

#({k ∈ Z : Q+
r a(k) > βλ, m+a(k) ≤ γλ}) ≤ Cγ

β − 1#({k ∈ Z : Q+
r a(k) > λ}).

Proof. Let Eλ = {k ∈ Z : Q+
r a(k) > λ}. Since Q+

r applies �1 into weak-�1 (see [21, Theorem 3.8 with w = 1]
or [15]) then Eλ is a finite set. Therefore Eλ =

n⋃
i=1

Ij , and Ij are maximal disjoint intervals in Z. Then, it 

is enough to show that there exists C > 0 such that for each j ∈ {1, 2, . . . , n}

#({k ∈ Ij : Q+
r a(k) > βλ, m+a(k) ≤ γλ}) ≤ Cγ

β − 1#(Ij). (6.1)

Indeed, since β > 1 and by using (6.1),

#({k ∈ Z : Q+
r a(k) > βλ, m+a(k) ≤ γλ}) = #({k ∈ Eλ : Q+

r a(k) > βλ, m+a(k) ≤ γλ})

=
n∑

j=1
#({k ∈ Ij : Q+

r a(k) > βλ, m+a(k) ≤ γλ})

≤
n∑

j=1

Cγ#(Ij)
β − 1 = Cγ#(Eλ)

β − 1 .

Let us show (6.1) for any Ij . Assume that there exists kj ∈ Ij such that m+a(kj) ≤ γλ (otherwise we get 
#({k ∈ Ij : Q+

r a(k) > βλ, m+a(k) ≤ γλ}) = 0 and (6.1) holds). Let kj be the minimum of {k ∈ Ij :
m+(a)(k) ≤ γλ} and let Ĩj = {k ∈ Ij : k ≥ kj} = {kj , . . . , kl}, where ki = kj + i − j. It is obvious that

{k ∈ Ij : Q+
r a(k) > βλ, m+a(k) ≤ γλ} = {k ∈ Ĩj : Q+

r a(k) > βλ, m+a(k) ≤ γλ}.

Let us define the functions a1, a2 : Z → R as a1 = aχ
Ĩj

and a2 = a − a1. We claim that the next two 
properties hold.

(i) For each β′ > 0, #({k ∈ Ĩj : Q+
r (a1)(k) > β′λ}) ≤ Cγ

β′ #(Ij).
(ii) For each k ∈ Ĩj , Q+

r (a2)(k) ≤ λ holds.

Indeed, by using that Q+
r applies �1 into weak-�1,

#({k ∈ Ĩj : Q+
r (a1)(k) > β′λ}) ≤ C

β′λ

∑
k∈Z

|a1(k)| = C#(Ĩj)
β′λ#(Ĩj)

∑
k∈Ĩj

|a(k)|

= C#(Ĩj)
β′λ

1
l − j + 1

l−j∑
i=0

|a(kj + i)| ≤ C#(Ij)
β′λ

m+(a)(kj) ≤
Cγ#(Ij)

β′ .

In order to show (ii), we notice that Q+
r (a)(kl + 1) ≤ λ because kl + 1 /∈ Eλ since Ij is a maximal interval 

of Eλ. Therefore, if k ∈ Ĩj ,
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Q+
r (a2)(k) =

⎡⎣ ∞∑
j=0

|a2(k + j)|r
(j + 1)r

⎤⎦1/r

=

⎡⎣ ∞∑
j=kl−k+1

|a(k + j)|r
(j + 1)r

⎤⎦1/r

=
[ ∞∑
i=0

|a(kl + 1 + i)|r
(i + 1 + kl + 1 − k)r

]1/r

≤
[ ∞∑
i=0

|a(kl + 1 + i)|r
(i + 1)r

]1/r

= Q+
r (a)(kl + 1) ≤ λ.

Once (i) and (ii) have been established, we apply these properties with β′ = β − 1 and we obtain

#({k ∈ Ij : Q+
r a(k) > βλ, m+a(k) ≤ γλ}) ≤ #({k ∈ Ĩj : Q+

r a(k) > βλ})

≤ #
(
{k ∈ Ĩj : Q+

r (a1)(k) > β′λ} ∪ {k ∈ Ĩj : Q+
r (a2)(k) > λ}

)
= #({k ∈ Ĩj : Q+

r (a1)(k) > β′λ}) ≤ Cγ#(Ij)
β′ = Cγ#(Ij)

β − 1 ,

i.e., (6.1) holds and the proof of Theorem 6.1 is complete. �
Lemma 6.2. Let w : Z → R be a non negative measurable function. Then w ∈ Ap(Z) for some 1 ≤ p < ∞
if and only if there exist constants C ≥ 1 and δ > 0, that depend only on [w]Ap(Z) and p, such that

∑
n∈E

w(n) ≤ C

(
#(E)

b− a + 1

)δ b∑
n=a

w(n) (6.2)

for all integers a and b, a ≤ b, and each set E ⊂ [a, b] = {n ∈ Z : a ≤ n ≤ b}.

Proof. Since w ∈ Ap(Z), then the function W : R → R defined by W (x) = w([x]) belongs to Ap and [W ]Ap

depends on [w]Ap(Z). Then, by (5.2) there exist positive constants C and δ that depend on [W ]Ap
and p

such that for all bounded intervals I and each measurable subset F ⊂ I

W (F ) ≤ C

(
|F |
|I|

)δ

W (I). (6.3)

By applying the inequality above to F = ∪n∈E [n, n + 1) and the interval I = [a, b + 1) (notice that 
F ⊂ [a, b +1)), we obtain (6.2). Conversely, assume that (6.2) holds. It is not difficult to see that (6.3) holds 
and, arguing as before, w ∈ Ap(Z) for some 1 ≤ p < ∞. �
Theorem 6.3. Let 0 < s < ∞ and w ∈ Aq(Z), 1 ≤ q < ∞. Then there exists C > 0 (that depends only on 
[w]Aq(Z), q and s) such that ∑

k∈Z
|Qr(a)(k)|sw(k) ≤ C

∑
k∈Z

|ma(k)|sw(k)

for each function a : Z → R such that the sum on the left-hand side is finite.

Proof. We shall prove the above inequality for the operator Q+
r . The inequality holds also for Q−

r since 

Q−
r a = Q̃+

r ã, where b̃(j) = b(−j), and w ∈ Aq(Z) if and only if w̃ ∈ Aq(Z). Then the proof of the theorem 
follows from Qr ≤ Q−

r + Q+
r .

Let us show that there exists A > 0 and α > 0 such that∑
+

w(k) ≤ Aγα
∑
+

w(k), γ < 1. (6.4)

{k∈Z:Qr a(k)>2λ,ma(k)≤γλ} {k∈Z:Qr a(k)>λ}
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Since Q+
r applies �1 into weak-�1 (see [21] or [15]), then #(Eλ) = #({k ∈ Z : Q+

r a(k) > λ}) < ∞. Therefore 

Eλ =
n⋃

i=1
Ij , and Ij are maximal and disjoint intervals in Z. Let Oλ,j = {k ∈ Ij : Q+

r a(k) > 2λ, ma(k) ≤ γλ}, 

γ < 1, then Theorem 6.1 yields there exists B > 0 such that #(Oλ,j) ≤ Bγ#(Ij), for all γ < 1, j ∈
{1, 2, . . . , n}. Since w ∈ Aq(Z), by applying the property (6.2) to sets Oλ,j ⊂ Ij , j ∈ {1, 2, . . . , n} there exist 
C, δ > 0 that depend on [w]Aq(Z) and q such that

∑
k∈Oλ,j

w(k)∑
k∈Ij

w(k) ≤ C

(
#(Oλ,j)
#(Ij)

)δ

≤ CBδγδ, j ∈ {1, . . . , n}.

Then since Ij are disjoint sets,

∑
{k∈Z:Q+

r a(k)>2λ,ma(k)≤γλ}

w(k) =
∑

{k∈Eλ:Q+
r a(k)>2λ,ma(k)≤γλ}

w(k) =
n∑

j=1

∑
k∈Oλ,j

w(k)

≤ CBδγδ
∑

{k∈Z:Q+
r a(k)>λ}

w(k),

so (6.4) holds. Now, by following a classic argument (see for example [10] or [11, Theorem 6.12]), and by 
taking γ small enough such that 2sCBδγδ < 1 we obtain that there exists a constant C ′ > 0 that depends 
on [w]Aq(Z), q and s such that

∑
k∈Z

|Q+
r (a)(k)|sw(k) ≤ C ′

∑
k∈Z

|m(a)(k)|sw(k),

for each function a : Z → R such that the sum on the left-hand side is finite. �
Once we have Theorem 6.3 we follow the ideas in [5] to prove Theorem 4.4. More precisely, we will use 

the next reformulation of [5, Theorem 1.7] that follows from its proof.

Theorem C. Let F be a family of pairs of functions, and suppose that for all 0 < s < ∞ and w ∈ Aq, 
1 ≤ q < ∞, ∫

R

|f(x)|sw(x)dx ≤ C

∫
R

|g(x)|sw(x)dx, (6.5)

for each (f, g) ∈ F such that the left-hand side is finite, where C depends only on [w]Aq(Z), q and s. Then 
for all u ∈ A1 and v ∈ Ap, 1 ≤ p < ∞,

sup
λ>0

⎛⎜⎝λ

∫
{x∈R:|f(x)|>λv(x)}

u(x)v(x)dx

⎞⎟⎠ ≤ C sup
λ>0

⎛⎜⎝λ

∫
{x∈R:|g(x)|>λv(x)}

u(x)v(x)dx

⎞⎟⎠
for each (f, g) ∈ F such that the left-hand side is finite, where C depends on [u]A1 and [v]Ap

and p.

In fact, we need the next result that follows from the previous theorem.

Theorem 6.4. Let F be a family of pairs of functions defined on Z, and suppose that for all 0 < s < ∞ and 
w ∈ Aq(Z), 1 ≤ q < ∞,
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∑
k∈Z

|f(k)|sw(k) ≤ C
∑
k∈Z

|g(k)|sw(k), (6.6)

for each (f, g) ∈ F such that the left-hand side is finite, where C depends only on [w]Aq(Z), q and s. Then 
for all u ∈ A1(Z) and v ∈ Ap(Z), 1 ≤ p < ∞

sup
λ>0

⎛⎝λ
∑

{k∈Z:|f(k)|>λv(k)}
u(k)v(k)

⎞⎠ ≤ C sup
λ>0

⎛⎝λ
∑

{k∈Z:|g(k)|>λv(k)}
u(k)v(k)

⎞⎠
for each (f, g) ∈ F such that the left-hand side is finite, where C depends on [u]A1(Z) and [v]Ap(Z) and p.

Proof. Let us consider the family F∗ of pairs of functions (F, G) defined by F (x) = f([x]), G(x) =
g([x]), (f, g) ∈ F , and let W be an arbitrary weight, W ∈ Aq, 1 ≤ q < ∞. Let us show that the weight 
w(k) =

∫ k+1
k

W (x)dx belongs to Aq(Z). Observe that

1 ≤

⎛⎝ k+1∫
k

W (x)dx

⎞⎠q′−1 k+1∫
k

W 1−q′(x)dx.

Let I be an interval of Z and J =
⋃
n∈I

[n, n + 1) the interval in R. Then

(∑
k∈I

w(k)
)q′−1(∑

k∈I

w1−q′(k)
)

=

⎛⎝∫
J

W (x)dx

⎞⎠q′−1∑
k∈I

⎛⎝ k+1∫
k

W (x)dx

⎞⎠1−q′

≤

⎛⎝∫
J

W (x)dx

⎞⎠q′−1⎛⎝∑
k∈I

k+1∫
k

W 1−q′(x)dx

⎞⎠

=

⎛⎝∫
J

W (x)dx

⎞⎠q′−1⎛⎝∫
J

W 1−q′(x)dx

⎞⎠ ≤ [W ]q
′−1

Aq
|J |q′ = [W ]q

′−1
Aq

(#(I))q
′
.

Therefore, w ∈ Aq(Z) and [w]Aq(Z) ≤ [W ]Aq
. By (6.6), if F (x) = f([x]) and G(x) = g([x]), (f, g) ∈ F , we 

obtain ∫
R

|F (x)|sW (x)dx =
∑
k∈Z

|f(k)|sw(k) ≤ C
∑
k∈Z

|g(k)|sw(k) = C

∫
R

|G(x)|sW (x)dx,

assuming that the left-hand side is finite, where the constant C depends only on [W ]Aq
, q and s. Thus 

assumption (6.5) in Theorem C holds for F∗.
Now, as usual, if u ∈ A1(Z) and v ∈ Ap(Z), 1 ≤ p < ∞ let us define U(x) = u([x]) and V (x) = v([x]), 

so U ∈ A1 and V ∈ Ap. Then by applying Theorem C, bearing in mind that

sup
λ>0

⎛⎜⎝λ

∫
{x∈R:|F (x)|>λV (x)}

U(x)V (x)dx

⎞⎟⎠ = sup
λ>0

⎛⎝λ
∑

{k∈Z:|f(k)|>λv(k)}
u(k)v(k)

⎞⎠ ,

we obtain
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sup
λ>0

⎛⎝λ
∑

{k∈Z:|f(k)|>λv(k)}
u(k)v(k)

⎞⎠ ≤ C sup
λ>0

⎛⎝λ
∑

{k∈Z:|g(k)|>λv(k)}
u(k)v(k)

⎞⎠ ,

where C > 0 depends on [u]A1(Z) and [v]Ap(Z) and p. �
Proof of Theorem 4.4. Theorem 6.3 yields that if w ∈ Aq(Z), 1 ≤ q < ∞ and 0 < s < ∞, there exists 
C > 0 (that depends only on [w]Aq(Z), q and s) such that∑

k∈Z
|Qr(a)(k)|sw(k) ≤ C

∑
k∈Z

|ma(k)|sw(k)

so the hypothesis (6.6) of Theorem 6.4 holds. Then for all u ∈ A1(Z) and v ∈ Ap(Z), 1 ≤ p < ∞ there 
exists a constant C > 0 that depends on [u]A1(Z) and [v]Ap(Z) and p such that

sup
λ>0

⎛⎝λ
∑

{k∈Z:|Qra(k)|>λv(k)}
u(k)v(k)

⎞⎠ ≤ C sup
λ>0

⎛⎝λ
∑

{k∈Z:|ma(k)|>λv(k)}
u(k)v(k)

⎞⎠ .

Therefore the result follows as a consequence of Theorem 4.1. �
7. Proof of Theorem 3.4

7.1. Proof of Theorem 3.4 (i)

By Lemma 3.5, for almost every x ∈ X the functions hx : Z → R, hx(j) = hj(x), and qx : Z →
R, qx(j) = Jj(x)h−1

j (x), belong to the discrete Muckenhoupt Ap′(Z) and A1(Z) classes with a uniform 
constant, respectively. Then, Theorem 3.4 (i) follows in the same way as Theorem 3.1 by using the next 
theorem instead of Theorems 4.1, 4.2 and 4.4.

Theorem 7.1. Let u ∈ A1(Z) and v ∈ Ap(Z), 1 ≤ p < ∞, and let 1 < r < ∞. Let L be the Hardy-Littlewood 
maximal function m, the maximal Hilbert transform h∗ or the operator Qr. Then there exists a positive 
constant C, depending only on [u]A1(Z), [v]Ap(Z) and p, such that for all λ > 0 and all functions a : Z → R,

∑
{n∈Z:La(n)>λv(n)}

u(n)v(n) ≤ C

λ

∑
n∈Z

|a(n)|u(n).

The proof of this theorem for m and h∗ follows from the continuous case (we omit the details). The 
weighted inequality for M was proved in [19, Theorem 1.2] and the corresponding weak-type inequality for 
H∗ is proved by applying [19, Corollary 1.7]. For the sake of completeness, we collect the results obtained 
in [19] in the next theorem (we give an equivalent statement).

Theorem D. [19, Theorem 1.2, Corollary 1.7] Let M be the Hardy-Littlewood maximal operator on Rn and 
let u ∈ A1 and v ∈ Ap, 1 ≤ p < ∞. Then there is a finite constant c depending on [u]A1 and [v]Ap

such that∥∥∥∥M(fv)
v

∥∥∥∥
L1,∞(uv)

≤ c‖f‖L1,∞(uv).

The same result holds for the maximal Hilbert transform H∗.

Finally, the proof of Theorem 7.1 for Qr is a consequence of Theorem 6.4 and Theorem 7.1 for the 
operator m.
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7.2. Proof of Theorem 3.4 (ii)

We need the following result that concerns a weights property that is interesting by itself.

Lemma 7.2. Let U ∈ A1, V ∈ Ap, 1 < p < ∞. Let 1 < p′ < ∞ such that 1
p + 1

p′ = 1. Then there exists 
s ∈ (1, p′) such that UV 1−s ∈ As, and [UV 1−s]As

depends only on p, [V ]Ap
and [U ]A1 .

Proof. Since U ∈ A1, then U satisfies the Reverse Hölder inequality (5.1) for some γ > 1, C > 0 which 
depend only on [U ]A1 . Let 1 < γ′ < ∞ such that 1

γ + 1
γ′ = 1 and set s = 1 + p′−1

γ′ ∈ (1, p′). Let us see 
UV 1−s ∈ As. By Hölder inequality,

⎛⎝ 1
|I|

∫
I

UV 1−s

⎞⎠
1
s
⎛⎝ 1
|I|

∫
I

U1−s′V

⎞⎠
1
s′

≤

⎛⎝ 1
|I|

∫
I

Uγ

⎞⎠
1
sγ
⎛⎝ 1
|I|

∫
I

V 1−p′

⎞⎠
1

γ′s
⎛⎝ 1
|I|

∫
I

U1−s′V

⎞⎠
1
s′

,

and by applying the Reverse Hölder inequality and U ∈ A1, there exists C1 > 0 that depends only on [U ]A1

such that ⎛⎝ 1
|I|

∫
I

UV 1−s

⎞⎠
1
s
⎛⎝ 1
|I|

∫
I

U1−s′V

⎞⎠
1
s′

≤ C1

⎛⎝ 1
|I|

∫
I

U

⎞⎠
1
s
⎛⎝ 1
|I|

∫
I

V 1−p′

⎞⎠
1

γ′s
⎛⎝ 1
|I|

∫
I

U

⎞⎠
1−s′
s′
⎛⎝ 1
|I|

∫
I

V

⎞⎠
1
s′

= C1

⎛⎜⎝
⎛⎝ 1
|I|

∫
I

V 1−p′

⎞⎠
1
p′
⎛⎝ 1
|I|

∫
I

V

⎞⎠
1
p

⎞⎟⎠
p
s′

≤ C2,

where C2 > 0 depends only on p, [V ]Ap
and [U ]A1 . �

In fact, the same property holds in the discrete setting, by following the same argument:

Corollary 7.3. Let U ∈ A1(Z), V ∈ Ap(Z), 1 < p < ∞. Let 1 < p′ < ∞ such that 1
p + 1

p′ = 1. Then there 
exists s ∈ (1, p′) such that UV 1−s ∈ As(Z), and [UV 1−s]As(Z) depends only on p, [V ]Ap(Z) and [U ]A1(Z).

Proof of Theorem 3.4 (ii). By Lemma 3.5, for almost every x ∈ X the functions hx, qx : Z → R, hx(j) =
hj(x) and qx(j) = Jj(x)h−1

j (x), belong to the discrete Muckenhoupt Ap′(Z) and A1(Z) classes with a 
uniform constant, respectively. Then, by Corollary 7.3, there exists s ∈ (1, p) such that h−s

j (x)Jj(x) ∈ As(Z)
with a uniform constant for almost every x ∈ X. Therefore Lemma 3.5 yields that the averages An,n

are uniformly bounded operators in Ls. The rest of the proof repeats that of Theorem 3.1, by using the 
corresponding weak-type inequality (1,1) just proved in Theorem 3.4 (i). �
8. Examples

We recall that if T is a positive Cesàro bounded operator on a finite dimensional space then T is necessarily 
power bounded, i.e. supn∈N ||Tn|| < ∞. In [7] there is an example of a positive, Cesàro bounded operator 
in L1 which is not power bounded. We can also find in [20] examples of operators Tf = f ◦ τ associated 
to an invertible ergodic transformation τ , such that T and T−1 are Cesàro bounded in some Lp, but they 
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are neither power bounded in Lp nor Cesàro bounded in Lq where 1 ≤ q < p < ∞ are fixed. Examples for 
averages associated to semiflows can be found in [1].

In this section we provide examples of Lamperti operators which satisfy the assumptions in Theorems 3.1
and 3.4 in a non trivial way. As in [20] and in [1], our method relies heavily on the so called Rubio de Francia 
algorithm which is an extraordinary tool to obtain powerful results in factorization and extrapolation Theory 
of weights (see [6] for instance). We would like to highlight that the examples in the present paper require to 
show an operator (or two operators) which is (are) Cesàro bounded in two different Lp-spaces simultaneously.

We start providing examples for Theorem 3.1. The operators are associated to an ergodic transformation 
which preserves some measure. In the second result of this section we consider an ergodic transformation 
without invariant measure.

Proposition 8.1. Let γ be a finite measure and let τ : X → X be an invertible ergodic transformation 
preserving the measure γ. There exist measurable positive functions h and w such that the equivalent measure 
dμ = wdγ is finite and the operator Tf = h(f ◦ τ) satisfies the following statements:

i) T and T−1 are Cesáro bounded in L1(μ).
ii) T and T−1 are Cesáro bounded in L∞(μ).
iii) supn∈Z ||Tn||L1(μ) = ∞.
iv) supn∈Z ||Tn||L∞(μ) = ∞.

Proof. Let Mτ denote the ergodic maximal function

Mτf(x) = sup
n≥0

∣∣∣∣∣ 1
2n + 1

n∑
k=−n

f(τkx)

∣∣∣∣∣ . (8.1)

Then Mτ is bounded in L2(γ), Mτ : L2(γ) → L2(γ) and ‖Mτf‖L2(γ) ≤ K‖f‖L2(γ). Let us consider two 
positive functions g1, g2 > 0 such that g1, g2 ∈ L2(γ) \ L∞(γ). Let

U =
∞∑
i=0

M i
τg1

(2K)i V =
∞∑
i=0

M i
τg2

(2K)i ,

where M i
τ denotes the iteration of the maximal operator (M0

τ f = f). Then, U, V ∈ L2(γ), g1 ≤ U , g2 ≤ V , 
MτU ≤ 2KU and MτV ≤ 2KV . The last two inequalities yield that the weights {U(τ ix)

U(x) }i, {V (τ ix)
V (x) }i, as 

functions on the integers, satisfy A1(Z) for almost every x ∈ X with uniform constants. Define h(x) = U(τx)
U(x)

and w = UV . Then w ∈ L1(γ) and μ is a finite measure. Let Tf = h(f ◦ τ).
By construction, hj(x) = U(τjx)

U(x) ∈ A1(Z) with uniform constant; then Lemma 3.5 yields ii) holds. It 
is clear that the function J with respect the measure μ has the expression J(x) = w(τx)

w(x) , then for a.e. x, 

Jj(x)h−1
j (x) = V (τjx)

V (x) ∈ A1(Z) with uniform constant, so Lemma 3.5 yields i) holds.
Let us show that iii) holds. If this is not the case then there exists a positive constant C such that for all 

f ≥ 0 and for all j,

∫
hj(x)f(τ jx)w(x)dγ ≤ C

∫
f(τ jx)w(τ jx)dγ.

Then hj(x)w(x) ≤ Cw(τ jx) for almost every x ∈ X and j ∈ Z which implies V (x) ≤ CV (τ jx) for almost 
every x ∈ X and for all j ∈ Z. Then
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V (x) ≤ C
1

N + 1

N∑
j=0

V (τ jx) for almost every x ∈ X and all N ∈ N.

Therefore by taking limit as N goes to infinity, bearing in mind V ∈ L2(γ) ⊂ L1(γ), we obtain V (x) ≤
C

γ(X)
∫
X
V dγ < ∞ for a.e. x. But this is a contradiction since V ≥ g2 and g2 /∈ L∞(γ).

Finally, let us prove that iv) holds. If this is not the case then there exists a positive constant C such 
that ‖hj‖L∞ ≤ C, and therefore U(τ jx) ≤ CU(x) for almost every x ∈ X, for all j ∈ Z, or, equivalently, 
U(x) ≤ CU(τ jx) for almost every x ∈ X, for all j ∈ Z. Now by following the argument above, we obtain 
that U is bounded which is a contradiction since U ≥ g1 and g1 /∈ L∞(γ). �

The second result studies the same type of examples but assuming that there is no an equivalent measure 
dμ = wdγ such that τ preserves the measure μ.

Proposition 8.2. Let γ be a finite measure and let τ : X → X be a nonsingular invertible ergodic transfor-
mation (τ is non singular means that γ(E) = 0 ⇐⇒ γ(τE) = 0). Assume that there is no an equivalent 
measure dμ = wdγ such that τ preserves the measure μ. Then there exist measurable positive functions h
and w such that the equivalent measure dμ = wdγ is finite and the operator Tf = h(f ◦ τ) satisfies i)-iv) in 
Proposition 8.1.

Proof. Let Q be the natural isometry in L2(γ) defined by Qf = J
1
2 (f ◦τ), where the function J is defined in 

(2.3). Let MQ be the maximal operator defined in (1.4). Then MQ is bounded in L2(γ) and ‖MQf‖L2(γ) ≤
K‖f‖L2(γ). Let us consider a positive function g ∈ L2(γ) \ L∞(γ). Let

G =
∞∑
i=0

M i
Qg

(2K)i .

Then G ∈ L2(γ), g ≤ G and MQG ≤ 2KG. The last inequality implies that for a.e. x the weights, as 

functions on the integers, {J
1
2
j (x)G(τjx)

G(x) }j belong to A1(Z) with uniform constant. Define h(x) = J(x)
1
2 G(τx)

G(x) , 
Tf = h(f ◦ τ) and w = G2. Then μ is a finite measure.

By construction, for a.e. x, hj(x) = Jj(x)
1
2 G(τjx)
G(x) ∈ A1(Z) with uniform constant; then Lemma 3.5 yields 

ii) holds.
The function J̃ with respect to the measure μ has the expression J̃(x) = w(τx)

w(x) J(x), then J̃j(x)h−1
j (x) =

Jj(x)
1
2 G(τjx)
G(x) ∈ A1(Z) with uniform constant, so Lemma 3.5 yields i) holds.

Let us show that iii) holds. If this is not the case, then there exists a constant C > 0 such that for all 
f ≥ 0, and for all j, ∫

hj(x)f(τ jx)w(x)dγ ≤ C

∫
f(τ jx)w(τ jx)Jj(x)dγ,

then hj(x)w(x) ≤ Cw(τ jx)Jj(x) for almost every x ∈ X and j ∈ Z, and that implies

G(x) ≤ CG(τ jx)J
1
2
j (x) = CQj(G)(x) for almost every x ∈ X, for all j ∈ Z.

Then for all N ∈ N

G(x) ≤ C
1

N + 1

N∑
Qj(G)(x). (8.2)
j=0
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Ionescu Tulcea’s theorem [14] yields the sequence of averages in (8.2) converges a.e. and in norm of L2(γ). 
We denote by H the limit as N goes to infinity. Moreover QH = H, and that is J 1

2 (x)H(τx) = H(x). Then 
the measure given by dν = H2dγ is a finite measure and τ preserve the measure ν. This contradicts the 
assumption and iii) holds.

Let us show that iv) holds. If this is not the case, then there exists a constant C > 0 such that ‖hj‖L∞ ≤ C

for all j ∈ Z and then

Jj(x) 1
2G(τ jx)
G(x) ≤ C for almost every x ∈ X, for all j ∈ Z

and by using (2.3) this implies

G(x) ≤ C
G(τ−jx)
Jj(τ−jx) 1

2
= CG(τ−jx)J

1
2
−j(x) for almost every x ∈ X, for all j ∈ Z,

so

G(x) ≤ CG(τ jx)J
1
2
j (x) = CQj(G)(x) for almost every x ∈ X, for all j ∈ Z.

Now by following the argument above, we obtain a contradiction so iv) holds, and this finishes the proof 
of the second example. �

Finally, we are going to show there exist some non trivial Lamperti operators and some measures satisfying 
the hypothesis of Theorem 3.4.

Proposition 8.3. Let 1 < p < ∞ and let γ be a finite measure. Let τ : X → X be an invertible ergodic 
transformation preserving the measure γ. There exist measurable positive functions h and w such that the 
equivalent measure dμ = wdγ is finite and the operator Tf = h(f ◦ τ) satisfies the following statements:

i) T and T−1 are Cesáro bounded in L1(μ).
ii) Tp and T−1

p are Cesáro bounded in Lp(μ).
iii) supn∈Z ||Tn||L1(μ) = ∞.
iv) For 1 < p < q < ∞ fixed, Tq and T−1

q are not Cesàro bounded in Lq(μ).
v) supn∈Z ||Tn

p ||Lp(μ) = ∞.

Proof. Let 1 < p < q < ∞ and 1 < q′ < p′ < ∞ such that p + p′ = pp′ and q + q′ = qq′ and let Mτ

be the ergodic maximal function defined in (8.1). Then for fixed 1 < r < p′−1
q′−1 , Mτ is bounded in Lr(γ), 

Mτ : Lr(γ) → Lr(γ) and ‖Mτf‖Lr(γ) ≤ K‖f‖Lr(γ). Let us consider a positive function g ≥ 1 such that 

g ∈ Lr(γ) \ L
p′−1
q′−1 (γ) (in particular, g is not bounded). Let

U =
∞∑
i=0

M i
τg

(2K)i .

Then, U ∈ Lr(γ), g ≤ U and MτU ≤ 2KU . The last inequality yields that the weights {U(τ ix)
U(x) }i as functions 

on the integers, satisfy A1(Z) for almost every x ∈ X with uniform constants. Define h(x) = U(τx)1−p′

U(x)1−p′ and 

w = U2−p′ . Then μ is finite (if p′ ≥ 2, it follows from U ≥ g ≥ 1 and if p′ ≤ 2 it follows from Hölder 
inequality).
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By construction, hj(x) = U1−p′ (τjx)
U1−p′ (x) ∈ Ap′(Z) with uniform constant, then Lemma 3.5 yields ii) holds. 

Moreover, it is easy to see that the function J with respect the measure μ has the expression J(x) = w(τx)
w(x) , 

then for a.e. x ∈ X, Jj(x)h−1
j (x) = U(τjx)

U(x) ∈ A1(Z) with uniform constant, so Lemma 3.5 yields i) holds.
Let us show that iii) holds. If this is not the case then there exists C > 0 such that hj(x)w(x) ≤ Cw(τ jx)

for almost every x ∈ X and all j ∈ Z, and that implies U(x) ≤ CU(τ jx) for almost every x ∈ X and 
for all j ∈ Z. This inequality yields that U is bounded (see the proof of Proposition 8.1 iii)) but this is a 
contradiction because U ≥ g and g /∈ L∞, so iii) holds.

In order to show iv) we are going to prove that hj /∈ Aq′(Z) with uniform constant for almost every 
x ∈ X. If this is not the case then there exists C > 0 such that(

1
N + 1

N∑
i=0

U1−p′
(τ ix)

) 1
q′
(

1
N + 1

N∑
i=0

U (1−p′)(1−q)(τ ix)
) 1

q

≤ C,

for all N ∈ N and almost every x ∈ X. This implies U (1−p′)(1−q) = U
p′−1
q′−1 ∈ L1(γ), and that is U ∈ L

p′−1
q′−1 (γ). 

However U ≥ g and g /∈ L
p−1
q−1 (γ) and we obtain a contradiction. Then Lemma 3.5 yields iv).

Finally let us show v). If this is not the case, that is, if Tp is power bounded in Lp(μ) then there exists 
C > 0 such that

∫ ⎛⎝hj(x)f(τ jx)
J

1
p

j (x)

hj(x)
1
p

⎞⎠p

w(x)dγ ≤ C

∫
fp(τ jx)w(τ jx)dγ

for every f ≥ 0 and every j ∈ Z, and this implies hp−1
j (x)Jj(x)w(x) ≤ Cw(τ jx) for almost every x ∈ X

and for all j ∈ Z. Then U(x) ≤ CU(τ jx) for almost every x ∈ X and for all j ∈ Z. Now by following the 
previous argument shown in Proposition 8.1 iii), we obtain that U is bounded but this is a contradiction 
because U ≥ g and g /∈ L∞(γ), so v) holds. This finishes the proof. �
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