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Is learning for the unit commitment problem a low-hanging fruit? 
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A B S T R A C T   

The blast wave of machine learning and artificial intelligence has also reached the power systems community, 
and amid the frenzy of methods and black-box tools that have been left in its wake, it is sometimes difficult to 
perceive a glimmer of Occam’s razor principle. In this letter, we use the unit commitment problem (UCP), an NP- 
hard mathematical program that is fundamental to power system operations, to show that simplicity must guide 
any strategy to solve it, in particular those that are based on learning from past UCP instances. To this end, we 
apply a naive algorithm to produce candidate solutions to the UCP and show, using a variety of realistically sized 
power systems, that we are able to find optimal or quasi-optimal solutions with remarkable speedups. To the best 
of our knowledge, this is the first work in the technical literature that quantifies how challenging learning the 
solution of the UCP actually is for real-size power systems. Our claim is thus that any sophistication of the 
learning method must be backed up with a statistically significant improvement of the results in this letter.   

1. Introduction 

The unit commitment problem (UCP) is currently one of the most 
fundamental mathematical tools to operate power systems. The UCP 
determines the on/off commitment status and power dispatch of 
generating units to satisfy electricity demand at a minimum cost while 
complying with the technical limits of generation and transmission as-
sets [1]. The UCP is usually formulated as a mixed-integer optimization 
problem that is proven to be NP-hard [2] and therefore, the technical 
literature includes several methods to trim down its computational 
burden [3,4]. Existing strategies comprise formulation tightening [5,6], 
decomposition techniques [7] and constraint screening [8]. These 
methods, however, overlook the fact that slight variations of the same 
UCP are to be solved everyday and therefore, learning from the past may 
be a powerful weapon to tackle future UCP instances. 

In the same vein, some learning-based methodologies have been 
recently proposed to reduce the computational burden of the UCP using 
information about previously solved instances. References [9,10] review 
current learning-based methods for power system problems. In partic-
ular, the authors of [11] learn a proxy of the UCP’s solution to be used in 
long-term planning assessments. Despite being simple and fast (with 
speedups up to 260× ), the proposed strategy involves an average 
optimality error of 3.5% for the IEEE-96RTS test system, which pre-
cludes its use in short-term operation. Using Classification and Regres-
sion Trees (CART) or Random Forest (RF), reference [12] presents a 

methodology to find the relationships between the solutions of the 
original and relaxed versions of the UCP and reports average optimality 
errors of between 0.14% and 0.23%. A supervised classification pro-
cedure is proposed in [13] to learn the transmission capacity constraints 
that can be screened out of the UCP. Using a 2000-bus system, the au-
thors report a speedup of 19× if retrieving the original solutions must be 
guaranteed, and a speedup of 43× for an average suboptimality error of 
0.04%. The authors of [14] describe a sophisticated methodology to 
cluster decision variables depending on the difficulty of the UCP 
instance to be solved. They achieve speedups of between 1.5× and 2× , 
an average optimality error of 0.1%, and a maximum optimality error of 
1% for the IEEE 118-bus system. The authors of [15] use the UCP so-
lution of the previous day UC as a warm start strategy and report 
speedups of 2× for the MISO power system. This speedup can be 
increased to 2 × − 12× if additional historical information is considered, 
as shown in [16]. In [17], the authors use machine learning to determine 
unnecessary constraints of the stochastic unit commitment and attain 
speedups of 14× for a 500-bus power system. Finally, reference [18] 
proposes different strategies to learn initial solutions with speedups of 
4.3× while retrieving the optimal solution of the UCP. The authors also 
discuss a learning-based procedure to learn the relationships among 
binary variables, which yields speedups of 10.2× but no optimality 
guarantees. These methodologies are tested on a set of large-sized 
networks. 

It is apparent that when it comes to learning for the UCP, one may 
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easily get lost in a myriad of methods and approaches, all of which 
promise reasonable computational savings. The takeaway message is 
that, despite the high theoretical complexity of the UCP, having access to 
previous instances may significantly reduce the solution task in practice, 
since today’s commitment decisions are probably very similar to those 
made yesterday, one week ago, or even one year ago. Given the high 
potential of using historical data to reduce the computational burden of 
the UCP, the questions that naturally arise are: Are existing learning 
methods an actual breakthrough in the solution of the UCP or are they 
just picking the low-hanging fruit? Do sophisticated learning methods to 
solve the UCP substantially outperform painless naive learning strate-
gies? How should we benchmark the performance of learning methods 
to solve the UCP? In this letter, we aim to answer these questions by 
learning the UCP’s solution through a straightforward K-nearest 
neighbor procedure. The purpose of this letter is, by no means, to pro-
pose a learning-based methodology that outperforms existing ones 
under certain conditions. What we claim is that the performance of 
existing and upcoming learning-based methods to solve the UCP should 
be thoroughly compared with some painless naive methods such as the 
one we suggest, in order to justify the hassle from the increased 
complexity and sophistication, and the loss of transparency. In this 
context, we refer to a naive method as a learning procedure that is 
simple, intuitive, easy to implement and interpret, and that requires a 
very reduced number of hyper-parameters. 

2. A naive learning method 

The unit commitment problem can be generally formulated as the 
following optimization program: 

min
u,y

f (u, y) (1a)  

s.t.gj(u, y, d) ≤ 0, ∀j (1b)  

where u and y denote, respectively, the binary and continuous variables, 
d represents the input parameters such as net demand throughout the 
network, and f(⋅), gj(⋅) are the objective function and the technical 
constraints, in that order. Under some mild assumptions, model (1) 
becomes a mixed-integer quadratic programming problem that can be 
solved using optimization solvers at a usually high computational cost. 
With some abuse of notation, we express the solution of (1) as a function 
of the input parameters, namely, uUC(d),yUC(d). If binary variables u are 
fixed to given values ̃u, model (1) becomes an optimal power flow (OPF) 
problem, which is easier to solve and whose optimal solution is denoted 
as yOPF(ũ,d). 

Suppose we have access to a sample set of optimal solutions of 
problem (1) for different input parameters, referred to as S =

{(di, uUC
i ,CUC

i ,TUC
i )}i∈I , where uUC

i = uUC(di), and CUC
i ,TUC

i are, 
respectively, the objective function and the computational time of 
problem (1) for instance i ∈ I , where I is the set of available samples 
and each instance i represents a 24-hour generation scheduling. Intui-
tively, the naive learning methodology we propose as a benchmark 
consists in fixing the binary variables to those of close past instances to 
solve several OPFs in parallel and select the one with the lowest cost. We 
use a leave-one-out cross-validation methodology and therefore, the 
learning method is run for each instance i ∈ I with I \{i} as the 
training set as follows:  

1) Compute the distance between the input parameters di and those of 
the remaining instances using a norm, for example, ‖ di − d̃

i
‖2, ∀̃i ∈

I , ĩ ∕= i.  
2) Find the set of the K-nearest neighbors to i with the lowest distances 

computed in step 1), denoted as I K
i .  

3) Solve the optimal power flow for input parameters di and binary 
variables fixed to ũ

i
UC. That is, compute yOPF(ũ

i
UC, di), ∀̃i ∈ I K

i and 

denote the objective function and solving time as COPF
ĩi 

and TOPF
ĩi

, 

respectively.  
4) Among all feasible problems solved in step 3), approximate the cost 

of the UCP for instance i as Ĉ
UC
i = miñ

i
COPF

ĩi
. The lowest sub-

optimality gap is thus computed as Δi = (Ĉ
UC
i − CUC

i )/CUC
i .  

5) Problems in step 3) are solved in parallel and the speedup factor is 
thus computed as Si = TUC

i /(max̃
i
(TOPF

ĩi
) + TL

i ), where TL
i is the 

learning time of steps 1) and 2). 

Once steps 1)-5) are run for each instance, we determine the average 
suboptimality gap Δ, the maximum suboptimality gap Δmax, the average 
speedup S, and the number of instances for which the K problems solved 
in step 3) are infeasible NIN. 

3. Numerical results 

In this section, we provide the results obtained by the learning 
method described in Section 2 for nine large-scale European test systems 
used in [18] and available for download at [19]. 

The performance of the naive learning method is illustrated using the 
solution of 500 UCP instances that differ on the 24-hour load profile. 
That is, we assume that a year and a half of data is available. Note that 
considering less than one year of data is not appropriate since seasonal 
effects may not be captured. On the other hand, considering a very large 
data set of 10 years, for example, can also lead to inaccurate results since 
topology changes are expected to occur during such a long period of 
time. According to the procedure proposed in [18], each 24-hour load 
profile is randomly generated as follows:  

1) Let Pg denote the capacity of each unit g. The peak demand D is 
randomly generated as D = 0.6× (

∑
gPg)× unif(0.925, 1.075), 

where unif(a, b) represents a random sample from a uniform distri-
bution in the interval [a,b]. 

2) Let βb denote the nominal load distribution factor of bus b. The dis-
tribution factor βb is randomly generated as βb = βb × unif(0.9,1.1), 
which is subsequently normalized as βN

b = βb/
∑

bβb to satisfy that 
∑

βN
b = 1.  

3) Let t ∈ T denote the index for the hourly time periods of the UCP, 
and let μt and σt represent, respectively, the average and standard 
deviation of the ratio between the aggregated load level for two 
consecutive hours Dt/Dt− 1. The hourly variation factors vt are 
randomly generated as vt = normal(μt , σt), where normal(a, b) rep-
resents a sample from a normal distribution with a mean equal to a 
and a standard deviation equal to b. The temporal factor γt is 
computed as γt =

∏t
τ=1vτ, which is normalized as γN

t = γt/max{γt}t∈T 

to satisfy that max{γN
t }t∈T = 1.  

4) The load demand at each bus b and time period t is computed as Dbt =

D× βN
b × γN

t . 

For each load profile, we solve the specific unit commitment 
formulation provided in the Appendix of [18]. For the sake of simplicity, 
we consider neither reserves nor security constraints. Due to its high 
computational burden, all UCP instances are solved using the constraint 
generation approach proposed in [20] using Gurobi 9.1.2 [21] with a 
MIP gap set to 0.01%. Afterwards, the learning method is used for each 
instance and test system assuming that the number of neighbors is set to 
50, that is, 10% of the total number of instances. A summary of the most 
relevant results is provided in Table 1. More specifically, columns 2 and 
3 include the average and maximum suboptimality gap for each test 
system. Columns 4-8 contain the number of instances whose sub-
optimality gap belongs to given intervals. For instance, column 6 pro-
vides the number of instances with a suboptimality gap of between 
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0.02% and 0.05%. The number of instances for which all OPF problems 
are infeasible is included in column 9. Finally, column 10 provides the 
average speedup of the naive learning method in relation to solving the 
original UCP instances using constraint generation. 

The results in Table 1 lead to several interesting observations. Firstly, 
the average suboptimality error for the four systems with more than 
6000 buses is negative. This means that, on average, fixing the binary 
variables to those of the neighbors yields an objective function that is 
actually lower than that of the original UCP. Indeed, the suboptimality 
error is below the MIP gap in more than 99% of the instances. Finally, 
these systems do not include any infeasible instances and report 
speedups between 41× and 172× . We conjecture that the good per-
formance of the naive approach for these power systems is due to their 
low network congestion level. According to these results, we can 
conclude that using complicated learning-based techniques for these 
four systems seems unnecessary since naive alternatives significantly 
reduce the UCP computational burden with negligible suboptimality 
errors. Secondly, for systems 1888rte and 2848rte, the 50 OPF solved 
become infeasible for 1 and 2 instances, respectively. For these two 
systems, the average suboptimality errors are slightly higher than the 
predefined MIP gap, while the computational times are reduced by two 
orders of magnitude. Therefore, the naive learning method is a 
competitive approach for these two systems. Finally, the number of 
infeasible instances for systems 1951rte, 3012wp and 3375wp are 8, 5 
and 13, respectively. The average optimality errors exceed the MIP gap 
and amount to 0.0382%, 0.0485%, and 0.1256%, in the same order, 
whereas the speedup factor ranges between 150× and 216 × for these 
three systems. We believe that, given the simplicity of the learning- 
based method we have used to obtain all these results, any other alter-
native method demanding further sophistication is only worth consid-
eration if it succeeds in beating these numbers. In other words, using 
complicated learning approaches for these three systems would only be 
justified when the computational time, the suboptimality error or the 
infeasible cases are drastically lower than those reported by the naive 
learning method described in this letter. 

4. Conclusion 

A highly relevant topic within the scientific community working on 
power systems is the reduction of the computational burden of the unit 
commitment problem. However, assessing the improvements of so-
phisticated learning-based approaches is sometimes tricky due to the 
lack of benchmark methods. This letter describes a painless and naive 
learning method and shows that, for some power systems, learning the 
solution of the unit commitment problem is indeed a low-hanging fruit 
that can be effortlessly picked. For other systems, the results of the naive 
learning approach are less impressive but, at the very least, they should 
be used to benchmark the performance of existing and upcoming 
learning methods to solve the unit commitment problem. This letter also 
opens a debate about the complexity/performance trade-off of learning- 
based procedures to operate current power systems since, in our 

opinion, their implementation would only happen if these methods are 
simple, transparent, interpretable and reliable. 
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