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A B S T R A C T   

Last decade has witnessed a major research interest on wearable fall detection systems. Sampling rate in these 
detectors strongly affects the power consumption and required complexity of the employed wearables. This study 
investigates the effect of the sampling frequency on the efficacy of the detection process. For this purpose, we 
train a convolutional neural network to directly discriminate falls from conventional activities based on the raw 
acceleration signals captured by a transportable sensor. Then, we analyze the changes in the performance of this 
classifier when the sampling rate is progressively reduced. In contrast with previous studies, the detector is tested 
against a wide set of public repositories of benchmarking traces. The quality metrics achieved for the different 
frequencies and the analysis of the spectrum of the signals reveal that a sampling rate of 20 Hz can be enough to 
maximize the effectiveness of a fall detector.   

1. Introduction 

Falls are a major medical concern, in particular for older adults. The 
medium and long-term health consequences of falls are directly linked to 
the time during which the faller remains on the floor unattended [1]. 
Therefore, it is of great interest, especially for the elderly who live alone, 
to develop trustworthy alarming systems capable of automatically 
alerting distant caregivers so that they can provide immediate help 
whenever a fall is suspected. In this context, during the last decade, the 
declining hardware costs and the widespread acceptation of wearables 
have fostered the adoption of these devices in architectures for Fall 
Detection Systems (FDSs). 

The generic purpose of a portable FDS is to discriminate the possible 
occurrence of a fall accident from any other ordinary movement or ADL 
(Activities of Daily Living) based on the measurements continuously 
collected by sensors that can be easily attached to the body or integrated 
into a garment. Most current wearables (smartwatches, smartbands, 
etc.) natively embed an IMU (Inertial Measurement Unit) which eases 
the programming and seamless adoption of fall detection applications 
into the everyday life of senior citizens. 

There is a vast and exhaustive literature focused on the proposal and 
validation of algorithms designed to identify falls from the inertial 

signals (especially accelerometry) generated by human movements. The 
common goal of these proposals is to maximize the efficacy of the 
classifier to distinguish falls from ADLs. On the contrary, there are far 
fewer studies that examine the operational aspects of these systems. One 
of the key elements that may determine the practical feasibility of 
wearable FDSs is the sampling rate, i.e. the frequency at which the 
measurements are captured by the inertial sensors to be analyzed by the 
corresponding fall detection algorithm. 

Sampling rate may heavily affect the consumption of the sensors, 
especially if a gyroscope and a magnetometer are employed [2]. In a 
practical scenario, the autonomy of a wearable FDS should guarantee a 
minimum continuous operation of 16–24 h. In other case, the trans
portable tracking system would have to stop before bedtime to replace 
or to recharge the battery. Consequently, an unnecessary increase of the 
energy drain can directly impact on the actual capability of the wear
ables to act as fall detectors, as they are normally powered with light
weight low-capacity batteries. 

Furthermore, the sampling frequency governs the volume of the data 
stored and processed to generate the detection decision. In this regard, a 
single accelerometer operating at 200 Hz produces about 2.3 GB of data 
per day [3]. This aspect is also of great significance if we consider that 
wearables implementing FDS may also have severe limitations in terms 
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of memory or computing capacity. The same consideration can be made 
if the measurements have to be retransmitted (e.g. via Bluetooth) to an 
external element (e.g. a smartphone) where the detection algorithm is 
implemented, as frequent wireless transmissions may promptly deplete 
the battery. 

FDSs can be regarded as a particular application of HAR (Human 
Activity Recognition) systems. In this regard, Gao at al. showed in [4] 
that increasing the sampling rate above 20 Hz (and up to 50 Hz) im
proves the recognition accuracy of HAR architectures by just 1% 
whereas the discrimination capacity of the systems gets stabilized 
beyond 50 Hz. In fact, many works assume that a sampling rate of 50 Hz 
is more than sufficient to characterize the human mobility for the 
identification of physical activities [5]. 

Contrariwise, in the specific field of FDSs there is not any default rule 
or consensus to set the sampling frequency. The review presented by Bet 
et al. in [6] reported that in 75% of the studies on FDSs this frequency is 
fixed in the interval [40–100] Hz, being 50 Hz the most common value. 
Even so, there are works where a much higher value is selected (e.g. 800 
Hz in [7] or [8]). 

The interesting study by Liu et al. in [9] has already analyzed the 
impact of the sampling rate on the effectiveness of a fall detector system. 
The work investigated the degradation of the performance of four basic 
machine learning models (Support Vector Machine -SVM-, k-Nearest 
Neighbor -kNN-, Naïve Bayes -NB- and Decision Trees -DT-) when the 
sampling rate of the sensor is modified from 3 to 200 Hz. Results seem to 
evince that with a rate of 22 Hz most machine learning classifiers can 
achieve a high accuracy (higher than 97%) to support fall detection 
systems. In a similar study by Ajerla et al. [3], a Long Short-Term 
memory (LSTM) network model is employed for fall identification. 
The system is evaluated with traces captured on the waist and five 
sampling rates (12.5 Hz, 25 Hz, 50 Hz, 100 Hz, and 200 Hz). From the 
results and contrary to the previous study, authors conclude that the 
system is unable to identify falls for frequencies below 50 Hz while no 
significant improvement is achieved with 100 or 200 Hz. 

Silva et al. assessed in [13] the performance of seven fall detection 
algorithms when a cross-dataset validation is applied, i.e. when the 
models are tested with a dataset obtained with a scenario, users or body 
placements of the wearable different from those used to train the clas
sifier. From the study, they deduce that the best performance is achieved 
by a Random Forest (RF) classifier. The models were fed with a wide set 
of hand-engineered statistical features computed from the sequence of 
the acceleration magnitude (corresponding to the measurements gath
ered during a window of 7.5 s centered in the signal magnitude 
maximum). In an additional section, authors present a preliminary study 
of the impact of modifying the sampling frequency (from the original 
value of 100 Hz to 50, 20, 10, 3 or 1 Hz) on the effectiveness of this 
optimal RF-based detector. It is observed that a significant decay of 
performance is only verified for frequencies lower than 10 Hz. 

The same approach of Liu and Silva is followed by Zurbuchen et al. in 
a very recent publication [10]. These authors also investigate the in
fluence of the sampling rate on the detection by observing the behavior 
of five machine learning classifiers when this parameter is varied. The 
results of the article seem to indicate that sampling rates over 20 Hz 
improve system’s performance so that a sampling rate of 50 Hz is 
recommended. 

The major drawback of these works is that they employ machine 
learning classifiers that must be fed with statistical features derived from 
the measurements. Consequently, the performance of the classifiers 
employed in these papers strongly rely on the selection (number and 
typology) of the input features. In order to bypass the problems derived 
from this election of the input feature set, we propose to extend the 
previous research by using a deep learning strategy. 

In this regard, Convolutional Neural Networks (CNNs) are one of the 
most popular deep learning architectures. CNNs are formed by a 
sequence of processing layers of two-dimensional linear convolutional 
filters. Each layer is normally complemented by a non-linear activation 

function and a down-sampling (pooling) stage that generate the inputs 
of the following layer. During the supervised learning phase, based on 
the analysis of the training dataset, these layers are capable of self- 
adjusting the filter coefficients to autonomously recognize underlying 
organizational rules that can represent the data at different scales or 
abstraction levels. These rules or final features are inputted to a final 
classifier (typically, a fully connected neural perceptron), which pro
duces the global classification decision. 

Deep learning solutions, including CNNs, have been successfully 
incorporated in the area of HAR systems to replace other conventional 
machine learning strategies that require a ‘hand-crafted’ or heuristic 
selection of features to feed the classifiers [11]. In fact, FDSs have also 
benefitted from the application of CNNs (see [12] for a review on this 
topic). 

One of the main assets of employing CNNs is that they can be directly 
fed by the raw data collected by the wearable sensors (e.g. the mea
surements captured by the accelerometer or the gyroscope). Thus, once 
the configuration of the classifier is accomplished, the CNN architecture 
circumvents the need of calculating in real time and in an unsophisti
cated device complex statistical input features derived from the mea
surements, as it is required by most machine learning methods. 

Another issue of the aforementioned articles on the effect of the 
sampling rate is that they just study a limited collection of data. The 
work by Ajerla uses just two repositories: a database (not released) ob
tained in the laboratory by the authors (containing only 64 falls) and 
MobiAct [14]. Similarly, the study by Liu also employs only two data
sets: one (unpublished too) specifically created from experiments with 
eight subjects and SisFall repository [15]. The analysis by Silva is in turn 
based on a single dataset of falls and ADL (AICOS), which is not publicly 
available (to the best of our knowledge). As it refers to the work by 
Zurbuchen et al. it only considers SisFall dataset. The use of a wide set of 
benchmarking databases for the assessment of FDSs is an essential aspect 
if we take into consideration the noteworthy diversity of the existing 
repositories. The variety of the included ADLs and falls, the strategies to 
emulate the falls, the duration of the samples, the characteristics of the 
participants in the testbed, etc. may clearly influence the performance of 
the detection algorithm. Thus, a classifier that apparently achieves a 
good discrimination ratio with a certain dataset may exhibit a much 
worse behavior with other databases as it has already been shown in 
[16,17]. 

In this paper, we employ CNNs to assess the capability of these deep 
learning architectures to operate as the detection mechanism in a 
wearable FDS scheme. To this end, we employ 15 public repositories 
containing mobility traces with the inertial signals caused by ADLs and 
falls. The time series of the measurements of these datasets are then 
decimated to reduce the equivalent sampling rate and investigate the 
impact of this parameter on the effectiveness of the detection decision of 
the CNN. 

The paper is structured as follows: the goals and review of the related 
literature have been presented in this section. Section 2 describes the 
utilized procedure for the study of the effects of the sampling rate (se
lection of the evaluation datasets, configuration and operation of the 
CNN, utilized performance metrics) whereas Section 3 shows and dis
cusses the obtained results. Finally, the main conclusions are recapitu
lated in Section 4. 

2. Materials and methods 

2.1. Election of the datasets 

Owing to the inherent complexity of validating FDSs with actual 
falls, the investigation on fall detection algorithms is normally grounded 
on samples obtained in a laboratory testbed. Under this validation 
technique, a group of volunteers must be recruited to execute a set of 
pre-defined movements (including emulated falls) while transporting 
one or several inertial sensors on different locations of the body. During 
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the experiments, the signals gathered by the sensors (in the form of time 
series) are stored in a dataset of traces (manually labelled as ADLs or 
falls), which are exploited to evaluate the movement classifiers in an 
offline manner. At present, about 25 of these datasets have been publicly 
released and are available for the research community as benchmarking 
tools (see [16] for a comprehensive revision of these datasets). 

We discarded for our analysis those databases containing less than 
200 movement traces or less than 50 samples of falls (LDPA [18], CGU- 
BES [19], EVAal [20], UR [21], Gravity project [22], Smartfall [23], 
SMotion [24]and FARSEEING [25] datasets). We also excluded UniMiB 
SHAR [26], DLR [27] and Smartwatch [23] databases (because the 
duration of most samples is too short for the employed observation 
window employed by the CNN detector) as well as Graz dataset [28] (as 
it was generated with an accelerometer range of 2 g, which is too low to 
capture the acceleration peaks caused by falls). After this screening, we 
finally selected for our study 15 datasets (a number well above that used 
in the vast majority of works on FDSs). The source and basic properties 
of these datasets are described in Table 1 while Table 2 indicates the 
model of the commercial sensing node and the corresponding embedded 
accelerometer employed to gather the measurements in each dataset, as 
well as the original sampling rate with which the data were collected. In 
the table, the term ‘customized design’ refers to the cases where a spe
cific sensing mote was designed and mounted by the authors to produce 
the dataset. As it can be observed from Table 2, the sampling frequency, 
which ranges from 18 to 238 Hz, notably diverges depending on the 
considered dataset. As above mentioned, there is not any commonly 
accepted rule in the literature to set this parameter and configure the 
sensors in the testbeds. 

2.2. Selection of inputs for the deep classifier 

Most algorithms for wearable FDSs base their classification uniquely 
on the triaxial acceleration signals. In this work we follow this approach 
for two reasons: firstly, the benefit of combining the information of the 
accelerometer and another inertial sensors to boost the effectiveness of 
the fall detectors is an issue still under discussion [42]. Secondly, just 
some of the datasets selected for the evaluation and described in the 
previous section include the gyroscope measurements. 

Falls result in brusque and abrupt peaks of the acceleration as the 
subject’s body impacts against the floor [43]. Consequently, to catego
rize each movement (ADL or fall), the classifier must concentrate its 
examination of the captured inertial signals on the time interval around 
the instant where these peaks occurs and a fall can be suspected. For this 
purpose, we focus the analysis of each trace (ADL or fall) around the 
point where the maximum of the Signal Magnitude Vector (SMVi) of the 
acceleration is found. For the i-th measurement of a certain trace, this 
magnitude is computable as: 

SMVi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

A2
xi
+ A2

yi
+ A2

zi

√

(1) 

Being Axi , Ayi and Azi the x, y, and z triaxial components captured by 
the accelerometer. From this sequence, the maximum of the SMV is 
calculated as: 

SMVmax = SMVio = max({SMVi : i ∈ [1,N]}) (2)  

where N is the cardinality of the series, while io indicates the index of the 
sample at which the maximum occurs. 

A fall consists of several phases (pre-impact phase, free-fall period, 
impact, post-fall, etc.), which typically total between 1 s and 3 s [44]. 
Accordingly, for every trace, we set an observation time interval of 3 s 
around the maximum (1.5 s before and after the magnitude peak) to 
incorporate the most significant elements of the dynamics of the 
movements suspected of being provoked by falls. All the measurements 
not included in this window are not considered by the classifier to 
catalogue the trace as fall or ADL. 

Therefore, the analysis pattern (A) inputted to the CNN will consist of 
the time series of the three triaxial components in this time interval: 

A =

{

Axj ,Ayj ,Azj : j ∈
[⌈

io −
T
2

fs

⌉

,

⌈

io +
T
2

fs

⌉]}

(3) 

where T and fs respectively designate the duration (3 s) of the 
observation window around the maximum and the original frequency at 
which the acceleration was sampled in the corresponding dataset, while 
the operator ⌈x⌉ round the value of x to the lowest integer greater than x. 

With these time series extracted from each series in the dataset we 
train and test the CNN to assess the classification performance for the 

Table 1 
Characteristics of the employed datasets.  

Dataset & 
reference 

Number of 
Subjects 
(Females/ 
Males) 

Number of types of ADLs/ 
Falls 

Number 
of samples (ADLs/ 
Falls) 

Duration of the samples 
(s) 

Number and positions of the sensing points 

AnkFall [29] 21 (5/16) 7/4 614 (397/217) [3.32–19.7] 1: Ankle 
Cogent Labs  

[30] 
42 (6/36) 8/6 3302(1476/1826) [8.36–37.76] 2: Chest, Thigh 

CMDFALL [31] 50 (20/30) 15/1 1000 (600/400) 4501 2: Waist (left hip), Left wrist 
DOFDA [32] 8 (2/6) 5/13 432 (120/312) 1.96–17.262 1: Waist 
DU-MD [33] 10 (4/6) 8/2 3299 (2309/990) [2.85–11.55] 1: Wrist 
Erciyes Univ.  

[34] 
17 (7/10) 16/20 3302(1476/1826) [8.36–37.76] 6: Chest, Head, Ankle, Thigh, Wrist, Waist 

FallAllD [35] 15 (7/8) 44/35 6605 (4883/1722) 20 3: Waist, Wrist, Chest (lanyard around the neck) 
IMUFD [36] 10 (n.i.2) 8/7 600(390/210) [15–20.01] 7: Chest, Head, Left ankle, Left thigh, Right ankle, Right 

thigh, Waist 
KFall [37] 32 (0/32) 21/15 5075(2729/2346) [2.03–40.86] 1: Waist (low back) 
MobiAct [14] 57(15/42) 9/4 2526 (1879/647) [4.89–300.01] 1: Thigh (pocket) 
SisFall [15] 38 (19/19) 19/15 4505 (2707/1798) [9.99–179.99] 1: Waist 
tFall [38] 10 (3/7) d.r.3/8 10,909 (9883/1026) 6 (all samples) 1: Hand bag 
TST [39] 11 (n.i.) 4/4 264 (132/132) [3.84–18.34] 2: Waist, Wrist 
UMAFall [40] 19 (8/11) 12/3 746 (538/208) 15  

(all samples) 
5: Ankle, Chest, Thigh, Waist, Wrist 

UP-Fall [41] 17 (8/9) 6/5 559(304/255) [9.409–59.979] 5: Ankle, Neck, Thigh (pocket), Waist, Wrist  

1 For CMDFAL dataset, all the 20 programmed movements are executed in a continuous manner during 7.5 min. 
2 n.i.: not indicated in the article. 
3 d.r.: ADLs were captured during the actual daily life of the volunteers and then split into different not specified actions. 
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reference or ‘baseline’ case, i.e. the case in which the traces are not 
subsampled and the original sampling rate is used to represent the 
movements. 

Once this baseline performance is obtained, we decimate the mea
surements in the datasets to analyze the impact of reducing the sampling 
frequency. In this scenario, for a certain trace, the new network input 
(A[k]) will be formed by the subsampled series of the triaxial compo
nents: 

A[k] = {A[k]
xl
,A[k]

yl
,A[k]

zl
} (4)  

where k indicates the factor with which the series are decimated. For the 
x-axis the subsampled series of the acceleration component can be 
computed as: 

A[k]
xl
=

⎧
⎪⎪⎨

⎪⎪⎩

Ax(⌈

io − T
2fs

⌉

+(l− 1)∙k

) : l ∈
[

1,
⌈

T∙fs + 1
k

⌉]

⎫
⎪⎪⎬

⎪⎪⎭

(5) 

while the decimated series for the other axes (A[k]
yl 

and A[k]
zl ) are 

calculated in an identical manner. 
For each dataset, the analysis is repeated for different values of the 

decimation factor (k), ranging from 2 to the maximum integer value 

(kmax) that guarantees that a minimum effective sampling rate 
(

fs
k

)

of 1 

Hz is achieved: 

k ∈ {2, 3,⋯kmax}∀k ∈ ℕ :
fs

k
≥ 1 Hz (6)  

2.3. Configuration of the CNN 

The CNN was implemented by means of scripts through the Matlab 
framework provided by the Deep Learning ToolboxTM [45]. As this 
toolbox is mainly oriented to process images, in order to input the 
triaxial acceleration data, we utilized an equivalent ‘image’ with three 
equivalent ćhannels ́ (one channel per each axis of the accelerometer 
measurements) and a dimension of (1 × width) ‘pixels’, where width 

indicates the number of samples of each axis contained in the observa
tion window (which, in turn, depends on both the sampling frequency of 
each dataset and the decimation factor). The values of the acceleration 
measurement are z-score normalized before feeding the classifier. 

The optimal configuration of the hyperparameters of the CNN was 
achieved by massive grid search. To that end, more than 4500 combi
nations of candidate values for the tuning parameters were tested aimed 
at maximizing the average performance of the network for all the 
considered datasets. The final structure and dimension of the deep 
learning classifier is sketched in Fig. 1. The rest of the hyperparameters 
are tabulated in Table 3. As it is shown in the figure, automatic feature 
extraction is accomplished through five ‘hidden’ layers (o convolutional 
blocks) including a convolutional layer, a batch normalizer, a ReLu 
Activation and a Max Pooling layer. In the final stage, the extracted 
features feed a fully connected neural layer with a Softmax activation 
function. This operation assigns to every input a probability distribution 
of the mutually exclusive class (ADL or fall), which is used by a cross- 
entropy cost function to generate the classification decision. 

To validate the generated models, a classical 5-fold cross-validation 
technique was carried out. Thus, each repository was split into five 
partitions with the same quantity of traces. This division of the traces 
was performed at random but guaranteeing that every partition includes 
a similar number of samples from the different movement types and 
from all the experimental users. The training and test of the CNN is 
iterated five times. For each iteration, a different partition is reserved for 
testing while the other four are used for training (three partitions) and 
validation (one partition). The mean values of the performance metrics 
(described in the next Sections 2.4) obtained for the five repetitions are 
then calculated to characterize the effectiveness of the classifier. 

2.4. Performance metrics 

From the decisions taken by the CNN during the test phase, we 
compute two metrics commonly used to evaluate the behavior of binary 
classifiers: the sensitivity (Se), which characterizes the capability of the 
FDS to identify falls, and the specificity (Sp), which describes the effi
cacy of the detector to avoid false alarms (ADLs misidentified as falls). 

Table 2 
Models of the sensing mote and accelerometer employed in each dataset.  

Dataset Mote model Accelerometer model Sampling rate 
(Hz) 

AnkFall Customized design Analog devices ADXL345 50 
Cogent 

Labs 
SHIMMER NXP MMA7260Q 100 

CMDFALL WAX3 mote WAX3 50 
DOFDA Customized design Analog devices ADXL345 33 
DU-MD Trillion Node Engine 

mote 
STMicroelectronics 
LIS2DH 

33 

Erciyes 
Univ. 

XSens MTw mote Not indicated by the 
vendor 

25 

FallAllD RF-TRACK data logger 
( 

STMicroelectronics 
LSM9DS1 

238 

IMUFD ADPM Opal mote Not indicated by the 
vendor 

128 

KFall Customized design STMicroelectronics 
LPMS-B2 

100 

MobiAct Samsung Galaxy S3 
phone (acc.) 

STMicroelectronics 
LSM330DLC 

87 

SisFall Customized design Analog devices ADXL345 200 
tFall Samsung Galaxy Mini 

(smartphone) 
InvenSense MPU6500 45 

TST SHIMMER mote NXP MMA7260Q 100 
UMAFall Thigh: Samsung S5 

(smartphone) 
Rest: Texas 
Instruments Sensortag 

InvenSense MPU6500 
InvenSense MPU-9250 

100 (Thigh) 
20 (Rest) 

UP-Fall Mbientlab MetaSensor 
Mote 

Bosch BMI160 3-axis 
IMU 

18  

Fig. 1. Structure of the employed CNN.  
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These metrics are typically computable as the following ratios: 

Se =
TP

TP + FN
(7)  

Sp =
TN

TN + FP
(8)  

where TP, TN, FP and FN respectively define the number of true positives 
(well identified falls), true negatives (well classified ADLs), false positive 
(or false alarms) and false negatives (unidentified falls) obtained after 
applying the detector to the test subsets. In contrast with other typical 
metrics (such as accuracy), Se and Sp are not inherently affected by the 
unbalance nature of the datasets (i.e. the different number of traces of 
ADLs and falls). 

Since sensitivity and specificity are negatively correlated, we also 
employ the mean geometric of these two parameters (

̅̅̅̅̅̅̅̅̅̅̅
Se⋅Sp

√
) as a single 

descriptor of the global system performance. 

3. Results and discussion 

3.1. Results for the original sampling frequencies 

As a baseline reference for the study of the subsequent sections, we 
obtained the performance metrics achieved when the CNN is trained and 
tested with the original sequences of the datasets (without any sub- 
sampling). 

In the case of datasets containing the measurements captured on 
different body locations, the behavior of CNN is individually assessed for 
each position, that is to say, the analysis is repeated for each measure
ment point with independence of the time series collected on other body 
locations for the same movements. 

The results (sensitivity, specificity and geometric mean of both pa
rameters) of the application of the classifier for all the repositories and 
sensing locations are summarized in Table 4. To offer an insight of the 
statistical confidence of the performance achieved by the CNN, in the 
last two columns, the table incorporates the mean and standard devia
tion of the global performance metric (

̅̅̅̅̅̅̅̅̅̅̅
Se⋅Sp

√
), computed from the 5- 

fold cross-validation, as well as the corresponding 95% confidence 

interval. 
Except for DU-MD repository (which contains a group of ADL traces 

with an anomalous behavior) and, to a lesser extent, tFall dataset, the 
global computed quality metric achieves values higher than 0.9. More
over, in 10 out of the 15 employed repositories, the global metric 
(geometric mean of specificity and sensitivity) is above 0.95, while for 
all datasets (except DU-MD) the obtained maximum specificity exceeds 
95%, which evinces the efficacy of the classifier to avoid false alarms. 

Thus, the measured effectiveness of CNN as a binary classifier for fall 
detection is in general superior or at least comparable with other de
tectors based on machine learning techniques that have been proposed 
by the related literature (see, for example, the state-of-the-art presented 
in the review articles [12,46–50]). 

As it refers to the analysis of the best position to locate a fall detector, 
the analysis of the results reached for the datasets containing multiple 
simultaneous sensing point (especially Erciyes, IMUFD, UMAFall and 
UP-Fall databases) shows that the efficacy of the classifier is maximized 
when the CNN is inputted with the signals captured on the waist or 
chest. This finding is coherent with the literature on FDS and posture 
recognition in general. Indeed most studies on this topic such as [51–54] 
suggest that the optimal position of a inertial sensor for a FDS or HAR 
system is waist (chest is normally considered to be a more inadequate 
location to transport a wearable sensor due to ergonomics). Chest and 
waist are closer to body’s Center of Gravity (COG),so the inertial mea
surements captured on those points describe the global mobility of the 
user better than those collected by sensors on the limbs (wrist, ankle), 
which may exhibit local motion patterns far more independent of the 
general activity or position of the body. 

3.2. Results for the decimated sequences 

We now focus our attention on the impact of the sampling frequency 
on the previous results. In particular, we repeat the experiments 
(training and testing the CNN) with all the datasets when this parameter 
is modified. For this purpose, as commented in section 2.2, we diminish 
the effective sampling rate by decimating the series of the accelerometer 
measurements by a certain integer factor (k). Again, when a dataset 
includes the traces captured at different body positions, the classifier is 
applied and tested individually with the samples collected on each 
possible sensor location. 

The results achieved by the neural classifier as a function of the 
employed equivalent sampling frequencies are represented in the graphs 
of Figs. 2 and 3. In particular, each graph simultaneously shows the 
global metric (

̅̅̅̅̅̅̅̅̅̅̅
Se⋅Sp

√
) obtained with the series captured on a certain 

sensor location for all the datasets that utilized that position to place the 
inertial measurement unit. Thus, Fig. 2 includes the performance 
computed for the series measured on the ankle (graphs a & b), chest 
(graphs c & d), head (graphs e & f) and thigh or trouser packet (graphs g 
& h), while Fig. 3 depicts the same metric for the traces on the waist 
(graphs a & b), wrist (graphs c & d) and handbag (graphs e & f). In both 
figures, the graphs on the left illustrate the performance of the CNN for 
all the considered sampling rates (original and decimated values) in 
each repository. As the number of tested sampling rates differ from one 
dataset to another, aiming at providing a better understanding and 
comparison of the curves, the graphs on the right detail the behavior of 
the detector for sampling rates between 1 and 15 or 20 Hz. To avoid 
hampering the readability and understandability of the curves, the fig
ures do not include the error bars or any other information describing 
the uncertainty of the quality metric. However, the range of the obtained 
confidence intervals were very similar to those reached for the baseline 
case (see Table 4). 

From the figures, we clearly observe that for all datasets and all the 
considered sensor placements the efficacy of the classifier only begins to 
decrease for sampling rates lower than 10–15 Hz. Except for the case of 
the traces in DU MD datasets and for the series of CMDUFALL captured 

Table 3 
Hyperparameters and configuration of the CNN.  

Network Dimensioning and Structure 

Number of feature extraction 
layers 

5 

Sub-layers for every extraction 
layer 

4 (1 normalization, 1 convolutional, 1 
activation and 1 max pooling layer) 

Number of filters for each 
convolutional layer 

64 

Filter size for the convolutional 
layers 

1x8 

Size of zero-padding 4 samples 
Stride 1x1 (“non-strided”) 
Final classification layer Fully connected layer with a final activation 

function and a classifier 
Layer activation functions ReLU (feature extraction layers) and softmax 

(output layer) 
Method and configuration of the training procedure 
Training algorithm Stochastic Gradient Descent Momentum 
Mini-batch size1 64 training instances 
Maximum number of training 

epochs2 
100 

Validation patience 5 epochs 
Tecniques to prevent 

overfitting 
Validation, L2 Regularization 

Initial learning rate 0.01  

1 These batches are used to estimate the gradient of the loss in every iteration. 
2 Training stops before this value is achieved if overfitting is detected through 

the validation set. 
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on the wrist, in all the tests the global quality metric keeps stable above 
0.95 for sampling rates higher than 15 Hz. In some cases (see, for 
example, the behavior for the measurements collected on the hand bag 
in Fig. 3.e), results indicate that reducing the sampling rate even in
creases the capacity of the classifier to discriminate falls from ADLs. This 
could be explained by the fact that a sampling rate lower than the 
original one reduces the dimension of the input vectors of the classifier, 
which in turn may ease the self-configuration and capability of gener
alization of the deep learning model for convolutional filters of a fixed 
dimension. 

3.3. Results with a low-pass filter 

To confirm the relevance of the low frequency components in the 
characterization of the activities, we repeat the baseline experiment 
(with no subsampling) by feeding the CNN with the time series of the 
triaxial acceleration when they are previously low-pass filtered to 
remove the high frequency content in the signals. For this task, we 
employ a basic minimum-order filter with a stopband attenuation of 60 
dB and three possible passband frequencies (fc): 5, 10 and 20 Hz. When 
implementing the filter, the selected cut-off frequency must be lower 
than the half of the sampling frequency (fs) so that the Nyquist theorem 
is always fulfilled. Accordingly, the passband frequencies of 10 Hz and 
20 Hz cannot be applied to those datasets with an original sampling rate 
of 18 Hz (UP-Fall repository) or 20 Hz (four sensor positions in UMAFall 
dataset). 

The results (geometric mean of sensitivity and specificity) of this 
testbed with the filtered signals for the three values of fc, all the datasets 
and all the sensor placements are presented in Table 5. The table also 

includes the performance attained by the baseline case when no filter is 
applied to the collected traces. From the table, we observe than just in 
very few cases and for the lowest passband frequency (5 Hz), a certain 
degradation of the quality metric is caused by the filtering process. In the 
table, those cases (with a decrease of the global metric higher than 3% 
with respect to the reference experiment) are marked in italics. 
Conversely, for most repositories and positions, the CNN behaves better 
(results highlighted in bold) than in the baseline case when the signals 
are low pass filtered with a cut off frequency of 10 or 20 Hz (an even 5 
Hz). From this analysis, we can again conclude that a sampling rate of 
20 Hz, which permits a proper characterization of frequency compo
nents below 10 Hz, is enough to provide the classifier with the minimum 
information to differentiate falls and ADLs. 

3.4. Study of the power spectrum of the signals 

Previous results visibly indicate that the significant frequency com
ponents required to classify ADLs and falls concentrate on a frequency 
band between 0 and 10 Hz. To corroborate this fact, we examine the 
distribution of the power spectrum of the acceleration magnitude. In 
Table 6, we display the average percentage of the total signal power in 
two low frequency ranges: [0–2.5 Hz] and [0–5 Hz] for all datasets and 
for all the body locations of the sensors. In the table, we separately 
analyze the power concentration for ADLs and Falls. For comparison 
purposes, we extend the analysis to the movement traces existing in 
DaLiAc dataset [55], which includes 13 types of real-life ADLs, as well as 
those in the already mentioned FARSEEING [25] repository. This data
base is exclusively composed of 22 actual falls captured during a long- 
term monitoring of a group of community-dwelling older adults and 

Table 4 
Results for the baseline case (without subsampling).  

Dataset Position Se Sp ̅̅̅̅̅̅̅
Se∙

√
Sp 95% Confidence Interval 

AnkFall Ankle  0.9290  0.9971 0.9623 ± 0.0155 [0.9431, 0.9815] 
CMDFALL Hip  0.8841  0.9667 0.9237 ± 0.0225 [0.8958, 0.9516] 

Wrist  0.7568  0.9100 0.8289 ± 0.0448 [0.7733, 0.8845] 
Cogent Labs Chest  0.9884  0.9943 0.9913 ± 0.0095 [0.9795, 1.0000] 

Thigh  0.9616  0.9957 0.9784 ± 0.0150 [0.9598, 0.9970] 
DOFDA Waist  1.0000  0.9750 0.9871 ± 0.0289 [0.9512, 1.0000] 
DU MD Wrist  0.5843  0.9217 0.6582 ± 0.3873 [0.1772, 1.0000] 
Erciyes Chest  0.9940  0.9939 0.9939 ± 0.0032 [0.9899, 0.9979] 

Head  0.9912  0.9918 0.9915 ± 0.0037 [0.9869, 0.9961] 
Right ankle  0.9884  0.9918 0.9901 ± 0.0024 [0.9871, 0.9931] 
Right thigh  0.9951  0.9986 0.9968 ± 0.0020 [0.9944, 0.9993] 
Right wrist  0.9890  0.9905 0.9897 ± 0.0036 [0.9853, 0.9942] 
Waist  0.9984  0.9973 0.9978 ± 0.0018 [0.9956, 1.0000] 

FallAllD Waist  0.8597  0.9679 0.9122 ± 0.0147 [0.8940, 0.9304] 
IMUFD Chest  0.9616  0.9763 0.9689 ± 0.0151 [0.9502, 0.9876] 

Head  0.9761  0.9838 0.9798 ± 0.0105 [0.9668, 0.9928] 
Left ankle  0.9233  0.9575 0.9402 ± 0.0179 [0.9179, 0.9624] 
Left thigh  0.9142  0.9786 0.9455 ± 0.0286 [0.9100, 0.9810] 
Right ankle  0.9384  0.9493 0.9435 ± 0.0181 [0.9210, 0.9660] 
Right thigh  0.9519  0.9865 0.9689 ± 0.0061 [0.9614, 0.9765] 
Waist  0.9335  0.9736 0.9532 ± 0.0276 [0.9189, 0.9874] 

KFall Waist  0.9983  0.9996 0.9989 ± 0.0011 [0.9976, 1.0000] 
MobiAct Trouser pocket  0.9234  0.9946 0.9578 ± 0.0379 [0.9107, 1.0000] 
SisFall Waist  0.9883  0.9966 0.9925 ± 0.0052 [0.9860, 0.9989] 
tFall Hand bag: Left side  0.8032  0.9892 0.8903 ± 0.0446 [0.8349, 0.9457] 
TST Right wrist  0.9529  0.9667 0.9593 ± 0.0398 [0.9099, 1.0000] 

Waist  0.9843  0.9742 0.9791 ± 0.0145 [0.9611, 0.9972] 
UMAFall Ankle  0.9322  0.9505 0.9408 ± 0.0112 [0.9269, 0.9548] 

Chest  0.9733  0.9841 0.9786 ± 0.0111 [0.9648, 0.9924] 
Right Trouser pocket  0.9255  0.9841 0.9542 ± 0.0122 [0.9390, 0.9694] 
Waist  0.9730  0.9895 0.9811 ± 0.0211 [0.9549, 1.0000] 
Wrist  0.8763  0.9761 0.9246 ± 0.0241 [0.8947, 0.9546] 

UP-Fall Ankle  0.9822  0.9912 0.9867 ± 0.0122 [0.9715, 1.0000] 
Neck  0.9661  0.9957 0.9806 ± 0.0103 [0.9678, 0.9934] 
Right thigh (pocket)  0.9703  0.9752 0.9725 ± 0.0280 [0.9378, 1.0000] 
Waist (belt)  0.9849  0.9829 0.9837 ± 0.0173 [0.9623, 1.0000] 
Wrist  0.9245  0.9747 0.9491 ± 0.0208 [0.9232, 0.9749]  
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patients with high-risk of falling. 
From Table 6, we observe that for the ADLs, the average percentage 

of power in the [0–5 Hz] band ranges between 91.15 and 99.38% 
depending on the datasets and body locations. For the [0–2.5 Hz] band 
these percentages vary from 87.70% to 98.38%. 

As it could be expected, high frequency components have a higher 

weight on the spectral density of the acceleration signals of falls, as these 
accidents are associated to brusque and sudden changes of the angle and 
speed on both the limbs and the trunk. However, the relevance of the 
low frequencies is still noteworthy for falls, as the average fraction of 
power in the [0–5 Hz] band is between 83.46% and 97.97% for all the 
experiments. 

Fig. 2. Evolution of the global quality metric (geometric mean of the of the sensitivity and specificity) achieved by the deep learning classifier as a function of the 
employed accelerometer sampling rate and the position of the considered sensor in each dataset: ankle (graphs a & b), chest (graphs c & d), head (graphs e & f), thigh 
or trouser packet (graphs g & h). Graphs on the left (a, c, e & g) show the performance for all the considered sampling rates in each repository. Graphs on the right (b, 
d, f & h) detail the behavior of the classifier for sampling rates in the range [0–15 Hz] or [0–20 Hz]. 

J. Antonio Santoyo-Ramón et al.                                                                                                                                                                                                            



Measurement 193 (2022) 110945

8

Graphs in Fig. 4 verify a rapid decay with frequency of the power 
spectrum for both ADLs and falls (even though this decay is always 
slower for falls). For the sake of simplicity, the figure only depicts the 
results corresponding to the series captured on the waist (hip in the case 
of DaLiAC repositories) although similar results are achieved if the study 
focuses the signals captured on other body positions. 

These results are consistent with other previous studies that have 
analyzed the biomechanics of ADLs. Mathie et al. showed in [56] that 
the main energy band for daily activities is in the frequency interval 
from 0.3 and 3.5 Hz. According to Antonsson and Mann [57], 99% of the 
power of the acceleration signal in gait is contained in the band below 
15 Hz. Similarly, in [58] Winter reported that walking concentrates 
99.7% of the signal power below 6 Hz. This author proposes using a 1st 
order Butterworth low-pass filter with a cutoff frequency of 20 Hz to 
remove noise caused by diverse sources (the sensor, the precision of the 
digitizer or human errors). Nguyen et al. have also demonstrated in [59] 
that during a TUG (Timed-Up-and-Go) routine, which comprises four 
common ADLs (standing, walking, turning and sitting), the dominant 

frequencies of the inertial signals focus in the band below 10 Hz. In this 
vein, Bouten et al. conclude in [60] that 20 Hz is enough to for the 
assessment of ADLs. From our own results, we can conclude that this 
recommendation can be extended to fall detection systems 

4. Conclusions 

In spite of the extensive literature on wearable fall detection systems 
(FDSs), there are some practical aspects for the actual implementations 
of these human activity classifiers which have been disregarded by most 
studies. Wearables usually present heavy restrictions in terms of 
computing power, memory, battery capacity or transmission speed. In 
this regard, the sampling rate set in the inertial measurement unit 
embedded in these devices may severely influence the viability of a 
wearable fall detector in a real application scenario. This article has 
presented a thorough analysis of the impact of the sampling frequency 
on the performance of wearable fall detection systems based on accel
eration signals. As the decision algorithm, we employed a convolutional 

Fig. 3. Evolution of the global quality metric (geometric mean of the of the sensitivity and specificity) achieved by the deep learning classifier as a function of the 
employed accelerometer sampling rate and the position of the considered sensor in each dataset: waist (graphs a & b), wrist (graphs c & d), hand bag (graphs e & f). 
Graphs on the left (a, c &e) show the performance for all the considered sampling rates in each repository. Graphs on the right (b, d & f) detail the behavior of the 
classifier for sampling rates in the range [0–15 Hz] or [0–20 Hz]. 
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neural network (CNN), which is trained and hyper-parametrized to 
discriminate falls from ordinary movements or ADL (Activities of Daily 
living). The use of a deep learning strategy avoids the need of selecting 
and defining a set of input features (as it is required by other machine 
learning architectures), which may determine the behavior of the de
tector with respect to the selected sampling rate. Thus, the classifier is 
directly fed with a sequence of the raw measurements collected by the 
accelerometer during observation time windows of 3 s around the ac
celeration peaks. 

The CNN is initially evaluated (trained, validated and tested) with 
the traces provided by 15 different public datasets conceived as a 
benchmarking tool for the assessment of fall detection algorithms. The 
study of the performance with the original sampling rates shows the 
high adaptability of the classifier to accurately discriminate falls and 
ADLs (with sensitivities and specificities higher than 0.95) for nearly all 
datasets and almost with independence on the position of the sensors 
with which the samples were captured. Once this baseline case is 
analyzed and taken as a reference, we repeated the experiments but now 
reducing the sampling rate of the series through a simple decimation 
technique. Thus, the CNN is re-trained and re-evaluated with these new 
sampling frequencies and for all the databases and sensor locations. 
Results clearly bring to light that the system performance only degrades 
when the sampling rate is set to a value in the range of 10–15 Hz. 

Moreover, the detection ratio improves in many cases when the original 
rate is reduced to values between 20 and 40 Hz. This phenomenon could 
be explained by the reduction of the data array with the measurements 
required at the input of the classifier, since an unnecessary increase in 
the input features and complexity of a neural model normally leads to 
overfitting the training patterns. 

These results are confirmed when no decimation is applied to the 
series but instead the triaxial acceleration signals are low pass filtered 
before being inputted to the CNN. The irrelevance of the frequency 
components in the band higher than 10 Hz is also proved when the 
power spectrum of the acceleration module for both ADLs and falls is 
assessed. Even in the case of falls, the power density rapidly decreases 

Table 5 
Global metric (

̅̅̅̅̅̅̅
Se∙

√
Sp) obtained when the input acceleration sequences are low- 

pass filtered (bold figures denote those cases in which the use of the low-pass 
outperforms the baseline case with no filtering while italics indicate those sit
uations in which the filtered signals decreases the performance metric of the 
baseline case more than 3%).  

Dataset Sensor position No 
filter 

fc = 5 Hz fc = 10 
Hz 

fc = 20 
Hz 

AnkFall Ankle  0.9623  0.9595  0.9636  0.9455 
CMDFALL Hip  0.9237  0.8844  0.9136  0.9225 

Wrist  0.8289  0.7636  0.8519  0.8318 
Cogent 

Labs 
Chest  0.9913  0.9968  0.9911  0.9865 
Thigh  0.9784  0.9828  0.9829  0.9826 

DOFDA Waist  0.9871  0.9131  1.0000  – 
DU MD Wrist  0.6582  0.7428  0.4836  – 
Erciyes Chest  0.9939  0.9959  0.9954  – 

Head  0.9915  0.9920  0.9892  – 
Right ankle  0.9901  0.9936  0.9936  – 
Right thigh  0.9968  0.9974  0.9968  – 
Right wrist  0.9897  0.9918  0.9918  – 
Waist  0.9978  0.9975  0.9966  – 

FallAllD Waist  0.9122  0.9032  0.9309  0.9265 
IMUFD Chest  0.9689  0.9711  0.9777  0.9694 

Head  0.9798  0.9637  0.9750  0.9800 
Left ankle  0.9402  0.9054  0.9396  0.9431 
Left thigh  0.9455  0.9678  0.9349  0.9501 
Right ankle  0.9435  0.9068  0.9291  0.9344 
Right thigh  0.9689  0.9650  0.9605  0.9648 
Waist  0.9532  0.9654  0.9714  0.9614 

KFall Waist  0.9989  0.9975  0.9986  0.9987 
MobiAct Trouser pocket  0.9578  0.9422  0.9614  0.9616 
SisFall Waist  0.9925  0.9951  0.9941  0.9925 
tFall Hand bag: Left 

side  
0.8903  0.9170  0.9259  0.9096 

TST Right wrist  0.9593  0.9188  0.9462  0.9346 
Waist  0.9791  0.9656  0.9585  0.9596 

UMAFall Ankle  0.9408  0.9573  –  – 
Chest  0.9786  0.9757  –  – 
Right Trouser 
pocket  

0.9542  0.9557  0.9424  0.9509 

Waist  0.9811  0.9864  –  – 
Wrist  0.9246  0.9634  –  – 

UP-Fall Ankle  0.9867  0.9619  –  – 
Neck  0.9806  0.9823  –  – 
Right thigh 
(pocket)  

0.9725  0.9766  –  – 

Waist (belt)  0.9837  0.9687  –  – 
Wrist  0.9491  0.9298  –  –  

Table 6 
Average percentage of the total signal power in two low frequency ranges (0–2.5 
Hz, and 0–5 Hz) for ADLs and falls.  

Dataset Position ADL 
(0–2.5 Hz) 

ADL 
(0–5 Hz) 

Falls 
(0–2.5 Hz) 

Falls (0–5 
Hz) 

AnkFall Ankle  87.70%  91.15%  80.35%  86.59% 
CMDFALL Hip  94.40%  96.74%  84.21%  88.77% 

Wrist  93.87%  97.21%  77.28%  83.78% 
Cogent Labs Chest  97.15%  98.94%  86.49%  93.10% 

Thigh  94.72%  96.29%  89.33%  94.97% 
DOFDA Waist  96.62%  98.66%  74.81%  84.70% 
DU MD Wrist  98.24%  99.53%  85.04%  90.99% 
Erciyes Chest  96.93%  98.05%  91.91%  96.90% 

Head  96.58%  98.21%  88.30%  94.60% 
Right 
ankle  

98.35%  99.24%  84.86%  93.70% 

Right 
thigh  

98.38%  99.38%  85.74%  94.48% 

Right 
wrist  

97.55%  99.02%  80.04%  89.37% 

Waist  98.04%  99.23%  86.89%  96.68% 
FallAllD Waist  92.84%  95.92%  80.84%  86.50% 
IMUFD Chest  95.41%  98.07%  84.93%  91.57% 

Head  94.04%  96.69%  84.42%  92.01% 
Left 
ankle  

87.14%  91.91%  76.94%  84.31% 

Left 
thigh  

88.83%  91.76%  79.07%  86.33% 

Right 
ankle  

87.37%  91.95%  75.90%  83.46% 

Right 
thigh  

89.42%  92.25%  79.03%  86.79% 

Waist  95.85%  97.61%  84.20%  90.62% 
KFall Waist  93.7748%  96.998%  82.6078%  93.5115% 
MobiAct Trouser 

pocket  
95.65%  97.88%  91.22%  95.90% 

SisFall Waist  94.15%  96.87%  76.29%  85.59% 
TST Right 

wrist  
96.62%  98.3%  84.27%  91.91% 

Waist  93.09%  95.73%  74.1%  86.84% 
UMAFall Ankle  92.86%  96.25%  82.74%  91.95% 

Chest  96.63%  98.62%  89.33%  94.97% 
Right 
Trouser 
pocket  

94.07%  96.19%  86.62%  92.81% 

Waist  ’95.36%  97.66%  82.61%  93.28% 
Wrist  91.95%  96.14%  81.82%  91.18% 

UP-Fall Ankle  97.49%  99.35%  90.31%  97.32% 
Neck  96.39$  98.9%  92.96%  97.97% 
Right 
thigh 
(pocket)  

96.98%  99.1%  90.74%  97.41% 

Waist 
(belt)  

95.73%  98.56%  90.68%  97.20% 

Wrist  96.26%  98.88%  91.11%  97.41% 
tFall Hand 

bag: Left 
side  

94.93%  97.29%  89.81%  95.19% 

DALIAC 
(ADLs) 

Hip  90.54%  92.95%  –  – 

FARSEEING 
(Falls) 

Waist  –  –  77.72%  87.36%  
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Fig. 4. Averaged Power spectrum of the acceleration magnitude for ADLs and falls for different datasets containing data captured on the waist.  
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above 5 Hz. These conclusions are coherent with those preceding works 
that analyzed in the frequency domain the dynamics of conventional 
human movements. Thus, the recommendation of using a sampling rate 
of 20 Hz (and not higher than 40 or 50 Hz) for Human Activity Recog
nition systems can be extended to fall detection applications. 
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