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a b s t r a c t

The aerodynamic forces on an oscillating flexible foil are used to study the flutter
instability when the flexible foil is elastically mounted to translational and torsional
springs and dampers at an arbitrary pivot axis. The present linear theory, valid for
small amplitudes of the heaving, pitching and flexural deflection motions, and therefore
valid for sufficiently large stiffness ratios, characterizes analytically the onset of the
flutter instability and the corresponding leading frequency in terms of the flow velocity
and all the structural parameters of the system. The analysis may serve to guide
the search for the parametric ranges of energy extraction by a fully-passive flexible
flapping-foil hydrokinetic turbine, including the effect of some relevant nondimensional
parameters which have not been considered before. The results for the rigid-foil case are
validated with recent numerical simulations for a fully-passive flapping-foil turbine. As
the stiffness of the foil decreases, the coupled-mode flutter instability of the elastically
supported rigid foil may weaken and disappear, or become enhanced, depending on the
remaining parameters, most particularly on the location of the centre of mass in relation
to the pivot point, whose dependence is investigated for specific values of the rest of
the nondimensional parameters.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Flutter instability of airplane wings, the dynamic instability generating self-sustained oscillations of great violence
bove a critical speed, is a well studied problem since the early days of flight (Fung, 1969). Actually, one of the earliest
nd most cited works on unsteady aerodynamic forces on an oscillating airfoil was in fact an analysis of the onset of the
lutter instability to mitigate its effect in aeronautics (Theodorsen, 1935).

Interest in coupled-mode (pitch–plunge) flutter instability has been recently renewed because of its relevance in the
ield of energy harvesting through hydrokinetic turbines based on fluid–structure instabilities of an elastically supported
oil immersed in a fluid current (Peng and Zhu, 2009; Zhu, 2012; Boragno et al., 2012; Veilleux and Dumas, 2017; Wang
t al., 2017; Boudreau et al., 2018; Duarte et al., 2019). Despite their more intricate mechanism, most of the studies
f flapping-foil turbines have focused on investigating the energy harvesting performance of rigid flapping-foil turbines
ith fully prescribed kinematics or with semipassive systems because of their alleged better efficiencies (Kinsey and
umas, 2008; Shimizu et al., 2008; Zhu et al., 2009; Zhu and Peng, 2009; Abiru and Yoshitake, 2011; Xiao and Zhu,
014; Young et al., 2014; Su and Breuer, 2019; Boudreau et al., 2019b,a; Ma et al., 2021). But recent studies have shown
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Fig. 1. Schematic of the fully-passive flexible flapping-foil (all quantities are dimensionless, except the velocity U). The blue dot (x = x0) is the
entre of mass and the red one (x = a) the pitch axis. (For interpretation of the references to colour in this figure legend, the reader is referred to
he web version of this article.)

hat the mechanically simpler fully-passive concept, with both rigid-foil degrees of freedom elastically supported, and
herefore triggered by flutter instabilities, may achieve comparable, or even larger, efficiencies than most fully-constrained
r semipassive systems (Boudreau et al., 2020).
Although the study of the large-amplitude motions that can result from the coupled-mode flutter instability, as well as

he stall flutter and other non-linear aeroelastic instabilities, are of utmost importance for analysing the performance of
hese fully-passive flapping-foil turbines (Dowell, 2015; Amandolese et al., 2013; Poirel and Mendes, 2014; Pigolotti et al.,
017; Boudreau et al., 2019b,a; Zhu et al., 2020), the determination of the instability onset from small perturbations is also
ery relevant in the field, because it easily provides a good estimation of the full parametric ranges for energy harvesting
ithout the use of costly numerical simulations or experiments, which necessarily have to be made within very limited
arametric ranges.
For pitch–plunge oscillations of a rigid foil the determination of the flutter instability has been widely studied because

f its importance in aeronautics and because, as a consequence of this relevance, simple analytical expressions for the force
nd moment on small-amplitude pitching and plunging airfoils were derived in the early days of flight (Theodorsen, 1935;
ears, 1941; Fung, 1969; Bisplinghoff and Ashley, 1975). For a flexible foil undergoing flexural deflection, also of small
mplitude, simple analytical expressions for the force, pitching moment and flexural moment about an arbitrary pivot axis
ere very recently derived (Alaminos-Quesada and Fernandez-Feria, 2020) using a linearized vortex impulse theory (von
ármán and Sears, 1938; Fernandez-Feria, 2016). These expressions are employed in the present work in combination
ith the linearized fluid–structure interaction through the first three moments of the Euler–Bernoulli beam equation for
quartic polynomial deflection (Fernandez-Feria and Alaminos-Quesada, 2021a,b) to derive analytical expressions for the
nset of the ‘‘pitch–plunge–flexural’’ oscillations arising from the flutter instability of an elastically supported flexible
oil. Then, some results, both for rigid and flexible foils, are presented and discussed in relation to the energy harvesting
roblem by a fully-passive flexible flapping-foil turbine. Some of the present theoretical results for rigid foils are compared
atisfactorily with recent results obtained from numerical simulations (Boudreau et al., 2020). Semi-actuated flexible
lapping-foil turbines have also been considered, but with prescribed wing deformation and therefore without considering
he fluid–structure interaction (Liu et al., 2013), so that a direct comparison in terms of the structural parameters of the
lastically supported system is not possible.
The related problem of flutter instability of clamped flexible plates in a two-dimensional flow has also been thoroughly

nalysed by solving numerically the resulting nonlinear eigenvalue problem, uncovering a broad and intricate spectrum
f unstable modes as the stiffness of the foil decreases (e.g., Guo and Païdoussis, 2000; Tang and Païdoussis, 2007; Alben,
008; Floryan and Rowley, 2018), including its application to energy harvesting (Tang et al., 2009). Though these results
re not for the elastically supported foils considered here, some of them are used to characterize the stiffness range of
alidity of the present analytical results.

. Formulation of the problem

A flexible foil of chord length c immersed in a uniform current with velocity U along the x-axis of an inviscid and
ncompressible fluid with density ρ is considered. Except otherwise specified, all the parameters and variables used from
his point onwards are dimensionless, scaled with the flow speed U , the half-chord length c/2 and the density ρ. Thus, for
nstance, the foil at rest is located along the x-axis between x = −1 and x = 1 and time is scaled with c/(2U). Due to the
luid–structure interaction (FSI), the foil may be displaced along the z-axis with a motion characterized by the position of
ts centreline zs(x, t), which is obtained here assuming small amplitude, i.e., |zs| ≪ 1, so that it always lies in −1 ≤ x ≤ 1,
pproximately (see Fig. 1).
The foil is attached to translational and torsional springs and dampers at the pitch axis, located at x = a, which does
ot necessarily coincide with its centre of mass x = x0. Thus, at this point x = a, the foil just undergoes a passive (and,
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t
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herefore, unknown) heaving and pitching motion characterized by the translational and angular displacements h(t) and
(t), respectively; i.e.,

zs(a, t) = h(t),
∂zs
∂x

⏐⏐⏐⏐
x=a

= −α(t). (1)

If the chordwise flexural deformation of the foil is also small, zs may be approximated by a quartic polynomial (Fernandez-
Feria and Alaminos-Quesada, 2021a)

zs(x, t) = h(t) − (x − a)α(t) + (x − a)2d(t) − (x − a)3
2d(t)

3(1 − a)
+ (x − a)4

d(t)
6(1 − a)2

, (2)

which, in addition to (1), satisfies the boundary conditions ∂2zs/∂x2 = ∂3zs/∂x3 = 0 at x = 1, corresponding to a free
trailing edge. The function d(t) characterizes the chordwise flexural deflection. In particular, the flexural deflection at the
trailing edge relative to an identical rigid foil with the same heaving and pitching motion is dt (t) = (1 − a)2d(t)/2.

If kh and kα are the (dimensionless) stiffnesses of the translational and torsional springs, respectively, and bh and
bα the respective constants of the translational and torsional dampers used to extract energy from the current, the
nondimensional output force and torque (per unit chord-length) that the foil exerts at x = a can be written as

CLo =
Lo

1
2ρU

2c
= khh + bhḣ , (3)

CMo =
Mo

1
2ρU

2c2
= −kαα − bαα̇ , (4)

where a dot denotes differentiation with respect to time. Note that the moment is defined positive when counterclockwise,
while α increases clockwise to follow the usual convention in aerodynamics (see Fig. 1).

If one substitutes the foil deflection (2) into the Euler–Bernoulli beam equation that includes (3) and (4) as punctual
force and torque, respectively, at x = a, the first three moments of that equation, i.e., that equation integrated along the
chord-length as well as the integration of that equation previously multiplied by x − a and by (x − a)2, can be written
as (Fernandez-Feria and Alaminos-Quesada, 2021a,b)

m
[
ḧ + (a − x0)α̈

]
+ Jad̈ +

16
3(1 − a)2

S d = CL − khh − bhḣ , (5)

m(x0 − a)ḧ − Iaα̈ + Jdd̈ −
16a

3(1 − a)2
S d = 2 (CM + kαα + bαα̇) , (6)

Iaḧ − Idα̈ + Kdd̈ +
16
3

a2 +
1
3

(1 − a)2
S d = CF . (7)

In these equations, CL, CM and CF are the lift, moment and flexural coefficients, respectively, related to the pressure that
the fluid exerts on the foil as

CL(t) =

∫ 1

−1
∆Cp(x, t)dx , CM (t) =

1
2

∫ 1

−1
(x − a)∆Cp(x, t)dx , CF =

∫ 1

−1
(x − a)2∆Cp(x, t)dx , (8)

where ∆Cp(x, t) = (p−
− p+)/(ρU2) is the nondimensional pressure difference between the lower (superscript −) and

upper (superscript +) sides of the foil. The nondimensional stiffness of the foil S and its mass ratio R are defined as

S(x) =
E(x)ε3(x)
ρU2c3

, R(x) =
ρs(x)ε(x)

ρc
, (9)

where E its elastic modulus of the foil, ρs its density, and ε its thickness. These quantities may vary along the chord, but
S has been assumed constant in deriving Eqs. (5)–(7). However, the mass ratio R may change with x in the remaining
coefficients appearing in (5)–(7) to allow for different values of the centre of mass, moment of inertia and the rest of
coefficients, which are defined in terms of R(x) as

m = 2
∫ 1

−1
Rdx , m(x0 − a) = 2

∫ 1

−1
(x − a)Rdx , x0 =

2
m

∫ 1

−1
xRdx , (10)

Ia = 2
∫ 1

(x − a)2Rdx , (11)

−1
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Ja = 2
∫ 1

−1

[
(x − a)2 −

2
3
(x − a)3

1 − a
+

(x − a)4

6(1 − a)2

]
Rdx , (12)

Id = 2
∫ 1

−1
(x − a)3Rdx , (13)

Jd = 2
∫ 1

−1

[
(x − a)3 −

2
3
(x − a)4

1 − a
+

(x − a)5

6(1 − a)2

]
Rdx , (14)

Kd = 2
∫ 1

−1

[
(x − a)4 −

2
3
(x − a)5

1 − a
+

(x − a)6

6(1 − a)2

]
Rdx . (15)

or a rigid foil (d = 0), only three of these parameters remain: the nondimensional mass of the foil m, the nondimensional
tatic moment m(x0 − a), where x0 is the foil’s centre of mass, and the nondimensional moment of inertia about the pitch
xis Ia. The rest of parameters are associated to the flexural deflection d(t), characterizing its mechanical coupling with
he heaving and pitching motions in the present approach. Thus, Ja relates the flexural acceleration to the vertical force, Jd
to the pitching moment and Kd to the flexural moment, while Id relates the pitching acceleration to the flexural moment.
In Appendix A are listed the values of all these parameters in two relevant situations: for a constant mass ratio R, in which
case, for instance, the centre of mass lies at the centre of the foil (x0 = 0) and Ia = 4R(a2 + 1/3), and for a distribution
(x) such that m, x0 and Ia can be selected arbitrarily and independent of each other.
In the limit of a rigid foil (S → ∞), the flexural Eq. (7) correctly yields the vanishing deflection as |d| ∼ S−1. However,

this means that the terms containing S in Eqs. (5) and (6) do not vanish in this limit, so that the rigid-foil equations
for the vertical force and for the moment about the pivot axis are not correctly recovered. But this is an artefact of the
present approximation, where the displacement (2) is truncated as a quartic polynomial. This situation can be fixed by
using higher polynomial approximations for zs and selecting the new coefficients so that these two terms vanish, while
retaining the corresponding term in (7). However, this would complicate unnecessarily the present approximation which
minimally accounts for the stiffness effect within the Euler–Bernoulli beam equation, because the resulting expressions for
CL, CM , CF would become cumbersome. Thus, the simplest approach with Eqs. (5) and (6) without the S-terms, and Eq. (7)
with that term from the present quartic approximation, is adopted here as a lowest order, or minimal, model that takes
into account the flexibility of the foil, valid for sufficiently large stiffness S and for frequencies below the second natural
frequency of the system. As shown below, this approach reproduces accurately the frequency of the first unstable mode
for sufficiently large stiffness (Alben, 2008), and previous numerical results for the energy harvesting of a fully-passive
flapping-foil turbine (Boudreau et al., 2020). These comparisons will thus constitute a validation of the present lowest
order formulation.

3. Flutter instability

Once the force and moment coefficients (8) are written in terms of the foil deflection (2), Eqs. (5)–(7) constitute a
system of three linear differential equations for h(t), α(t) and d(t) for given initial conditions. Of particular interest for
energy harvesting devices is the study of the flutter instability, through which any small disturbance of the airfoil can
serve as a trigger to initiate an oscillation of great violence (Fung, 1969). Thus, to analyse the onset of this instability, and
therefore the parametric range in which energy is transferred from the flow to the structure so that the foil may work as
an energy harvester, as well as obtain the frequency ω of the subsequent oscillations, we consider solutions of the form

h(t) = Re
[
H0eiγ t] , α(t) = Re

[
A0eiγ t] , d(t) = Re

[
D0eiγ t] , (16)

where Re means real part and γ , H0, A0 and D0 are in general complex quantities, with

γ = k + iσ , k =
ωc
2U

, (17)

eing k the nondimensional (or reduced) frequency and −σ the nondimensional growth rate. The absolute values of H0,
0 and D0 are the amplitudes of the heaving, pitching and flexural components of the foil motion, respectively, while their
ngles correspond to their relative phase shifts. For this harmonic motion the coefficients (8) can be expressed in a closed
nalytical form (see Appendix B), so that Eqs. (5)–(7) are transformed into a linear system of three algebraic, complex
quations for H0, A0 and D0:

A(γ ) · X = 0 with A =

(A11 A12 A13
A21 A22 A23
A31 A32 A33

)
, X =

(H0
A0
D0

)
, (18)

where the different coefficients A are given in Appendix C.
ij
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For a given set of values of the different nondimensional parameters, the system has nontrivial solutions for specific
eigen-)values of γ satisfying

det[A(γ )] = 0 , (19)

ixing the frequency of the subsequent oscillations of the system k if it is unstable, i.e., if σ < 0. On the contrary, if
σ > 0, any small perturbation in zs will be damped. Thus, of particular relevance for the energy harvesting problem
is the characterization of the neutral hyper-surface in the parameter space at which σ = 0 and the corresponding
natural frequencies, k = kn say. Within the region of the parameter space where σ < 0, a passive motion of the foil
is allowed according to the present linear theory, which may be used to extract energy from the current. This region and
the corresponding frequencies will be explored below for several particular cases. However, the present linear (stability)
theory does not provide the final amplitudes of the ensuing oscillating motion of the flexible foil. Therefore, one cannot
obtain from the present analysis the output power nor the efficiency of the resulting fully-passive energy harvesting
system.

Eq. (19) for the complex eigenvalue γ is solved numerically using the Matlab function fsolve, starting from the leading
neutral frequency corresponding to a rigid foil when the FSI is neglected, whose analytical expression is given in the next
section. As explained below, this neutral frequency is the first resonant frequency of the rigid-foil system in vacuo, so that
only the leading eigenvalue associated to this first natural mode as S → ∞ is considered here. This is consistent with the
present approximation valid for small deflection and, consequently, for sufficiently large stiffnesses, capturing only the
lowest frequency mode. To check the validity of the present results for a flexible foil, they are compared in Section 5.1
below with previous ones obtained numerically by Alben (2008) for a flexible foil clamped at the leading edge. Therefore,
the comparison is made by setting very large stiffnesses of the linear and torsional springs in the present configuration.
As we shall see, the present results recover the leading eigenvalue for S ≳ 1, but higher instability modes appearing as S
ecreases below unity are not correctly recovered from the present approximation.

. Rigid foil

Considering first the case of a rigid foil (S → ∞), so that the flexural deflection amplitude vanishes, D0 = 0, a nontrivial
olution exists if det(A0) = 0, with

A0 =

(
A11 A12
A21 A22

)
. (20)

If one neglects the FSI (i.e., neglecting the contributions AF
ij to the coefficients given in Appendix C), the expressions for

the different Aij are particularly simple. If, in addition, kh → ∞, so that there is no heaving motion (H0 = 0), a nontrivial
pitching solutions exists if A22 = 0, yielding

γ =
2ibα ±

√
8Iakα − 4b2α
2Ia

, (21)

o that σ ≥ 0 and the system is always stable. The neutral stability case (σ = 0, γ = k = kn) occurs for bα = 0 with the
natural frequency (only the positive frequency is written)

kn = krα =

√
2kα

Ia
, (22)

hich is the nondimensional first resonant frequency of a plate attached to a torsional spring in vacuum. (Note that for
α >

√
2Iαkα , one gets k = 0 and σ > 0, so that all perturbations are straightforwardly damped.)

Alternatively, if kα → ∞, so that the pitching motion is inhibited (A0 = 0), heaving motion may exist if A11 = 0; i.e., if

γ =

ibh ±

√
4 mkh − b2h
2m

. (23)

gain, the system is always stable (σ ≥ 0), with the neutrally stable case for bh = 0, corresponding to the natural
frequency

kn = krh =

√
kh
m

, (24)

hich is the nondimensional first resonant frequency of a plate attached to a linear spring in vacuum. Again, for
h > 2

√
mkh, the system is strongly damped (σ > 0, k = 0).

In general, when the FSI is neglected, det(A0) = 0 can be written as

(−mγ 2
+ k + b iγ )(I γ 2

− 2k − 2b iγ ) + m2γ 4(a − x )2 = 0 . (25)
h h a α α 0

5
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able 1
quivalence between the present nondimensional parameters for a rigid foil and those used in Boudreau et al. (2020).
Present k m m(x0 − a) kh bh Ia kα bα krα krh
Boudreau et al. (2020) π f ∗ 4m∗

h 8S∗ k∗

h 2D∗

h 16I∗θ 2k∗

θ 4D∗

θ π f ∗

n,θ π f ∗

n,h

Fig. 2. Contours of k (a) and −σ (b) in the bh − kh plane for bα = 0, m = 8, a = −1/2, x0 = −0.1, Ia = 32, kα = 6.32. Red thick lines correspond to
= krα in (a) and to σ = 0 in (b). The white line in (b) is the contour for 10% of the maximum power coefficient in figure 2(e) of Boudreau et al.
2020). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

or neutral stability, the imaginary part of this expression vanishes if

kn = kn0 =

√
2(bαkh + bhkα)
2 mbα + Iαbh

. (26)

ote that this frequency coincides with krα when bα = 0 and with krh if bh = 0, but we shall not consider this last
ituation in what follows (only the cases in which the energy is totally, or mainly, harvested by the heave damper will
e considered). It turns out that, again, σ ≥ 0, so that the system is stable, no flutter instability exists and no energy can
e harvested, which was to be expected since the FSI has been neglected.

.1. Comparison with recent numerical results

To analyse the effect of the fluid–structure interaction on a rigid foil, we consider first one of the two set of cases
tudied by Boudreau et al. (2020), who integrated numerically the full Navier–Stokes equations for this problem. Thus,
n addition to bα = 0, we select m = 8, x0 = −0.1, Ia = 32, a = −1/2, kα = 6.32, and varying bh and kh (using
the equivalence between the respective parameters summarized in Table 1, the corresponding values of these authors’
parameters are D∗

θ = 0, m∗

h = 2, S∗
= 0.4, I∗θ = 2, pitch axis at the quarter-chord point, k∗

θ = 3.16, 0.25 ≤ D∗

h ≤ 1.25
and 1 ≤ k∗

h ≤ 4.5, respectively). Fig. 2 shows the values of k and σ corresponding to det(A) = 0 in the bh − kh plane. It
is observed that the system is unstable within an almost ‘‘parabolic’’ region of that plane for bh ≲ 1.16. Additionally, the
frequency k [Fig. 2(a)] remains always very close to the resonant frequency krα given by (22), also marked in that figure
(krα ≃ 0.6284 in the present case). Both these results are in agreement with Boudreau et al. (2020): the frequency is not
shown in their Fig. 2 because it remains very close to the resonant frequency, and the ‘‘parabolic’’ region with σ ≤ 0 in
Fig. 2(b) is quite similar to that in their Fig. 2(e) for which there is a significant power output. Fig. 2(b) also shows with a
white line the contour corresponding to 10% of the maximum power coefficient obtained numerically by these authors,
thus enclosing the region with significant power output due to the flutter instability. The irregularity of this contour line
is due to the finite number of pairs of values (bh, kh) for which numerical simulations are performed.

Incidentally, if the instability region in Fig. 2(b) is written as bh ≤ b∗

h(kh; a, x0, Ia, . . .), where b∗

h is the function of kh
for given a, x0, Ia, etc., corresponding to the neutral curve with σ = 0 in Fig. 2(a), the so-called flutter velocity U∗ for
the present set of parameters can be obtained by just writing the above condition in terms of dimensional magnitudes
(marked with a ‘‘ ˜ ’’ whenever the symbol is the same):

bh =
2b̃h
ρUc

≤ b∗

h , U ≥ U∗
=

b̃h
ρc b∗

h(kh; a, x0, Ia, . . .)
. (27)

he minimum flutter velocity corresponds to the maximum value of b∗

h , which for the present case is approximately 1.16.
To further corroborate this agreement, we also consider here results by Boudreau et al. (2020) when the spring constant

kh and the mass ratio m are simultaneously varied, but maintaining constant the nondimensional static moment S∗

see Table 1 for the relation between S∗ and m, x and a). These authors found that the narrow range of values of k
0 h

6
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Fig. 3. σ (a) and k (b) vs. λ∗

h given by Eq. (28) when kh is varied from zero onwards for different values of m and x0 , as indicated (see main text).
a = −1/2, bh = 1.5, mx0 = 4.7, Ia = 32, bα = 0, kα = 6.32. The red line in (b) is krα . (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of this article.)

here energy harvesting is possible, which depends strongly on m (see their Fig. 6), collapse into a common range when
epresented in terms of the parameter they called the effective heave stiffness λ∗

h (see their figure 7(e)), which in the
resent notation can be written as

λ∗

h = kh − mk2 = m(k2rh − k2) . (28)

oudreau et al. (2020) found that the energy harvesting range is roughly between −3 and −1, with the best performance
bout λ∗

h ≈ 2, when D∗

h = 0.75, S∗
= 0.65, I∗θ = 2, D∗

θ = 0 and kθ =
∗ 3.16 (i.e., bh = 1.5, mx0 = 4.7, Ia = 32, bα = 0 and

α = 6.32 according to Table 1). Fig. 3(a) plots σ vs. λ∗

h when kh ≥ 0 for four values of m (and x0) corresponding to the
our values of m∗

h used by Boudreau et al. (2020) in their §3.2 with constant S∗: namely, m = 4 (and x0 = 0.8), m = 8
x0 = 0.15), m = 16 (x0 = −0.175), and m = 32 (x0 = −0.3375) in the present notation. It is observed that, according
o the present linear theory, the flapping-foil works as an energy harvester in roughly the same range of −3 ≲ λ∗

h ≲ −1
redicted by Boudreau et al. (2020), where the fluid-foil system is unstable (σ < 0), and that in this region all the curves
ollapse when different values of m and x0 are used. The maximum growth rate is also found at λ∗

h ≈ 2. For these values
f λ∗

h between −3 and −1 the corresponding frequencies plotted in Fig. 3(b) also collapse for the different cases. One may
hus conclude that according to the present theory λ∗

h is indeed an excellent unifying parameter to predict the narrow
ange of values of the different dimensionless parameters for which the rigid-foil can be used as a fully-passive energy
arvester, which will operate at about the pitching resonant frequency k ≈ krα [also shown in Fig. 3(b)]. Incidentally, that
he operating and optimal values of λ∗

h are negative implies, according to the second equality in (28), that the operating
requency is always larger than the heave resonant frequency in vacuum krh, as noted by Boudreau et al. (2020).

.2. Effect of pivot point and spring stiffness

To reduce the number of varying parameters we consider only airfoils with constant mass ratio R, i.e., x0 = 0 and
Ia = m(a2 + 1/3) (see Appendix A), and explore the instability region in the bh − kh plane for several values of the
orsional spring stiffness kα and the pivot point location a. For given m = 4R and a we find that no instability exists for
α larger than a maximum value that for m = 8 is about 1.75. Fig. 4 shows the contours of the growth rate −σ in the
h − kh plane for the pivot point at the quarter-chord length (a = −1/2) and two values of kα , 0.5 and 1. As kα increases,
he region of flutter instability is displaced towards smaller values of the linear damper constant bh, until it disappears
or kα ≈ 1.75 for these values of m and a. On the contrary, as kα decreases, the range of values of kh for which the system
s unstable decreases, becoming 0 ≤ kh ≲ 2 for kα = 0.25 (not shown). Thus, there exists an optimal value of kα , which
or the present values of a and m is roughly 0.5, plotted in Fig. 4(a).

To see the effect of the pivot point location, Fig. 5 shows the instability regions for this last mentioned case with
α = 0.5, but with a = −3/4 and a = −1/4; i.e., pivoting closer to the leading edge and closer to the mid-chord,
espectively, than the case plotted in Fig. 4(a). As the pivot point approaches the leading edge, the region of instability is
educed to smaller values of bh and, specially, smaller values of kh. Thus, for the case a = −3/4 plotted in Fig. 5(a) this
egion is reduced to kh ≲ 1.25, and practically disappears when pivoting at the leading edge (a = −1, not shown). On the
ther hand, as the pivot approaches the mid-chord point, the flutter instability region increases towards larger values of
h, but for diminishing values of kh, practically disappearing when pivoting at the mid-chord (a = 0, not shown). Fig. 5(b)
hows the case with a = −1/4, with an instability region somewhat larger than for a = −1/2, but with smaller growth
rates.

Overall, one may conclude that for a rigid and uniform foil with m = 8 (R = 2) the best performance in terms of a
wider flutter instability region and higher growth rates is, according to the present linear theory, for a foil pivoting about
7
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Fig. 4. Contours of the growth rate (−σ ) in the bh − kh plane for a constant mass ratio rigid foil with kα = 0.5 (a) and kα = 1 (b). bα = 0, m = 8,
a = −1/2. The marginal stability curves are highlighted with a thick red line. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 5. Contours of −σ in the bh − kh plane for a constant mass ratio rigid foil pivoting at a = −3/4 (a) and at a = −1/4 (b). bα = 0, m = 8,
α = 0.5. The marginal stability curves are highlighted with a thick red line. (For interpretation of the references to colour in this figure legend, the
eader is referred to the web version of this article.)

Fig. 6. k = Re(γ ) given by (29) vs. R2 = 2S/3 (continuous lines) for two values of R1 = 2R, as indicated, to compare with numerical results from
igures (4d) and (4f) in Alben (2008) (symbols; squares for R1 = 109.7 and circles for R1 = 818.8; only the two first modes are plotted, with
ed symbols for the leading eigenvalues and blue for the following one). The dashed lines correspond to the limit R2 → ∞ given by (31). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

its quarter-chord, with spring stiffness kh between 0.5 and 1, and a damper constant bh smaller than about 2, the smaller
he larger the growth rate. The corresponding frequency is always very close to the resonant frequency krα . As the mass
atio decreases, the system becomes more stable, with the instability region displacing towards smaller values of bh until
isappearing. Thus, the most unstable case just mentioned for m = 8 becomes stable in all the b − k plane for m ≲ 4.
h h

8
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Finally, it is worth mentioning that if kh → ∞ or kα → ∞ no flutter instability is found, so that coupled pitch–plunge
otion is always generated when the elastically supported rigid foil becomes unstable according to linear theory (Dowell,
015).

. Effect of flexibility

.1. Clamped foil. Comparison with previous results

Before analysing the effect of flexibility on the unstable modes described in the previous section for a rigid foil, it is
f interest to check the validity of the present approximation as rigidity is reduced. To that end we depart in this section
rom the elastically supported foil at x = a, of interest in energy harvesting devices, and consider a clamped foil for
hich previous results are available for the nonlinear eigenvalue problem. In particular, we consider a clamped foil at
he leading edge (a = −1), analysed by Alben (2008) within the present inviscid and linear framework, but considering
full expansion of the deflection zs in Chebyshev polynomials instead of the present quartic polynomial approximation

2). Thus, this author can obtain numerically all the wave number modes, not just the lowest frequency captured by the
resent minimal approximation, as shown below.
A clamped foil at x = a can be simulated in the present formulation by assuming very large spring stiffnesses,

.e., kh → ∞ and kα → ∞. Thus, the pitching and heaving motions are inhibited (A0 = H0 = 0), and a flexural deflection
motion may exist if A33 = 0, yielding the following eigenvalue equation for γ :

−Kd(a) γ 2
+

16
3

a2 +
1
3

(1 − a)2
S + AF

33(γ ) = 0 . (29)

eglecting the FSI (i.e., neglecting the contribution from AF
33) one obtains the neutrally stable mode

γ = krd = ±
4
3

√
(1 + 3a2)S

(1 − a)2Kd(a)
. (30)

or a foil with constant R and for a = −1, this frequency can be written as (only positive values are considered)

krd ≃ 0.4965

√
S
R

≃ 0.860

√
R2

R1
, (31)

ery close to the leading eigenvalue obtained numerically by Alben (2008), 0.8790
√
R2/R1, where Alben’s nondimensional

arameters R1 and R2 are related to R and S by R1 = 2R and R2 = 2S/3, respectively. Thus, as expected for an
approximation valid for sufficiently large stiffnesses S, the present model captures only the first, lowest frequency mode,
but not the higher ones. This is further corroborated as the rigidity of the foil is decreased in Fig. 6, which plots the real
part of this first eigenvalue when the FSI term AF

33 is taken into account. It is obtained by solving Eq. (29) starting from
(31) for given values of R as S is decreased. In the figure, k is plotted vs. R2 for R1 = 109.7 and 818.8 to compare with
the numerical results for the real part of the different eigenvalues given in figures (4d) and (4f) of Alben (2008), which
are represented with symbols in Fig. 6. It is observed that the present k practically coincides with the lowest frequency
in figures (4d) and (4f) in Alben (2008) for decreasing R2 up to R2 ≈ 1, below which the other higher modes show up.
herefore the present approximation for large S is valid even for S ≈ 1. Below this value higher modes with more complex
eflections arise, which are not covered by the present theory. The grow rate σ = −ℑ(γ ) is not plotted because it is too
mall for this range of S and these values of R, so that they cannot be distinguished in figures (4c) and (4e) in Alben (2008)
o compare with.

.2. Effect of decreasing rigidity on the unstable rigid modes described in Section 4

The effect of flexibility on the rigid-foil unstable modes described in the preceding section for a foil with uniform mass
ratio [Figs. 4 and 5] turns out to be practically negligible when the stiffness S is larger than about 10. This can be neatly
observed in Fig. 7, where the frequency and the growth rate are plotted in the bh − S plane for the case with kh = 0.5
considered in Fig. 4(a). Remember that this was roughly the case with the largest instability region in the parameter space.
As S decreases further below 10, the critical value of the damper constant bh for flutter instability diminishes rapidly, and
consequently the flutter velocity increases according to (27). The frequency remains very close to krα in all the unstable
region.

The results plotted in Fig. 7 are for a = −1/2, which roughly corresponds to the pivot point location with the largest
growth rate for the rigid foil with constant mass ratio. Similar behaviour is found for other values of a close to the quarter-
hord point, for which the rigid foil is unstable below a critical value of bh, as discussed in Section 4.2. However, as S
ecreases some new flutter instability modes may arise for certain ranges of the pivot point location. To appreciate this
ffect, Fig. 8(a) shows contours of the growth rate (−σ ) in the pivot point — stiffness plane for one of the most unstable
ases described in Section 4 for a rigid foil with constant mass ratio R = 2: k = 0.75, b = 0.5 and k = 0.5. As discussed
h h α

9
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Fig. 7. Contours of frequency k (a) and growth rate −σ (b) in the bh − S plane for a constant mass ratio foil with bα = 0, m = 8, kh = 0.5, kα = 0.5,
= −1/2. The red thick line in (a) is krα . (For interpretation of the references to colour in this figure legend, the reader is referred to the web
ersion of this article.)

Fig. 8. Contours in the pivot — stiffness plane of the growth rate −σ (a), frequency k (b), relative pitching amplitude |A0/H0| (c) and relative flexural
deflection amplitude |D0/H0| (d) for a uniform foil with m = 8 (R = 2), bα = 0, kh = 0.75, bh = 0.5 and kα = 0.5.

n Section 4.2, for sufficiently large stiffness S the flutter stability occurs for pivots around the quarter-chord, in a band
etween slightly downstream of the leading edge and slightly upstream of the mid-chord. Particularly, −0.9 ≲ a ≲ −0.1
or the case plotted in Fig. 7. As S decreases, the extent of this band decreases slowly because its downstream limit moves
owards the leading edge. For each value of a the corresponding frequency remains practically constant [see Fig. 8(b)] and
pproximately equal to the pitching resonant value, which for a foil with uniform mass is krα = {2kα/[m(a2 + 1/3)]}1/2.
s shown in Fig. 8(c) and (d), this ‘‘rigid’’ unstable mode is basically associated to the coupled pitch–plunge motion of
he foil, with practically no passive flexural deflection: the largest values of the growth rate are roughly associated to the
argest values of the relative pitch amplitude |A0/H0|, with negligible flexural deflection amplitude |D0/H0|.

As S approaches unity, different instability modes arise which are different from the ‘‘rigid’’ mode just described
ecause they are mainly associated to the flexural deflection amplitude |D0|. These ‘‘soft’’ unstable modes continue as S
ecreases below unity, becoming the most unstable ones. They are similar to the different ‘‘flag’’ modes obtained by Alben
2008) for a clamped foil at the leading edge when S ≲ 1. But, as just discussed in Section 5.1, they are beyond the validity
10
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Fig. 9. Contours of frequency k (a) and growth rate −σ (b) in the bh − S plane for the case with kh = 2.5 in Fig. 2. The red line in (a) is krα . (For
nterpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Contours in the pivot — stiffness plane of the frequency k (a) and growth rate −σ (b) for bα = 0, m = 8, Ia = 32, kα = 6.32, bh = 0.5,
h = 2.5 and x0 = a + 0.4.

ange of the present approximation. A similar behaviour is found for other values of the mass ratio R provided that it is
arge enough for the existence of rigid-foil unstable modes (R ≳ 1).

As a final example we consider the effect of finite stiffness on the onset of instability for the case plotted in Fig. 2,
hich is one of the foil configurations considered numerically by Boudreau et al. (2020). In particular, Fig. 9 shows the
esults for the value kh = 2.5 in Fig. 2 as the stiffness S decreases. Remember that this case is for a foil pivoting at the
uarter-chord (a = −1/2). Contrary to the foil with uniform mass ratio plotted in Fig. 7, now the instability region first
ncreases slowly as S decreases from infinity, and then decreases rapidly until it disappears for S below approximately six.
he most unstable case (i.e., with the largest critical value of bh, or the lowest flutter velocity) is found now for S ≈ 40,
ell within the validity range of the present model. The corresponding frequency decreases slightly with S, but always
lose to the resonant frequency krα .
As S decreases for other pivot axis locations, the instability pattern may be quite different. This can be observed in

ig. 10, where the growth rate and the frequency is plotted in the a − S plane for same spring stiffness kh = 2.5 and
h = 0.5, well within the unstable regions plotted in Figs. 2 and 9. It must be noted that now one has to modify the
entre of mass x0 as the pivot point location a is varied, because in this configuration considered by Boudreau et al.
2020) the static moment S∗

= m(x0 − a)/8 (see Table 1) is constant and equal to 0.4. Thus, x0 = 0.4 + a, and we plot
he interval −1 < a < 0.6. It is observed that, as S decreases, the foil becomes more unstable when the pivot point
isplaces towards the leading edge, with maximum growth rate for a ≈ −0.85, when S ≈ 15. The rigid-foil instability of
he quarter-chord point disappears as S approaches unity, as already observed in Fig. 9.

. Concluding remarks

A simple analytical tool for determining the onset of flutter instability of an elastically supported flexible, two-
imensional foil in an incompressible and inviscid flow has been developed. The formulation may be used to derive a
irst estimation of the operating and near optimal conditions of fully-passive flapping-foil turbines, covering without
uch effort the complete set of nondimensional parameters that may affect to the performance of these energy
arvesting devices: mass, centre of mass, characteristics of the translational and torsional springs and dampers, pivot axis

ocation, stiffness, moment of inertia and all the other dimensionless parameters characterizing the coupling between the

11
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hordwise flexural deflection with the pitch and plunge motions, which are determined from the chordwise mass ratio
istribution of the foil. The analysis also provides the corresponding leading frequency of the oscillations originated from
he flutter instability, valid for stiffness ratios larger than about unity. Thus, given the velocity of the fluid current and other
tructural requirements of the elastically supported foil one may select appropriate values of the remaining parameters to
tart searching for the optimal configuration for energy harvesting. This last task that has to be done either numerically or
xperimentally, because the subsequent non-linear evolution of the system after the onset of instability, and therefore the
ower output and the efficiency, cannot be obtained from the present formulation for a fully-passive system. Other non-
inear phenomena such as stall flutter, hysteresis, three-dimensional effects, subcritical transitions, decoupling between
he different components of the oscillations, etc., which may also affect the energy harvesting performance, are obviously
ot considered here either. But the coupling of the foil’s flexural deflection with the pitch and plunge motions of a foil
lastically mounted to translational and torsional springs and dampers at arbitrary pivot axis locations has not been
onsidered before, to our knowledge, in previous studies on the onset of flutter instability.
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ppendix A. Coefficients in Eqs. (5)–(7)

.1. For constant mass ratio R

When the nondimensional mass ratio R is constant, the coefficients (10)–(15) are:

m = 4R , m(x0 − a) = −4aR , x0 = 0 , (A.1)

Ia = 4R
(
1
3

+ a2
)

, (A.2)

Ja = 2R
[
a2 −

2
3
a −

1
3

+
16

15(1 − a)2

]
, (A.3)

Id = −4Ra
(
1 + a2

)
, (A.4)

Jd = 2R
−12 − 93a + 60a2 − 110a3 + 120a4 − 45a5

45(1 − a)2
, (A.5)

Kd = 2R
141 + 168a + 1281a2 − 1120a3 + 1015a4 − 840a5 + 315a6

. (A.6)

315(1 − a)2

12
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.2. For given m, x0 and Ia

One can select the foil’s density distribution ρs(x), and hence R(x), to obtain particular values of the coefficients. It is
physically relevant, for instance, to fix m, x0 and Ia independently for a given pivot a. This can be achieved in a simple
way by selecting a uniform distribution with two localized masses; i.e.,

R(x) = R0 + Bδ(x − b) + Dδ(x − d) , (A.7)

where δ is Dirac’s delta function and R0, B, D, b and d are unknown constants, with −1 < b, d < 1. From the definitions
(10)–(11), one gets a system of three linear equations for R0, B and D,

m = 4R0 + 2B + 2D , x0 = 2bB + 2dD , Ia = 4R0

(
a2 +

1
3

)
+ 2(b − a)2B + 2(d − a)2D , (A.8)

hich can be solved for given m, x0, Ia and a, and selecting b and d that yield positive values of m, x0 and Ia. Then,
he remaining coefficients Ja, Id, Jd and Kd are easily obtained from their definitions because the integrals involving delta
unctions are straightforward, and the remaining terms containing R0 are given by (A.3)–(A.6) replacing R by R0.

ppendix B. Lift, moment and flexural coefficients

The coefficients corresponding to the quartic foil’s deflection (2) are derived in Fernandez-Feria and Alaminos-Quesada
2021a,b) for a harmonic motion with reduced frequency k, i.e., when γ = k. Thus, k is replaced in the following
xpressions by the complex quantity γ = k + iσ :

CL(t) = π
[
−ḧ − aα̈ + α̇ + Al2(a)d̈ + Al1(a)ḋ

]
+ C(γ )Γ0(t) , (B.1)

CM (t) =
π

2

[
aḧ +

(
a2 +

1
8

)
α̈ +

(
1
2

− a
)

α̇ + Am2(a)d̈ + Am1(a)ḋ + Am0(a)d
]

−
1
2

(
1
2

+ a
)

C(γ )Γ0(t) , (B.2)

CF (t) = π

[
−

(
a2 +

1
4

)
ḧ − a

(
a2 +

1
2

)
α̈ + a(a − 1)α̇ + Af 2(a)d̈ + Af 1(a)ḋ + Af 0(a)d

]
+

(
1
2

+ a + a2
)

C(γ )Γ0(t) , (B.3)

here

Γ0(t) = −2π
[
ḣ +

(
a −

1
2

)
α̇ − α + Ag1(a)ḋ + Ag0(a)d

]
(B.4)

s the quasi-steady circulation, being

C(γ ) =
H (2)

1 (γ )

iH (2)
0 (γ ) + H (2)

1 (γ )
= F(γ ) + iG(γ ) (B.5)

Theodorsen’s function (Theodorsen, 1935), and H (2)
n (z) = Jn(z) − iYn(z), n = 0, 1, Hankel’s function of the second kind

and order n, related to the Bessel functions of the first and second kind Jn(z) and Yn(z) (Olver et al., 2010), and where the
following functions of the pivot point location a have been defined:

Al2 = −
13 + 48a2 − 64a3 + 24a4

48(1 − a)2
, Al1 =

3 + 12a − 12a2 + 4a3

6(1 − a)2
, (B.6)

Am2 =
2 + 25a − 12a2 + 52a3 − 64a4 + 24a5

48(1 − a)2
, Am1 =

−9 + 12a − 72a2 + 56a3 − 16a4

24(1 − a)2
, (B.7)

Am0 = −
3

4(1 − a)2
, Af 2 = −

35 + 32a + 392a2 − 320a3 + 496a4 − 512a5 + 192a6

384(1 − a)2
, (B.8)

Af 1 =
1 + 8a − 18a2 + 48a3 − 32a4 + 8a5

12(1 − a)2
, Af 0 =

7 + 18a
12(1 − a)2

, (B.9)

Ag1 =
15 − 48a + 96a2 − 80a3 + 24a4

, Ag0 =
3 − 24a + 24a2 − 8a3

. (B.10)

48(1 − a)2 12(1 − a)2

13
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ppendix C. Coefficients in Eq. (18)

These coefficients are

A11 = −mγ 2
+ kh + bhiγ + AF

11 , (C.1)

A12 = −mγ 2(a − x0) + AF
12 , (C.2)

A13 = −Jaγ 2
+ AF

13 , A21 = mγ 2(a − x0) + AF
21 , (C.3)

A22 = Iaγ 2
− 2kα − 2bα iγ + AF

22 , (C.4)

A23 = −Jdγ 2
+ AF

23 , A31 = −Iaγ 2
+ AF

31 , A32 = Idγ 2
+ AF

32 , (C.5)

A33 = −Kdγ
2
+

16
3

a2 +
1
3

(1 − a)2
S + AF

33 , (C.6)

here the superscript F refers to the contributions to these coefficients from the fluid–structure interaction (i.e., from CL,
M and CF ). Using the expressions of CL, CM and CF in Appendix B, these contributions can be written as

AF
11 = πγ [−γ + 2iC(γ )] , (C.7)

AF
12 = −π

{
aγ 2

+ iγ + 2C(γ )
[
1 − iγ

(
a −

1
2

)]}
, (C.8)

AF
13 = π

[
Al2γ

2
− Al1iγ + 2C(γ )(Ag1iγ + Ag0)

]
, (C.9)

AF
21 = π

[
aγ 2

− C(γ ) (2a + 1) iγ
]

, (C.10)

AF
22 = −π

{
−

(
a2 +

1
8

)
γ 2

+

(
1
2

− a
)
iγ + C(γ )(2a + 1)

[
iγ
(
a −

1
2

)
− 1

]}
, (C.11)

AF
23 = −π

[
−Am2γ

2
+ Am1iγ + Am0 + C(γ )(2a + 1)

(
Ag1iγ + Ag0

)]
, (C.12)

AF
31 = π

[
−

(
a2 +

1
4

)
γ 2

+ C(γ )(2a2 + 2a + 1)iγ
]

, (C.13)

AF
32 = −π

{(
a2 +

1
2

)
aγ 2

+ a(a − 1)iγ + C(γ )(2a2 + 2a + 1)
[
1 − iγ

(
a −

1
2

)]}
, (C.14)

AF
33 = π

[
Af 2γ

2
− Af 1iγ − Af 0 + C(γ )(2a2 + 2a + 1)

(
Ag1iγ + Ag0

)]
. (C.15)
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