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Learning the price response of active distribution
networks for TSO-DSO coordination

J. M. Morales, S. Pineda and Y. Dvorkin

Abstract—The increase in distributed energy resources and
flexible electricity consumers has turned TSO-DSO coordina-
tion strategies into a challenging problem. Existing decompo-
sition/decentralized methods apply divide-and-conquer strategies
to trim down the computational burden of this complex problem,
but rely on access to proprietary information or fail-safe real-time
communication infrastructures. To overcome these drawbacks,
we propose in this paper a TSO-DSO coordination strategy
that only needs a series of observations of the nodal price and
the power intake at the substations connecting the transmission
and distribution networks. Using this information, we learn
the price response of active distribution networks (DN) using
a decreasing step-wise function that can also adapt to some
contextual information. The learning task can be carried out
in a computationally efficient manner and the curve it produces
can be interpreted as a market bid, thus averting the need to
revise the current operational procedures for the transmission
network. Inaccuracies derived from the learning task may lead to
suboptimal decisions. However, results from a realistic case study
show that the proposed methodology yields operating decisions
very close to those obtained by a fully centralized coordination
of transmission and distribution.

Index Terms—TSO-DSOs coordination, DERs market integra-
tion, distribution network, price-responsive consumers, statistical
learning.

NOMENCLATURE

The main symbols used throughout this paper are listed next
for quick reference. Others are defined as required in the text.
We consider hourly time steps and, hence, MW and MWh are
interchangeable under this premise.

A. Indexes and sets

b Index of blocks in the step-wise approximation of the
price response function.

i Index of generating units.
j Index of consumers.
k Index of distribution networks.
l Index of lines.
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n Index of nodes.
t Index of time periods.
B Set of blocks in the step-wise approximation of the

price response function.
IT Set of generating units at the transmission network.
In Set of generating units at node n.
IDk Set of generating units of distribution network k.
JT Set of consumers in the transmission network.
Jn Set of consumers at node n.
JDk Set of consumers in distribution network k.
KT Set of distribution networks.
Kn Set of distribution networks at node n.
LT Set of lines of the transmission network.
LDk Set of lines of distribution network k.
NT Set of nodes of the transmission network.
ND
k Set of nodes of distribution network k.
T Set of time periods.
T C(t) Subset of time periods that are the closest to t.

B. Parameters

ai Quadratic cost parameter of unit i [e/MW2].
bi Linear cost parameter of unit i [e/MW].
pG
i

Minimum active power output of unit i [MW].
pGi Maximum active power output of unit i [MW].
p̂Djt Baseline demand of consumer j at time t [MW].
pDjt Maximum demand of consumer j at time t [MW].
pD
jt

Minimum demand of consumer j at time t [MW].
qG
i

Minimum reactive power output of unit i [MW].
qGi Maximum reactive power output of unit i [MW].
rl Resistance of line l [p.u.].
sFl Capacity of line l [MVA].
sGi Inverter power rate of unit i [MVA].
sB Base power [MVA].
uBktb Marginal utility of block b for DN k and time t [e/MW].
vn Maximum squared voltage at node n [p.u.].
vn Minimum squared voltage at node n [p.u.].
xl Reactance of line l [p.u.].
αjt Intercept of the inverse demand function of consumer j

at time t [MW].
βjt Slope of the inverse demand function of consumer j at

time t [e/MW2].
γj Power factor of consumer j.
δj Flexibility parameter of consumer j.
λkt Price at the substation of DN k at time t [e/MW].
ρit Capacity factor of unit i at time t.
χkt Contextual information of DN k at time t.
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C. Variables

pGit Active power output of unit i at time t [MW].
pDjt Active power demand of consumer j at time t [MW].
pFlt Active power flow through line l at time t [MW].
pNkt Active power intake of DN k at time t [MW].
qGit Reactive power output of unit i at time t [MVAr].
qDjt Reactive power demand of consumer j at time t [MVAr].
qFlt Reactive power flow through line l at time t [MVAr].
vnt Squared voltage magnitude at node n and time t [p.u.].
θnt Voltage angle at node n and time t [rad].

I. INTRODUCTION

ELECTRIC power distribution has been traditionally ig-
nored in the operation of transmission power networks,

on the grounds that distribution grids only housed passive
loads. However, the proliferation of distributed energy re-
sources (DERs) is rendering this traditional modus operandi
obsolete [1]. Power systems engineers are faced with an
unprecedented challenge of efficiently integrating a vast num-
ber and a wide spectrum of flexible power assets located
in mid- and low-voltage networks into the operation of the
transmission power network [2]. Naturally, succeeding in this
endeavor requires the coordination between the transmission
and distribution system operators (TSOs and DSOs, respec-
tively), all united in the purpose of fostering an active role
of DERs in the operation of the power system through their
participation in wholesale electricity markets.

As a result, research emphasis is placed on mechanisms that
strengthen the TSO-DSO coordination so that the available
flexibility of DERs can be harvested for transmission and
wholesale market services [3], [4]. For instance, some recent
research works investigate TSO-DSO coordination schemes to
improve voltage stability [5], [6]. Other authors focus on the
economic coordination between transmission and distribution
operations to minimize total system costs [7]. The present
work belongs to this latter group.

Regarding TSO-DSO economic coordination, a single cen-
tralized operational model that includes both transmission and
distribution networks with their full level of detail is not
viable due to its computational cost, modeling complexity
and potential conflict of interests between the involved parties
[8]. Rather, the coordination of transmission and distribution
power assets calls for a divide-and-conquer strategy that al-
leviates the computational burden, allows for decentralization
and minimizes the need for information exchange between
the TSO and DSOs [9]. For instance, authors of [10] uses
Benders decomposition to find the optimal economic dispatch
considering TSO-DSO interactions. Similarly, reference [11]
proposes a model to operate transmission and distribution
systems in a coordinated manner using a surrogate Lagrangian
Relaxation approach. Finally, an analytical target cascading
procedure (ATC) to coordinate the operation of transmission
and distribution networks is described in [12].

The decomposition and decentralized methods previously
described are able to obtain the same solution as the central-
ized approach while significantly reducing the computational
burden. Yet these methods also have meaningful drawbacks.

Decomposition methods still require full access to all physical
and economic information on distribution networks. However,
as stated in [13] “distribution system operators are autonomous
entities that are unwilling to reveal their commercially sen-
sitive information.” Therefore, these methods can hardly be
accommodated in a real-life distribution environment with
even a few ambiguous or unknown parameters (e.g. topological
configuration, impedance, voltage and flow limits) and pro-
prietary customer-end and behind-the-meter parameters (e.g.
production/utility cost functions, supply/demand elasticity and
behavioral aspects of electricity demand). Similarly, decen-
tralized methods are based on repetitive real-time information
exchanges between the TSO and the DSOs, and thus, rely on
robust and fast communication infrastructure. As discussed in
[9], “The communication infrastructures for implementing dis-
tributed methods need to be carefully designed, and the impact
of communication delays and failures on the performance of
distributed methods need to be investigated”.

Instead of using decomposition or decentralized procedures,
which heavily rely on access to either all physical and
economic information or fail-safe real-time communication
infrastructure, what we propose in this paper is an approxi-
mate method that requires neither of these two controversial
assumptions at the expense of obtaining a solution slightly
different from the optimal one. The proposed approach only
needs access to offline historical information on prices and
power injection at the substations connecting the transmission
and distribution networks. Using statistical tools, we learn the
price response of active distribution networks whose operating
decisions aim at minimizing costs while complying with
local physical constraints, such as voltage limits. We also
utilize easily accessible information (e.g., capacity factors of
wind and solar local resources) to make the curve adaptive
to changes in external conditions that affect power system
operations. Finally, the obtained response is approximated by
a non-increasing step-wise function that can be conveniently
interpreted as a market bid for the participation of the distri-
bution networks in wholesale electricity markets. In summary,
the contributions of our paper are twofold:

1) We propose a TSO-DSO coordination scheme that uses
historical data at substations to learn the price response
of active distribution networks using a decreasing step-
wise function. If compared with existing methodologies,
ours is simple and easy to implement within current
market procedures, and cheap in terms of computational
resources, information exchange and communication in-
frastructure.

2) We measure the performance of the proposed approach
in terms of the power imbalances and social welfare
loss caused by the approximation of the distribution
networks’ behavior using a realistic case study.

We compare our approach against a fully centralized oper-
ational model, referred to as benchmark, that guarantees the
optimal coordination between the TSO and the DSOs. Since
this benchmark produces the same solution obtained with exact
decomposition and decentralized methods [9]–[13], these have
not been considered in our study. On the contrary, our model
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Fig. 1. Transmission and distribution coordination scheme

is evaluated against two other approximations. In the first one,
called the single-bus approach, all physical constraints of the
distribution networks are disregarded as if all small consumers
and distributed generating resources were directly connected
to the main substation. In the second one, called the price-
agnostic approach, the response of the distribution networks
is assumed to be independent of prices.

We note that, within the context of reactive power optimiza-
tion for the minimization of network losses, the authors in [14]
also approximate the apparent power exchange between the
TSO and the DSOs by a polynomial function of the voltage
level at the main substation. However, beyond the evident facts
that their purpose is different and the fitting procedure we need
to use is more intricate (to comply with market rules), they
also omit the dynamic nature of distribution network response
to local marginal prices (LMPs). Similarly, authors of [15]
also propose a methodology to obtain the relation between
the distribution network response and the voltage level at
the substation. However, their approach is based on perfect
knowledge of all distribution network parameters.

The rest of this paper is organized as follows. Section II in-
troduces optimization models for transmission and distribution
network operations, which are then used to construct different
DSO-TSO coordination approaches in Section III. The metrics
we use for comparing these approaches are described in
Section IV, while the case study is presented in Section V.
Finally, conclusions are duly reported in Section VI.

II. MODELING FRAMEWORK

We consider a power system with a high-voltage, meshed
transmission network connected to generating units, large
consumers and several medium-voltage distribution networks.
As illustrated in Fig. 1, each distribution system is connected
to the transmission network through one main substation, has
a radial topology and hosts small-scale electricity consumers
and producers.

The active power output of generating unit i at time period
t is denoted by pGit , with minimum/maximum limits pG

i
/pGi .

Generating units are assumed to have a convex cost function
of the form ci(p

G
it) = 1

2ai(p
G
it)

2 + bi(p
G
it), with ai, bi ≥ 0,

and a dimensionless capacity factor ρit, with 0 ≤ ρit ≤ 1.
For thermal units ρit = 1, ∀t, while for renewable generating
units the capacity factor depends on weather conditions and
the production cost is zero (ai = bi = 0).

λt

pDjt
p̂DjtpD

jt
pDjt

λ

λ

Fig. 2. Flexible electricity demand modeling

Electricity consumption is modeled as a capped linear
function of the LMP λt, as shown in Fig. 2, where p̂Djt denotes
the baseline demand of consumer j at time t and pDjt/p

D
jt

are
the maximum/minimum load levels given by pDjt = p̂Djt(1+δj)
and pD

jt
= p̂Djt(1 − δj), with δj ≥ 0 [16]. Consequently, the

maximum/minimum load levels vary over time according to
the evolution of the baseline demand. Under this modeling
approach, a price-insensitive demand is modeled with δj = 0,
while δj = 0.5 implies that the consumer is willing to increase
or decrease their baseline demand up to 50% depending on
the price. Finally, λ and λ stand for the LMP values that
unlock the minimum and maximum demand from consumers,
respectively. The demand function in Fig. 2 goes through
points (pD

jt
, λ) and (pDjt, λ) and, therefore, its expression can

be determined as follows:

λt − λ
λ− λ

=
pDjt − pDjt
pD
jt
− pDjt

=
pDjt − p̂Djt(1 + δj)

p̂Djt(1− δj)− p̂Djt(1 + δj)
=⇒

pDjt = p̂Djt

(
1 + δj

λ+ λ

λ− λ

)
−

2p̂Djtδj

λ− λ
λt (1)

Hence, the active demand level pDjt for a given electricity
price λt takes the following form:

pDjt =


pDjt if λt ≤ λ
αjt − βjtλt if λ < λt < λ

pD
jt

if λ ≤ λt,
(2)

where αjt = p̂Djt

(
1 + δj

λ+λ

λ−λ

)
and βjt =

2p̂Djtδj

λ−λ . The reactive
power demand is given by qDjt = γjp

D
jt, where γj is the power

factor of consumer j, which is assumed to be independent
of time for simplicity. Finally, we obtain the utility of each
consumer by integrating the inverse demand function with
respect to the demand quantity, that is,

ujt(p
D
jt) =

∫ pDjt

pD
jt

λ(p)dp =

∫ pDjt

pD
jt

(
αjt
βjt
− p

βjt

)
dp =

=
αjt
βjt

(
pDjt − pDjt

)
−

(pDjt)
2 − (pD

jt
)2

2βjt
(3)

The transmission network is modeled using a DC power
flow approximation [17] and, therefore, each line l going from
node ol to node el is characterized by its reactance xl and
maximum capacity sFl . The power flow is denoted by pFlt .
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Then, suppose that the active consumption of the k-th
distribution network pNkt can be expressed as pNkt = hkt(λkt),
where λkt is the price at the corresponding substation. Under
this assumption, transmission system operations at time period
t are modeled by the following optimization problem:

max
ΦT

t

∑
j∈JT

ujt(p
D
jt) +

∑
k∈KT

∫ pNkt

0

h−1
kt (s)ds−

∑
i∈IT

ci(p
G
it) (4a)

s.t.∑
i∈In

pGit −
∑
j∈Jn

pDjt −
∑
k∈Kn

pNkt =

=
∑
l:el=n

pFlt −
∑
l:ol=n

pFlt , ∀n ∈ NT (4b)

pFlt
sB

=
1

xl
(θolt − θelt), ∀l ∈ LT (4c)

pG
i
≤ pGit ≤ ρitpGi , ∀i ∈ IT (4d)

pD
jt
≤ pDjt ≤ pDjt, ∀j ∈ JT (4e)

− sFl ≤ pFlt ≤ sFl , ∀l ∈ LT (4f)

where θnt is the voltage angle at node n and time pe-
riod t, ΦTt = (pGit , p

D
jt, p

N
kt, p

F
lt , θnt) are decisions variables,

NT , LT , IT , JT ,KT are sets of nodes, lines, generators, con-
sumers and distribution networks connected to the transmis-
sion network, and In, Jn,Kn are sets of generating units,
consumers and distribution networks connected to node n.
Objective function (4a) maximizes the total social welfare and
includes the utility of all flexible consumers connected to the
transmission network (first term), the utility of all distribution
networks (second term), and the generation cost of all units
connected to the transmission network (third term). Note that
h−1
kt (·) represents the inverse demand function and its integral

correspond to the total utility of each distribution network. The
nodal power balance equation is imposed by (4b), while the
power flow through each transmission line is computed in (4c).
Finally, constraints (4d), (4e) and (4f) enforce the generation,
consumption and transmission capacity limits.

Traditionally, distribution networks only hosted inflexible
consumption and, therefore, pNkt was considered independent
of the electricity price. In this case, the second term of (4a)
vanishes, and variable pNkt is replaced by the forecast power
intake of each distribution network. Thus, problem (4) can be
transformed into a quadratic optimization problem that can
be solved to global optimality using off-the-shelf solvers, [18,
Appendix B]. However, this paradigm has changed in recent
years and current distribution networks include a growing
amount of flexible small-scale consumers and distributed gen-
eration resources that are capable of adjusting their consump-
tion/generation in response to the electricity price to maximize
their utility/payoff [19]. Indeed, if λkt is the electricity price
at the main substation of distribution network k, the power
intake of that distribution network pNkt can be determined by
solving the following optimization problem:

max
ΦD

kt

∑
j∈JD

k

ujt(p
D
jt)−

∑
i∈IDk

ci(p
G
it)− λktpNkt (5a)

s.t.

pNkt +
∑
i∈In

pGit −
∑
j∈Jn

pDjt =

=
∑
l:el=n

pFlt −
∑
l:ol=n

pFlt , n = n0
k (5b)∑

i∈In

pGit −
∑
j∈Jn

pDjt =

=
∑
l:el=n

pFlt −
∑
l:ol=n

pFlt , ∀n ∈ ND
k , n 6= n0

k (5c)∑
i∈In

qGit −
∑
j∈Jn

qDjt =

=
∑
l:el=n

qFlt −
∑
l:ol=n

qFlt , ∀n ∈ ND
k (5d)

qDjt = γjp
D
jt, ∀j ∈ JDk (5e)

vnt = vant −
2

sB

∑
l:el=n

rlp
F
lt + xlq

F
lt , ∀n ∈ ND

k (5f)

pG
i
≤ pGit ≤ ρitpGi , ∀i ∈ IDk (5g)

qG
i
≤ qGit ≤ qGi , ∀i ∈ IDk (5h)

(pGit)
2 + (qGit )

2 ≤ (sGi )2, ∀i ∈ IDk (5i)

pD
jt
≤ pDjt ≤ pDjt, ∀j ∈ JDk (5j)

(pFlt)
2 + (qFlt )

2 ≤ (sFl )2, ∀l ∈ LDk (5k)

vnt ≤ vnt ≤ vnt, ∀n ∈ ND
k (5l)

where the decisions variables are ΦDkt =
(pNkt, p

G
it , q

G
it , p

D
jt, q

D
jt , p

F
lt , q

F
lt , vnt). In particular, qGit , q

D
jt , q

F
lt

are the reactive power generation, consumption and flow, in
that order, and vnt is the squared voltage magnitude. Since we
assume a radial distribution network, we use the LinDistFlow
AC power flow approximation, where an represents the
ancestor of node n and rl is the resistance of line l [20].
The rate power of the inverters for distributed generators is
denoted as sGi [21], and the squared voltage magnitude limits
are vnt, vnt. Finally, ND

k , L
D
k , I

D
k , J

D
k are the set of nodes,

lines, generators and consumers of distribution network k,
and n0

k corresponds to the node of the distribution network
connected to the substation.

Objective function (5a) maximizes the social welfare of
distribution network k and includes the utility of flexible
consumers (first term), the cost of distributed generation
(second term) and the cost of power exchanges with the
transmission network (third term). Nodal active and reactive
power equations are formulated in (5b), (5c) and (5d). Con-
straint (5e) relates active and reactive demand through a given
power factor, while the dependence of voltage magnitudes in a
radial network is accounted for in (5f) using the LinDistFlow
approximation. Limits on active and reactive generating power
outputs are enforced in (5g), (5h) and (5i). Similarly, equations
(5j), (5k) and (5l) determine the feasible values of demand
quantities, power flows and squared voltage magnitudes. As a
result, (5) is a convex optimization problem that can be solved
using off-the-shelf solvers.

Drawing a closed-form expression hkt(λkt) from (5) that
exactly characterizes the optimal value of pNkt as a function of
the electricity price λkt seems like a lost cause. Furthermore,
even if such an expression were possible, using it in (4) would
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lead to a troublesome non-convex optimization problem, with
the likely loss of global optimality guarantees. In the next
section, we discuss different strategies to construct an approx-
imation ĥkt(λkt) that can be easily incorporated into (4) to
determine the optimal operation of the transmission network.
In particular, we focus on strategies that leverage available
contextual information to construct function ĥkt(λkt).

III. METHODOLOGY

In this section we present four different approaches to
accommodate the behavior of active distribution networks in
transmission network operations. The aim of these methods
is to determine the electricity prices at substations that foster
the most efficient use of the flexible resources available in the
distribution networks. Once electricity prices are published,
the DSOs operate the distributed energy resources to maximize
their social welfare while satisfying the physical limits of the
distribution network, such as voltage limits and reactive power
capacities.

A. Benchmark approach (BN)

This approach includes a full representation of both the
transmission system and the distribution networks, by jointly
solving optimization problems (4) and (5) as follows:

max
ΦT

t ,Φ
D
kt

∑
j∈JT∪{JD

k }

ujt(p
D
jt)−

∑
i∈IT∪{IDk }

ci(p
G
it) (6a)

s.t. (4b)− (4f), (5c)− (5l) (6b)

Model (6) enables the optimal operation of the transmission
network since it takes into account the most accurate rep-
resentation of all distribution networks connected to it [22].
However, this approach has the following drawbacks:

- It requires having access to distribution network param-
eters, such as its topological configuration and rl, xl,
which is impractical, as private or sovereign entities oper-
ating distribution networks prefer to keep this information
confidential [13], [14], [23].

- Operating the power system through (6) would require
a deep transformation of current market mechanisms to
allow small generators/consumers to directly submit their
electricity offers/bids to a centralized market operator.

- Even if all distribution network parameters were known
and small generators/consumers were allowed to directly
participate in the electricity market, solving model (6) is
computationally expensive for realistically sized systems
with hundreds of distribution networks connected to the
transmission network [2].

In this paper, we use the solution of this approach as a
benchmark to evaluate the performance of the other methods
described in this section. Other decomposition or decentralized
methods in the technical literature are able to achieve global
optimality and, therefore, their solution coincide with that of
BN. For this reason, we focus on comparing the proposed
approach with other approximate methodologies that also lead
to suboptimal solutions.

B. Single-bus approach (SB)
This approach is a relaxation of BN in (6), where physical

limits on distribution power flows and voltages are disre-
garded. Therefore, operational model SB can be equivalently
interpreted as if all small consumers and distributed energy
resources were directly connected to the transmission network,
i.e. all distribution systems are modeled as single-bus grids.
Therefore, the dispatch decisions for the transmission network
are computed by solving the following problem:

max
ΦT

t ,Φ
D
kt

∑
j∈JT∪{JD

k }

ujt(p
D
jt)−

∑
i∈IT∪{IDk }

ci(p
G
it) (7a)

s.t.∑
i∈Ĝn

pGit −
∑
j∈D̂n

pDjt =
∑
l:el=n

pFlt −
∑
l:ol=n

pFlt , ∀n ∈ NT (7b)

pFlt
sB

=
1

xl
(θolt − θelt), ∀l ∈ LT (7c)

pG
i
≤ pGit ≤ ρitpGi , ∀i ∈ IT ∪ {IDk } (7d)

pD
jt
≤ pDjt ≤ pDjt, ∀j ∈ JT ∪ {JDk } (7e)

− sFl ≤ pFlt ≤ sFl , ∀l ∈ LT (7f)

where Ĝn and D̂n denote, respectively, the set of generators
and consumers either directly connected to node n or hosted
by a distribution network connected to it. Problem (7) is
less computationally demanding than the BN approach in
(6) and does not require knowledge of distribution network
parameters. However, this approach also relies on a market
mechanism that allows small generators and consumers to
submit their offers and bids directly to the wholesale market
[24]. Besides, if the operation of some of the distribution
networks is constrained by the physical limitations of power
flows and/or voltage levels, then the solution provided by this
approach may substantially differ from the actual conditions
in the distribution networks.

C. Contextual price-agnostic approach (PAG)
This approach is based on the premise that the penetration

rates of small-scale flexible consumers and distributed gener-
ation resources is not significant and, therefore, the response
of distribution networks is independent of LMPs at their
substations. On the other hand, this response can still depend
on other contextual information that affect the behavior of
distribution networks such as the aggregated load level of their
flexible consumers and the wind and solar capacity factors in
the corresponding geographical area.

Consider a set of historical data {χkt, pNkt}t∈T , where χkt
represents a vector containing the contextual information to
explain the consumption level of distribution network k. Vector
χkt can include weather conditions, e.g. ambient temperature,
wind speed, solar irradiation, or categorical variables, e.g. an
hour of the day or a day of the week. The PAG approach aims
to learn the relation between pNkt and χkt for each distribution
network k, i.e.,

pNkt = fk(χkt) (8)

The function fk that best approximates the behavior of dis-
tribution network k with contextual information can be found
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using a wide variety of supervised learning techniques [25]. In
particular, if fk must belong to a certain family of functions,
such as the family of linear functions, its parameters can be
computed using the well-known least squares criterion. In
order to capture non-linear relations, fk can also represent a
neural network to be trained using available data. Alternatively,
if we do not make strong assumptions about the form of the
mapping function, the relation between χkt and pNkt can be
modeled using non-parametric supervised learning techniques.
Within this group, we opt in this work for the k-nearest neigh-
bors regression algorithm (K-NN) because of its simplicity,
interpretability and scalability. Following this methodology,
the estimation of the power import of distribution network
k for time period t (denoted as p̂Nkt) is computed as:

p̂Nkt =
1

K

∑
t′∈T C(t)

pNkt′ , (9)

where T C(t) is the subset of the K time periods whose
contexts are the closest to χkt according to a given dis-
tance, and t′ is an auxiliary time period index. If contextual
information only includes continuous variables (electricity
demand, renewable power generation, etc.), the dissimilarity
between two time periods can be measured using the Euclidean
distance, i.e., dist(t1, t2) = ||χkt1 − χkt2 ||2. If contextual
information also includes binary variables (equipment status,
maintenance schedules, etc.), the dissimilarity can be measured
using the Hamming distance, for example.

Once the forecast intake for each distribution network is
obtained depending on its corresponding context, we model
all distribution networks as fix loads and determine the op-
eration of the transmission network by solving the following
optimization problem:

max
ΦT

∑
j∈JT

ujt(p
D
jt)−

∑
i∈IT

ci(p
G
it) (10a)

s.t.

pNkt = p̂Nkt, ∀k ∈ K (10b)
(4b)− (4f) (10c)

Problem (10) is also more computationally tractable than
(6) and does not rely on knowledge of distribution network
parameters. As the one we propose, this approach only requires
access to historical power flow measurements at the substation
and contextual information that can enhance explainability
and interpretability of the distribution network responses to
external factors of interest. Fortunately, independent system
operators such as ISONE and NYISO make this information
publicly available. Another advantage of this approach is that,
unlike the SB approach, it can be seamlessly implemented
in existing market-clearing procedures since the response of
distribution networks is simply replaced with the fixed power
injections provided by (9). Actually, this is the approach that
most closely reproduces the traditional way of proceeding. On
the other hand, since the impact of substation LMPs on the
response of distribution networks is disregarded, the accuracy
of this approach worsens as the flexibility provided by small
consumers and distributed generators increase.

λ

pD

pB0 pB1 pB2 pB3

uB1

uB2
uB3

Fig. 3. Step-wise approximation of distribution network response

D. Contextual price-aware approach (PAW)

The SB and PAG approaches disregard the impact of either
physical limits or economic signals on the response of dis-
tribution networks with small-scale, flexible consumers and
distributed generation resources. To overcome this drawback,
we propose to approximate the response function hkt(λkt) by
taking into account the effects of both physical and economic
conditions on the behavior of active distribution networks.

Similarly to the PAG approach, we assume access to the set
of historical data {χkt, λkt, pNkt}t∈T , where λkt denotes the
LMP at the substation of distribution network k. The proposed
PAW approach aims at determining the function that explains
the response pNkt as a function of the contextual information
χkt and the electricity price at the substation λkt, i.e.,

pNkt = gk(χkt, λkt) (11)

For a fixed context, function (11) provides the relation between
the response of a distribution network and the price at its
substation. This function can be understood as the bid to
be submitted by each distribution network to the wholesale
electricity market. However, most current market procedures
only accept a finite number of decreasing block bids. For
instance, the Spanish market operator establishes that “For
each hourly scheduling period within the same day-ahead
scheduling horizon, there can be as many as 25 power blocks
for the same production unit, with a different price for each
of the said blocks, with the prices increasing for sale bids, or
decreasing for purchase bids.” [26]. In order to comply with
these market rules, we propose an efficient learning procedure
to determine a decreasing step-wise mapping between the
response of a distribution network and the LMP, while taking
into account contextual information. Our approach combines
unsupervised and supervised learning techniques as follows:

- Unsupervised learning. Similarly to PAG, the first step
of the proposed approach uses a K-nearest neighbors
algorithm to find the subset of time periods T C(t) whose
contextual information are the closest to χkt. For the sake
of illustration, the points depicted in Fig. 3 represent the
pairs of prices and power intakes for times periods in
T C(t) for a given substation k and context χkt.

- Supervised learning. The second step of the proposed
approach consists of finding the step-wise decreasing
function that best approximates the price-quantity pairs
obtained in the previous step. As illustrated in Fig. 3,
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Fig. 4. Proposed TSO-DSO coordination approach

this function can be defined by a set of price break-
points uBb and the demand level for each block pBb .
Despite its apparent simplicity, finding the optimal step-
wise decreasing function that approximates a set of data
points is a complex task that cannot be accomplished by
conventional regression techniques. For instance, isotonic
regression yields a monotone step-wise function, but a
maximum number of blocks cannot be imposed. Con-
versely, segmented regression provides a step-wise func-
tion with a maximum number of blocks, but monotonicity
is not ensured. Therefore, the statistical estimation of pB0
and uBb and pBb , ∀b ∈ B, is conducted by means of the
curve-fitting algorithm for segmented isotonic regression
that has been recently developed in [27] and can be
formulated as the following optimization problem:

min
pB0 ,u

B
b ,p

B
b

∑
t′∈T C(t)

pNkt′ −∑
b∈B∪{0}

pBb I[uB
b+1,u

B
b )(λkt′)

2

(12a)

s.t. pBb ≥ pBb−1, ∀b ∈ B (12b)

uBb+1 ≤ uBb , ∀b ∈ B (12c)

where I[uB
b+1,u

B
b ) is the indicator function equal to 1 if

uBb+1 ≤ λkt < uBb , and 0 otherwise, and uB0 = ∞,
uB|B|+1 = −∞. Objective function (12a) minimizes the
sum of squared errors, while constraints (12b)-(12c)
ensures the monotonicity of the regression function.
Problem (12) can be reformulated as a mixed-integer
quadratic problem to be solved by standard optimization
solvers. However, the computational burden of this so-
lution strategy is extremely high. Alternatively, reference
[27] proposes a dynamic programming reformulation that
guarantees global optimality in polynomial time, which
makes this approach computationally attractive.

In summary, we approximate the response of the distribution
networks using a learning strategy that combines a K-nearest
neighbor algorithm and a curve-fitting methodology. The pro-
posed learning approach is simple and fast, as well as it does
not suffer from high data requirements for training and offers
explainability of the results, unlike black-box approaches, e.g.
based on deep learning. The operation of the transmission
network is obtained by assuming that each distribution network
reacts to prices according to the obtained step-wise non-
increasing functions as illustrated in Fig. 4. Mathematically,

TABLE I
Qualitative comparison of TSO-DSOs coordination approaches

BN SB PAG PAW

Network-aware X X X
Price-aware X X X
Historical data X X
Seamless market integration X X
Computational burden High Low Low Low

the operation of the transmission network is obtained by
solving the following optimization problem:

max
ΦT

t ,p
N
kt,p

B
ktb

∑
b∈B,k∈KT

uBktbp
B
ktb +

∑
j∈JT

ujt(p
D
jt)−

∑
i∈IT

ci(p
G
it)

(13a)

s.t. pNkt = pBkt0 +
∑
b∈B

pBktb, ∀k ∈ KT (13b)

0 ≤ pBktb ≤ pBktb − pBkt(b−1), ∀b ∈ B, k ∈ K
T (13c)

(4b)− (4f) (13d)

The proposed approach has several advantages. First, while
the SB and PAG approaches disregard, respectively, the impact
of network limits or economic signals on the response of
distribution networks, the PAW approach is aware of both
effects. Second, like the PAG approach, this method only
requires historical LMPs and power flows at the substations
and, therefore, detailed information about the distribution
network parameters is not required. Third, the response of
each distribution network to prices is modeled by a step-wise
decreasing function that can be directly included in existing
market-clearing mechanisms without additional modifications.
Besides, unlike other decomposition/decentralized approaches,
the one we propose is not an iterative method and, therefore,
is immune to convergence issues. Since the proposed method
basically relies on a learning task, its performance highly
depends on the quality of the input historical data. Hence, the
dataset should be continuously updated to include the most
recent operating conditions and exclude the oldest ones.

To conclude this section, Table I summarizes the main
features of the four approaches discussed above. If compared
with the benchmark, the three alternative approaches involve
lower computational burdens through different approximation
strategies. The next section describes the methodology to
quantify the impact of such approximations on the optimal
operation of the transmission electricity network.

IV. EVALUATION PROCEDURE

While existing decomposition/decentralized approaches are
able to yield the optimal coordination decisions, the proposed
methodology may lead to suboptimal decisions caused by
incompleteness or inaccuracies of the learning task. In this
section, we present the evaluation procedure to quantify the
impact of these suboptimal decisions in terms of power im-
balance and social welfare losses. We compare such measures
with those obtained by the other three methods described in
Section III. To that end, we proceed as follows:
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1) Solve problems (6), (7), (10) or (13) using the modeling
of the distribution networks derived from the BN, SB,
PAG or PAW approaches. LMPs at each substation λkt
are obtained as the dual variable of the balance equation
(4b). The sum of the approximated consumption by all
distribution networks is denoted as P̂Nt .

2) Model (5) is solved for each distribution network k
after fixing LMPs at the substations to those obtained
in Step 1). As such, we compute the actual response of
the distribution networks considering all physical and
economic information, denoted as PNt . Optimal values
of objective function (5a) provide the social welfare
achieved by each distribution network for the electricity
prices computed in Step 1). We denote the sum of the
social welfare of all distribution networks as SWD

t .
3) Quantify the power imbalance caused by the different

distribution network approximations as ∆t = 100|P̂Nt −
PNt |/PNt . Note that such power imbalances must be
handled by flexible power resources able to adapt their
generation or consumption in real-time.

4) Model (4) is solved by setting the electricity imported
by each distribution network to the quantity obtained in
Step 2). The output of this model represents the real-time
re-dispatch of generating units connected to the trans-
mission network to ensure the power system balance.
The optimal value of (4a) provides the realized social
welfare of the transmission network denoted as SWT

t .
We emphasize that this social welfare is computed as if
all generating units and consumers at the transmission
network could instantly adapt to any unexpected power
imbalance coming from the distribution networks (∆t)
without any extra cost for the deployment of such
unrealistic flexible resources. This means that we are
underestimating the social welfare loss caused by these
power imbalances.

5) Compute the total realized social welfare of the power
system as SWt = SWD

t + SWT
t .

V. SIMULATION RESULTS

We consider the 118-bus, 186-line transmission network
from [28]. Each transmission-level load is replaced with a
32-bus radial distribution network, which hosts eight solar
generating units, see data in [29], [30]. That is, the power
system includes 3030 buses (118 + 91 × 32), 3098 lines
(186 + 91 × 32), thermal and wind power plants connected
to 43 transmission buses, solar generating units connected
to 728 distribution buses (91 × 8), and electricity consumers
located at 2912 distribution buses (91×32). Each consumer is
assumed to react to the electricity price as depicted in Fig. 2.
The installed capacity of thermal, solar and wind generating
units is 17.3GW, 2.5GW and 2.5GW, respectively, while the
peak demand is 18GW. Finally, time-varying capacity factors
for all consumers, wind and solar generation in the same
distribution network are assumed equal. While all distribution
networks have the same topology and the same location of
loads and solar power generating units, we scale their total
demand from 12MW to 823MW to match the transmission

demand given in [28]. We also scale the original values of
branch resistances and reactances inversely proportional to the
peak demand within each distribution network. All data used in
this case study is available in [31]. Simulations have been run
on a Linux-based server with one CPU clocking at 2.6 GHz
and 2 GB of RAM using CPLEX 12.6 under Pyomo 5.2.

As discussed in Section III, the analyzed methods differ
in their ability to account for the impact of physical limits
and economic signals on the response of active distribution
networks. For instance, if distribution voltage limits never
become activated, then the SB approach would provide results
quite close to those of the benchmark approach BN. Con-
versely, if distribution voltages reach their security limits, the
PAG and PAW methods are expected to outperform SB. In
order to investigate the impact of voltage congestion on the
performance of each approach, we vary the resistances and
reactances of branches of the distribution networks as indicated
in (14), where r0, x0 are the base-case values provided in [31],
and parameter η is changed from 0.67 to 1.33, i.e., a 33%
lower and greater than the initial values:

r = ηr0 x = ηx0 (14)

Additionally, we use parameter δ to model each flexible
consumer, which is randomly generated for the 2912 loads
following a uniform probability distribution in [0.5 − 0.75].
Besides, we set λ = 25, λ = 10, vn = 1.05, and vn = 0.95.

The PAG and PAW approaches require access to historical
data. In this case study, historical data is generated by solving
the BN model (6) for 8760 hours of a given year. Each
hour is characterized by different baseline demands of flexible
consumers along with the wind and solar capacity factors
throughout the system. Values for wind, solar and baseline
demands are taken from [28] and are available in [31]. For
illustration, Fig. 5 plots the price response of one distribution
network for η = 1 including the 8760 time periods. For
simplicity, changes in the topology of the transmission and
distribution networks are disregarded. The learning-based PAG
and PAW approaches use the demand and renewable capacity
factors at each distribution network as contextual information
to learn its response. Also, the number of neighbors for the K-
NN learning methodology is set to 100. Finally, the maximum
number of blocks for the bidding curves learned by the PAW
approach is equal to ten. For the sake of comparison, each of
the four approaches uses the same test set that includes 100
randomly selected hours of the year.

Using the results of these 100 hours, Fig. 6 plots, for each
approach, a shaded area ranging from the 5% to the 95%
percentile of the relative power imbalance ∆t as a function
of parameter η. The average of the power imbalance is also
displayed. Naturally, due to its completeness, the benchmark
method does not incur any power imbalance and therefore,
the results delivered by this method are not included in
Fig. 6. Low values of η reduce voltage congestion at the
distribution networks and, therefore, their response is mainly
driven by electricity prices at the substations. In such cases,
the SB approach outperforms the PAG approach and yields
power imbalances close to 0%. For small values of η, the
proposed PAW approach yields higher power imbalances than
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Fig. 5. Price response of one distribution network for η = 1
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Fig. 6. Impact of distribution network congestion on power imbalance.

SB. However, this difference could be narrowed by approx-
imating the response of the distribution networks with more
than ten blocks. Conversely, high values of η translates into
congested distribution networks in which the dispatch of small
consumers and distributed generators is heavily constrained by
technical limits. In these circumstances, electricity prices at the
substations have a reduced impact on the the response of the
distribution network and then, the power imbalance of the SB
approach is significantly greater than that of the PAG approach.
Quantitatively, the proposed methodology PAW achieves av-
erage power imbalances below 0.7% for any value of η.

When comparing SB, PAG and PAW, we shoud also keep
in mind that their integration into current market-clearing
mechanisms are not comparable. Implementing the SB ap-
proach would require modifying existing market rules so that
distributed generators and small consumers could directly
submit their offers and bids. On the other hand, the PAG
and PAW comply with these rules since active distribution
networks are modeled as fix loads or in the form of step-wise
bidding curves, respectively.
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Fig. 7. Estimated (dashed) and observed (bold) flexibility of active distribution
networks.

Power imbalances of Fig. 6 are also explained by the
incorrect estimation of the flexibility provided by the distribu-
tion networks made by the different approaches. To illustrate
this effect, we compute the relative difference between the
approximate consumption of distribution networks P̂Nt and
the baseline consumption, which is plotted in dashed lines
in Fig. 7. The bold lines represent the relative difference
between the actual consumption of distribution networks PNt
and the same baseline demand. First, it can be observed
that flexible customers allow for aggregate demand variations
that range from 4% to 12%, on average. It can also be
observed that PAG underestimates the flexibility provided by
distribution networks for low congestion levels. Conversely,
the SB approach overestimates the available flexibility of
distributed networks when their operation is mainly driven by
physical constraints. Finally, the proposed PAW approach is
able to operate the transmission network with a very realistic
estimation of the flexibility of the distribution networks, which
is, in turn, very close to the actual flexibility levels determined
by the centralized benchmark approach.

Similarly to Fig. 6, Fig. 8 plots the mean and the 5% and
95% percentiles of the social welfare loss with respect to the
BN approach. Aligned with power imbalance results, the social
welfare losses under the SB and PAG approaches are linked
to high and low values of parameter η, respectively. More
importantly, while the social welfare loss may reach values of
2% and 4% for the SB and PAG approaches, in that order,
for some of the 100 hours analyzed, the PAW approach keeps
this value below 0.1% for any network congestion level. That
is, the proposed methodology to integrate transmission and
distribution networks achieves the same social welfare as the
BN for a wide range of power system conditions (described
by the different demand and renewable capacity factors of the
100 hours) and network congestion of the distribution systems
(modeled by parameter η). For completeness, Table II provides
the sum of the social welfare for the 100 hours of the test set
for some values of parameter η.
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Fig. 8. Impact of distribution network congestion on social welfare.

TABLE II
Social welfare results in ke

η BN SB PAG PAW

0.66 3226.8 3226.8 3216.8 3226.3
1.00 3214.5 3213.5 3207.5 3214.4
1.33 2828.8 2814.1 2828.7 2828.7

It is also important to remark that social welfare losses
in Fig. 8 are computed assuming that all generating units
and consumers at the transmission network can react instan-
taneously to any real-time power imbalance without involving
extra regulations costs. Therefore, these results are a lower
bound of the actual social welfare losses that would happen
in a more realistic setup in which flexibility resources are both
limited and expensive.

Table III shows how the average relative social welfare
loss (as illustrated in Fig. 8) is apportioned between the
transmission and distribution systems, for various congestion
levels η. Notably, the average loss in the SB and PAG cases
disproportionally affects the transmission and distribution net-
works. Actually, there is a substantial net transfer of welfare
from DSOs to the TSO. That is, the SB and PAG approaches
delegate the bulk of the costs of dealing with distribution
congestion to the distributed energy resources themselves,
which certainly puts into question the ability of these methods
to effectively integrate distribution into transmission opera-
tions. In contrast, the proposed PAW approach considerably
mitigates this effect, or even reverses it, thus ensuring that
distribution issues are also taken care of by transmission

TABLE III
Allocation of average social welfare loss (in percent with respect to BN)

between transmission and distribution

SB PAG PAW

η TSO DSO TSO DSO TSO DSO

0.66 0.00% 0.00% -4.98% 5.39% 0.46% -0.45%
1.00 -1.38% 1.41% -4.17% 4.47% 0.04% -0.04%
1.33 -12.00% 12.67% -0.54% 0.55% -0.10% 0.10%

TABLE IV
Computational time results

Min time (s) Average time (s) Max time (s) Speedup

BN 0.88 1.66 15.27 -
SB 0.17 0.30 1.83 5.5x
PAG 0.02 0.03 0.20 55.3x
PAW 0.04 0.06 0.38 27.7x

resources.
Looking at Figures 6, 7 and 8, we can conclude that the

effectiveness of the proposed PAW method with respect to
other approaches depends on the network characteristics, and
more particularly, on the congestion level of the distribution
networks. Indeed, if the distribution networks never experience
voltage congestion, SB outperforms PAW in terms of power
imbalance and social welfare loss. On the other hand, for
highly congested networks, PAG and PAW provide almost
identical results. In conclusion, the use of the proposed PAW
approach is more relevant for those systems in which the
level of congestion of distribution networks vary significantly
depending on the operating conditions.

Finally, Table IV compares the maximum, average and min-
imum computational times for the four approaches. The aver-
age speedup factor between each method and the benchmark
is also provided in the last column. Due to the high number
of variables and constraints of model (7), the SB’s speedup
factor is relatively low. In contrast, since PAG and PAW
characterize the response of each distribution network through
a constant value or a step-wise bidding curve, respectively, the
computational savings are more substantial.

VI. CONCLUSION

Motivated by the proliferation of distributed energy re-
sources, new TSO-DSO coordination strategies are required
to take full advantage of these resources in the operation of
the transmission system. Existing decomposition/decentralized
methods are able to yield the same operating decisions as cen-
tralized benchmarks at lower computational costs. However,
these approaches require access to proprietary information
or fail-safe real-time communication infrastructures. Alterna-
tively, our approach only uses offline historical data at substa-
tions to learn the price response of the distribution networks in
the form of a non-increasing bidding curve that can be easily
embedded into current procedures for transmission operations.
In addition, this data set can be enriched with some covariates
that have predictive power on the response of the distribution
networks.

We have benchmarked our approach against an idealistic
model that fully centralizes the coordination of distribution
and transmission operations. We have also compared it with
other approximate approaches that either ignore the technical
constraints of the distribution networks or the price-sensitivity
of DERs. The conducted numerical experiments reveal that
our approach systematically delivers small differences with
respect to the fully centralized benchmark in terms of power
imbalances and social welfare regardless of the level of
congestion of the distribution grids. In return, our approach is
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computationally affordable and consistent with current market
practices, and allows for decentralization.

Future work should be directed to assessing whether these
results remain valid, and to which extent, for meshed distribu-
tion networks and DERs with more complex price responses,
e.g. thermostatically controlled loads. Furthermore, in this
research, we have only considered contextual information
pertaining to continuous random variables (electricity demand,
renewable power generation, etc.). Therefore, a relevant av-
enue for future research is to extend the proposed approach
to work with binary variables too, such as those describing
the network topology or the in-service/out-of-service status of
some network components.
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