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INTRODUCTION

This thesis consists of a series of papers that I wrote during my Ph.D. program, some of
them in collaboration with other authors. These papers deal with various problems from the
area of geometric structures, namely the study of Spin(7) structures and the construction
of examples of symplectic structures and closed Go structures. In the last problem, we pay
special attention to the topological property of formality. The techniques we need for this
are mainly spinor theory, left-invariant geometric structures on nilmanifolds, and resolution
of orbifolds. The purpose of this introduction is to present the state of the art on these topics
and to outline the main ideas and results of this thesis.

From the point of view of Riemannian geometry, holonomy theory motivates the study of
non-integrable geometric structures. The holonomy group Hol(g) of a Riemannian manifold
(M, g) is an invariant that measures how vectors on 7T, M change under parallel transport
along loops with basepoint p. Shortly after its definition, one goal was to determine the pos-
sible holonomy groups of simply connected irreducible complete manifolds. The assumption
that M is simply connected guarantees that Hol(g) is a connected Lie subgroup of SO(n); in
this case, the hypotheses that (M, g) is irreducible and complete avoids the situation in which
Hol(g) is a product. In fact, the de Rham decomposition theorem [39] shows that if (M, g)
is simply connected and complete, then it is a Riemannian product (M, g1) X ... x (My, ge)
where the action of Hol(g;) on T, M; is irreducible. Cartan computed holonomy groups of
symmetric manifolds using Lie group theory in [26] and [27]. Later, Berger treated the case
of non-symmetric manifolds in his celebrated paper [17] and obtained the following result:

Theorem 1. Let (M, g) be a simply connected irreducible complete non-symmetric Rieman-
nian n-dimensional manifold. Exactly one of the following cases hold:

Hol(g) = SO(n),

Hol(g) = U(m) C SO(2m) with n = 2m and m > 2,

Hol(g (m) C SO(2m) with n = 2m and m > 2,

Hol(g

(9) =
(9) =SU
Hol(g) = Sp(k) C SO(4k) with n = 4k and k > 2,
(9) = Sp(k) - Sp(1) C SO(4k) with n = 4k and k > 2,
(9)

Hol(g

Ga C SO(7) withn =17,
Hol(g) = Spin(7) € SO(8) with n = 8.

The groups U(m), SU(m), Sp(k), and Sp(k)-Sp(1) are known as special holonomy groups,
and the groups Go and Spin(7) are the so-called exceptional holonomy groups. A nice conse-
quence of Berger’s theorem is that holonomy groups are related to real division algebras. The

10
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holonomy groups U(m) and SU(m) are associated with the so-called Kdhler and Calabi-Yau
manifolds; these are complex manifolds from the point of view of differential geometry. The
groups Sp(k) and Sp(k) - Sp(1) are related to quaternions and correspond to hyperKdhler
and quaternionic-Kdihler manifolds. The groups G and Spin(7) are simply connected and
they are related to the octonions. More precisely, the multiplicative structure on R® = O
determines a triple cross product x on R®, namely, an alternating map R® x R® x R® — R®
such that the product u x v x w has length ||u Av A w| and it is perpendicular to the vectors
u, v and w. The contraction with the scalar product, Qo(u, v, w, z) := (u X v X w, z), gives a
4-form that in terms of the standard orthonormal frame (e, ..., e7) is:

Q) = 0123 _ (0145 _ 0167 _ 0246 | 0257 _ 0347 _ 0356

| AB6T _ 2367 _ 2345 1357 | 1346 _ 1256 _ 1247

Denote R® = R(eg) x R”; there is a cross product x’ on R” determined by u x'v = eq x u x v if
u,v € R7, or equivalently a 3-form ¢g = i(eg)$. Spin(7) is the subgroup of SO(8) that pre-
serves the triple cross product on R®, namely Spin(7) = Stab(€q), and Gy is the subgroup of
SO(7) that preserves the cross product x’, namely Go = Stab(yp). Of course, Go C Spin(7).

Berger’s proof was algebraic, and at the time of publication of [I7] there were no exam-
ples of complete metrics with holonomy G2 and Spin(7). These were provided by Bryant and
Salamon [24] in 1989. Another problem arising from this list was the construction of compact
manifolds with holonomy SU(m), Sp(k), Sp(k) - Sp(1), Ge, and Spin(7). The construction
of such metrics involves deep analytic theorems. For example, the proof of the existence of
metrics with holonomy SU(m) and Sp(k) uses Yau’s theorem. This result solves the Calabi
conjecture and implies that a compact Kéhler manifold with trivial canonical bundle admits
a Calabi-Yau metric. Compact examples with holonomy Gy and Spin(7) were the last to
appear in 1996; later in this introduction we discuss their construction, developed by Joyce
in the series of papers [T1], [72], and [73].

The condition that a Riemannian manifold (M, g) has holonomy contained in a group G
splits into a topological and an analytic obstruction. This is due to the holonomy principle,
which relates Hol(g) to parallel tensors on M:

Proposition 2. [7], Lemma 2.5.2] Let (M, g) be a Riemannian manifold, let p € M and let
Hol(g) be the holonomy group with basepoint p. Then,

1. If T is a parallel tensor on M, then Hol(g) C Stab(T,).

2. If S is a tensor on R"™ such that Hol(g) C Stab(S), there ezists a parallel tensor T on
M such that T, = S.

The difficulty of finding examples with special and exceptional holonomy, together with
this result, motivated the study of the notion of a geometric structure associated to a Lie
group G C SO(n). A G structure on an oriented Riemannian manifold (M, g) consists of a
reduction of the oriented orthonormal frame bundle of M from SO(n) to G. This notion is
equivalent to the existence of tensors {T;} whose common stabilizer is the group G. For this
reason we denote by (M",¢,{T;}) a G structure on a n-dimensional Riemannian manifold.
Let us focus for a moment on the cases U(m), SU(m), G2 and Spin(7):

1. (M?™ g,J) is a U(m) structure or an almost Hermitian structure if J is an almost
complex structure compatible with g. More precisely, for every p € M?™ there is an
isometry fp: (T,M?",g,) — (C™, (-,-)) such that f, o J,o f, ' (v) =iv for v € C™. In
this case, we define the 2-form w(v, w) = g(Jv, w).
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2. (M?™ g,J,0) is a SU(m) structure if (M?™,g,.J) is a U(m) structure and the maps
{fp}pem alsosatisty f,(dziA---Adzy,) = ©p. Of course, (21,. .., 2,) are the coordinates
on C™.

3. (M7, g,¢) is a Gg structure if ¢ is a 3-form such that for every p € M7 there is an
isometry fy: (T,M7,gy) = (R7,(-,-)) such that frpo = @p.

4. (M8, g,Q) is a Spin(7) structure if  is 4-form such that for every p € M® there is an
isometry f,: (T,M®,g,) — (R®, (-,-)) such that [0 = Q.

The notion of G structure also allows us to study geometric situations that are not charac-
terized by holonomy properties. This is the case of U(m) and SU(m) structures on (2m+1)-
dimensional manifolds. The first are also called almost contact metric structures and these
are related to contact geometry.

Interesting geometric properties arise when one requires that the tensors defining the G
structure satisfy partial differential equations; these are often less restrictive than the condi-
tion that the holonomy is contained in G. Examples include almost Kdhler and Hermitian
structures, which are symplectic and complex manifolds from the point of view of differential
geometry. A U(m) structure (M, g, J) is almost Kéhler if dw = 0 and Hermitian if the Ni-
jenhuis tensor Nj vanishes. This fact motivated Gray and Hervella to start a classification
program for G-structures; in [59] they treated the case of almost Hermitian structures. The
intrinsic torsion I is the object that allows us to classify G structures. This is a section of a
bundle W over M with fibre R” ® g*; here g denotes the Lie algebra of G € SO(n) viewed
as a subspace of A2R™ = so(n), where we take its orthogonal complement. The G module
R" ® g+ decomposes into irreducible invariant subspaces, which in turn determine a splitting
W = ®icrW;. Non-integrable classes are defined by the condition I' € @®;c;W; for some
J C I, J # 0; the torsion-free case corresponds to I' = 0 and is equivalent to the condition
Hol(g) C G.

It is customary to describe different classes in terms of the covariant derivative or the
exterior derivative of the tensors defining the structure. Let us focus for a moment on the
case of Gy structures obtained by Fernandez and Gray in [48] and later reformulated by
Bryant in [23]. Classes of Gg structures are determined by dy and dxp; more precisely, there
are torsion forms 7, € QF(M) such that

dp=19*p+ 371 Ap+ *T3,
d*p =411 A*xp+ 12 N\,

and in addition 7 and 73 satisfy the conditions: 0 A xp = 0, 3 A*xp = 0 and 73 A ¢ = 0.
These equations follow from the decomposition of the spaces A*(R7)* and A®(R")* into Gy
invariant irreducible parts. The 1-form 71 is the so-called Lee form of the structure. Pure
classes of Gy structures correspond to the case where all but one torsion form vanish; the
most studied are nearly parallel Go structures, characterized by the condition dy = 19 % ¢,
closed Gy structures, defined by the condition dp = 0, and locally conformally parallel Go
structures, described by the conditions dy = 371 A ¢ and d x ¢ = 47 A xp. The class of
coclosed Go structures is determined by d x ¢ = 0. In [37] the authors prove that coclosed
Go structures exist on any compact manifold with a Gy structure using Gromov’s h-principle
[60]. Explicit examples of these are hypersurfaces of 8-dimensional manifolds with a parallel
Spin(7) structure. If the hypersurface is totally umbilic, like the sphere S7 C R®, the Go
structure is nearly parallel.
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Manifolds with certain holonomy groups or geometric structures fit into the theory of
spinor geometry; it was Wang who first explored this connection [I12]. More precisely,
Wang’s theorem states that a complete simply connected irreducible Riemannian manifold
which is not flat has a parallel spinor if and only if its holonomy group is simply connected,
that is, if Hol(g) is one of SU(m), Sp(k), Gg, Spin(7). In terms of geometric structures, if
the structure group G is simply connected, then the manifold is spin and is endowed with a
certain number of nowhere-vanishing spinors.

Dirac began studying spinors when he tried to construct a relativistic wave operator Ip;
this essentially consisted in finding a square root for the Laplacian on R™. His calculations led
him to introduce the Clifford algebra Cl,, of R™: this is the R-algebra with unit generated by
R™ and the quotient relations v-v = —|v|?-1. The operator ) is the so-called Dirac operator;
for a nice approach to this see the introduction of [54]. One of the greatest achievements of
spinor theory is the Atiyah-Singer index theorem, which relates the index of the Dirac opera-
tor to a topological invariant: the fl—genus. Moreover, spin geometry plays an important role
in various geometric problems: it provides nowhere-vanishing vector fields on spheres, shows
the existence of metrics with positive scalar curvature as well as the integrality of certain
characteristic classes.

The universal covering Ad: Spin(n) — SO(n) is constructed from the Clifford algebra:
Spin(n) is a multiplicative subgroup of Cl, \ {0},

and the covering map corresponds to the conjugation Ad(g)(z) = gxg~!. The spinor

formalism in R"™ consists of an irreducible Cl, module A,, arising from an isomorphism
p: Cl, — k(m) or p: Cl,, — k(m) @ k(m); here k(m) denotes the algebra of m-dimensional
matrices over the (skew) field k € {R, C,H}. For a while there were problems in extending
the spinor formalism from R"™ to orientable manifolds; the notion of a spin structure overcame
these difficulties. Orientable anifolds admitting a spin structure are called spin manifolds and
are characterized by the vanishing of the second Stiefel-Whitney class.

Let (M, g) be a Riemannian oriented n-dimensional manifold and denote by Pgo (M) its
principal SO(n) bundle. A spin structure consists of a principal Spin(n) bundle Pgpin (M)
and a covering map p: Pgpin(M) — Pso(M) that is compatible with Ad: Spin(n) — SO(n),
i.e., p(vy) = Ad(y)p(y) for v € Spin(n) and y € Pgpin(M). If (M, g) is spin, its spinor bundle
is defined as

E(M) = PSpin(M> Xp/ An,

where p’: Spin(n) — End(A,) comes from an irreducible representation Cl, — End(A,).
The peculiarity of its sections, the so-called spinors, is that they can be multiplied by vectors
and forms; the existence of this multiplication is a consequence of the fact that p’ extends
to a map Cl,, — End(A,). Moreover, the Levi-Civita connection lifts to the spinor bundle,
and this allows one to define partial differential equations for spinors without introducing
additional information. This is the case for the harmonic condition, characterized by being
in the kernel of the Dirac operator. This is a self-adjoint first order operator; its expression
in terms of a local orthonormal frame (e, ..., e,) is the following:

n
an = Z eiveﬂ]-
=1

Friedrich proved in [53] that the first eigenvalue A of the Dirac operator is related to the

scalar curvature by the inequality A? > 4(% min,e s {scal, }. He also proved that both sides

-1
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are equal if there is a Killing spinor, defined by the equation Vxn = uX - n. These were
introduced before in the context of general relativity, but Killing spinors first appeared in
[53] in the area of Riemannian geometry. The relationship between harmonic spinors and
geometric structures is explored later in this introduction, as it is part of the work developed
in Chapter Killing spinors determine nearly parallel Go structures and nearly Kahler SU(3)
structures, characterized by the conditions dw = 3%e (©) and dJm (0) = —2w?. Examples
of Riemannian manifolds carrying these structures are the spheres S7 and S°, equipped with
their standard metrics.

Certain types of geometric structures affect curvature properties. The Riemannian cur-
vature R satisfies R € Sym?(hol(g)) pointwise; this gives additional constraints on the Ricci
tensor in the case of special and exceptional holonomy. The Ricci tensor of a Kédhler manifold
is determined by the so-called Ricci 1-form, if Hol(g) is simply connected, then the mani-
fold is Ricci-flat, and if Hol(g) = Sp(k) - Sp(1), then the metric is Einstein. In fact, known
examples of compact odd-dimensional simply connected manifolds endowed with a Ricci flat
metric are exactly compact 7-manifolds with holonomy Gso. In the case of G structures, the
Ricci tensor is determined by the torsion forms, as expressed in [23] and [69] for the case of
G2 and Spin(7) structures. The most illustrative example is that G structures determined
by Killing spinors are associated with Einstein metrics; this property is a consequence of the
formula obtained in [54] p.64], which relates the Ricci tensor of the metric to the covariant
derivative of a spinor. Ricci flatness for manifolds with a simply connected holonomy group
can also be proved by combining this formula with Wang’s theorem.

The interplay between special and exceptional holonomy and cohomological properties is
well known in the case of compact Kéhler manifolds: these are formal and their de Rham
cohomology algebra admits a Hodge decomposition and satisfies the hard Lefschetz property.
The Weitzenbock formula for the Laplacian allows us to generalize the Hodge decomposition
to compact Riemannian manifolds (M, g) with holonomy contained in a group G C SO(n)
from Berger’s list. The space of harmonic forms H*(M,R) admits a decomposition into a
direct sum of subspaces determined by the irreducible components of the representation of
G in A*(R™)*; this allows the definition of the refined Betti numbers. More precisely, let
AR(R™)* = @;er A% be the direct sum decomposition into G irreducible subspaces. There
exists a decomposition QF(M) = @;c;QF(M) and the Weitzenbock formula guarantees that
the Laplacian preserves each Q¥(M). From this it follows that

HE (M) = @ierHE(M).

Moreover, if two representations A¥ and Aé- are isomorphic, then HF(M) = ”Hé(M ). The
refined Betti numbers are b¥ = dim(H¥(M)). Further obstructions arise if the holonomy
equals G; for example, manifolds with holonomy Go and Spin(7) have by = 0.

The formality property for compact Kéhler manifolds was proved by Deligne, Griffiths,
Morgan, and Sullivan in [40] and is a consequence of the d9-Lemma. The notion of formality
comes from the rational homotopy theory founded by Sullivan in [107]. This theory is devoted
to the study of the torsion-free part of higher homotopy groups 7 (M) ® Q, k > 2, and in-
troduces algebraic objects such as commutative differential graded algebras over Q (CDGAs
for short) and their minimal models. The minimal model of a CDGA (A,d) is a minimal
CDGA (see Definition (M, d) and a homomorphism ¥: (M, d) — (A, d) that induces
an isomorphism between their cohomology algebras.
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Let M be a connected simplicial complex of finite type and let (Apr (M), d) be the CDGA
of rational polynomial forms. A rational polynomial k-form on M consists of a collection
{we}ocar of k-forms on the simplices 0 C M whose coefficients are polynomials over Q.
These k-forms are compatible, i.e., if ¢ C do’ then wy, = wy|;. The PL de Rham theorem
guarantees that the cohomology of (Apr(M),d) is H*(M,Q). The invariant introduced by
Sullivan is the minimal model of M, defined as the minimal model of the CDGA (Apr (M), d).
This always exists and is unique up to isomorphism. The explicit relation between rational
homotopy groups and minimal models was found in [107, Theorem 10.1]:

Theorem 3. Let M be a connected nilpotent simplicial complex of finite type and let (M, d)
be its minimal model. If k > 2 the rational homotopy group mi(M) @ Q is dual to the space
of degree k generators of M.

The hypothesis that M is nilpotent requires that 71 (M) is nilpotent and acts on (M)
as a nilpotent homomorphism. If the minimal model of (Apr(M),d) is equal to the minimal
model of (H*(M,Q),d = 0) we say that M is formal. Computing the minimal model is a
formal procedure, and this explains the name of the property: rational homotopy groups of
formal spaces are formally obtained from rational cohomology groups.

If M is a smooth manifold, the real minimal model is constructed from the de Rham
complex (Q*(M),d). In practice, computing the minimal model may be quite involved; the
notion of s-formality has become customary to decide whether a manifold is formal or not.
Briefly, this property depends on the generators of the minimal model whose degree is less
than or equal to s. Poincaré duality property allows to prove in [49] that a compact oriented
manifold of dimension 2n or 2n — 1 is formal if and only if it is (n — 1)-formal. Moreover,
non-vanishing Massey products are often used to show that a manifold is non-formal. For
their precise definition and their relation to formality, see [100, Section 1.6].

The result in [40] implies that compact manifolds with holonomy SU(m) and Sp(k) are
formal. Compact manifolds with holonomy contained in Sp(k)-Sp(1) that have positive scalar
curvature are also formal [4]; the proof takes advantage of the formality of compact Kéhler
manifolds. It remains to determine whether compact manifolds with exceptional holonomy
are formal or not. There are partial results collected in [29], [38] and [76]. The results in
[29] and [76] are based on an idea of Verbitsky in [I1I], where he defines a differential op-
erator £, on a Kéahler manifold (M,g,J) to give an alternative proof of the formality of
Kaéhler manifolds. This operator is well-defined on Riemannian manifolds endowed with a
parallel k-form; the study of operators Ly, L, or Lq defined by ¢, xp or €2 for the case
where the holonomy is contained in Gy or Spin(7) has proved fruitful but does not answer
the question of the formality of such manifolds. Moreover, the paper [38] focuses on the case
of 7-manifolds; among other results, the authors show that a non-formal compact manifold
with holonomy Go should have by > 4.

The search for compact examples of manifolds with certain types of geometric structures
often begins with nilmanifolds and solvmanifolds. These spaces arise as compact quotients
of a Lie group G by a lattice I'; the Lie group is nilpotent in the first case and solvable in the
second. Nilmanifolds and solvmanifolds are special from a topological point of view. These
are aspherical spaces and satisfy that 71(I'\G) = I'; nilmanifolds have first Betti number
b1 > 2 and solvmanifolds have b; > 1. Nomizu’s theorem [98] states that the real minimal
model of a nilmanifold I'\G is determined by its Chevalley-Eilenberg CDGA (Ag*, d), where
the differential d is determined by da(X,Y) = o[X,Y] if a € g*. Of course, we denote by g
the Lie algebra of G . Hattori’s theorem [64] states that the Chevalley-Eilenberg CDGA is
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a model for a subclass of solvmanifolds, but it may not be minimal. This subclass is that of
completely solvable solvmanifolds and consists of those in which the adjoint endomorphisms
ad(X): g — g, X € g, have only real eigenvalues. Moreover, non-abelian nilmanifolds are
non-formal [62], while solvmanifolds can be both formal and non-formal.

The geometric structures that we employ are induced by left-invariant geometric struc-
tures on the Lie group. Metrics underlying them have special curvature properties; according
o [91], these are either flat or have strictly negative scalar curvature. In addition, non-flat
metrics are not Einstein. Partial differential equations determining that the geometric struc-
ture belongs to a specific class are transformed into a system of equations involving the
structure equations of the Lie algebra. Of course, this approach simplifies the problem and
it is the reason why we frequently refer to geometric structures on nilpotent or solvable Lie
algebras. Nilpotent Lie algebras of dimensions less or equal to 7 are classified, see [14] and
[58]; with the classification at hand, several papers are devoted to determining which nilpo-
tent Lie algebras admit a G structure in some specific class.

The behavior of such geometric structures is wide but limited. An illustrative example
is the case of the Kodaira-Thurston manifold, a 4-dimensional nilmanifold which was the
first known symplectic manifold that cannot be endowed with a Kéahler structure. Of course,
since non-abelian nilmanifolds are non-formal, these are not Kéhler. In addition, non-abelian
completely solvable solvmanifolds do not admit metrics with holonomy contained in Go or
Spin(7). According to the Cheeger-Gromoll Splitting Theorem, if that were the case for
a completely solvable solvmanifold (T'\G, g), its universal covering would be R¥ x N with
k = b1(I"'\G) and N simply connected and compact. The universal covering of T'\G is G,
which is diffeomorphic to R” or R®. Therefore, b1 (Ag*,d) = 7,8 and G is necessarily abelian.
Similarly, some types of non-integrable geometric structures do not occur in nilmanifolds and
solvmanifolds. This is the case for those that induce positive scalar curvature metrics, such
as nearly Kéahler SU(3) structures and nearly parallel Gy structures. The same holds for a
subclass of locally conformally parallel (LCP for short) Ga and Spin(7) structures on both
nilmanifolds and solvmanifolds. The latter is described by the equation d2 = 6 A Q; the
1-form @ is also called the Lee form of the structure. If the Lee form is coclosed, the scalar
curvature of the metric associated with the LCP structure is positive. Moreover, manifolds
admitting an LCP structure with nowhere-vanishing Lee form satisfy a structure theorem
[70]. They are mapping tori of a manifold N whose universal cover is compact. In the case of
Gz, N has a nearly Kahler SU(3) structure, and in the case of Spin(7), N is endowed with a
nearly parallel Gy structure. It follows from the characterization that both nilmanifolds and
solvmanifolds do not admit left-invariant LCP structures.

Topological properties of nilmanifolds and solvmanifolds being restrictive, orbifold reso-
lution is a way to construct compact examples of G structures in manifolds with different
topological properties. This is the case for the simply connected symplectic manifolds in [11]
and [50]. Finite group actions on nilmanifolds are not hard to construct. If the action pre-
serves a left-invariant G structure, the orbit space of the nilmanifold by the group determines
an orbifold with a G structure. Its desingularization, if possible, yields a manifold with such
G structure and different topological properties. This procedure is discussed in more detail
later in the introduction.

We now proceed to the discussion of the main results of each chapter. We divide it
into two parts: the purpose of the first part is to study Spin(7) structures from the point
of view of spinor theory, the second part is devoted to the resolution of symplectic and Go
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orbifolds. The works that support the publication of this thesis as a compendium of papers
are [85, [86] [87]. The papers [85] and [87] correspond to the second part of the thesis and are
respectively contained in Chapters [4f and [3 The paper [86] is included in the first part and
corresponds to Chapter The preprint [12] is currently being revised for publication and
complements the work developed in the article [86]. Therefore, its presentation is relevant to
the state of the art of this thesis. To make the exposition clearer, we present its content in
Chapter [2] instead of doing it in this introduction.

A spinorial approach to Spin(7) manifolds and geometric structures defined
by spinors

Since Fernandez classified non-integrable Spin(7) structures [43], only a few papers have been
devoted to their study. One reason is that there are still many open problems concerning
G structures. In addition, the classification of Spin(7) structures is small: there are only
4 classes of Spin(7) structures, compared with the 16 classes of Gy structures and U(m)
structures. A special feature of Spin(7) geometry is that the Spin(7) form is closed if and
only if it is parallel, and the classes are determined by d2. The space A®(R®)* decomposes as
a direct sum of two Spin(7)-invariant subspaces and thus non-integrable pure Spin(7) classes
are:

1. Locally conformally parallel, if d2 = 6 A € for a closed 1-form 6.
2. Balanced, if (xd2) A Q = 0.

In Chapter [1| we use the spinor approach to rewrite the classification of Spin(7) structures
in terms of the covariant derivative of the spinor defining the structure. This motivates a
method for constructing balanced examples in Chapter [2] and suggests the introduction of a
new class of geometric structures in low dimensions: spin-harmonic structures.

Spinorial classification of Spin(7) manifolds

Chapter 1] of this thesis is devoted to the study of Spin(7) structures from the point of view
of spinor geometry. This work continues the formalism developed in [I] for the case of SU(3)
and Gg structures and complements the paper [69], which also uses spinors as a tool to
study Spin(7) structures. Moreover, this approach serves to recover the results in [83] and
[84] about G structures on hypersurfaces of manifolds with a Spin(7) structure and Spin(7)
structures on S'-principal bundles over Go manifolds. This approach turns out to be useful
for the construction of balanced and locally conformally balanced Spin(7) structures on quasi
abelian Lie algebras.

The first part of this work consists in rewriting the classification of Spin(7) structures
in terms of spinors. To establish the set-up we first recall that, Clg being isomorphic to
R(16), the spinor representation is Ag = R'6. This space decomposes into two 8-dimensional
subspaces, namely the positive and negative spaces Ay, which are the eigenspaces of the
endomorphism determined by multiplication by the volume element, namely e - - - eg € Clg,
and hence Spin(8)-invariant. The stabilizer of a nonzero spinor lying in the positive or the
negative subspace under the action of Spin(8) is isomorphic to Spin(7); the images of these
subgroups by the adjoint map Ad: Spin(8) — SO(8) are not conjugate in SO(8), but they
are conjugate in O(8).

Let (M, g) be a spin Riemannian 8-dimensional manifold; the decomposition Ag = AL &
A _ gives a splitting of the spinor bundle, (M) = T (M)®X~(M). As stated in Proposition
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a unit-length spinor 1 in X1 (M) yields a Spin(7) structure by means of the expression:
1
QW,X,Y,2) = S(-WXYZ +WZYX)n,n).

Moreover, Proposition [1.13| proves that the covariant derivative of n contains the same infor-
mation as the intrinsic torsion of the structure I'. The precise relation between them allows
us to prove:

Theorem A (Theorem |1.21)). The Spin(7) structure determined by a spinor n is,
1. Parallel if Vn = 0.
2. Balanced if I)n = 0.

3. Locally conformally parallel if there exists V€ X(M) such that Vxn = %(X* A V).
In this case, Ipn = V.

The Dirac operator plays a central role in the classification because it determines the Lee
form of the structure. This is defined as 6 = —1 x (x(d2) A Q); in terms of the spinorial
description 0 = %V* as Proposition states. The geometric condition that the Spin(7)
structure is balanced yields a harmonic spinor; the spinor is thus a solution to a partial
differential equation that is interesting from the analytical point of view.

The way we obtain spinor equations differs from the approach in [I]. If ¢ is the spinor
that determines a G structure then Vx¢ = %F(X )¢; here I' denotes the intrinsic torsion
of the G structure, and G € {SU(3), G, Spin(7)}. Let (N,g,J,0) be a SU(3) structure,
there are v € Q(N) and Sy € End(TN) such that I' = i(Sy)Re (0) — 2y ® w, with
(i(SN)Re (0))(X,Y, Z) = Re(0)(Sn(X),Y,Z). Let (Q,g,¢) be a Ga structure, there is
So € End(TQ) such that I' = —2i(Sg)p. These equalities hold because su(3)t = (w) @
i(R%)MRe (©), and g3 = i(R7)p. Let ¢ and ¢g be the spinors that determine the geometric
structures on N and @). According to [I, Lemmas 2.2 and 2.3] we have:

Vxon =5T(X)on = Sx(X)o +1(X)i(on),
Vxo Z%F(X)qf)cg = SQ(X)¢-

where j is a complex structure on X(N) that anticommutes with the Clifford product by a
vector field (see subsection [2.2.2)). Observe that R® is not contained in spin(7)* as a sub-
representation (see subsection [1.2.3)); in addition, Vxn € ¥ (M) and S(X)n € ¥~ (M). For
this reason, we work with the equation Vxn = %F(X)n.

In this work, we introduce the notion of a Go distribution: a 7-dimensional cooriented dis-
tribution with a Gg structure in a Spin(7) manifold. This is a systematic approach that serves
to unify various geometric situations involving Go and Spin(7) structures, namely Gy hyper-
surfaces of Spin(7) manifolds, warped products of a Gy manifold with R, and S!-principal
bundles with base a Go manifold; some of these have already been studied by Martin-Cabrera
in [83] and [84]. For example, if @ is a hypersurface of a Spin(7) manifold (M, g, ), there
is an induced Gg structure ¢ = i(N)S2, where N is a unit normal vector field. The type
of the Gy structure ¢ depends on the class of the Spin(7) structure © and the Riemannian
properties of the embedding, as Theorem [I.39]shows. The key idea of this part of the chapter,
which is also exploited in Chapter [2| is the following: the spinor that determines the Spin(7)
structure of the ambient manifold also induces the Gg structure of the distribution. That is,
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a single object encodes all the geometric information.

The formalism of Go distributions enables us to deal with left-invariant Spin(7) structures
on quasi abelian Lie groups. A motivation for focusing on such Lie groups is that the study
of Gg structures on quasi-abelian Lie groups has been fruitful. In [5I] the author determined
quasi-abelian Lie algebras that admit a coclosed Gg structure. In [52], these examples served
him to construct cohomegneity-one manifolds with holonomy SU(4) by solving the Hitchin
flow equation.

Quasi abelian Lie groups are semidirect products R x. R7, where ¢ = exp(ad(€)) with
€ € R(7). Of course, these are solvable Lie groups. A left-invariant Spin(7) structure on
R x, R restricts to a parallel Go structure on the hypersurfaces {t} x R7. The type of the
Spin(7) structure depends exactly on the endomorphism &, as proved in Theorem Pure
classes of Spin(7) structures are obtained by imposing a certain restriction on the complex
eigenvalues of the skew-symmetric part of £. Moreover, the trace of £ determines the com-
ponent of the Lee form that is parallel to dt. From this investigation, we obtain compact
examples by finding a lattice; this only occurs when £ is traceless. As we explained before,
solvmanifolds do not admit invariant locally conformally parallel Spin(7) structures, so we
search for balanced Spin(7) structures. In the section we give the first example of a
balanced Spin(7) manifold with b; = 2, which is not a product S' x N7.

Our results allow us to tackle classification problems of Spin(7) structures in quasi abelian
nilpotent Lie algebras of which there are 14 up to isomorphism. We determine those that
admit a balanced structure or a strict locally conformally balanced Spin(7) structure. The
latter are defined in the context of supergravity theory and satisfy the condition that the Lee
form is closed and non-zero. Our analysis concludes the following:

Theorem B (Theorem. Let L3 be the Lie algebra of the 3-dimensional Heisenberg group,
let Ly be the unique indecomposable 4-dimensional nilpotent Lie algebra, and let Ay be the
k-dimensional abelian Lie algebra.

1. Every Spin(7) structure on the abelian Lie algebra Ag is parallel.

2. The Lie algebras g = A5 @ L3 or g = A3 ® Ly admit strict locally conformally balanced
structures but they do not admit balanced structures.

3. The remaining quasi abelian nilpotent Lie algebras admit a balanced structure and a
strict locally conformally balanced structure.

Spin-harmonic structures and nilmanifolds

The goal of Chapter [2|is to construct balanced Spin(7) structures on 8-dimensional nilmani-
folds. We make use of the spinor equations obtained in Chapter [I Our approach leads us to
introduce a new class of geometric structures on low-dimensional manifolds: spin-harmonic
structures.

The first compact manifold endowed with a balanced Spin(7) structure was obtained in
[46] and consists of a product of a 5-dimensional nilmanifold with a 3-torus. Later, thanks
to the work in [83] and [84], more compact examples were provided, such as the products
N x S! with (N, g, ) a Ga structure which is closed or purely coclosed. The last is defined by
the conditions d* ¢ = 0 and dyp A ¢ = 0. In this chapter we restrict ourselves to Riemannian
nilmanifolds (N® x T2, gs + g2), where (N©, g) is a 6-dimensional nilmanifold and (T2, go) is
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the flat torus; the Spin(7) structure is also assumed to be invariant in the 72 direction. The
reason for the simplification is that 8-dimensional nilpotent Lie algebras are not classified
and the list of 7-dimensional nilmanifolds is quite extensive. We separately analyze the case
where N% = N° x S and gg = g5 + g1, with g; the flat metric on S'; our study allows us to
recover the Spin(7) structure in [46].

The Spin(7) structure on N°x T2 induces an SU(3) structure on N, or an SU(2) structure
on N° if N® = N° x S1. According to [35], the forms (o, wq,ws,ws) € QLH(N?) x Q2(N®)3
determine an SU(2) structure if

1. wiAw; =0fori# j, w? =ws = w3 and a Awf # 0,

2. If i(X)wi = i(Y)wa, then w3(X,Y) > 0.

Equations for the SU(3) and the SU(2) structure are derived from the balanced condition
for the Spin(7) structure. These do not correspond to any class according to [I, Theorem 3.7]
and Corollary [2:39] Being the equations quite complicated, we use the spinorial approach de-
veloped in Chapter |1} This consists in finding harmonic spinors on N* x T87* for k € {5,6}.
For this purpose, we divide our strategy into three steps: a dimensional reduction, a choice
of spin structure on the nilmanifold, and a formula for the Dirac operator in terms of the
structure equations.

The dimensional reduction consists in relating the harmonic spinor on N* x T8% to a
spinor on N*. The spinor bundle of N*¥ turns out to be the pullback of the spinor bun-
dle X (N* x T8%) by the inclusion; this is deduced from the fact that Cl; = C(4) and
Clg = R(8). As a consequence of our assumptions for the Spin(7) structure, there is a unique
way to define a spinor 7/ € X(N¥) starting from a positive spinor € L+ (N* x T87F): the
spinor 7 is harmonic if and only if 7’ is harmonic. Motivated by the dimensional reduction,
we define the notion of a spin-harmonic structure as the geometric structure determined by a
unit-length harmonic spinor; equations in terms of the forms defining the structure were ob-
tained in [I] for G2 and SU(3) structures; in section 2.4 we compute them for SU(2) structures.

We restrict our attention to the spinor which determines a left-invariant geometric struc-
ture: we endow the nilmanifold with its trivial spinor bundle and choose constant spinors.
That is, geometric properties are determined by the Lie algebra and do not depend on the
lattice. Finally, we obtain a formula for the Dirac operator of such a spinor in terms of the
structure equations of the Lie algebra:

Proposition C (Proposition [2.41)). Suppose that (e1,...,e,) is an orthonormal frame and
let ¢ be a left-invariant spinor on a solvable Lie algebra. Then

n
4D¢ = — Z (e' A de’ +i(e;)de) .
i=1
In the case of 6-dimensional nilmanifolds, we solve the equation )¢ = 0 directly. The
strategy for finding left-invariant spin-harmonic structures on 5-dimensional nilmanifolds is
to compute the square of the Dirac operator ]DQ. This approach allows us to determine all
the left-invariant metrics that admit harmonic spinors. In this case, according to Proposition
if ¢ is a left-invariant spinor then:

826 = o + vjr6.

Here ;1 > 0 and v € X(N?) are determined by the metric and the structure equations of the
Lie algebra. Of course, v is left-invariant. In addition, the map j; is a complex structure
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on the space of spinors; it exists because Cls = C(4). From this formula, one derives that
metrics that admit harmonic spinors are characterized by the equation |[v|| = u; moreover,
the space of harmonic spinors is 4-dimensional. In this case, the vector v has a geometric
interpretation: the form obtained by the musical isomorphism v* is proportional to «. The
following theorem summarizes our findings:

Theorem D (Theorems Subsection and Proposition [2.59). Let N* be a

k-dimensional nilmanifold and let n be the Lie algebra of its universal covering. Suppose in
addition that n is non-abelian.

1. If k = 5 and N admits left-invariant spin-harmonic structure, then n = Ls;, j =
1,2,3,4,6.

2. If k =6 and N does not admit a left-invariant spin-harmonic structure then n equals
L3 ® Az or Ly @ As.

3. The Lie algebras L3 ® As and Ly & Ay do not admit balanced Spin(7) structures.

The results from Chaptersuggest that there are many balanced Spin(7) structures. This
phenomenon is related to the result of Hitchin in [67], which states that every 8-dimensional
spin manifold admits a harmonic spinor. However, this spinor need not determine a balanced
Spin(7) structure, since it could have zeros. Moreover, the equation Pn = 0 is overdeter-
mined; both facts should lead us to investigate whether there is an h-principle in the sense
of Gromov for such a structure.

Orbifolds with geometric structures and its resolution

Introduced by Satake in [I06] as V-manifolds, orbifolds have been studied from different
points of view and have proved useful in numerous geometric contexts. Orbifolds are locally
modeled on R"/T", where I is a finite subgroup of SO(n), so they have singularities. In the
local model, these are the orbits of points that are fixed by a non-identity element of I.
Several objects coming from differential geometry are also useful in the context of orbifolds:
metrics, forms, bundles, and operators.

In this thesis, we present a method for resolving orbifolds with symplectic structures or
closed Gy structures. We aim to obtain manifolds with such geometric structures satisfying
some specific topological properties. The orbifolds we start with are usually the quotient of
a manifold by a finite group of diffeomorphisms preserving the geometric structure. Some
topological properties of the resolution, such as the fundamental group or cohomology groups,
can be derived from those of the orbifold and the singular locus; see, e.g., Proposition

Celebrated examples produced by orbifold desingularization are Joyce’s compact man-
ifolds with holonomy Go and Spin(7). His strategy is based on both orbifold resolution
techniques and analytic existence theorems. These orbifolds are obtained as quotients of 7
or 8-dimensional flat tori under the action of a group preserving the geometric structure.
Under mild assumptions on the singular locus, one can use techniques of algebraic geometry
to resolve the orbifold and endow it with a 1-parameter family of geometric structures whose
torsion tends to 0. Theorems 11.6.1 and 13.6.1 in [74] guarantee that the perturbation of
the family is torsion-free. In both cases, the action of the group is constructed in such a way
that the fundamental group of the orbifold is finite; in the case of Spin(7), the resolution has
fl(M ) = 1. These topological properties ensure that the holonomy of the manifold is Gy or

Spin(7).
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Resolution of 4-dimensional symplectic orbifolds

Chapter [3] is devoted to the proof of the existence of a resolution for compact 4-dimensional
symplectic orbifolds, using techniques from algebraic geometry as in the papers [11], [50] and

From the point of view of differential geometry, classical theorems of symplectic geometry
are adapted to the context of orbifolds; see [93] for a precise approach. An example is the ex-
istence of Darboux charts, which are of the form (U,wp) with U C C™/T"; the isotropy group
I is a subgroup of U(m) and wy is the standard symplectic form. Other examples include
the construction of a compatible almost complex structure and the normal bundle around a
singularity. A notable achievement of the resolution of symplectic orbifold techniques is a
counterexample to the Thurston- Weinstein conjecture in dimension 8 [50]. This conjecture
states that a simply connected symplectic manifold of dimension greater than or equal to 8
is formal, and was first proved false in [5] in dimension > 10. Another remarkable example
is the construction of a 6-dimensional simply connected non-Kéahler manifold which is both
complex and symplectic [I1].

The resolution procedure in these examples is ad-hoc and involves techniques derived
from the resolution of algebraic singularities. These techniques have already been used to
desingularize symplectic orbifolds in [28], where the authors prove that such a resolution
exists if the singularities are isolated points, we briefly discuss the strategy. In this situa-
tion, the unique fixed point of a non-identity element of the isotropy is 0. Therefore, its
resolution consists in replacing a neighbourhood of the singular point in the orbifold by a
neighbourhood of the exceptional divisor of a projective resolution of the quotient singularity
C™ /T, constructed as in the classical works of Hironaka [65] and [66]. The symplectic form is
obtained by interpolating the Kéahler form of the resolution with wgy by the inflation process
introduced by Thurston in [108§].

It has not been proved that every symplectic orbifold admits a symplectic resolution. As
we outline in the introduction to Chapter[3], there are special cases for which desingularization
is possible. In Chapter [3| we prove:

Theorem E (Theorerfl 3.26). Let (X,w) be a compact symplectic 4-orbifold. There ezists a
symplectic manifold (X,&) and a smooth map 7 : (X,®) — (X,w) which is a symplectomor-
phism outside an arbitrarily small neighbourhood of the singular set of X.

This theorem was previously proved by Chen in [30], using techniques from symplectic
geometry, such as symplectic fillings of contact manifolds and symplectic reduction. Our
method is different and follows the ideas of [28] and its generalization [93]. The paper [93]
deals with orbifolds with homogeneous isotropy, i.e., those whose singular components do
not intersect each other. In this case, the desingularization takes place in the normal bun-
dle, which has a complex singularity in the fiber; to make the resolution of different fibers
compatible one with each other, the authors require the algebraic resolution of [4I] instead
of Hironaka’s classical theorems. The special feature of the resolution in [41I] is that it is
equivariant under the action of groups.

Symplectic 4-dimensional orbifolds have the advantage that the configuration of the sin-
gularities is simpler than in higher-dimensional symplectic orbifolds. This follows from the
fact that non-identity elements in U(2) fix the origin or a complex line. Apart from isolated
singularities, we define the singular subsets ¥* and X! by means of a Darboux chart (U, wp)
with U c C?/T:
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1. 2 € ¥* if there exists a complex line L C C? such that for every 1 # v € T' we have
Fix(v) = L.

2. x € B! if there exist at least two complex lines L1, Ly C C? and 71,72 € I so that
Ly = Fix(v1) and Lo = Fix(y2).

The connected components of ¥* are surfaces and X! contains intersections of the closure
of non-closed components of 3*. The challenging part of the resolution is precisely to make
compatible the resolutions of different singular surfaces whose closures intersect at a point
in ¥!. Points in ¥* have neighbourhoods contained in C x (C/Z,,), which is topologically a
manifold. There are several ways to find a resolution of this local model, but we choose to
endow the quotient with the structure of a complex manifold and change the symplectic form
by a perturbation. To make this construction global, one has to construct the normal bundle
of the singularity and introduce a connection. Moreover, it is possible to change the local
model of z € X! to obtain a local model in which z is an isolated singularity. This is proved
by first arguing that C2/T' = (C%/T")/(T'/I"), where I" is the normal subgroup formed by
elements fixing some complex line. Then one proves that C?/I" is a smooth complex manifold
using results from invariant group theory and finally one observes that T'/T" acts freely on

(€2 —{o}h)/r".

As a consequence of this discussion, the strategy for resolving a symplectic 4-dimensional
orbifold without isolated singularities has 4 steps. First, we define a manifold atlas in X — %!
and a closed 2-form w’ which is zero in a small neighbourhood of £! and symplectic outside
of it. The Riemann extension theorem allows us to extend this atlas as an orbifold atlas on
X such that the singularities are isolated. Then, an orbifold symplectic form is constructed
from w’ and we finally proceed as in [28] to resolve the isolated singularities.

A compact non-formal closed G, manifold with b; =1

The purpose of Chapter[4]is to construct a compact non-formal manifold with b; = 1 equipped
with a closed Gy structure but admitting no metric with holonomy contained in Gy. This is
the first example with such properties. The construction follows the ideas of the paper [47]
and it requires the development of a resolution theorem for closed Go orbifolds inspired by
the paper [75].

The geographical problem concerning topological properties of compact manifolds that
admit a closed Gs structure but cannot be endowed with a torsion-free Gy structure is far from
being understood. As pointed out in the introduction of Chapter [4], prior to the publication
of this paper, the known such examples with b; = 1 were formal [47], [R1]. At that time,
there was no reason to believe that we could not find a non-formal example with b = 1;
in fact, the examples in [34] are nilmanifolds and thus, non-formal with b; > 2. It is worth
mentioning that the construction of an example with by = 0 remains open. As we stated
earlier, the main theorem in Chapter [ is the following:

Theorem F (Propositions|4.44} 4.46)). There exists a compact non-formal closed Go manifold
M with by = 1 which cannot be endowed with a torsion-free Go structure.

The construction is based on a resolution procedure already used in [47]. We define a
closed Go orbifold X as the orbit space of a Zs action on a nilmanifold N preserving the
closed Gg structure that was obtained in [34]. The resolution M of X is non-formal because
X is non-formal; the reason is that the Zo action preserves a non-zero Massey product on
N. The non-zero Massey product on X lifts to M by pullback. Moreover, to guarantee that
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b1 (M) = 1, we construct the action so that b;(X) = 1 because the first Betti number is not
changed by the resolution procedure (see Proposition . Remarkably, the singular locus
of the orbifold consists of 16 disjoint copies of the 3-dimensional Heisenberg manifold; to the
best of our knowledge this is the first time in which such a configuration occurs.

To desingularize this orbifold, we develop a method for resolving closed Go orbifolds,
inspired by the work of Joyce and Karigiannis [75], where they resolve the case of an orbifold
X that is the quotient of a manifold IV with a torsion-free Go structure by the action of Zs;
the resolution has a torsion-free Gy structure. This and the foundational work of Joyce [71],
[72], are the only cases of resolution of orbifolds with holonomy contained in G that have
been studied so far. For the resolution in [75], they require the additional hypothesis that the
singular locus L of the action, which is a 3-dimensional manifold, has a nowhere-vanishing
harmonic 1-form. The strategy they follow is similar to that used by Joyce in his foundational
work, and is described in the introduction to Chapter [4 let us go into some details for a
moment.

The normal bundle to L in N has a complex structure determined by the nowhere-
vanishing 1-form; hence the normal bundle to L in X has fiber C2/Zs, whose algebraic
resolution is the Eguchi-Hanson space (see subsection . Moreover, the hypothesis that
the 1-form is closed guarantees that the Go structures that they define are closed; the hy-
pothesis that it is co-closed helps to ensure that their torsion is small. Influenced by this
work, we prove the theorem:

Theorem G (Theorem [4.32). Let (M, p, g) be a closed Gy structure on a compact manifold.
Suppose that j: M — M is an involution such that j*¢ = ¢ and consider the orbifold X =
M/j. Let L = Fix(j) be the singular locus of X and suppose that there is a nowhere-vanishing
closed 1-form 0 € Q' (L). Then there exists a compact Go manifold endowed with a closed
Go structure (X,3,§) and a map p: X — X such that:

1. The map p: X — p L) = X — L is a diffeomorphism.
2. There exists a small neighbourhood U of L such that p*() = @ on X — p~2(U).

Compared with the work in [75], the lack of need to estimate the torsion is reflected in
both the statement and the proof. On the one hand, we require that the nowhere-vanishing
1-form is closed; this condition means that each connected component of the singular locus
is a mapping torus over a 2-dimensional manifold. On the other hand, although we use the
same strategy to prove the existence of the resolution, some technical parts are somewhat
simplified or avoided.

Finally, both arguments we use to prove that the manifold M constructed in Theorem
does not admit a metric with holonomy contained in Go (see Proposition and Re-
mark are based on formality. The manifold M does not satisfy the almost formality
obstruction obtained in [29], which we briefly recall. The de Rham algebra of a manifold
with holonomy contained in G is quasi-isomorphic to a differential algebra with all the dif-
ferentials 0 except in degree 3. The algebra is constructed from the differential operator L.
This implies that the Massey products are zero except possibly those ([«], [5], [Y]) such that
la| + |B] = 4 and |B| + |y| = 4; here |a| denotes the degree of o and so on. The manifold
M is not almost-formal because it has a non-zero Massey product ([a],[S],[7]) such that
jal = [y = 1 and 8] = 2
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1.1 Introduction

Berger’s list [17] (1955) of possible holonomy groups of simply connected, irreducible and
non-symmetric Riemannian manifolds contains the so-called exceptional holonomy groups,
Gz and Spin(7), which occur in dimensions 7 and 8 respectively. Non-complete metrics
with exceptional holonomy were given by Bryant in [22], complete metrics were obtained by
Bryant and Salamon in [24], but compact examples were not constructed until 1996, when
Joyce published [71], [72] and [73].

The remaining groups of Berger’s list different from SO(n), called special holonomy
groups, are U(m), SU(m), Sp(k) and Sp(k) - Sp(1). If the holonomy of a Riemannian mani-
fold is contained in a group G, the manifold admits a G structure, that is, a reduction to
G of its frame bundle. Therefore, holonomy is homotopically obstructed by the existence of
G structures. Examples of manifolds endowed with G structures for some of the holonomy
groups in the Berger list are not only easier to obtain than manifolds with holonomy in G,
but also relevant in M-theory, especially if they admit a characteristic connection [56], that
is, a metric connection with totally skew-symmetric torsion whose holonomy is contained
in G. It is worth mentioning that Ivanov proved in [69] that each manifold with a Spin(7)
structure admits a unique characteristic connection. Moreover, Friedrich proved in [55] that
Spin(7) is the unique compact simple Lie group G such that every G structure admit a unique
characteristic connection.

25
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The Lie group Go is compact, simple and simply connected. It consists of the endomor-
pisms of R” which preserve the cross product from the imaginary part of the octonions [104].
Hence, a Gy structure on a manifold ) determines a 3-form W, a metric and an orientation.
In [48], Fernandez and Gray classified Go structures into 16 different classes in terms of V.
Related to this, the analysis of the intrinsic torsion in [32] allowed to obtain equations invol-
ving dV¥ and d(x¥) for each of the 16 classes, determined by the Gg irreducible components
of A*T*Q and A°T*Q. In particular, the holonomy of @ is contained in G if and only if
dV¥ = 0 and d(x¥) = 0. The Lie group Spin(7) is also compact, simple and simply connected.
It is the group of endomorphisms of R® which preserve the triple cross product from the
octonions [I04]. Thus, a Spin(7) structure on a manifold M determines 4-form 2, a metric
and an orientation. In [43], Ferndndez classified Spin(7) structures into 4 classes in terms of
differential equations for df2, which are determined by the Spin(7) irreducible components
of A°T*M . Parallel structures satisfy dQ = 0, locally conformally parallel structures satisfy
dQY =0 A Q for a closed 1-form 6 and balanced structures satisfy *(d2) A Q = 0. A generic
Spin(7) structure, which does not satisfy any of the previous conditions, is called mixed.

The relationship between Go and Spin(7) structures was firstly explored by Martin-
Cabrera in [84]. Each oriented hypersurface of a manifold equipped with a Spin(7) structure
naturally inherits a Go structure whose type is determined by the Spin(7) structure of the
ambient manifold and some extrinsic information of the submanifold, such as the Weingarten
operator. Following the same viewpoint, Martin-Cabrera constructed Spin(7) structures on
Sl-principal bundles over Gy manifolds in [83]. Both approaches allowed him to construct
manifolds with Gy and Spin(7) structures of different pure types.

It turns out that manifolds admitting SU(3), Go and Spin(7) structures are spin and their
spinor bundle has a unit-length section 1 which determines the structure. In [I], spinorial
formalism was used to deal with different aspects of SU(3) and Gg structures, such as the
classification of both types of structures, SU(3) structures on hypersurfaces of Go manifolds
and specific types of Killing spinors. A clear advantage of this viewpoint is that a unique
object, the spinor, encodes the whole geometry of the structure. For instance, a Go structure
on a Riemannian manifold (@, g) with associated 3-form V¥ is determined by a suitable spinor
n according to the formula U(X,Y, Z) = —(n, XY Zn), where (-, -) denotes the scalar product
in the spinor bundle and juxtaposition of vectors indicates the Clifford product. Any oriented
hypersurface " with unit normal vector field N inherits an SU(3) structure implicitly defined
by ¥ = N* Aw + Re(©), where N*(X) = g(N, X) for X € TQ. But both the 2-form w and
the (3,0)-form Re(©) turn out to be determined by the same spinor 7.

In this paper we follow the ideas of [I] to describe the geometry of Spin(7) structures
from a spinorial viewpoint, starting from the classification of these structures, continuing to
analyze the relationship between Go and Spin(7) structures and finishing with the study of
Spin(7) structures on quasi abelian Lie algebras.

Our first result, Theorem in section describes each type of Spin(7) structure
in terms of differential equations involving the spinor 7 that determines the structure (see
section for details). Parallel Spin(7) structures have already been studied from a spinorial
point of view and correspond to the equation Vi = 0. In order to state the spinorial equations
for the remaining classes consider D the Dirac operator on the spinor bundle.

Theorem 1.1. A Spin(7) structure determined by n is:
1. Balanced if Dn = 0.

2. Locally conformally parallel if there exists V- € X(M) such that Vxn = %(X* AVF)n.
In this case, Dn = Vn.

Moreover, in Proposition we determine the torsion forms of the structure and we
obtain that the Lee form is © = %V* where Dn = Vn.
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Our techniques also allow us to identify the intrinsic torsion of the structure and to
obtain the formula for the unique characteristic connection of each Spin(7) structure, given
by Ivanov in [69, Theorem 1.1]. Along the way, in section we also show that the spinorial
equation for balanced structures also follows from [69, Theorem 9.1].

We also introduce the concept of Gy distributions, a general setting to relate Go and
Spin(7) structures.

Definition 1.2. Let (M, g) be an oriented 8-dimensional Riemannian manifold and let D be
a cooriented distribution of codimension 1. We say that D has a Go structure if the principal
SO(7) bundle Pgo (D) is spin and the spinor bundle (D) admits a unit-length section.

This construction allows us to obtain the results obtained in [83] and [84] about Go
structures on hypersurfaces of Spin(7) manifolds and S!-principal bundles over Gy manifolds.
Related to this, we also study warped products of manifolds admitting a Go structure with
R.

The formalism of Gg distributions enables us to study Spin(7) structures on quasi abelian
Lie algebras, that is, Lie algebras with a codimension 1 abelian ideal. To state the result,
which is Theorem we suppose that the Lie algebra is g = (eq, ..., e7) and the abelian
ideal is R” = {ej,...,er); we also assume that g is endowed with the canonical metric and
the canonical volume form.

Theorem 1.3. Denote by € = ad(eg)|r7 and let E13 and Ezy be the symmetric and skew-
symmetric parts of the endomorphism. Then, g admits a Spin(7) structure of type:

1. Parallel, if and only if E13 = 0 and the eigenvalues of Ea4 are 0, £A11, TXoi, £(A1 +N2)i,
for some 0 < A1 < Ao.

2. Locally conformally parallel and non-parallel if and only if E13 = h Id with h # 0 and
the eigenvalues of E24 are 0, A3, £A2t, (N1 + N2)i, for some 0 < A < Ag.

3. Balanced if and only if g is unimodular and the eigenvalues of Eoq are 0, +A1i, £ Ao,
+(A1 + A2)i, for some 0 < A\ < \so.

Moreover, if Ea4 # 0 then it admits a Spin(7) structure of mized type.

This result allows us to provide an example of a nilmanifold admitting both a left-invariant
balanced structure and a left-invariant mixed structure. This nilmanifold has b; = 2 but it
is not a product S' x Q. We also compute an example of a left-invariant strict locally
conformally balanced structure, that is, a mixed structure whose Lee form is closed and
non-exact. We also obtain a compact manifold admitting a parallel Spin(7) structure as a
quotient of a quasi abelian simply connected Lie group. The Lie group is not abelian, but it
is endowed with a flat metric. In particular, the solvmanifold is a Zs quotient of a torus 7.

In addition, we determine nilpotent quasi abelian Lie algebras that admit balanced and
locally conformally balanced structures:

Theorem 1.4. Let L3 be the Lie algebra of the 3-dimensional Heisenberg group, Ly the
unique irreducible 4-dimensional nilpotent Lie algebra and A; the j-dimensional abelian Lie
algebra.

1. Every Spin(7) structure on the abelian Lie algebra Ag is parallel.

2. The Lie algebras g = A5 ® Ls or g = A3 ® Ly admit strict locally conformally balanced
structures. However, they do not admit balanced structures.

3. The rest of the quasi abelian nilpotent Lie algebras admit a balanced structure and a
strict locally conformally balanced structure.
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This paper is organized as follows. Section [1.2] contains a review of algebraic aspects of
Spin(7) geometry. Section identifies the instrinsic torsion of the Levi-Civita connection
with the covariant derivative of the spinor that determines the structure, section [1.4] provides
the spinorial classification of Spin(7) structures, section is devoted to obtain the torsion
forms of Spin(7) structures in terms of spinors and section provides an alternative proof
of the existence of the characteristic connection. Section provides a complete analysis
of Gg structures on distributions and then focuses on the particular cases described above.
Section [I.§ deals with invariant structures on quasi abelian Lie algebras and provides compact
examples. Finally section [I.9] is devoted to the study of quasi abelian nilpotent structures
and its Spin(7) structures.
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1.2 Preliminaries

In this section we introduce some aspects of Clifford algebras, 8-dimensional spin manifolds
and Spin(7) representations, which can be found in [54], [79] and [104] as well as the notations
that we use in the sequel.

1.2.1 The real representation of Clg

The Clifford algebra Clg is isomorphic to the algebra of endomorphisms of R'6. We denote
such an isomorphism by p: Clg — End(R'6); this is indeed the unique irreducible repesenta-
tion of Clg up to equivalence [79, Chapter 1, Theorem 4.3]. There is also an inner product
on R'6, which we denote by (-, -), such that the Clifford multiplication by a vector of R® is a,
skew-symmetric transformation [79, Chapter 1, Theorem 5.3].

Fix an orientation of R® and let vg be a unit-length positively oriented volume form of
R8. Consider the Spin(8) equivariant endomorphism:

vg-: RO 5 R s 16

Since v = 1, there is a splitting R = A* & A~ where A* is the eigenspace associated
to +1. In addition, this endomorphism anticommutes with the Clifford multiplication by a
vector.

It is well known that Spin(8) contains three distinct conjugacy classes of the group
Spin(7) [79, Chapter 4, Proposition 10.4]. The first one is obtained from the adjoint ac-
tion Ad: Spin(8) — SO(8) as the stabilizer of any non-zero v € R8. The remaining ones,
which we denote by Spin(7)¥, are constructed from p as the stabilizer of a non-zero spinor
¢+ € AT. The adjoint action embeds Spin(7)* into SO(8) because —1 ¢ Stab(¢+). Note
also that the conjugacy classes Spin(7)* depend on the choice of an orientation of R® and
these are conjugated in Pin(8).

Remark 1.5. We can construct p from the representation of the complex Clifford algebra and
the real structure constructed in [54, Chapter 1]. The construction that allows to obtain an
irreducible representation of Clg is similar but there is a difference that we outline. Let Cly
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be the Clifford algebra of (C?*, "2 22), according to [54, p.13] there is a 2¥-dimensional
complex space Agy and an isomorphism kg : Clop — End(Agy). The multiplication by the
complex volume form V(Qck = iFuy splits Agi into two eigenspaces Afk associated to the
eigenvalue +1 which are irreducible under the action of Spin(2k).

1. There is a Spin(8) equivariant real structure wg on Ag which commutes with v (see
[54, p.32]). Thus, a real representation is (Ag); @ (Ag)—, where (AJ)+ and (Ag)+
are the eigenspaces associated to the eigenvalue +1 of pg on Ag and Ag.

2. There is a Spin(6) equivariant real structure pg on Ag that anticommutes with vg.
Thus the real representation of Clg is (Ag)y = {¢ + ¢6(¢): ¢ € Af}, the eigenspace
associated to +1 of ¢g. In addition, if n = ¢ + @g(¢) # 0 is a real spinor, then

StabSpin(G) (77) = StabSpin(G) (¢) = StabSpin(G) (‘Pﬁ(¢)) = SU(3)

The hermitian metric h on Ag constructed in [54, p.24] makes the Clifford multiplication
a skew-symmetric transformation. In particular, h is Spin(8) invariant. The fact that Agt
are irreducible Spin(8) modules guarantees that b(¢,n) = h(psg(¢),n) is a symmetric bilinear
form on Aét and therefore the restrictions of A to the real and the imaginary part of Agt
are real-valued. The subspaces A and Ag are orthogonal with respect to h because the
multiplication by v¢ preserves h. Therefore the real part of h is a scalar product on (A§)+ @
(Ag)— with the same properties as (-, ).

1.2.2  Spin(7) structures

Let (M, g) be an oriented Riemannian 8-manifold and let Pgo(M) be the associated SO(8)
frame bundle. If M is spin, ie. if we(M) = 0, the Spin(8) principal bundle Pgpin(M)
over M is a double covering 7: Pgpin(M) — Pgo(M) equivariant under the adjoint action
Ad: Spin(8) — SO(8). The associated spinor bundle is (M) = Pgyin(M) x, R'® and it is
equipped with a metric induced by (-, -) which we denote by the same symbols. In addition,
there is a splitting X(M) = (M) @ S(M)~, where £(M)* = Pgpin (M) x, AE.

Also note that X (X(M)*) ¢ X(M)T if X € X(M) and that for each nowhere-vanishing
spinor 17: M — X(M)* the map:

TM — S(M)F, X +—s Xn, (1.1)

is an isomorphism.
The Clifford multiplication with a vector field provides an action of A¥T*M defined as
follows.

1. The product with a covector is defined by X*¢ = X ¢, where we used the canonical
identification between the tangent and the cotangent bundle: X* = g(X, ).

2. If the product is defined on A*T*M when ¢ < k, we define

(X* A B)p = X(Be) + (i(X)B),

where i(X)A3 denotes the contraction, § € A*¥T*M and X € TM. This product is
extended lineary to A¥T1T* M.

For instance:

(X*AY*)p = (XY + g(X,Y))o, (1.2)
(X*AY*ANZ)¢= (XY Z+g(X,Y)Z — g(X, 2)Y +g(Y, Z)X)o.
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Observe also that X+ (M) = {¢,: vé, = +¢,} where v is the positively oriented unit-
length volume form of (M, g).

The action Spin(8) x R!6 — RI6 lifts to an action Pgpim (M) x (M) — X(M), so that
the existence of a unit-length spinor n € I'(X(M)¥) determines an identification between
Spin(7)* and the stabilizer of 7, at each p € M. This defines a Spin(7) principal subundle
Stab(n) C Pgpin(M) and therefore, Ad(Stab(n)) is a Spin(7) reduction of Pgo(M). In this
paper we focus on Spin(7) structures determined by positive spinors. This condition is not
restrictive due to the following result which is not difficult to check.

Lemma 1.6. Let (M,g) be a connected oriented spin manifold and let (M) be its spinor
bundle. Let X(M) be the spinor bundle associated to the opposite orientation on M. There

is an isomorphism of C1(M) modules R: S(M) — S(M). Therefore, R(S(M)*) = (M) .

For the convenience of the reader, we shall relate this spinorial approach with the point
of view of positive triple cross products [104, Definitions 6.1, 6.12].

Lemma 1.7. Let (M, g) be a Riemannian oriented spin manifold that admits a unit-length
spinor n: M — S(M)*®. Then there is a well defined map:

TM xTM xTM — TM, (X,Y,Z)— X XY xZ st, (X xY x Z)p=(X*AY*AZ*)n,

which is in turn a positive triple cross product. The associated 4-form Q(W,X,Y,Z) =
g(W, X XY x Z) satisfies that Q0 = £4.

Moreover [104, Theorem 10.3] states that there is a 1 to 1 correspondence between 4-
forms 2 that define a positive triple cross product with Q A @ > 0, and sections of the
projectivization of X(M)*.

According to the previous discussion we summarize our basic assumptions in a Proposi-
tion. In the sequel given a frame (eg,...,e7) and a spinor ¢ we use short-hand notation ¢

for g(e;i,-), € for €' A el A ek A el and eijrx¢ for e;ejer.

Proposition 1.8. Let (M, g) be an oriented spin manifold and suppose that there exists a
positive unit-length spinor. Consider the triple cross product on M defined as in Lemma[I.7

1. The associated 4-form is self-dual and is determined by
1
QW, X, Y, Z) = 5((—WXYZ +WZY X)n,n).

2. Given local orthonormal vector fields eg, e1, es,eq such that ey is perpendicular to e =
eo X e1 X ey there exists a positively oriented orthonormal frame (e, ..., e7) such that:

Q— 0123 _ 0145 _ 0167 _ 0246 , 0257 _ 0347 _ 0356

(1.4)
| 4567 _ 2367 _ 2345 1357 4 1346 _ (1256 _ 1247

A local frame with this property is called a Cayley frame.

Proof. Taking into account Lemma and equation (|1.3]) the associated 4-form of the triple
cross product, which is self-dual, is:

OW, XY, Z)= (X xY xZ)n,Wn)=((XYZ+9(X,Y)Z —g(X,2)Y +g(Y,Z)X)n, Wn)
1

= S (-WXYZ+ WZY X)n,n).

The second statement can be found in [I04, Theorem 7.12]. A Cayley frame (eq,...,e7)
satisfies (eq - - ey)n = n; it is thus positively oriented. O
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1.2.3 Spin(7) representations

Let us denote the standard basis of R® by (ep, ..., e7), and the standard Spin(7) structure of
R® by Qq, given by . We also denote AF = A*(R8)*.

The representation of Spin(7) = Stab(£29) € SO(8) on A* induces an orthogonal decom-
position of this space into irreducible Spin(7) invariant subspaces. The expression Af denotes
such an [-dimensional subspace of A*. The Hodge star operator * gives Spin(7) equivariant
isomorphisms between A* and A3* determining that AF = *A?*k if & < 4. We briefly
describe the splitting; a complete proof can be found in [43] and [104, Theorem 9.8]. The
decomposition goes as follows:

A? =A7 @ A3,
A* =AF & A,
AT =A@ AT B Ay © As.

The first one comes from the orthogonal splitting A% = s0(8) = spin(7) ® m, where m =
spin(7)*. An alternative description is obtained from the map:

A2 5 A%, Br— +(BAQ),

which is Spin(7)-equivariant, symmetric and traceless. Therefore, A? splits into eigenspaces
which must coincide with the previous ones due to the irreducibility. One can check that the
eigenvalues are 3 on A2 and —1 on A3,. Moreover, the set

fag = (¥ + iles)ileo) 20}y (15)

is an orthonormal basis of A2 and the projection p2: A2 — A2 is consequently determined by
the equation:

1
p2(u* Av*) = Z(u* AV +i(v)i(u)). (1.6)
The subspaces involved in the splitting of A3 are:
AS =i(R®)Qy, Adg =ker(-AQg: A2 = AT).

In order to describe the last one observe that the Hodge star operator splits A% into two
35-dimensional spaces: anti self-dual and self-dual forms. The space of anti self-dual forms
is A4 and the space of self-dual forms is AT ® A2 @ AJ,. Obviously, AT = () and the space
A% is the image of the map,

jrm— AL G(8) = pu(B),
with p: SO(8) — AYT*M, p(g) = (971)*Qo. That is, j is the restriction to m of the map
determined by j(u* Av*) = u* Ai(v)Q — v* Adi(u)Qo and therefore, A] = {u* Ai(v)Qy —v* A
i(u)Q0, u,v € R¥}. The subspace A3, is the orthogonal complement of A @ A% @ Aj..
We now describe the irreducible decomposition of A' ®m which is related with the intrinsic
torsion of the Levi-Civita connection (see Section [1.3).

Proposition 1.9. Let (eg,...,e7) be a Cayley basis and let p2: A?> — m be the orthogonal
projection. Consider the Spin(7)-equivariant maps:

7
0: A% s Alom, B 0(8) = e @pi(i(e;)B),
j=0

ZA@m = A3, a®pBr— aAB=3alta®p),

where alt(T)(vi,...,vp) = & >oes, (1) T (Vg(1), - -+ Vo(n))- The eigenvalues of = o ©
are % and % They are associated to the eigenspaces A3 and Alg respectively.



The intrinsic torsion 32

Proof. The map Z o0 0 is symmetric and Spin(7)-equivariant, so that its eigenspaces must be

A3 and Ajg. A direct computation in the cases i(ep)Qo € A3 and 23 + e!%° € A}; shows

that the eigenvalues are § on A3 and § on A, O

We formulate an alternative description of A' ® m which is proved in the same manner.

Proposition 1.10. Let (eq,...,e7) be an orthonormal frame, and let p%: A% — m be the
orthogonal projection.Consider the O(8) equivariant maps,

el @ p2(ef Av*),

M~

RE s AMem, (v) =

k: Alom— Rg, k(T) (i(ei)F(ei))ﬁ,

I
.M\]g

I
o

(2

which do not depend on the orthonormal basis chosen. Then t(R®) = O(A3) and ker(k) =
O(Alg). Moreover, ko u(v) = v for any v € RS,

The study of the space A' ® A% is done similarly; this turns out to be isomorphic to
A! @ m. For instance, it is not difficult to check that the map alt: A' ® A% — A® is a Spin(7)
equivariant isomorphism.

A Spin(7) structure on the Riemannian manifold (M, g) determines a splitting of A¥T* M
into subbundles AfT*M = R xgi(7) AF where R is the Spin(7) reduction R of the SO(8)
principal bundle given by the Cayley frames. We also denote by Qf“ (M) the space of smooth
sections of AfT *M. In addition, the maps j, ©, =, ¢, x induce bundle homomorphisms that
we call by the same name. We also consider the subbundles of T*M ® A2T*M defined by:

x1=OAKT*M),  x2=O(AIT*M). (1.7)

1.3 The intrinsic torsion

We compute the intrinsic torsion I' of the Levi-Civita connection which is a section of the
bundle TM @ A2T* M. Recall that the Levi-Civita connection V on TM induces a connection
w on Pgo(M). A connection on the Spin(7) reduction R is w’ = p(w)|rg, where p denotes
the orthogonal projection to spin(7). The connection that w’ induces on T'M is denoted by
V' and determines the intrinsic torsion by means of the expression:

VxY = VyY +T(X)Y.

The skew-symmetric endomorphism I'(X) can be identified with a 2-form which lies in
Q2(M) for each X € TM. To compute it, define H as the subspace of A which is orthogonal
to n with respect to the scalar product (-,-) defined in Section Of course, H depends
on the choice of the spinor 1. We first prove that the vector bundles A2T*M and H are
isomorphic.

Lemma 1.11. There is a well defined Spin(7)-equivariant map
ANT*M — H, o+ an,

whose kernel is A3, T*M. Indeed, its restriction c: A2T*M — H is an isomorphism whose
inverse is given by (¢ 1¢)(X,Y) = 1(¢, (XY + g(X,Y))n).
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Proof. The spinor (1 is perpendicular to n if 8 € A2T*M. Therefore, the map is well-defined
and it is Spin(7)-equivariant because Spin(7) = Stab(n,).

To prove that ¢ is an isomorphism, we first claim that if (e,...,e7) is a Cayley frame
then a;n = 4e%p, where the 2-forms «; are defined as in equation (L.F). Observe that
we only need to check this formula for j = 1 because ¢ is Spin(7)-equivariant and Go =
Spin(7) N Stab(eg) acts transitively on the 6-sphere generated by (ey,...,e7). In this case,
ar = M 4 e — e — 57 and if (4,5) € {(2,3),(5,4),(7,6)}, then Q(eg, e1,e;,¢5) = 1; we
now prove that this equality implies that e®'n = e¥n. First observe that e®'n and e“n are
unit-length positive spinors. In addition, according to Proposition (1), 1 = —(ein,n) =
(e"n, €¥n); therefore eV'n = e¥n.

Moreover, taking into account that {e%n}’_; is an orthonormal basis of H we obtain:

(Cb, eOiT/)ai-

1

=

cH9) =

7
1=
If X = ep, Y = e; are orthonormal vectors, then (e, e1) = (e% —i(eo)i(e;)2)(eo, 1) = 1.

Hence, ¢~ 1¢(eo, e1) = 1(¢, eoern).
Finally, for dimensional reasons the Clifford product with 7 must vanish on A3, T*M. O

Remark 1.12. These computations and others that we do in the sequel in terms of Cayley
frames may be computed alternatively from a representation of Clg.

The previous result enables us to find a formula for the intrinsic torsion:
Proposition 1.13. The intrinsic torsion is given by I'(X) = 2¢ 1V xn.

Proof. We also denote by V and V' the induced connections on the spinor bundle. According
to [54] p. 60]:

Vo= Vg + 5T(X)6,

where T'(X) acts on ¢ as a 2-form. The holonomy of the connection V' is contained in
Spin(7) and Stab(,) = Spin(7); therefore V' = 0. Finally, if X € TM then Vxn € H and
['(X) € A2T*M thus, Lemma shows that T'(X) = 2¢~ 1V yn. O

1.4 Classification of Spin(7) structures.

The classification of Spin(7) structures was obtained in [43, Theorem 5.3]. There it is proved
that VQ € T(TM* ® A2T* M) and that A’ ® A% splits into two irreducible Spin(7) subspaces,
described in terms of the isomorphism Id ®j: A' @ m — A ® A} (see Section for the
definition of j). Those are of course (Id ®j) o O(Alg) and (Id ®j) o O(A3).

We also denote by Id ®j the induced map from T*M ® A2T*M to T*M @ A3T* M and we
define Wi = (Id ®7)(x1) and Wa = (Id ®7)(x2), where x; are defined as in equation ([L.7).

Moreover, it is straightforward to check that Id ®j(I') = VQ and that alt(VQ) = d€.
These considerations allow us to describe the classification of Spin(7) structures in three
different ways.

Definition 1.14. Let I' be the intrinsic torsion of the Spin(7) structure determined by (2.
The type of the structure is given by the equivalent conditions:

r | vQ dQ)
Parallel 0 0 0
Balanced X1 | Wi *(dQ)ANQ=0
Locally conformally parallel | x2 | Wa | 0AQ, 6 <c QY(M)
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In other case, the structure is said to be of mixed type.

Definition 1.15. The Lee form of € is the unique § € Q!(M) such that the orthogonal
projection to Q3(M) of d2is 6 A €.

Remark 1.16. According to Proposition locally conformally parallel Spin(7) structures
are the class of Spin(7) structures with vectorial torsion in the sense of [2]. In [2, Proposition
2.2] there is a characterization of compact manifolds with vectorial torsion and formulas for
the Ricci tensor.

Remark 1.17. If the structure is locally conformally parallel then df = 0. Let O be a
contractible open set. Take a primitive [ of —%«9\0 and define the metric ¢’ = ¢*/g|p. The
associated Spin(7) structure is ' = e*Q|p and it satisfies d = 0. Therefore, Q|o is
conformal to a parallel structure. This justifies the name.

We now focus on obtaining an alternative description in terms of spinors. For that
purpose, decompose I' = T'; + I'y according to the splitting x1 @ x2 and write T'2(X) =
%p%(X * A V*). Taking into account Proposition and equation (|1.6)) we obtain:

1. k(T2) =V*,

2. E(T'y) = %ZZ:O NPt AVF) =1 T oe Ni(e)i(V)Q = 3i(V)Q.
Remark 1.18. Let Z(V) = {p € M s.t V(p) = 0}. The open set M —Z(V') has a Gg structure
defined by i(V/||[V]|)Q2.
Remark 1.19. We added a factor % in order to avoid a constant in Theorem m

We compute the action of the Dirac operator D on the spinor n that determines the
Spin(7) structure.

Proposition 1.20. Let Q be a Spin(7) structure determined by a spinorn. Let T' =T +T'y
be its intrinsic torsion with To(X) = 3p2(X* AV*). Then,

1. The map A3T*M — X(M)~, a — an is Spin(7) equivariant and its kernel is A3 T* M.
Moreover, (i(X)Q)n = 7Xn.
2. The action of the Dirac operator on n is given by Dn = Vn.

Proof. The first statement is a consequence of Schur’s Lemma. One can check the equality
i(X)Qn = 7Xn by supposing that X is unit-length and using a Cayley frame such that
X = eg.

For the second we compute in terms of a Cayley local frame (eg,...,e7),
7 7
2Dn =) el(e)n = (e AD(e;) —i(e)T(ei))n = E(I)n — w(T)n = 2V
i=0 i=0

We used Proposition to obtain the first equality. For the last, we used the formulas
(1) and (2) above; we also took into account that x(I'1) = 0 by Proposition and that
=Z(T'1)n = 0 by the first part of the proposition. O
Theorem 1.21. The Spin(7) structure determined by a spinor n is,

1. Parallel if Vn =0
2. Balanced if Dn =0

3. Locally conformally parallel if there exists V. € X(M) such that Vxn = %(X* AV*)n.
In this case, Dn = Vn.

Proof. The equation for balanced structures follows from Proposition and the equation
for locally conformally parallel structures follows from Lemma and Proposition[I.13] O
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1.5 Torsion forms of a Spin(7) structure

In this section we describe the torsion forms of a Spin(7) structure by means of the spinor that
defines it. That is, we determine the projections of xd(2 to the spaces Q3(M) and Qig(M).
Note that the projection is given by pg: Q3 (M) — QE(M), pd(B) = =2 x (x(BA Q) A Q).

For that purpose, denote by D the Dirac operator on ¥ (M). Since Dn € (M)~ the
isomorphism ensures the existence of a unique vector field V' such that

Dn="Vn. (1.8)
Then, the 3-form ~3(X,Y,Z) = (Dn, (X xY x Z)n) = (i(V)Q)(X,Y, Z) obviously lies in
Q3(M).
Proposition 1.22. In terms of the previously defined notation,

*d) = 2(yg — 12alt(c™'Vn)).

Proof. Taking into account that V is a metric connection on the spinor bundle and acts as
a derivation for the Clifford product, we obtain:

(Vo Q) (W, X, Y. Z) = %(((—WXYZ FWZYX)Vrnn) + (~-WXYZ + WZY X)n, Vo))

1
= S(=Z2YXW + XY ZW = WXY Z + WZY X)n, V1),

Take orthonormal vectors X, Y, Z and an orthonormal oriented basis (Xo, ... X7) such that
Xo =X, X; =Y and X9 = Z. Then, using the previous equality and the fact that the basis
is orthonormal:
7 7
SUX,Y, Z) ==Y Vx,QX;, XY, Z) = -2 (XY Zn,X;Vx,n)
i=3 i=3
==2(Dn, (X XY xZ)n)+2(XYZn,XVxn+YVyn+ ZVzn)
= =2((Dn, (X xY x Z)n) = (YZn,Vxn) + (X Zn,Vyn) — (XYn,Vzn))
= —2((Dn, (X xY x Z)n) —12alt(c"'Vn)(X,Y, 2)).
The third equality follows from 22723 XiVx,n= DW—Z?:1 Xi;Vx,;n. Note that the coefficient
12 comes from the normalization of alt and the expression ¢~ !'(Vxn)(X,Y) = $((XY +
9(X,Y)n, Vxn). O
We decompose *df) according to the splitting Q3(M) = Q3(M) @ Q3g(M):

Proposition 1.23. The 3-form y48 = 375 — 84 alt(c=1Vn) lies in Q3s(M) and
2 8
dQ = Zyug + .
* 748 + -8

Moreover, the Lee form is given by 6 = %V*, where V' is defined as in the equation .

Proof. Take a unit-length vector X and a Cayley frame (eg,eq,...,e7) such that X = eg.
Then:

(ve AQ)(e1, ..., er) =(Dn, (e123 — €145 — €167 — €246 + €257 — €347 — €356)7))
=T(Dn, eon) = TV (X),
(12alt(c™ V) AQ)(e1, ..., er) =6(Ve,n, e23m) — &(Vey 1, €a5n) — &(Veyn, €677)
— &(Veyn, ea6n) + &(Veyn, e57m) — &(Veyn, earn)
— &(Veyn, es6m) = 3(Dn, eon) = 3V7(X).
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We took into account formula to determine the non-zero terms g (e;, €5, €x) (€1, em, €p, €q)
that appear in 5 A Q(eq,...,e7). In the second computation, we denoted by & the cyclic
sums in the indices involved. To arrange the last term observe that each index appears 3
times and:

6(v8177a 62377) = (81v6177 =+ €2ve277 + e3ve3?’], e12377) = (61V€117 + 82v6277 =+ €3ve3777 6077)7
_6(v6177a 64577) = <61v6177 =+ €4ve477 + €5Ve577; _614577) = (61v6177 + 64v6477 + e5v€5777 6077)7

and so on. We used that ejo3n = egn = —ey45n for the last equalities. This is deduced from
the equality €%l = €23y = —e*®n, that we obtained in the proof of Proposition Taking
into account that Cayley frames are positively oriented, we obtain x(V*) = %('yg ANQ) =
4alt(c=1Vn), so that vy lies in Qig(M). Finally, taking into account the formula for xd2 in
Proposition we get xd) = %748 + %78.

To compute the Lee form we used that the projection of df) to Q3(M) is —% * vg and
the formula i(X)Q = x(X* A Q), which can be checked by considering a Cayley frame and
X = eg. L]

1.6 The characteristic connection

The characteristic connection of a Spin(7) structure is a connection V¢ with totally skew-
symmetric torsion such that V¢ = 0. The computations above allow us to prove the
existence and uniqueness of the characteristic connection for manifolds with a Spin(7) struc-
ture. This is a well known result which appears in [69, Theorem 1.1]. Our proof is based on
the argument of Theorem 3.1 in [55] and uses the notation of section

Proposition 1.24. Given a Spin(7) structure, there exists a unique characteristic connection
whose torsion T € Q3(M) is determined by the expression:

T:—m—%*(mm.

Proof. A connection with skew-symmetric torsion T € Q3(M) is given by Vx Y +3T(X, Y, -)F,
where T(X,Y,-)* is the vector field such that (T(X,Y, )#)* = T(X,Y,-). Thus, the lifting to
the spinor bundle is Vx¢ + 1i(X)T¢.

Taking into account that the condition V¢ = 0 is equivalent to Vn = 0 and that
the kernel of the Clifford product with n on A2T*M is A2,T*M, we deduce that the set of
characteristic connections is isomorphic to the set of 3-forms T € Q3(M) such that

—4c7'Vxn =i(X)Tn = p2(i(X)T)n, VX € X(M).

The last equality may be rewritten as —4c~'Vn = ©(T)n. From the definition of 45 given in
Proposition we obtain: —4Z(c™!'Vn) = —12alt(c7'Vn) = 1(ys — 37s). Finally, taking
into account the eigenvalues of = o0 O, we deduce:

1 4 4 7
T=—-(2 S = *df) — =y = —0Q) — — Q).
7( V48 378) *d 378 § 6*(9/\ )

To obtain the second equality we used the formula for d) from Lemma [1.23] To check the
last one, note that v = i(V)Q =x(V* A Q) = % * (0 AQ). O

Remark 1.25. The Spin(7) structure is balanced if and only if T € Qig(M) and locally
conformally parallel if and only if T € Q3(M).
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Remark 1.26. The equation for balanced structures given in Theorem [1.21]is also deduced
from [69, Theorem 9.1], which states that the Spin(7) structure determined by 7 on a Rieman-

nian manifold (M, g) is balanced for the metric e?f g if and only if it satisfies the equations
vty =0, (1.9)

1
(df ~ 5T =0, (1.10)

where V7 is the g-metric connection with totally skew-symmetric torsion T. That is, V¢ =
Vx¢+ 2i(X)T¢ for ¢ € £(M). This connection has an associated Dirac operator, which is
related to D:

7 7
1 . 3
DY¢=> e Vio=Do+ 1 > ei A(i(e)T)p = D¢ + ZT<z>.
i=0 1=0

Assuming [69, Theorem 9.1], if we suppose that the structure is balanced for the metric g,
equations || and 1| imply that 0 = DTy = Dn+ %Tn = Dn. Conversely if we suppose
that Dn = 0 and we choose T the torsion of the characteristic connection, then V15 = 0 and
0=DTyp=Dn+ %Tn, so that Tn = 0. According to Proposition T € Q3s(M) so that
structure is balanced.

1.7 Gy distributions

In this section we define the notion of a Go distribution on a Spin(7) manifold in terms
of spinors and we study the torsion of the structure with respect to a suitable connection
on the distribution. Then we relate the Spin(7) structure of the ambient manifold with
the G structure of the distribution. This approach enables us to study Go structures on
submanifolds of Spin(7) manifolds, S!-principal fibre bundles over Go manifolds and warped
products of manifolds admitting a Go structure with R. Our analysis is very similar to the
description of Gg structures from a spinorial viewpoint done in [I], which we briefly recall.

A 7-dimensional Riemannian manifold (Q, g) is equipped with a Gy structure if it is spin.
Its spinor bundle admits a unit-length section 7 because rk(X(Q)) = 8 > 7 = dim(Q). A
cross product is constructed from the spinor and is determined by a 3-form W. Denote by
V® both the Levi-Civita connection of the manifold and its lifting to the spinor bundle; an
endomorphism S of T'Q) is defined by the condition:

Vin = S(X)n.

The intrinsic torsion is —2i(S)¥ [I, Proposition 4.4], so that pure types of Gg structures
are given by the G irreducible components of End(7'Q). It is known that End(R7) =
X1 P x2 P X3 D x4, where x; are irreducible Gy representations, defined by:

x1={Id), x2=g2, x3= Symg(]R7), x4 = {A: R” — R": AX)=X xS, Se R7},

where Symg (R7) denotes the set of symmetric and traceless endomorphisms. The dimensions
of the previous spaces are 1, 14, 27 and 7 respectively.

Denote by Rg a Gg reduction of the SO(7) principal bundle Pgo(Q) and define x;(Q) =
R X @, Xi, then the pure classes of G structures are determined by the condition S € x;(Q).
For instance, nearly parallel Go structures satisfy S € x1(Q), almost parallel or calibrated
are those with § € x2(Q), and locally conformally calibrated are such that S € x4(Q). In-
deed in the nearly parallel case it holds that S(X) = XX for some Ao € R. Moreover mixed
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classes are also relevant, for instance cocalibrated structures correspond to S € x1(Q)®x3(Q).

Taking this into account, we define Gy structures on distributions and characterise the
existence of such structures.

Definition 1.27. Let (M, g) be an oriented 8-dimensional Riemannian manifold and let D be
a cooriented distribution of codimension 1. We say that D has a Gg structure if the principal
SO(7) bundle Pgo (D) is spin and the spinor bundle (D) admits a unit-length section.

Remark 1.28. Let p: Cl; — End(R®) be irreducible representation of Cl; with p(e; - --e7) =
Id. If the bundle Pso (D) is spin, then X(D) = Pgpin(D) x; R, This is a vector bundle over
M, with rk(3(D)) = 8. Therefore, it is not automatic that the bundle ¥(D) — M admits a
unit-length section.

Lemma 1.29. Let (M, g) be an oriented 8-dimensional Riemannian manifold and let D be
a cooriented distribution of codimension 1. Take a unit-length vector field N perpendicular
to D such that TM = (N) ® D as oriented bundles. The manifold M is spin if and only if
the bundle Pso(D) is spin. In this case, the spinor bundles are related by X(D) = X(M)*
and it holds

X pop=NX¢, if X €D, ¢ex(D), (1.11)

where we suppressed the symbol -pr to denote the Clifford product on M.
Therefore M has a Spin(7) structure if and only if D has a Gy structure.

Proof. The bundle Pgo(D) is a reduction of Pgo(M) because of the inclusion:
i: Pso(D) = Pso(M), (Xi,...,X7) = (N, X1,...,X7).

Suppose that Pgo(D) is spin and denote the spin bundle by 7p: Pgpin(D) = Pso(D). Then,
we define the principal Spin(8) bundle Pgpiy (M) = Pgpin(D) X gpin(7) Spin(8) and the map:

T Pspin(M) = Pso(M),  [F,¢] = Ad(@)(i(mp(F))),

which is a double covering and Ad-equivariant. Therefore, M is spin. Conversely, if M is
spin then the pullback ¢*(Pgpin(M)) is the spin bundle of Pgo (D).

Moreover, the irreducible 8-dimensional representation of Cl; which maps the volume
form to the identity is constructed from the composition

Cl; — C13 & GIA™),

where the first map is induced by the embedding R — Clg, v — egu, and (eq, ..., e7) denotes
the canonical basis of R®.
Therefore, the spinor bundle (D) coincides with (M)™ and Clifford products of vectors
and spinors are related by the formula .
O

From now on we assume that the manifold (M, g) has a Spin(7) structure €2, constructed
from a unit-length section 7 of the spinor bundle X(M)*, as in Proposition We now
equip M with a distribution D as in Lemma We denote by Q%(D) the space of smooth
sections of AFD*.

Remarks 1.30. In this situation we observe:

1. If 3 € Q2%(D) and ¢ € X(D) then 3 -p ¢ = B¢.
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2. There is an orthogonal decomposition X(D) = (n) & (D -p n).
3. The section n defines a cross product on D by means of:
(X xY)n = (XTAY)n = (XY +g(X,Y))n,
which is determined by ¥p(X,Y,Z) = (Xn, (Y x Z)n) = —(n, XY Zn).

4. The cross product is determined by ¥p = (V). Therefore, taking into account that
*) = Q) we obtain Q@ = N* AWUp + +p¥p.

We now equip D with a suitable connection VP, the projection of covariant derivative of
the ambient manifold VM to D. That is,

Definition 1.31. The covariant derivative VP of D is determined by the expression:
VY =VRY +¢(T(X),Y)N, X,Y D,

where T € End(D) is given by: 2¢(T(X),Y) = —-N(g9(X,Y))—g([X,N],Y)—g([Y,N], X) +
9([X, Y], N).

The definition of 7 follows from the Koszul formulas. We decompose 7 into its symmetric
and skew-symmetric parts, which we call W and L respectively. Of course,

1
g(W(X)7 Y) :i(N(g(Xa Y)) - g([X7 N]a Y) - g([Y7 N]aX))7 (112)
1 1.
The connection VP is a metric connection and the tensor £ = —%dN * measures the lack of

integrability of the distribution.

We also denote by V7 the lift of this connection to the spinor bundle ¥(D). This is
a metric connection with respect to (-,-) and behaves as a derivation with respect to the
Clifford product. Hence VPn € ()1, and there is an endomorphism of D that we denote by
Sp such that Vgn = Sp(X)n. Let us define x;(D) = Rp X xi, where Rp is the Go reduction
of Pso(D) determined by Wp; there is a splitting of End(D) and we decompose S according
to it:

Sp(X) = AId+S2 + S3 + Sy,

where A € C°(M), S2 € x2(D), S5 € x3(D), Sy € xa(D). We let S € X(D) be such that
54 (X ) =X x5

We relate these components with the Spin(7) structure defined on M:

Lemma 1.32. The covariant derivative VM at S(M)*T in the direction of D is V§(4¢ =
ngﬁ — %NT(X)QZ). In particular, define A = Sp — %7". then,

V¥n = NAX)n. (1.14)

Proof. Let ¢ € X(M)' be a spinor. Let F = (Xo,X1,...,X7) be a local orthonormal
frame with Xo = N and Xi,..., X7 € D, denote by F its lifting to Pspin(M) and write
o(p) = [F, s(p)]. According to [54, p. 60], if X € D then,

- 1
VX =[F dsp(X)]+5 > g(VXXi, Xj)XiXo.
0<i<j<7
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Taking into account Definition we obtain the equalities g(V¥ X;, X;) = g(VRXi, X;)
for 1 <i<j<7 and g(V¥N,X;)=—g(N,V¥X;) = —g(T(X) X;). Therefore,

Vi =[Fds, (X)) 45 S a(VRXG X)) XiXp0 - Zg X;)NX;6.

1<i<j<7

The formula for the covariant derivative in [54, p. 60] allows to conclude that the first two
summands correspond to V§¢ under identification provided in Lemma In addition,
the last summand is equal to —%N T(X)¢. The second statement follows from the equality
VEn =8Sp(X)n for X € D. O

We decompose £ and W according to the splitting of End(D) into irreducible parts and
then we decompose A:

1. L = Lo+Ly, where Ly € x2(D), Ly € x4(D) and let L € X(D) such that Ls(X) = X x L.

2. W= hld+Ws3, where h € C*°(M), W3 € x3(D).

3. .A = uld +A2+A3+A4, where n = )\—%, A2 = SQ—%LZ, Ag = Sg—%Wg, A4 = 54—%144.
We also denote A = S — l

We compute *dS in terms of the previous endomorphisms and VX ~7- Our first lemma is
deduced from [I, Theorems 4.6, 4.8].

Lemma 1.33. Let (X1,...,X7) be an orthonormal local frame of D. Then
7
> XiA(Xi)n = —=Tun — 6N An.

Proof. We split the endomorphism A into its Gy irreducible components and then compute
each term separately. It is obvious that EZ_I X;pX;n = —Tun. Moreover,

ZX (X; x A)n ZX (X;NA+ g(X;, AYN)np = —6N A.
i=1 i=1

Finally consider the Ga-equivariant map, m: D ® D — X(D), m(X,Y) = XYn. For dimen-
sional reasons, its kernel must be x2(D) & x3(D). If k € {2,3}, then:

7 7
i=1

=1

where we denote by (Ay);; the entries of the matrix Ay with respect to the basis (X1, ..., X7).

O]
Remarks 1.34.
1. Since VA is perpendicular to 1, there exists U € X(D) such that V¥n = —NUn.

In order to compute V47 we may take F' = (Xo, X1, ..., X7) a local orthonormal frame
of M such that N = Xo, a lifting ' € Pgpin(M) and write n(p) = [F, s(p)]. According

to |54, p. 60],
Vion =[F.ds(Xo)l+ 5 3 a(VxoXi, X;)XiX;m (1.15)

0<i<y<7
=[F,ds(Xo)]+ 5 | XoVxeXo+ Y. 9(Vx,Xi, X;)XiX; (1.16)
1<i<y <7

Therefore, U depends on the local information of the section and V x,X.
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2. From item (1) of this remark, equation (1.14]) and Lemma the Dirac operator of
M is
7
DMy =Un+> X;NA(X;)n= (U —6A+ TuN)n.
i=1
Lemma 1.35. Define the forms Ba € Q%(D) and B3 € Q3(D) by:
B2(X,Y) =g(A2(X),Y), B3(X,Y,Z) = alt(i(A3(:))Up)(X,Y, Z).
Then
1. N* ANi(N)(12alt(c71Vn)) = i(U — 2A)(N* A Up) — 2N* A 3o,
2. 12alt(c71Vn)|p = 3iu¥p — 3i(A)(*xp¥p) + 30%s.

Proof. The first equality is a consequence of the symmetric or the skew-symmetric property
of each factor; if X,Y € D then:

12 alt(C_lvT])(N, X,)Y)=—(XYn,NUn) — (NYn,NA(X)n) + (NXn, NA(Y)n)
=—i(U)¥Up(X,Y) — 2(Yn, (A2(X) + X x A)n)
= (i(U — 2A4)(N* A Up) — 2N* A B2) (N, X, Y).

Observe that we used equation ([1.14) to compute Vxn and Vyn. To check the second one,
first note that according to Lemma and equation ([1.14), if X,Y,Z € D then:

A IVn)(X,Y, Z) = (NA(X)n, Y Zn) = —(Y ZA(X)n, Nn) = Q(N,Y, Z, A(X))
=Up(AX),Y, 2).

Observe that the third equality is deduced from Porposition [I.8 by taking into account that
0= g(Yv A(X))(va N77) = g(Z, A(X))(an N77) = g(Y, Z)(A(X)nv N77)-

Thus, 12alt(c™!Vn)|p = 3alt(i(A(-))¥p). We compute each term in the decompo-
sition of A separately. It is clear that 3alt(i(uId)Up)(X,Y,Z) = 3u¥p(X,Y,Z) and
3alt(i(As(-))¥p) = 383. Moreover, the equality alt(i(Az(-))¥p) = 0 follows from the fact
that Ay € x2(D). Finally, if X, Y and Z are orthonormal vectors in 7D, then:

i(As(X)Up(Y, Z) = (X x A)n, (Y x Z)n) = (X An, Y Zn) = =(An, (X x Y x Z)n).
Therefore, 3alt(i(A4(-))Vp)(X,Y,Z) = —=3(An, (X xY x Z)n) =i(4)(»p¥p)(X,Y,Z). O
From Lemmas and and the decomposition of *xd§) obtained in Proposition [T.23|

we conclude:

Proposition 1.36. Let U € X(D) such that V7 = —NUn and define the forms 32 € Q*(D)
and B3 € Q3(D) by:

B2(X,Y) =g(A2(X),Y), B3(X,Y,Z) = alt(i(As3(-))¥p)(X,Y, 2).
Then, the pure components of xdS) in terms of the Go structure are:
2
(%dQ) 48 = - (—4i(A+U)N*ANVUp 4+ 3i(A+U) xp Up) +4N* A B2 — 603,

8
(*dQ)g = ?Z(U —6A + 7HN)(N* ANVp + *D\IJD).
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Proof. We first compute g and ~4g. First recall that v = i(V)Q with Dn = V7. In order to
compute Dn we consider a local orthonormal frame (Xo, X1,...,X7), with Xo = N. Then,
according to Lemma and Remark we obtain:

Dn= (U —-"TuN +6A)n.

Thus 78 = (U — TuN + 64)Q = —Tu¥p + i(U + 6A)(N* A ¥p + +p¥p). In addition,
Y48 = 378 — 84 alt(c~1Vn); the previous computation and Lemma allow us to obtain:

vag = (—4i(A+ U)N* AU + 3i(A+ U) *p Up) + 4N* A o — 605.

Note that the terms —21u¥p of 3vs and 21uW¥p of 84 alt(c) ™! Vn|p cancel one to each other.
The conclusion follows from Proposition [1.23 O

1.7.1 Hypersurfaces

Consider an 8-dimensional Spin(7) manifold (M, g), whose Spin(7) form is constructed from
a unit-length section 7 of the spinor bundle X(M)*, as in Proposition Let @ be an
oriented hypersurface and take a unit-length vector field N such that TM = (N) @ TQ as
oriented vector bundles.

The tubular neighbourhood theorem guarantees the existence of a cooriented distribution
D defined on a neighbourhood O of @ such that D|g = T'Q. The coorientation is determined
by a unit-length extension of the normal vector field that we also denote by N. Both D and
@ have Gy structures determined by the spinor n; we relate them by using Proposition [1.36
in the manifold O.

According to Definition the Levi-Civita connection of the hypersurface @ is VD|Q.
Moreover, L|g = 0 and W)|q is the Weingarten operator. Therefore, the restriction of Sp at
@ is the endomorphism S of the submanifold ). Decompose S|g and W)|g with respect to
the Gg splitting of End(7'Q):

1. S=AId+55 4+ S5+ 54
2. W|Q = HId+Ws3,

where A € C°(M), Sz € x2(Q), S3, W3 € x3(Q), S1 € x4(Q) and H € C*°(Q) is the mean
curvature. We also denote by S the vector field on @ such that S4(X) =X x S.

Corollary 1.37. Let U € X(Q) such that Vi n|g = —NUn and ¥g = i(N)Q2. Define the
forms Ba € Q%(Q) and B3 € 3(Q) by:

B(X,Y) = g(S2(X),Y), Bo(X, Y, Z) = alt(i((S5 — 5 W) ())¥p) (X, Y, 2).
Then, the pure components of xd2 in terms of the Gy structure are:
(xd)g5 — ; (—4i(S + U)N* A Wg + 3i(S + U) %o Wo) + AN* A i*By — 6,
(xd)g = %z (U _6S+7(A— ;H)N) (N* Ao + xqT0).
Remark 1.38. Note that the condition V7n|g = —NUn does not depend on the extension

of the vectors. Moreover, we usually compute U taking into account equation (1.15)). Note
that it depends on the values of the spinor in the direction of N.
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Therefore, the Spin(7) type of the ambient manifold provides relations between the Gg
type of the hypersurface, the vector U and the Weingarten operator. Before stating the
result, we recall that a hypersurface is said to be totally geodesic if W = 0, totally umbilic if
W3 = 0 and minimal if H = 0.

Theorem 1.39. Let (M,g) be a Riemannian manifold endowed with a Spin(7) structure
determined by a spinor n. Let Q) be an oriented hypersurface with normal vector N and let
U € X(Q) be such that Vnn|g = —NUn.

1. If M has a parallel Spin(7) structure, then Q has a cocalibrated G structure. Moreover,

1.1 § =0 if and only if Q is totally geodesic.
1.2 S € x1(Q) if and only if Q is totally umbilic.
1.3 S € x3(Q) if and only if Q is a minimal hypersurface.

2. If M has a locally conformally parallel Spin(7) structure, then S € x1(Q) ® x3(Q) @
x4(Q). Indeed,

2.1 S € x1(Q) if and only if U =0 and Q is totally umbilic.
2.2 S € x1(Q) ® x4(Q) if and only if Q is totally umbilic.

3. If M has a balanced Spin(7) structure, then:

3.1 S € x2(Q) ® x3(Q) if and only if U =0 and Q is a minimal hypersurface.

3.2 S €x1(Q) @ x2(Q) @ x3(Q) if and only if U = 0.
3.8 S € x2(Q) ® x3(Q) ® x4(Q) if and only if Q is a minimal hypersurface.

Proof. The parallel case follows from the equalities U = S = 0, S = 0, 2\ = H and
253 = W3. The locally conformally parallel case follows from the equalities U = —S, S5 =0
and 2S3 = W3, which imply that S € x1(Q) ® x3(Q) & x4(Q). Finally the balanced case
follows from U = 6S and 2\ = H. ]

1.7.2  Principal bundles over a G, manifold

Let @ be a Go manifold and let 7: M — @ be a G = R or G = S principal bundle over Q;
identify its Lie algebra g with R.
Define the vertical field N(p) = % O(pexp(t)). A connection w: TM — g defines a
t_

horizontal distribution #. Consider the metric on M such that:
1. The map dr: Hp — Ty, @ is an isometry.
2. The vector N(p) has unit-lenght and it is perpendicular to #,,.

The projection dr induces a map p: Pso(H) — Pso(@) so that the pullback to Pgpin(Q)
defines a spin structure Pgpin(H) over Pgo(#H). The map p: Pgpin(H) — Pspin(Q), which
is canonically defined, has the property that ﬁ(@ﬁ’ ) = @p(F) if » € Spin(8), inducing a
map between the spinor bundles, which we call p. Note that this map yields isomorphisms
S(H)p = 2(Q)r(p)- Moreover, let X € TQ and denote by X" its horizontal lift, then
p(X" 3 ¢) = Xp(4). Therefore, from a section 7: Q — X(Q) we define a section 7: M —
Y(H) by means of the expression p(n) = 7. If we denote by ¥ the Gy form on @, then

Up =71"¥q.
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Furthermore, one can check that V;,LY}‘ = (V()%Y)h. Let & € End(Q) be such that

Vgﬁ = S(X)7, then endomorphism Sp of the distribution is the lift of S, that is:
Vi = S(X)"n.

Therefore the distribution H and the manifold @ have the same type of Go structure. In

order to classify the Spin(7) structure on M, denote the curvature of the connection w by:
LX,Y) = [X"Y" - [X,Y]" € (N), XY €TQ.

Since £(X,Y) € (N), we also denote by £ the 2-form g(£(X,Y), N). As a skew-symmetric
endomorphism, we decompose £ = Lo + L4 where Ly(X) = X x L for some vector field
L e X(Q).
Corollary 1.40. Suppose that V?(ﬁ =S(X)-gn with S(X) = AId+S2 + Sg+ Sy where A €
C®(Q), S2 € x2(Q), S3 € x3(Q), S1 € x4(Q) and let S € X(Q) be such that S4(X) = X x S.
Define B2 € Q%(Q) and B3 € Q3(Q) by:

1= ‘
BaX,Y) =g (S2() = T, ) Ba(X.Y.2) = alt(i(S2()) Vo) (X, Y, Z),
The pure components of xd) in terms of the Go structure are:

2 1- 1-_
(%dQ) s = = <—4¢(5h — ZLh)N* AT*Wg + 3i(S" — 4Lh)7r*(*prQ)> + AN* A%y — 67 B3,

7
8. (15 Th h * * *
(xdQ)g = - ZL —6S"+TAN | (N* ATV + 7" (%QVQ)).

Proof. 1t suffices to check the equalities W = 0, g(£(X),Y) = 37*£(X,Y), and U = 3L".
From these we obtain u = A\, Ay = S — %Lg, Ag = ng, and A = S — %Eh; the conclusion
then follows from Proposition

Before proving the equalities we observe that [X N] = 0 if X € X(Q) because w is
left-invariant. In addition, by the Koszul formulas:

VNN =0,
1 1 1
g(vNthYh) = *59([thyh]7N) = *59([thyh] - [Xv Y]h7N) = *§£(X’ Y)?

for orthogonal vectors X,Y € X(Q).

The claim W = 0 follows from equation and the fact that [X", N] = 0if X € X(Q).
Taking into account formula (T.13)), and the fact that g([X", Y"],N) = £(X,Y), we obtain
g([’(Xh>7 Yh) = _%’S(Xv Y)

We finally compute the vector U in terms of the formula (1.15). Let F = (Xi,..., X7) be
a local orthonormal frame of H which lifts some local frame of TQ. Take a lift F' € Pspin(H)
and write n(p) = [F,s(p)]. We also denote Xog = N .

By definition, if 7(7(p)) = [B(F(p)),5(n(p))] then s(p) = 5(n(p)) so that ds,(N) = 0.
Taking into account the computations above we obtain:

1 I,
Vn = 3 > g(VNXi, X)) X Xjm = 7 £n.
0<i<j<7
Define v;(X,Y) = g(L;(X),Y), for i € {2,4}, then:
1 1

3 _
— -8y = ——m*yn = —~NLM.
17O = =g = = NL'

Here we used that m*y,n = 0 because g C spin(7) = A2, and 7%y = —i(N)i(L")Q. One
can check that 7*y4n = 3NL"n by using a Cayley basis with N = ey and L" proportional
to eq; the computation is similar to the one we did in the proof of Lemma to check the
equality e%'n = e¥n. Thus, U = %Eh. U
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1.7.3 Warped products

We analyze Spin(7) structures on warped products of a Gg manifold with R. Recall that a
warped product of two Riemannian manifolds (X1, ¢1) and (X2, ¢92) is (X1 x X2,91 + e2h 92)
where f1: X7 — R is a smooth function. Therefore, we distinguish two cases.

Warped product (Q x R, e?/g 4 dt?)

Consider a Gg manifold (@, ¢g) and a smooth function f: R — R. Define the Riemannian
manifold (M = Q xR, gar = €2fg+dt?), and denote the projection to @ by 7: M — Q. This
is the so-called spin cone.

The distribution D = T'Q obviously admits a Gy structure. The spinor bundle is ©(M )+ =
Y(TQ x R) = 7%(X(Q)). We denote the spinors at (x,t) € M by (¢,t) with ¢ € 3(Q);
observe that ((¢,t), (¢,t)) = (¢,¢). Clifford products are related by (X g ¢,t) = e /X -p
(p,t) = e_f%X(gb, t)if X € TQ. In the last expression, we suppressed the symbol - to denote
the Clifford product on M.

A unit-length section 7 is defined from a section 77: Q — X(Q) by n: M — X(D), n(z,t) =
(n(x),t). Denote by ¥q the Gg form on @, then ¥p = e3f7r*\IJQ and *p(¥Up) = et/ *q (Vg).
In addition, taking into account that VY = V)Q(Y if X,Y € X(Q), we obtain V¥n =
e /S(X) -pn, where Vgﬁ = S(X)#i. Thus Sp = e~ /S.

Corollary 1.41. Suppose that Vgﬁ = S(X) -gn with S(X) = AId+S2 + S3 + Sy where
A€ C®(Q), S2 € x2(Q), S3 € x3(Q), S4 € x4(Q). Let S € X(Q) be such that Sy(X) = X xS.
Denote by V¢ the Ga-form on Q and define B2 € Q*(Q) and B3 € Q3(Q) by:

Ba(X,Y) = g(52(X),Y), B3(X,Y,Z) = alt(i(53(:)) ¥o)(X, Y, Z).

The pure components of xdQ2 in terms of the G structure are:

2
(xd)as = - (—4e2i(S)dt A 7" Wg + 362 i(S)n* (xUq) ) + ded dt A" By — 62 7 3,

(xdQ)g = %z (—GefS +7ne 7 + % f/)gt) (e dt A" Ug + e (xqg)).

Proof. The result follows from Proposition once we check that W = —f'Id, £ = 0 and
U = 0. Observe that both the expression Sp = e~7S and the equalities above ensure that
w=Xe 7T+ %f’, Ay =e 18y, As=e /S5 and A=ef8S.

The distribution D is integrable, so that £ = 0. Take an orthonormal frame of T'Q,
(X1,...,X7) and note that gps(W(X;), X;) = —f’e2f5¢j according to formula ([1.12]), so that
W = —f'Id. We now compute U taking into account equation . First, since 7 is
constant in the vertical direction, the term [F, dsp(%)] vanishes. Moreover, from the Koszul
formulas we deduce:

0
v — 0=V -fx.
gt it 0 gt (6 Xl)

Therefore, Vo n = 0. U
ot

Warped product (Q x R, g + e2/dt?)

Consider a G2 manifold (@, g) and a smooth function f: @ — R. Define the Riemannian
manifold (M = Q x R, gas = g + €2/dt?), and denote the projection to Q by 7: M — Q.
The distribution D = T'Q obviously admits a Gy structure. The spinor bundle is X(M )+ =
X(TQ x R) = 7*(X(Q)). We denote the spinors at (z,t) € M by (¢,t) with ¢ € X(Q).;
observe that ((¢,t), (¢,t)) = (¢, ¢). Clifford products are related by (X -g¢,t) = X-p(¢,t) =
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e f %X (p,t) if X € TQ. We suppressed again the symbol - to denote the Clifford product
on M.

A unit-length section 7 is defined from a section 77: Q@ — X(Q) by n: M — X(D), n(z,t) =
(n(x),t). Denote by Wg the Go form on @, then Up = 7*Wg and *xp(¥p) = x(¥g). In
addition, since VRY = VEY when X,Y € X(Q), we obtain Sp = S, with § € End(TQ)
such that Vgg(ﬁ =S(X)n.

Corollary 1.42. Suppose that V%ﬁ = S(X) .o n with S(X) = AId+S52 + S3 + Sy where
A€ C®(Q), Sz € x2(Q), S3 € x3(Q), S1 € xa(Q). Let S € X(Q) be such that S4(X) = X xS.
Denote by W the Ga-form on Q and define B2 € Q*(Q) and B3 € Q3(Q) by:

Ba(X,Y) = g (S2(X),Y), Bs(X,Y,Z) = alt(i(Ss(-))¥o)(X, Y, Z).

The pure components of *dS2 in terms of the Gg structure are:

2 1 1
()15 = <4i (S + 5 amad f)> el dt A TG + 3i <s + 5 amad f)) w*(*Q\pQ))
+ del dt A 7By — 67 Bs,

(%d)g :%i (; grad(f) — 65 + 7)\ef§t
Proof. The result immediatly from Proposition [I.36] once we check that W = 0, £ = 0 and
U= %grad( f). Observe that both the expression Sp = S and the equalities above ensure
that,u:)\, AQZSQ, A3=Sg and A=5.

The distribution D is integrable, so that £ = 0. Take an orthonormal frame of T'Q,
(X1,...,X7) and note that gry(W(X;),X;) = 0 according to equation (L.12). We now
compute U taking into account equation . First, since n is constant in the vertical
direction, the term [F, ds,(e™f %)] vanishes. Moreover, from the Koszul formulas we deduce:

) (eldt AT*Tg + 1 (xqP0)).

g(ve,fagXi,Xj) = 0,
t
0
—f ) — _x.
g(Ve_fgte (%,XZ) X,(f)-

Therefore, Vyn = —%e_f% grad(f)n. -

1.8 Spin(7) structures on quasi abelian Lie algebras

As an application of the previous section, we study Spin(7) structures on quasi abelian Lie
algebras. The geometric setting is that of a simply connected Lie group with a left-invariant
Spin(7) structure, endowed with an integrable distribution which inherits a Gy structure.
The integral submanifolds of the distribution are actually flat, so that the Gy distribution is
parallel and these submanifolds have non-trivial Weingarten operators. Finding a lattice in
the Lie group, if that is possible, allows us to give compact examples.

First of all, let us recall the definition of a quasi abelian Lie algebra:

Definition 1.43. A Lie algebra g is quasi abelian if it contains a codimension 1 abelian ideal

b.

The information of g is encoded in ad(x) for any vector x transversal to fj. The following
result shows that b is unique in g with exception of the Lie algebras R" and L3 ®R" 3, where
Lg is the Lie algebra of the 3-dimensional Heisenberg group, which is generated by the basis
(z,y, z) with relations [z,y] = z and [z, 2] = [y, 2] = 0.
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Lemma 1.44. Let g be a n-dimensional quasi abelian Lie algebra with n > 3 . If g is not
isomorphic to R™ or Ly ® R" 3, then it has a unique codimension 1 abelian ideal. Moreover,
codimension 1 abelian ideals in Ly & R" 3 are parametrized by RP!.

Proof. Suppose that g is not isomorphic to R™ and let §h be a codimension 1 abelian ideal
with a transversal vector z. Let ' be a codimension 1 abelian ideal different from b. If u € b
is such that z + v € " and v € h N, then 0 = [x + u,v] = ad(x)(v). Taking into account
that h Nh’ is (n — 2)-dimensional and g is not abelian we conclude that h N h’" = ker(ad(x)|y)
and ad(z)(h) = (z) for some z € h. Let y € h be such that [z,y] = z and observe that
z € [g,g] C W, thatis, z € hNH and [z, 2] = 0. Therefore, g is isomorphic to Lz & R"~3.

In addition, from the discussion above we obtain that h’ = (v, z) GR"~3 for some v € (z,y).
Conversely, all the subspaces of the previous form are actually codimension 1 abelian ideals.
Therefore, they are parametrized by RP!.

O

A left-invariant Spin(7) structure on a Lie group is determined by the choice of a Spin(7)
form €2, which is in turn determined by a direction in the space of positive spinors A™.

Define the set QA with elements (g, b, g, v4,§2) where g is a non-trivial quasi abelian Lie
algebra with a specific codimension 1 abelian ideal b, g is a metric on g, v, is a volume form on
g and Q is a Spin(7) structure on (g, g, vy). We say that ¢': (g,b, 9,14, Q) — (¢',0", 9", vy, Q)
is an isomorphism if ¢ is an isomorphism of Lie algebras such that ¢'(h) =, (¢')*¢ = g,
©'vy =1y and *Q = Q.

Lemma 1.45. The set QA of isomorphisms classes of QA is given by:
QA = ((End(RT) - {0}) x P(AF)) / O(7),
where O(7) acts via

- (&, [n) = (det(p)po €0 p~" [p(@)n)), (1.17)
where @ is a lifting to Spin(8) of the unique ¢’ € SO(8) such that ¢'|g7 = ¢.

Proof. A map (End(R7) — {0}) x P(A") — QA is defined as follows. Take a pair (£,7) and
define the Lie structure on R® with oriented basis (eq, . ..,e7) such that R” = (e, ..., e7) is a
maximal abelian ideal and £ = ad(ep)|g7. We endow this algebra with the canonical metric,
the standard volume form and the spin structure determined by 7.

It is obvious that a representative of each element of QA can be chosen to lie in the image
of our map. Moreover, if two structures given by (€,7) and (€,7') are isomorphic via ¢/,
then:

1. ¢'(eg) = £eg and ¢ = ¢'|g7 € O(7) because ¢’ preserves the metric and the orientation.

2. Denote by ¢ any lifting of ¢’ to Spin(8). The equality (¢’)*Q = Q implies that
Stab(2) = (¢’)~!oStab(£))o(¢’). Thus Stab(n) = @1 Stab(n')@. But Stab(p(@) 7)) =
@~ ! Stab(n'), so that n = +p(2) " '1y'.

3. po& =det(p)E o, because ¢’ is an isomorphism of Lie algebras.
O

From now on we denote by (R®, &£, [n]) the element (g,b,g,v,Q) € QA where g = R® as
vector spaces, h = R7 is the maximal abelian ideal, ad(eg) = &, g is the canonical metric, v
is the canonical volume form and 7 is a spinor that determines the Spin(7) form €.
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Remark 1.46. To obtain an analogue of Lemma suppressing the condition ¢'(h) = b
in the definition of isomorphism, we need to treat separately the case of the Lie algebra
L3 @ R®. For this purpose, define £(x) = e}(x)ez and observe that Lemmas and
allow us to suppose that any isomorphism of structures with underlying Lie algebra Lz & R
is represented by ¢': (R®,\E, [n]) — (R®, N'E, [1']), for some A, ' # 0.

The set ¢/(R7) is a codimension 1 abelian ideal, hence Lemma m guarantees that
¢'(eg) = cos(f)eg + sin(f)e;. Denote R® = (es,...,e7) and let v,v" € RS be such that
' (v) = —psin(B)eg+ pcos(f)er +v'. Then, 0 = ¢'[eg, v] = [cos(0)eg +sin(f)er, —psin(f)eg+
peos()er+v'] = uNeg. Therefore p = 0, R is ¢'-invariant and ¢'(e1) = F sin(f)eg+cos()e;.

Denote by ¢1 the restriction of ¢’ to (eg,e1) and note that: A¢'(e2) = ¢'[eg,e1] =
(¢ (e0), ¥ (e1)] = det(p1)Nea. Hence ¢’ (ea) = det(npl))‘y/eg and |[A| = |N|. Then, ¢’ is deter-
mined by 1 and g = ¢'|ps, where R® = (e, ..., e7), under the conditions )‘T/det(gpg) =1
and ¢'(eg) = det(gpl)’\y/eg.

The condition over the spinor is obviously ' = +p(@)n, where @ is any lifting of ¢’ to
Spin(8).

In the following result we describe the action which appears in Lemma [1.45
Lemma 1.47. Under the action of O(7) on End(R7),
@& =det(p)poEopt (1.18)
the sets (Id), Sym3(R”) and A*R” are parametrized respectively by:
1. [0,00),
2. {( At M)t N S A1, S0 Ay = 0}/ ~, where (A1, A7) ~ (=7, ..., = A1),
3. {(A1, A2, A3): 0 < Ay < Ao < A3}

Proof. The first claim is obvious and the second follows from the fact that each sym-
metric matrix has an oriented orthonormal basis of ordered eigenvectors. Note also that
—1d-diag(Aq1,..., A7) = diag(—=A7,..., —A1), hence (A1,..., A7) is related to (=A7,..., —A1).

If £ is a skew-symmetric endomorphism of R”, there is a hermitian basis in C7 of eigenvec-
tors and the eigenvalues are of the form (—A3%, —Aa7, —=A14, 0, A7, Agi, Agi) with 0 < Aj < Ajyq.
In addition, the real parts of the eigenspaces associated to —\;i and A;i coincide. Thus,
there is a positively oriented orthonormal basis (v, w1, v2, w2, vs, ws,u) of R7, such that
E(vj) = Ajw; and £(u) = 0. Finally note that (A1, A2, A3) are well-defined in the orbit. [

Now we compute the invariants that we defined for Gy distributions on R7:

Proposition 1.48. Consider (R%,€,[n]) € QA and decompose £ according to the Ga struc-
ture induced by n, that is &€ = hld+FEy + E3 + Ey4, where h € R, Ey € x2, E3 € X3,
Ey € x4 and E4(X) = X x E for some E € R”. Define ¥, 33 € AST*R” by ¥ = i(e)Q and
Bs(X,Y,Z) = alt(i(Es(-))¥). Then,

2 9
(+12)a5 = <6i(E)eO A~ Ji(E) e \p) — 685,
*d0)g = — EE+4he QAT + %7 T).
(xd)sg - 0 R

Proof. The result follows immediately from Proposition once we check that: p = —%h,
Ay =0, A3=—31F3, A=0and U = —3F.
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To obtain this, first observe that V97 = 0 and £ = 0 because b is an abelian ideal. From
the formula of the Weingarten operator we obtain: W = hld+FE3. To compute U we use

again equation (1.15]), obtaining that:
3
Vinn = 5eokn,

here we used that V.eqg = 0 because b is an ideal and Veye; = (Eo + Ey)(e;) if j > 0.
The last equality follows from Koszul formulas; these imply that 2g(Ve,e;,e0) = 0, and
29(Veoej,ex) = g(E(ej), er) — g(E(er), e5) = 29((E2 + E4)(ej), ex) for k > 0; the last equality
follows from the fact that Fos + Ej is the skew-symmetric part of £.

]

In the next result we characterise the different types of Spin(7) structures on quasi abelian
Lie algebras in terms of Lemma [I.47 For this purpose, we recall that a Lie algebra is
unimodular if the volume form is not exact. In the case of the Lie algebra (RS, &), this
notion is equivalent to the fact that £ is traceless.

Theorem 1.49. Consider the Lie algebra (R®,&) endowed with the standard metric and
volume form. Denote by E13 and Eaq the symmetric and skew-symmetric parts of the endo-
morphism € # 0. Then, the Lie algebra admits a Spin(7) structure of type:

1. Parallel, if and only if E13 = 0 and Eay is associated to (A1, Ag, A1+ A2) with0 < A < Ag,
as in Lemma 1.4

2. Locally conformally parallel and non-parallel if and only if E13 = h1d with h # 0 and
Eay 1s associated to (A1, Ao, A1 + A2) with 0 < A\ < Ag, as in Lemma .

3. Balanced if and only if it is unimodular and Eay is associated to (A1, Ao, \1 + A2) with
0 <A1 < Ay, as in Lemma[l.47

In addition, if E24 # 0 then it admits a Spin(7) structure of mized type.

Proof. We identify &4 with a 2-form ~. There is a positively oriented orthonormal basis
(X1,...,X7) of R” such that v = A\; X3 4+ o X% + \3X%7, where 0 < Aj < Ajt1. Here we
denoted X% = X} A X7

Taking into account Proposition the first three items are proved once we check
that the existence of a spinor n with yn = 0 is equivalent to the fact that &4 is associated
to (A1, A2, A1 + A2) with 0 < Ay < 9. This spinor exists if and only if p7(AXoX3 +
A2 X1 X5 + A\3XX7) is non-invertible for some 8-dimensional real irreducible representation
p7: Cl; — End(R®) which maps the volume form v7 to the identity, because they are all
equivalent [79, Proposition 5.9].

It is known that the two different irreducible representations of Cl; are constructed from
the octonions O [79, p. 51]. More precisely, these are the extension to Cl; of the maps
po: R” — End(R®), po(v)(z) = fvz, where § = +1 and R” is viewed as the imaginary part of
the octonions. Define the isometry ¢ of R7 which maps X; to e; and note that the volume
form is fixed by the extension of ¢ to the Clifford algebra. The extensions of py and ¢ to
Cl; are denoted in the same way. We check the previous condition using the representation
pr = pp o ¢: Cl; — End(R?), taking @ such that py(r7) = Id. A direct computation shows
that the determinant of p7(A1 X2 X3 + Ao X4 X5 + A\3XX7) is given by:

()\1 + Ao + )\3)2()\1 + Ay — )\3)2(>\1 — Ay — )\3)2()\1 — Ay + )\3)2.

Since A1 < Ao < A3, the endomorphism is non-invertible if and only if A3 = Ao + A1.

Finally, if 54 # 0 then p7(A1 X2 X3 + Mo Xy X5 + A3 XX7) # 0 so that there is a spinor
such that E # 0; Proposition m guarantees that it induces a Spin(7) structure of mixed
type. [
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Recall that solvmanifolds are compact quotients I'\G, where G is a simply connected
solvable Lie group and I' is a discrete lattice. This forces the Lie algebra g of G to be
unimodular [91, Lemma 6.2]. Proposition allows us to conclude the following;:

Corollary 1.50. There exists no quasi abelian solvmanifold with a left-invariant locally con-
formally parallel and non-parallel Spin(7) structure.

Of course, a torus is solvmanifold which admits a parallel Spin(7) structure.

Corollary 1.51. If (R% €) is a quasi abelian Lie algebra such that & is skew-symmetric,
then it is flat. In particular, quasi abelian Lie algebras which admit a left-invariant parallel
Spin(7) structure are flat.

Proof. Let (R &) be a quasi abelian Lie algebra and denote by £13 and &4 the symmetric
and skew-symmetric parts of £. It is straightforward to check that if 4, j > 0 then:

Veoeo =0, Veoe; =Eaulej), Veeo=—E13(ei), Ve =g(E13(ei),e;5)eo.

From this, one deduces that if i, j, k > 0, then the curvature tensor is given by:

R(eg,ej)eo = — (E24 0 E13 + E13 0 E24) (e5)
R(eo, ej)er = — g(&1z(ex), (€ + E2)(ej))eos
R(ei,ej)eo =0,
R(ei ej)er =g(Ei3(e)), ex)E13(ei) — g(&rzes, ex)Er3(e;f).
Therefore, if £ is skew-symmetric then the Lie group is flat. O

Remark 1.52. Corollary also follows from the fact that locally conformally parallel
Spin(7) structures with a co-closed Lee form are associated with positive scalar curvature
metrics (see [69]) and left-invariant metrics on solvable Lie groups have non-positive scalar
curvature [91]. Corollary also follows from the fact that parallel Spin(7) structures are
Ricci-flat and left-invariant metrics on solvable Lie groups with vanishing scalar curvature
are flat [91].

Examples

Let g be a quasi abelian Lie algebra determined by an endomorphism £. Consider the
unique simply connected Lie group G whose Lie algebra is g. The split exact sequence of Lie
algebras 0 — h — g — g/b — 0 lifts to a split exact sequence of Lie groups 0 — (R”,+) —
G — (G/R" = R,+) — 0. This splitting and the conjugation ¢ on G by the elements of
(R, +), provide an isomorphism G = (R, +) x. (R”, +). Therefore %|t28d(e(t)) = s&, so that
d(e(t)) = exp(t€) = €(t), taking into account that the exponential map of R is the identity.

A nilmanifold with a balanced and a locally conformal balanced Spin(7)
structure.

Define the endomorphism of R”

0 -1 0 0 0 0 O

0o 0 -20 0 0 O

0 0 0o 0 0 0 O
E=[0 0 0 0 -1 0 O )

0o 0 0 0 0 -1 0

o 0 0 0 0 0 -1

0 0 o0 0 0 0 O
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and consider the quasi abelian Lie algebra (R®, £). Note that this is a nilpotent Lie algebra,
with (de®, det, de?, ... de7) = (0,e%2,2e%3, % % €% €97 0), where d3(X,Y) = —B([X,Y]).

The symmetric part of £ is traceless and the eigenvalues of its skew-symmetric part are
(A1, A2, A1 + A2). Therefore, Theorem guarantees that (R®, &) admits both a balanced
and a mixed Spin(7) structure. An alternative argument that avoids the computation of the
eigenvalues of &€ is the following. Let Qg be the standard Spin(7) structure on R® and let 7 be
the spinor that determines the structure. Let us identify the skew-symmetric part of £ with

the 2-form v = e?3 4 %(612+€45+€56+667) as usual. The equalities esesn = —eqe5n = —egern
and ejesn = —esegn imply that ynp = 0. Therefore, the 4-form associated to the structure is
Qo.

On some nilpotent Lie algebras, the existence of a lattice is guaranteed by general theo-
rems [80]. This case is simple and we compute it explicitly. The matrix of the endomorphism
exp(t€) is:

1 -t t* 0 0 0 0
01 —2t0 0 0 0
00 1 00 0 0
00 0 1 -t & —2%3
o0 0 0 1 —t &
00 0 0 0 1 —t
00 0 00 0 1

If we define I' = 6Zeg X (Zey X Zeg X -+ X Zer), then I'\G is a compact manifold with
7m1(I'\G) =T which inherits both a balanced and a mixed Spin(7) left-invariant structure.

Moreover, we claim that I'\G is not diffeomorphic to @ x S! for any 7-dimensional sub-
manifold Q. Since b1(I'\G) = 2, it is sufficient to prove that if a nilmanifold T"\G’ is
diffeomorphic to @ x S* then, b1 (Q x S') > 3, or equivalently, b;(Q) > 2. This claim turns
out to be true because we can check that ¢ is homotopically equivalent to a nilmanifold. On
the one hand, @ is an Eilenberg-McLance space K (1,71(Q)), because G’ is contractible. On
the other hand a group is isomorphic to a lattice of a nilpotent Lie group if and only if it
is nilpotent, torsion-free and finitely generated [102, Theorem 2.18]. Since IV = m(I"\G') =
71(Q) X Z, both 71 (Q) and I" satisfy the conditions listed above. Thus, there is a nilmanifold
Q' such that 71 (Q’) = m1(Q), which is an Eilenberg-MacLane space K (1,71(Q)). Therefore,
@’ and @ have the same homotopy type and b1(Q) = b1(Q’) > 2, because @' is a nilmanifold.

This nilmanifold also has a strict locally conformally balanced Spin(7) structure (see
Definition [1.53]), a structure of mixed type with closed and non-exact Lee form. According to
Theorem if we show that there exists a spinor 7 and A # 0 such that yn = —\e"n, then
the Lee form of the Spin(7) structure determined by 7 is pe” for some p € R and d(ue’) = 0.
Take the octonionic representation p, which extends to Cl; the map p: R” — End(R®),
p(v)(x) = v where R is viewed as the imaginary part of the octonions.

The previous condition is then equivalent to (p(e7)p(y) — AId)n = 0 for some n € RS,
that is, A # 0 is a real eigenvalue of p(e7)p(vy). Computing this condition we obtain
two eigenvalues A+ = 4+/3. The unit-lenght eigenvectors associated to Ay are n}r =
\/%—5(0,—\/10,—\/30,3,0,0) and n? = \/%—5(—\/5,0,3\/3,0, —6,0,3,0); these associated to
A_ are nl = %ﬁ(o, —/3,0,4/3,0,3,0,0) and n% = ﬁ(\/ﬁ,o, —3/3,0,-6,0,3,0).

The 4-form associated to ni is Qo = e A ¥ + x¥, where % is the Hodge star of the
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canonical metric on R” and:

1 . 1
T =e? A (—563 — 2?66 + 2?67) - 2\g§el3 A (et + eb) — 5614 A (3€® 4 2¢7)

_ 26156 4 §6167 _ 2?623(65 FeT) ety %6257%634(_265 1 3¢7) - 26356

9 5)
2
B g6367 _ 2\236457 I 2\236567.

A compact manifold with a parallel and a mixed Spin(7) structure.

Take the same spinor and basis of R” as the previous example. Consider the skew-symmetric
endomorphism such that €(es) = e3, £(eq) = e5 and E(X) = 0 on (eq,e3,e4,e5)". The
rank of this matrix is two and it is associated to (0,1, 1). Therefore, Theorem guaran-
tees that (R, €) admits both a parallel and a mixed Spin(7) structure. The matrix of the
endomorphism exp(t€) in the previous basis is:

1 0 0 0 0 0 0
0 cos(t) sin(t) 0 0 00
0 —sin(t) cos(t) 0 0 00
0 0 0  cos(t) —sin(t) 0 O
0 0 0 sin(t) cos(t) 0 O
0 0 0 0 0 10
0 0 0 0 0 0 1

If t € 77, the previous matrix has integers coefficients so that v = 7Zey X (Zey x Zey X
- X Zer) is a subgroup. Moreover, I'\G is a compact manifold with m (I'\G) = T' and
inherits from G both a parallel left-invariant Spin(7) structure and a mixed left-invariant
one.
According to Remark this manifold is flat. It is the mapping torus of exp(7€): X —
X, where X is a 7-torus. Indeed, since exp(n&)? = Id, the 8-torus is a 2-fold connected
covering of I'\G.

1.9 Balanced and locally conformally balanced structures on
quasi abelian Lie algebras

In this section we focus on Spin(7) structures on quasi abelian nilpotent Lie algebras. As
Corollary states, a locally conformally parallel structure on a quasi abelian nilpotent Lie
algebra is parallel. In fact, if a quasi abelian nilpotent Lie algebra admits a parallel structure,
then it is flat; this implies that the Lie algebra is abelian. Therefore, we search for quasi
abelian nilpotent Lie algebras which admit a balanced structure. In addition, we introduce
a special type of mixed structure, which we call locally conformally balanced and we analyze
its existence on quasi abelian nilpotent Lie algebras.

A Spin(7) structure on a Riemannian manifold is locally conformally balanced if on
each contractible neighbourhood there is a conformal change of the metric whose associated
Spin(7) structure is balanced, that is:

Definition 1.53. A Spin(7) structure is locally conformally balanced if its Lee form is closed.
In addition, if the Lee form is not exact, we say that it is strict locally conformally balanced.

Of course, balanced and locally conformally calibrated structures are locally conformally
balanced. The interesting case is when the structure is mixed and the Lee form is not exact.
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Remark 1.54. Our spinorial approach enables us to characterise locally conformally balanced
structures. Let V' € TM such that Dn = V7. We compute the Dirac operator of V as an
element of C1(M), that is, DV = >.7_, X;Vx,V for an orthonormal local basis (X, ..., X7):

7 7
DV => g(Vx, V. X)) X;X; =) (Q(VXJC X;) — Q(VXjV,Xz')) XiX; > g9(Vx,V. Xy)
i,j=0 i<j =0
=2 " dV*(X;, X;) XiX; + div(V).
i<j

The Lee form is %V*; therefore the structure is locally conformally balanced if and only if
DV =div(V).

If we focus on quasi abelian Lie algebras (R®, £) with h = 0, the problem of determining
whether or not the Lee form of a structure is homothetic to a unit-length 1-form 6 becomes
an eigenvalue problem.

As Proposition states, the Lee form of the Spin(7) structure defined by 7 is homo-
thetic to a 1-form E* € b* determined by the equation v -y n = 3E -y, where « is the
2-form associated to the skew-symmetric part of £. For a unit-length 1-form @, the condition
v 51 = —A0 -y n for some A # 0 is equivalent to (fy — A) -y 7 = 0, that is, the endomorphism
of AT given by ¢ — 0 -5y -y ¢ has A as an eigenvalue.

This argument enables us to prove that if a nilpotent quasi abelian g Lie algebra is
decomposable, that is g = g’ @ (W) as Lie algebras, then W is homothetic to the Lee form
of a Spin(7) structure.

Lemma 1.55. Let (R3, &) be a unimodular quasi abelian Lie algebra. If 4 # 0 and
Eoy(W) = 0 for some unit-length vector W € R”, then (R® &) admits a spinor n whose
associated Spin(7) structure has Lee form homothetic to W*.

In particular, if a decomposable quasi abelian Lie algebra g = ¢’ & (W) is non-abelian and
nilpotent, it admits a Spin(7) structure whose Lee form is homothetic to W*.

Proof. First note that v € A2(W*)L so that (W*y) -y ¢ = (W* A7) - ¢ for all ¢ € A+, But
the product by an element of A3(R7)* is a symmetric endomorphism of A*. Therefore, the
condition £y # 0 guarantees the existence of a non-zero eigenvalue of the product by W* A~y
and therefore, a spinor  whose associated Spin(7) structure has Lee form homothetic to W*.
Suppose that a decomposable quasi abelian Lie algebra g = g’ @ (W) is non-abelian and
nilpotent. It is straightforward to check that W lies in the abelian ideal h. Thus, if we take a
metric g with ey perpendicular to h and W perpendicular to h N g’ then (g, g) is identified in
terms of Lemma with a pair (R8, €) such that E4(W) = 0. In addition, £4 # 0 because

the algebra is non-abelian and nilpotent.
O

A more detailed analysis of the eigenvalue problem provides the following result:

Lemma 1.56. Let (R8,€) be a unimodular quasi abelian Lie algebra and suppose that Eoy is
associated to (A1, A2, A\3) as in Lemma with 0 < A1 < Ao < A3 with A3 < A\ + Xa. Then,
each 6 € (RT)* is homothetic to the Lee form of a Spin(7) structure.

Proof. Let 6 in (R7)* and take (X1, ..., X7) an orthonormal oriented basis of R” such that:

v =MXTAXS + X3 A XSG+ AXS A XG,
0F =11 X1 + paXs + ps X5 + pr Xr.
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To obtain such formulas we may diagonalize « as in Lemma A rotation on each of the
eigenspaces allows to obtain a basis (Xi, Xs,..., X7) such that the projection of 6% to the
plane (Xo;_1, Xo;) is parallel to Xo;_1 for 1 <i < 3.

Let p be the representation of Cl; constructed in the proof of Theorem [1.49, The
characteristic polynomial of the matrix p(0%)p(M X1 X2 + MoX3Xy + A3X5X6) is p(t) =
(t* + agt? + ait + ap)?, where:

ag = — (/\1 + Aoy + )\3)(—)\1 + Ao + )\3)()\1 — X+ )\3)()\1 + Ay — )\3),

a1 =81 A2 A3 7,

ap = = 2(p (=M + A3+ A3) + 1A = A3+ A9 + B (AT + A3 — A3) + #F (AT + A3+ A3)).
Therefore,
1. If A3 < A1 + A2 then ag < 0 so that p(¢) has a non-zero real root.

2. If A3 = A1 + Ao then p(t) = t2(t3 + ast + a1)? with ag < 0. Therefore, p has a non-zero
real root.

O

1.9.1 Quasi abelian nilpotent Lie algebras and Spin(7) structures

Quasi abelian nilpotent Lie algebras are classified by the adjoint action a vector which is
transverse to the abelian ideal. Therefore, each isomorphism type is associated to a unique
element of A7/Gl(7), where N7 is the set of nilpotent matrices of R” and GI(7) acts via
conjugation. The orbits are matrices with the same Jordan normal form, and therefore,
classified by the dimensions of those blocks. There are 15 types that we denote by (nq,...,ng)
with n; < n;41 and Zle n; =1T.

We determine those which admit a balanced Spin(7) structure or a Spin(7) structure
with closed Lee form in the cohomology of the algebra. Note that the last type induces strict
locally conformally balanced structures on each nilmanifold associated to the algebra because
the cohomology of the algebra is isomorphic to the cohomology of any associated nilmanifold.
In this context we say that the Spin(7) structure of a nilpotent Lie algebra is strict locally
conformally balanced.

First of all observe that the abelian Lie algebra only admits parallel structures. Next,
we analyze the algebras Ls @ As and L4 & A4, where L3 denotes the Lie algebra of the 3-
dimensional Heisenberg group, L4 the unique irreducible 4-dimensional nilpotent Lie algebra
and A; the j-dimensional abelian Lie algebra. In our previous notation, they are associated
to (2,1,1,1,1,1) and (3,1,1,1,1).

Proposition 1.57. The Lie algebras Ay® L3 and A3® L4 do not admit any balanced structure.
Howewver, both of them admit strict locally conformal balanced structures.

Proof. Let h be an abelian ideal of g and let g be a metric. Take a vector eg orthogonal to
h and denote £ = ad(eg)|y. We write in both cases the endomorphism &€ with respect to a
suitable orthonormal basis (e1,...,e7) of b:

1. If g = A4 @ L3 we can suppose that ker(€) = (e1,...,eg) and E(e7) = —Aeg for some
A # 0. Thus, v = A\eb7 so that yn # 0 for all 7.

2. If g = A3 @ Ly we can suppose that ker(&) = (e1,...,e5), E(eg) = —A1es and E(er) =
—Xgeq — Azes — Ageg, where Aj Ay # 0. Thefore, v = A% + (Age* 4+ Aze?) Ae” + M\gef7.
The spinor A\4e%77 is non-zero and orthogonal to (A1e?5 4 (Aae* +A3e®) Ae”)n. Therefore,
vn # 0 for all 7.
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The existence of strict locally conformally balanced structures is a consequence of Lemma,
11.55| ]

Now, we focus on types associated to matrices with two different Jordan blocks of dimen-
sion greater than 1, which are (5,2), (4,3), (4,2,1), (3,3,1), (3,2,2), (3,2,1,1), (2,2,2,1)
and (2,2,1,1,1).

Proposition 1.58. Nilpotent quasi abelian Lie algebras with two different Jordan blocks of
dimension greater than 1 admit a metric with both a balanced and a strict locally conformally
balanced Spin(7) structure.

Proof. Let ey be transversal to the abelian ideal h and observe that there is a splitting
h =01 @ ho @ bz with dim bhy € {2, 3}, h3 abelian and ad(eg)(h;) C bh;. Observe that h3 may
be {0}. We consider a metric g which makes ey perpendicular to h and gl = g1 + g2 + g3
where g; are metrics on b;.

& 0 0
Therefore £ is a block matrix | 0 & 0| with respect to an orthonormal basis adapted
0 0 O

to the splitting h = h1 ® hs @ bs.

Obviously, for each A > 0 there exists an upper triangular matrix of dimension 2 or 3,
conjugated to a Jordan block of dimension 2 or 3, such that its skew-symmetric part has
eigenvalues +Ai or 0, £\i. Therefore, once obtained the eigenvalues of the skew-symmetric
part of & with respect to any metric g; we can change go so that g satisfies the balanced
condition.

Except for (2,2,1,1,1), (3,2,1,1) and (3,3,1), we can change g; so that the skew-
symmetric part of & has two different eigenvalues. Lemma [1.56| ensures the existence of
strict locally conformally balanced structures. Finally, the algebras considered except (5,2)
and (4, 3) satisfy that £94(W) = 0 for some non-zero vector W so that Lemma ensures
the existence of a strict locally conformally balanced structure associated to the metric that
we defined previously. O

Remark 1.59. A similar construction ensures the existence of metrics without associated
balanced structures that admit strict locally conformally balanced structures.

Finally we analyze the case of the algebras associated to (4,1,1,1), (5,1,1), (6,1), (7).

Proposition 1.60. The quasi abelian nilpotent Lie algebras associated to (4,1,1,1), (5,1,1),
(6,1), (7) have both a balanced and a strict locally conformally balanced Spin(7) structure.

Proof. Lemma [I.55] guarantees the existence of strict locally conformally balanced structures
in the algebras associated to (4,1,1,1), (5,1,1), (6,1). We prove that all of them admit a
balanced structure giving an explicit example of an structure of the type (R® &). In the
case of (7), we have dim(Ex(R") = 6 so that the same metric also admits a strict locally
conformally balanced Spin(7) structure as Lemma [1.56] states. Define:

0 a 00 O 0 0
00 b 0 ¢ 0 0
000 c¢ O 0 0
E=—-[ 00 0 0 -1 0 -1
0000 0 14+a O
00 0O0 O 0 1+0b
00 0O0 O 0 0
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If a = b = ¢ =0, the Lie algebra is associated to (4,1,1,1),ifa=b=0and ¢ # 0 to (5,1, 1),
ifa=0,b#0and ¢c#0to (6,1) and if a # 0, b # 0 and ¢ # 0, to (7). The skew-symmetric
part of £ is associated to the 2-form:

v =ae'? + be® 4 ce® + et — e — el 4 (14 a)e®® + (1 +b)e".

Let n be the spinor whose associated 4-form is the standard Spin(7) form €y. Then, the
equality yn = 0 follows from the equalities:

67 45 56 47 34 25 23 67
en=em em=emn e n=-—cm, em=-—cmnm en=-—c

Our discussion proves:
Theorem 1.61. 1. Every Spin(7) structure on the abelian Lie algebra Ag is parallel.

2. The Lie algebras g = A5 ® Ls or g = A3 ® Ly admit strict locally conformally balanced
Spin(7) structures. They do not admit balanced Spin(7) structures.

3. The rest of quasi abelian nilpotent Lie algebras admit a balanced structure and a strict
locally conformally balanced structure.
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SPIN-HARMONIC STRUCTURES AND NILMANIFOLDS
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Abstract

We introduce spin-harmonic structures, a class of geometric structures on Riemannian man-
ifolds of low dimension which are defined by a harmonic unit-length spinor. Such structures
are related to SU(2) (dim = 4,5), SU(3) (dim = 6) and G (dim = 7) structures; in dimension
8, a spin-harmonic structure is equivalent to a balanced Spin(7) structure. As an application,
we obtain examples of compact 8-manifolds endowed with non-integrable Spin(7) structures
of balanced type.
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2.1 Introduction

In 1980 Thomas Friedrich proved a remarkable inequality involving the scalar curvature of a
compact, spin Riemannian manifold and the first eigenvalue of the Dirac operator, see [53].
This triggered a deep analysis of spin Riemannian manifolds; particular emphasis was put
on which compact manifolds admitted parallel, twistor or Killing spinors, see for instance
[7, 9, O2]. In particular, it was soon clarified that Riemannian manifolds endowed with a
parallel spinor are related to Riemannian manifolds with special holonomy, i.e. Riemannian
manifolds whose Riemannian holonomy is contained in SU(m), Sp(k), Ga or Spin(7); notice
that the Ricci curvature of a compact Riemannian manifold endowed with a parallel spinor
vanishes.

Relaxing the requirement to have a parallel spinor, it was later shown that many non-
integrable G structures, G C SO(n) being a closed subgroup, can be understood in terms of
nowhere vanishing spinors, generalizing the case of parallel spinors. For instance, in [I] the
authors described SU(3) and Gy structures in dimensions 6 and 7 respectively using a unit-
length spinor. Not only does the spinorial approach offer an alternative framework for telling
apart different classes of such structures, but also provides a unifying language showing how
the same spinor is responsible for the emerging of both structures.

o7



Introduction 58

SU(2) structures in dimension 5 have been introduced by Conti and Salamon in [35] and
classified by Bedulli and Vezzoni in [16] in terms of the exterior derivatives of the corre-
sponding defining forms — see Section In [35], the study of SU(2) structures in dimension
5 was certainly motivated by spinors, concretely, generalized Killing spinors. However, no
spinorial description of such structures is available; the first goal of this paper is to tackle
this question. We do this in Section

As for Spin(7) structures on 8-dimensional manifolds, they can be described in terms
of a triple cross product on each tangent space; an equivalent description can be given in
terms of the so-called fundamental 4-form 2. The different types of Spin(7) structures were
classified by Fernandez in [43] using the triple cross product: there exist two pure classes,
called balanced and locally conformally parallel. An equivalent classification is obtained by
considering the fundamental form: balanced Spin(7) structures are characterized by the
equation *(d2) A Q = 0, while the 4-form of a locally conformally parallel Spin(7) structure
satisfies dQ2 = O A Q for a closed 1-form 6, called the Lee form. In [69] Ivanov discovered that
the unit-length spinor which characterizes balanced Spin(7) structures is harmonic, that is,
it lies in the kernel of the Dirac operator Ip, but gave no further application of this fact.
Notice that Hitchin proved in [67] than every compact spin 8-manifold carries a harmonic
spinor; not much is known, however, about zeroes of harmonic spinors (see [g]).

A systematic spinorial approach to Spin(7), along the lines of [I], was taken by the second
author in [86]. In particular, the observation that balanced Spin(7) structures are equivalent
to unit-length harmonic spinors was exploited in [86] to construct examples of balanced
Spin(7) structures on 8-dimensional nilmanifolds and solvmanifolds. There it became clear
that the spinorial approach has some practical advantages over the “classical” one, which uses
the 4-form. The principle we follow in this paper is that albeit both the equation /n = 0
for a unit-length spinor and the equation *x(d2) A Q = 0 for a 4-form are non-linear, the
first one seems to be more tractable, at least if one is interested in constructing examples of
balanced Spin(7) structures on compact quotients of simply connected nilpotent and solvable
Lie groups, that is, on nilmanifolds and solvmanifolds.

Indeed, the second goal of this paper is to construct examples of balanced Spin(7) struc-
tures on 8-dimensional nilmanifolds. The first known example of such a structure is a nil-
manifold described by Ferndndez in [46]. Further examples are discussed in [69] 82]. Notice
that the classification of 8-dimensional nilpotent Lie algebras is not known. Even if it were,
however, it is not immediately clear how to sift through them in order to find those admit-
ting balanced Spin(7) structures (for instance, the balanced condition is not of cohomological
type).

We describe briefly the idea behind the construction. As we pointed out, it is very natural
to consider Spin(7) structures in dimension 8 defined by a chiral unit-length harmonic spinor.
Nothing hinders, however, to consider Gz, SU(3) and SU(2) structures in dimensions 7, 6
and 5 respectively, such that the defining spinor is harmonic. Using the spinorial approach
of [1I], one can precisely track which classes of G2 and SU(3) are defined by harmonic spinors;
moreover, our spinorial description also allows to pinpoint which classes of SU(2) structures
arise from a harmonic spinor. While Spin(7) structures defined by a harmonic spinor form
a pure class, the same is not true in lower dimensions; for instance, in dimension 5, the
requirement to be harmonic for the corresponding spinor turns out to be quite loose.

Viceversa, beginning with an SU(2) structure on a 5-manifold (resp. an SU(3) structure
on a 6-manifold, or a Gy structure on a 7-manifold), defined by a harmonic spinor, one can
multiply by a flat torus T%, k = 3,2, 1, to obtain a Spin(7) structure in dimension 8 defined
by a harmonic spinor, that is, a balanced structure.

In order to construct such examples, we need a formula for the Dirac operator acting
on a particular class of spinors on a nilmanifold I'\G; namely, we restrict to left-invariant
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spinors, those which come from left-invariant spinors on the Lie group G; for more details,
we refer the reader to Section [2.5] The following formula is obtained in Proposition 2.41] and
expresses the Dirac operator on invariant spinors in a purely algebraic way:

n

AD¢ == (e Nde' +i(e;)de’) .

=1

In Section we rely on the existing classification of nilpotent Lie algebras up to dimen-
sion 6 (see for instance [L3]) for solving the equation IPn = 0 in the space of left-invariant
spinors on low dimensional nilmanifolds. In particular, we show which metric nilpotent Lie
algebras in dimensions 4, 5, and 6 admit a harmonic spinor — see Theorems [2.49] [2.53] and
and Subsection We point out here that, although the proof is achieved by a case-
by-case analysis, ours is the first systematic spinorial approach to the study of geometric
structures on nilmanifolds.

This paper is organized as follows: in Section we review the necessary preliminaries on

Clifford algebras and spinor bundles. Section reviews the spinorial description of Spin(7),
Go and SU(3) structures; we introduce the notion of a spin-harmonic geometric structure,
that is, a geometric structure defined by a harmonic unit-length spinor. In Section [2.4] we
carry out the spinorial classification of SU(2) structures on 5-manifolds. In Section we
consider left-invariant spinors on simply connected Lie groups, finding a general formula for
the Dirac operator — see Proposition — which we specialize to the case of nilpotent and
(a certain kind of) solvable Lie groups. Using this formula, in Section we tackle nilpotent
Lie algebras (and nilmanifolds) in dimensions 4, 5, and 6. In dimension 4, a non-abelian
nilpotent Lie algebra admits no metric with harmonic spinors. In dimension 5 we classify
metric nilpotent Lie algebras and determine those which admit harmonic spinors. Finally, in
dimension 6, either we provide a metric on the Lie algebra which admits harmonic spinors,
or we show that no such metric exists.
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2.2 Preliminaries

In this section we recall some basic aspects about the representation theory of Clifford al-
gebras, in the real and the complex case, as well as generalities on spinor bundles; further
details can be found in [54] and [79].

2.2.1 Representations of the real Clifford algebra

If n # 3 (mod 4), the real Clifford algebra Cl,, of (R", i x?) is isomorphic to the algebra

of I[-dimensional matrices with coefficients in the (skew) field k, k € {R,C,H}; we denote
this algebra by k(7). If n = 3 (mod 4), Cl,, is isomorphic to k(I) @ k(). In low dimensions,
the following isomorphisms hold (see [79, Chapter 1, Theorem 4.3)):

. Ch=C; . Cls = C(4);

o Cly =Hj e Clg =R(8);

. Cb=HoH, . Cl; = R(8) & R(8);
. Cly = H(2); . Cls = R(16).
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Isomorphisms in higher dimensions are determined by the property Cl,+s8 = Cl,, ® Clg.
As a consequence, there is a unique equivalence class of irreducible representations of Cl,, if
n # 3 (mod 4) and two different ones if n = 3 (mod 4); these are determined by the image
of the volume form, which can be I or —I [79, Chapter 1, Proposition 5.9].

By construction, the even part of the Clifford algebra Cl,,, denoted C1°, is isomorphic to
the Clifford algebra Cl,,_1; using this, one can construct irreducible representations of Cl,,_1
from irreducible representations of Cl, by using the following result, which is essentially a
reformulation of [79, Chapter 1, Proposition 5.12].

Proposition 2.1. Let W be a k-vector space and let py: Cl, — Endy (W) be an irreducible
representation. Write R™ = R"~! @ R, where the second factor is generated by a unit-length
vector ey, and denote by i,_1: Cl,_1 — Cl?l the extension to Cl,_1 of the map R*™ 1 — Cl?l,
v > vey; define pp—1 = pp o in—1: Cly—1 — Endy(W). Then,

1. If n = 0 (mod 4) the representation p,—1 splits into two irreducible representations
p,iL_l, that are inequivalent. These are the eigenspaces W= of the endomorphism
pn(Un): W — W, where v, is the volume form in R™.

2. If n = 1,2 (mod 8), the representation p,—1 splits into two irreducible equivalent rep-
resentations.

3. If n=3,5,6,7 (mod 8), the representation pn—1 is irreducible.

In this paper, we work with the following 6-dimensional real representation of Clg:

e1 =+ B3 + FEor — FE36 — Eus, e4 = — 15 — E9g — E37 — Py,
€2 = — Fi7 + Eog + E35 — Fyg, es = — F13 — Eoy + Es7 + Egg,
e3 = — Fig + Eos — E3g + Fyr, €6 = + Fr4 — Eo3 — Esg + Egr,

where the matrix E;; denotes the skew-symmetric endomorphism of RS that maps the "
vector of the canonical basis to the j%* one and is zero on the orthogonal complement.

2.2.2 Representations of the complex Clifford algebra

Let Cl,, be the complex Clifford algebra of (C”, >0 z?) A construction of an irreducible

representation of Cl,, can be found in [54]. There exist a 2¥-dimensional complex vector space
Ao and isomorphisms

rok: Clog — Endc(Agy),
Fokt1: Clogy1 — Endc(Agy) © Ende(Azy) -

Let pr;: Endc(Agk) @ Ende(Agk) — Endc(Agg) be the projection onto the first summand.
The complex representation of Cl,, is defined as k,, if n = 2k or pr; ok, if n =2k + 1.

Then Ay is irreducible as a representation of Cl,, and is used to define the complex spin
representation: this is the restriction of &, to Spin(n) C C1%. This representation is faithful
and irreducible if n = 2k + 1; however, if n = 2k, it splits into two irreducible summands
A;tk, which are the eigenspaces of eigenvalue £1 of the Spin(n)-equivariant endomorphism
kin(VS), where 1S = iFu,.

Depending on the dimension, the complex vector space Agg is endowed with a real struc-
ture ¢ or a quaternionic structure jo. These are antilinear endomorphisms of Ay such that
¢? =1 and j3 = —I; they commute or anticommute with the Clifford product, determining a
real or quaternionic representation of Spin(n). The precise result is contained in the following

proposition (see [54, Chapter 1]):
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Proposition 2.2. Suppose n = 2k + r, with r € {0,1}.

1. If k=0,3 (mod 4), then Ay, has a real structure ¢ with @ o i, (v) = (=1)F K, (v) 0@
for any v € R™.

2. If k=1,2 (mod 4), then Agy has a quaternionic structure jo that satisfies jo o kn(v) =
(=1 1k, (v) 0jo for any v € R™.

If Agy is decomposable as a Spin(n) representation, then
+ + C AE
° QO(AS ) Asp, ° J2(A8p+2) — AéFp—i-Q;

° (AéthrG) Agzp+67' ° jQ(Aéthrzl) Aé‘:erél

We denote also by (Agp)i, (Agp)+ and (Agpi6)s the eigenspaces of eigenvalue £1 of ¢
on AL Ag » and (Ag,6)+ respectively. If n = 8p + ¢ with 0 < ¢ <7 then Cl,, is isomorphic

via /@ipif k=1 (mod 2), or via k, otherwise, to:
g =0 Bnds((A%) & (A5) ). 0 =4 Enda(Agyi)
g =1: Endc(Agp), q =5: Endc(Agpta),
q = 2: Endg(Agpi2), q = 6: Endr((Agpt6)+),
q = 3: Endp(Aspi2) ® Endu(Aspy2), ¢ =7 Endr((Aspre)+) ® Endr((Aspre)+)-

Remark 2.3. If n = 2,3 (mod 8) then j, is a quaternionic structure that commutes with the
Clifford product and if n = 4 (mod 8) then v4j2 has the same property. That explains the
notations Endg(Agpt2) and Endg(Agpy4).

In addition, the representation Ag; is equipped with a hermitian product h that makes
the Clifford product by vectors on R?* and R%+! a skew-symmetric endomorphism. We con-
struct from it a scalar product on the irreducible representation of the Clifford algebra using
standard results of real and quaternionic structures on irreducible representations applied to
the Spin(2k 4+ 1) module Ag.

1. If £ = 0,3 (mod 4) the restriction of h to (Agg)+ is real valued. Moreover, the spaces
A;Ek are orthogonal if & = 0 (mod 4) because the multiplication by v is a unitary
transformation.

2. If k=1,2 (mod 4) then h(j2¢,jan) = h(¢,n), hence jo is an isometry for the real part
of h.

In both cases, we denote by (-, -) the real part of h.

2.2.3 Spinor bundles

Let (M, g) be an oriented n-dimensional spin manifold and let Ad: Pgpin(M) — Pso(M)
be a spin structure. Let W be a k vector space and p,: Cl, — Endx(W) an irreducible
representation. Recall that for n = 0 (mod 4) there is a splitting W = W* @ W~ into
Spin(n) irreducible representations (see Proposition [2.1)).

Definition 2.4. A real spinor bundle over M is X(M) = Pgpin(M) %, W, for an irreducible
representation p,: Cl,, — Endy(W). If n =0 (mod 4), the positive and negative subbundles
are X (M) = Pgpin(M) x,, W=,
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Let C1(M) denote the bundle whose fiber over p € M is the Clifford algebra of (T,M, g;);
the spinor bundle is a Cl(M)-module with the Clifford product by a vector field X € X(M)
given by

X[F,v] = lF,ZXiPn(ei)Ul ;

here X° are the coordinates of X with respect to the orthonormal frame F = Ad(F). The
Clifford multiplication extends to A*T*M in the following way:

e the product with a covector is defined by X*¢ = X ¢, with canonical identification
between the tangent and the cotangent bundle given by the metric: X* = g(X,-).

o If the product is defined on AYT*M when | < k, we define

(X* A B)o = X(Be) + (i(X)B)9,

where i(X)S denotes the contraction, f € A*T*M and X € X(M). This product is
extended linearly to AFH1T* M.

The relation among representations of Cl,, determine relations among spinor bundles. For
instance, we have the following result:

Lemma 2.5. Let (M,g) be an n-dimensional spin manifold with n = 8p + 8 — m and
4 <m < 8. Consider the Riemannian manifold (M x R™, g+ gm,), where g, is the canonical
metric on R™ with orthonormal basis (ep41,...,esprs). Denote by pry: M x R™ — M the
canonical projection.

1. There is a bijection between spin structures on M and spin structures on M x R™.

2. The spinor bundles are related by ST (M x R™) = pri X(M) with Clifford product
X(¢,t) = (Xent10,t) for X € X(M).

Proof. Denote by i: M < M x R™ the canonical inclusion. First of all, Pgo(M x R™) =
pri Pso(M). Therefore, each spin structure on M determines a spin structure on M x R™
by Pgpin(M x R™) = pri Pspin(M) Xgpin(n) Spin(8p + 8). Conversely, given a spin structure
Pgpin (M x R™) on M x R™, we have that i*(Pgpin(M x R™)) is a Spin(8p + 8) structure.
Taking the preimage of Pso(M) C Pgogp+s)(M), we get a spin structure on M.

There is an isomorphism between the bundles Pspin (M) X gpin(n) W+ and Pgpin (M) X Spin(n)
Spin(8p + 8) Xspin(spt+s) W, given by [F,v] — [[F,1],v]. Thus, taking into account Propo-
sition we get LT (M x R™) = pri B(M).

The relation between Clifford products follows from the equality p,(v) = psp+s(venti),
for v € R™; this is obtained using the definition of p,, in Proposition [2.1] as follows:

Pn(v) = pnt1(vent1) = pri2(Vent2eniiniz) = ppi2(vent1) = -+ = pspis(vent) -
O

The scalar product (-, -) on W defines a scalar product on the spinor bundle that we also
denote by (-, -); the Clifford product with a vector field is a skew-symmetric endomorphism.
The Levi-Civita connection V of g induces a connection V on the spinor bundle which
is (-,-)-metric and acts as a derivation with respect to the Clifford product with a vector
field. Moreover, the complex and quaternionic structures on W determine complex and
quaternionic structures on the spinor bundle, which are isometries of (-,-) and parallel with
respect to V.
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Definition 2.6. The Dirac operator is the differential operator I: T'(X(M)) — T'(X(M))
given locally by the expression

o=> XiVx,0,
i=1

where (X1,...,X,,) is a local orthonormal frame of M.
Definition 2.7. A spinor n € T'(X(M)) is called harmonic if Dy = 0.

There is a relation between positive harmonic spinors in different dimensions; we follow
the notation of Lemma 2.5

Lemma 2.8. For m € {1,2,3,4}, let (M, g) be an (8p — m)-dimensional spin Riemannian
manifold. Let ¢ be a unit-length harmonic spinor of M. Then, n = pr] ¢ is a unit-length
harmonic spinor on M x R™.

Proof. Let (Xi,...,X,) be alocal orthonormal frame of TM and let (e,41,...,€esp+s) be an
orthonormal basis of R™; observe that VMXR X; = VMX VMET X, = VMXRW e; =0

and V& "e; = 0. Therefore, VMXR n = prl(VM ¢) and VMXRWU = 0. From the relation
between Y(M) and X (M x ]Rm) proved in Lemma [2.5 we deduce:

n
ens1n =Y en1 XiV ¥ = —pr} Do
i=1

The spinor n is harmonic because the multiplication by e, 41 is an isometry. ]

2.3 Spinors and geometric structures

The purpose of this paper is to study geometric structures defined by unit-length harmonic
spinors on Riemannian manifolds. This is interesting because a unit-length harmonic spinor
defines different geometric structures according to the dimensions. We shall focus on dimen-
sions 4, 5, 6, 7 and 8. In these dimensions, the relation between unit-length spinors and
geometric structures on manifolds is summarized in the following result:

Proposition 2.9. Let p,: Cl, — Endg(W) an irreducible representation and let n € W be
a unit-length spinor.

1. Ifn =28 andn € W= then Stabgpin(g) (1) = Spin(7).
2. If n =T then Stabgin(r)(n) = Ga.

3. If n = 6 then Stabsyin) (n) = SU(3).

4. If n =5 then Stabgp(s)(n) = SU(2).

5. If n = 4 then Stabgpin4)(n) = SU(2).

This proposition means that a unit-length spinor in dimension 8 determines a Spin(7)
structure on the underlying manifold, and similarly for the other dimensions.
Motivated by Definition we give the following definition:

Definition 2.10. Let (M, g) be a Riemannian spin manifold of dimension n € {4,...,8},
and let n € I'(X(M)) be a unit-length section. We say that n determines a spin-harmonic
structure on M if [Py = 0. Moreover, if n = 0 (mod 4), we say that the spin-harmonic
structure is positive or negative if n € T(ST(M)).
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Remark 2.11. For dimensions n > 8, the action of Spin(n) on the sphere of unit-length
spinors is not transitive. Therefore the stabilizers of the spinors may be different groups, so
it makes no sense to define a geometric structure via a unit-length spinor unless we require
the constancy of the stabilizer (this happens for instance when one has a parallel spinor).

From now on, we denote a generic spinor by ¢ and a fixed unit-length spinor by 7.

More precisely, our motivation is constructing 8-dimensional nilmanifolds with invariant
balanced Spin(7) structures. As we shall see later, these structures are characterized by the
presence of a positive spin-harmonic structure. Lemma guarantees that if n € {4,5,6,7},
M is an n-dimensional spin manifold with a spin-harmonic structure and 78" is an (8 — n)-
dimensional flat torus, then M x T8 " has a Spin(7) balanced structure. In section we
construct such spin-harmonic structures on low dimensional nilmanifolds.

Spin-harmonic structures have already appeared, under disguise, in the papers [I] and
[86]; we proceed to review the relevant results and to relate spin-harmonic structures with
the different kinds of Spin(7), G2 and SU(3) structures. There is no spinorial description of
SU(2) structures in dimension 5; we carry out this classification in Section We do not
study the condition in dimension 4; in fact, as we shall see in Theorem there are no
invariant harmonic spinors on 4-dimensional nilmanifolds.

2.3.1 Positive spin-harmonic Spin(7) structures in dimension 8

Let (M, g) be an 8-dimensional Riemannian manifold; a Spin(7) structure is characterized
by the presence of a triple cross product on each tangent space; in turn, this is determined
by a 4-form 2 (see [104), Definition 6.13]).

As usual, a way to measure the lack of integrability of a geometric structure is provided
by its intrinsic torsion (see [I05]). In this case, the intrinsic torsion of a Spin(7) structure is
a section of the bundle 7% M ® spin(7)*, which is isomorphic to A3T*M via the alternating
map. The Hodge star defines an isomorphism x: A3T*M — A>T*M. Therefore, the different
classes of Spin(7) structures are determined by the exterior derivative of (2.

For a fixed Spin(7) form  on R®, the decomposition of the space of 3-forms of R® into
irreducible Spin(7) invariant subspaces is given by (see [104, Theorem 9.8]):

AS(RP)* =AF(R®)" @ Ajs (R®)".

where AZ(R®)* = §(R®)Q and A3 (R®)* = {7 € A3(R®)* | 7 A Q = 0}. We denoted by
AF(R®)* an I-dimensional invariant subspace of A¥(R®)*; moreover, the induced bundle on
M is denoted by AfT*M . According to this discussion, there exist 7 € A'T*M and 73 €
A3T* M such that:

dQA=1 ANQ+*xT13.

In [43], Ferndndez distinguished Spin(7) structures in the following pure classes:
Definition 2.12. A Spin(7)-structure given by  is said to be:

1. parallel, if dQ2 = 0;

2. locally conformally parallel, if 5 = 0;

3. balanced, if 7 = 0.

A Riemannian manifold (M, g) admitting a Spin(7) structure is spin and the positive
part of its spinor bundle has a unit-length section. Conversely, a spin 8-dimensional manifold



Spinors and geometric structures 65

whose spinor bundle admits a positive unit-length section 7 can be endowed with a Spin(7)
structure by the formula

1
AW, XY, 2) = J{(-WXYZ+WZYX)n,n).

As for spin-harmonic structures, the following result was proved by the second author in
[86]:

Theorem 2.13. The spinor n determines a positive spin-harmonic structure if and only if
the induced Spin(7) structure is balanced.

Remark 2.14. Spin-harmonic structures are thus especially relevant in dimension 8, since
they represent a pure class of Spin(7) structures.

2.3.2 Spin-harmonic G, structures in dimension 7

A Gg structure on a Riemannian 7-dimensional manifold (M, g) is characterized by the pres-
ence of a cross product on (7'M, g), which is determined by a 3-form ¥ (see [104, Lemma
2.6])

The torsion of a Gy structure is a section of the bundle T* M ® g5 . The splitting of R’ ® g5
into four G invariant irreducible subspaces determines four subbundles, x1, X2, X3, x4 Which,
in turn, determine pure types of Go structures.

Such classes are completely determined by differential equations for ¥ and «V¥. In order
to state the precise result, we recall the decomposition of A2(R7)* and A3(R7)* into Go
irreducible parts for a fixed G form ¥ of R” (see [104, Theorem 8.5]):

A2 (RT)* =AZ(R")" @ ALy (RT)",
AS(RT)* =AT(RT)" @ AF(RT)" @ AJ; (RT)",

where A2(R7)* = (R, A2,(R")* = go, AF(RT)* = (U), A3(R")* = i(R")(»x¥) and
A3 (RT)* = {w | ¥ Aw =0,V Aw = 0}. Then we have (see [23, Proposition 1]):

Proposition 2.15. There exist 70 € C®(M), % € AMT*M, 72 € A2,T*M and 73 €
A3, T*M such that:

AU =71 (*V) + 37 AU 4 %77,
d(xV) =471 A (W) + 72 A T
Moreover, the torsion is a section of x; if and only if T =0 for k # 7.

A Riemannian manifold (M, g) admitting a Gg structure is spin and its spinor bundle
has a unit-length section. Conversely, the spinor bundle ¥(M) of a spin 7-manifold M has a
unit-length section 7 and the 3-form of the Go structure is given by [1]:

U(X.Y,Z) = (XYZn,n).

The relationship between Go-structures and harmonic spinors is characterized by the
following result:

Theorem 2.16. [1, Theorem 4.8] The spinor n determines a spin-harmonic structure if an
only if the induced Go structure is of type x2 @ x3-
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2.3.3 Spin-harmonic SU(3) structures in dimension 6

Let (M, g) be a 6-dimensional Riemannian manifold. An SU(3) structure on M consists of
a compatible almost complex structure J and a complex volume form © (see [68, [105]). We
denote by ©4 and ©_ the real and imaginary part of © and we define the fundamental 2-form
wby w(X,Y)=g¢(JX,Y) for X,Y € X(M).

The space R ® su(3)* decomposes into seven SU(3)-invariant irreducible subspaces; ac-
cordingly the intrinsic torsion of an SU(3) structure, which is a section of T*M ® su(3)=,
decomposes into the subbundles x1, X1, X2, X3, X3, X4, X5 (see [32]).

These are related to differential equations for w, © and ©_. Before formulating the
result, we recall the decomposition of A?(R®)* and A3(R%)* into SU(3) irreducible repre-
sentations. For this, we consider the U(3) decomposition A"(C®)* = ®,44=nAP4(C%)* and
we denote the real part of a complex vector space V' by [V]. For a fixed SU(3) structure
(w,0,,0_) on R, the splitting is:

A(RO)" =(w) @ [Ag" (CO)] @ i(R%)Os,
A3(RS)* =(0,) & (0_) @ [AT'(CO)*] & R® A wo.
where Ay (C6)* and A3 (CO)* are the spaces of primitive forms, that is, forms of AL1(C6)*

and A%1(C®)* which are orthogonal to w and w A (C%)*, respectively. The associated bundles
of M are denoted respectively by [Ay' (T*M @ C)] and [Ag" (T*M  C)].

Proposition 2.17. [15, Section 2.5] There exist 7', 71 € C*°(M), 4,75 € A'T*M, 72,72 €
[AY (T*M © C)] and 7 € [AZ'(T*M @ C)] such that:

3 1 3
dw = —57'1@+ + 57'1@_ + 3+ AW,
dO, =7l — TP Aw+ TP ANO .,

dO_ = 71w? —TQ/\CU+JT5/\@+.
Moreover, the intrinsic torsion is a section of x; if and only if Tk =0 for k # 7.

A Riemannian manifold (M, g) with an SU(3) structure is spin and its spinor bundle has
a unit-length section. Conversely, a spin 6-dimensional manifold has a unit-length spinor;
the following proposition explains how the spinor induces the SU(3) structure.

Proposition 2.18. [il, Section 2] The spinor bundle of M splits as
(M) = (m) @ (jn) & TMn.

The fundamental form w and the real part of the complex 3-form ©4 of the SU(3) structure
determined by n are given by

w(X,Y) = (jXn,Yn) and ©4 =—(XYZn,n).

Proposition m guarantees the existence and uniqueness of S € End(T'M) and v € T*M
such that:

Vxn=SX)n+~v(X)jn.

The relation between harmonic spinors and SU(3) structures is given by the following
result:

Theorem 2.19. [1, Theorem 3.7] The spinor n determines a spin-harmonic structure if an
only if its induced SU(3) structure lies in the class Xq3345 and satisfies dw = —27.
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We finally relate Theorem and Proposition [2.17]

Corollary 2.20. The SU(3) structure is spin-harmonic if and only if it lies on X354 and
5

satisfies T = 7°.
Proof. First, dw = — % (7% Aw?) = Jr*. To find an expression for v in terms of the torsion
forms we first observe that, according to [I, Theorem 3.13], it only depends on the projection
of the intrinsic torsion I' to x5. Therefore, we assume that v € x5 for this computation;
observe that in this case dO, = 7° A O, due to Proposition m

IfI' € x5 then Vxn = ~v(X)jn and therefore, for orthonormal vectors: ViyO,(X,Y, Z) =
—29(W)XY Zn,jn) = 2vy(WWJ(X)YZn,n) = —2y(W)O_(X,Y, 7). For the penultimate
equality we took into account that Xjn = —jXn = —J(X)n. For the last, we used that
O_(X,Y,Z)=0,(J(X),Y, Z). Therefore,

d(")+(W Xa Y7 Z) -
- VW®+(X,KZ) - VX@+(W, Y, Z) + VY®+(X,WZ) - VZ®+(X,KW)
= 2y ANO_(W,X,Y, Z).

In addition, one can observe that a AO_ = —JaAO, for a € £*; this implies that, 75 = 2.J7.

Therefore, the equality dw = —27 is equivalent to 74 = 7°. O

2.4 Spin-harmonic SU(2) structures on 5-dimensional mani-
folds

2.4.1 SU(2) structures

An SU(2) structure on a Riemannian manifold (M, ¢) is determined by an orthogonal splitting
TM = (of) @ &, where « is a unit-length 1-form and the distribution & = ker a is endowed
with three almost complex structures Ji: &€ — &, k = 1,2, 3 which are isometries with respect
to the induced metric, and satisfy Jj o Jo = J3 and Ji o J; = —J; o Ji, for k # [. The vector
field of is denoted by R. The three fundamental 2-forms are given by w(X,Y) = ¢(Ji X,Y),
kE=1,2,3, X,Y € X(M).

In fact, SU(2) structures are characterized by the forms (o, w1, we,ws), as the following
result states:

Proposition 2.21. [35, Proposition 1] SU(2) structures on a 5-manifold are in one-to-one
correspondence with (o, wi,ws, ws) € AYT*M x (A2T*M)3, such that:

1. wiAw; =0 fori# j, wi =wi =wi and a Aw? # 0,
2. If i(X)wy = i(Y)wa, then ws(X,Y) > 0.

Proposition 2.22. [35, Corollary 3] Let (o,wi,w2,w3) be an SU(2) structure on a 5-
manifold. There is a local frame of the cotangent bundle, (e',...,e%), such that a = €,

Wy = 612 4 634, Wo = 613 _ 624, wg = 614 + 623.

An almost complex structure Ji: £ — £ defines an almost complex structure on £* by
(JpB)(X) = B(JpX) for € £ and X € ; one has (JyoJ;))8 = —(JyoJx)B, but (JyoJ2)8 =
—J38. The next lemma will be used in the next section:

Lemma 2.23. For 3 € £, x¢(B ANwy) = —JifB3.

Proof. We compute the equality for 3 = e!. Using that Jie! = —(Jye1)* and that wy = —(I+
xe) (L AJgel), we get: ¢(el Awy) = —xe (el Axg(e! AdJgel)) = —(i(er) (e Adgel)) = —Jgel. O
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As usual, SU(2) structures are classified by the intrinsic torsion, which is a section of
T*M @ su(2)*. In the following, we denote the intrinsic torsion by an SU(2) equivariant

map,
Z: Pso(M) — T*M @ su(2)*,

where Pgo (M) is the frame bundle of M. Proposition below shows that Z is determined
by (da, dwi,dws,dws). In order to state it, we recall the irreducible decomposition of some
SU(2) modules (see [16]).

Proposition 2.24. Let R® be endowed with the SU(2) structure (o, w1, wa,ws). Then
1. AYR)* = (o) @ &,

)=

2. N2(R%)* = a A E" & (B (wr) © su(2),

8. A3(R®)* = A3¢* @ (@i (a Awg)) @ a A su(2),
) =

4. End(§ M) @ (BF_y0k(8) ® (Di_1(Jk)) ® 5u(2), where

or(€) = {5 € Symg(&) | Sy = (~1)W1 S, 1=1,2,3}, k=1,2,3.

Moreover, the map Ey: op(§) — su(2), Ex(S) = i(S)wk is an isomorphism.
Proposition 2.25. [35, Proposition 9] As an SU(2)-module, R® ® su(2)* decomposes as:
R® @ su(2)t = TR @ 4(R*)* @ 4su(2),

where TR means 7 copies of the trivial representation R, and so on. Let T(l),T(’)d e C™®(M),
k,1=1,2,3, 7F € €& and 7§ € su(2), k = 1,2,3,4, be such that

3
dOé:ZT(l)wl—‘er/\T{l—‘rTél,
I=1
3
dwk:ZTgfla/\wl—i—T{“/\wk—l—a/\Tf,
I=1

Then 78 = 78 and 78" = —7lF for 1 # k. Moreover,

(1]

k
(u) = (1", 73", 7). (g, w'r), (u'rg, u' ) -

2.4.2 Spinorial point of view

Let p5: Cl; — Endc (W) be an irreducible representation with complex structure j; = p5(vs).
Take also a quaternionic stucture jo that anticommutes with the Clifford product, and define
j3 = j1 © j2.

Let (M, g) be a spin Riemannian manifold and let Ad: Pgpin5)(M) — Pgos)(M) be a
spin structure. The spinor bundle (M) = Pgpin(5) (M) X,; W has a unit-length section 7.
Define Stab(n) as the subbundle whose fiber at p € M is the stabilizer of the spinor n(p)
under the action of Spin(5). It is an SU(2) reduction of Pg,(5) (M), and the projection
Ad(Stab(n)) is an SU(2) structure because the kernel of Ad is £1 and —1 ¢ Stab(7,,).

We first explain the decomposition of the spinor bundle of M and write the forms
that determine the structure by means of spinors. For that purpose consider the map
pn: Spin(5) — W, p,(g) = gn, whose differential is dp,: A2R> — W, dp, () = .
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Lemma 2.26. The restriction dpy: su(2)- — (n)* is an isomorphism, hence there is a
decomposition of (n)* with respect to the SU(2) structure determined by 7, (o, w1, ws,ws3):

S(M) = (n) & (= (wen)) & .

Proof. The kernel of dp, is su(2) because Stab(n) = SU(2) and Im(dp,) C (). By Propo-
sition M(Q), we have (M) = (n) & (B7_ (wkn)) & (@ AE*)n. Now (aAE*)n = £*n because
these are irreducible representations of the same dimension. O

We can write the forms that determine the SU(2) structure in terms of spinors. For
that purpose recall that Cl; = C(4). According to Propositon the spin representation
has a quaternionic structure jo that anticommutes with the Clifford product. Therefore, the
space of spinor is R® endowed with the complex structures, (ji, j2,j3), where j; is the complex
structure determined by the isomorphism Cl; = C(4), and j3 = j; ojo. Of course, jrji = —Jijk
if k £ [. The complex structure j; commutes with the Clifford product by a vector and both
jo and j3 anticommute. According to this, we define €1 = 1 and €9 = €3 = —1; we have that
jxX ¢ = e Xjro, for every spinor ¢.

Lemma 2.27. The spinorsn, j1n, j21, j3n are orthogonal and the spaces H,, = (n,j1n, j21,j3n)
and H# are jp-invariant, k = 1,2, 3.

Moreover, there exists a subspace & C R such that &n = H#; & inherits a quaternionic
structure determined by ji(Xn) = Jip(X)n.

Proof. The orthogonality of the mentioned spinors follows from the fact that the endomor-
phisms j. are isometries. It also follows from this property that the subspace Hf{ is ji-
invariant.

In addition, ]HI# is SU(2)-irreducible as a consequence of Lemma and the map
X + X is injective and SU(2)-equivariant. Being R® = R®C? as SU(2) modules, necessarily
HnL = ¢&n for some 4-dimensional subspace € C R®. Finally, the endomorphisms J;, define a
quaternionic structure on &, because jo is a quaternionic structure on H# ]

Definition 2.28. Let (M, g) be a Riemannian manifold with a spin structure and let n €
Y (M) be a unit spinor. The SU(2) structure (o, w;, w2, ws) defined by 7 is given by:

L. wp(X,Y) = g(JiXe, Ye), where Z¢ is the orthogonal projection of a vector field Z to &.

2. R® = (R) & ¢ as oriented vector spaces, where ¢ is oriented by w?|¢, and R = o,
Lemma 2.29. Let v be the unit-lenght volume form. The following equalities hold:

1. wgn = —2¢eijxn forer =1 and eg = e3 = —1.

2. an=—jin,

3. ajon = —jgn and ajsn = jon,

4. v = —J1n-

Proof. Let (e1,ea,e3,¢e4,e5) be an orthonormal oriented frame such that w; = e'2 4 34,
wy = el —e? w3 = e + 62 and a = €°. Taking into account that Ji(e;) = ez and
Ji(e3) = ey, we obtain:

win = (ere2 + ezes)n = erJi(e1)n + esJi(es)n = ji(el + e3)n = —2j1n.

For k € {2,3} the computation is similar, but one has to take into account that jo and j3
anticommute with the Clifford product with a vector.
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Finally, ejon = —jin = esqn implies vsn = —esn. The second and third equalities are
a consequence of the previous one, together with the fact that jijo = j3. For instance,
Qjon = —jooun = joj1n = —jan.

For the last equality, observe that in terms of the previous frame we have: v = e
et A (Ji(e))* Aed A (Ji(e3))* A ed. Taking into account the previous equalities and that
(ek A (J1(eF))*)n = —jin as before, we obtain:

12345 _

v = —jre Ji(e")e’ Ji(e®)n = —jin.

Remark 2.30. The subspaces A2£*n and £*n are orthogonal.

Lemma 2.31. Forey =1 and ey = e3 = —1, wp(X,Y) = ex(Xjin, Yn). Moreover, a(X) =
—(Xn,jam)-

Proof. The tensor (X,Y) — (Xjgn, Yn) is skew-symmetric because ji is an isometry, j7 =
—Id and (jxn,n) =0. If X, Y €¢,

Moreover, wy(R,Y) = 0 = e, (Rjrn, Y1), because Rjin € H, and Yn € ]HI# Finally, a(X) =
(Xn, Rn) = —(Xn,jin). O

We now compute the Dirac operator of 7 in order to relate it with the torsion of the
SU(2) structure. We first introduce some notation.

Definition 2.32. Lemmas and guarantee the existence and uniqueness of S €
End(&), Ve €&, ©; € £ and ¢ € C®(M), I = 1,2, 3, such that:

3

Vxn = 8(Xe)n + a(X)Ven + ) (0u(Xe) + a(X)en)jim, (2.1)
=1

where X = X¢ + a(X)R.
Definition 2.33. According to Proposition there is a decomposition of S € End(§):

3 3

S(X)=pl+> S+ NJi+So,
=1 =1

where Sy € 01(€) and Sy € su(2).

We now compute the Dirac operator of 1 in terms of the tensors we introduced; we use
the notation of Definition [2.32)

Proposition 2.34. Let n € (M) be a unit-length spinor. The Dirac operator is
D =(=4p+ d1)n — 4jin + (4h2 + da)jan + (4X3 — d2)jan
+ (N1(Ve + ©]) = Ja(05) — J5(5))n.
Proof. Let (e1,e2,e3,e4, R) be an oriented orthonormal local frame. From (2.1]), we have

3 4
Dn=m(S)+RVen+ Y (( @zf(ei)e@-) + gka) ik
1

k=1

i=
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where m: End(§) — X(M), ¢; ® €] ~— eje;n. Observe that m is SU(2) equivariant and

Im(m) = H,. Taking into account Proposition we obtain ker(m) = su(2)® (&3_,0%(€)).
Moreover, m(I) = —4n and m(Jy) = —4egjin.
In addition, RVen = J1(Vg)n. Finally,

4

3
> Oklei)esjen = exJiOfn  and > okRikn = ¢11 — dajan + Pzjan -
=1 k=1

O]

We now write the torsion in terms of the forms (o, wi,ws,ws3) defined by a unit-length
spinor n € ¥(M) as in Lemma [2.31]

Proposition 2.35. The covariant derivatives of the forms (o, wy,ws,ws) are governed by the
formulas
(Vzwp)(X,Y) = ex(Vazn, (XY =Y X)jyn), k=1,2,3,
(Vza)(X) = 2(Vzn, Xjin),

where V is the Levi-Civita connection and V is the spinorial connection.

Proof. Take X,Y,Z € T,M and extend them to vector fields with VX|, = VY|, = VZ|, = 0.
Then, according to Lemma [2.31] we have:

(Vzwp)(X,Y) = Z(wi(X,Y)) = e e X V20, Y1) + 1 Xn, YV 21)
= ex(Vzn, (XY = Y X)jkn),
(Vza)(X) = Z(a(X)) = —(XVzn,jin) — (X1,j1Vzn)
= 2(Vzn, Xj1n).

Before computing the differentials, we prove a technical result:
Lemma 2.36. For X,Y €&, one has:
wl(S(X), Y) — wl(S(Y), X) = 2(,uw1 — A3wo + Aows + i(Sl)wl)(X, Y) ,

CUQ(S(X), Y) — CUQ(S(Y), X) = 2()\30)1 + pwa — A\iws + i(SQ)Wg)(X, Y) ,
W3(S(X), Y) — LU3(S(Y), X) = 2(—)\20.21 + Aws + Hws + i(S3)UJ3)(X, Y) .

Proof. We prove the first equality, the others being similar. We analyze each irreducible
part separately. It is clear that wi(uX,Y) — w1 (Y, uX) = 2uwi (X, Y). Taking into account
that SpJ1 = €1 J1SE, we obtain that SiJ; is skew-symmetric for £ = 1 and symmetric for
k € {2,3}. Therefore,

3
Y 9(iSk(X),Y) = g(J1Sk(Y), X) = 2w1(S1(X),Y).
k=1
Finally we conclude:

3
Y Ag(NTe(X),Y) = Mg (J1Jk(Y), X) = =2039(J2(X),Y) + 2X29(J3(X),Y)
k=1

= 2(—>\3WQ + )\Qw:),)(X, Y)

The equality wi(So(X),Y) + wi1(X, So(Y)) = 0 follows from the fact that Sy € su(2). O
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Proposition 2.37. Let n € X(M) be a unit-length spinor and let o be the 1-form of the
SU(2) structure determined by n. Then (with the notations of Proposition[2.25),

3
da:a/\Tf—i—ZTokwk—i-Tgl,
k=1
where:
o o = —4u, 8 = 4N, 5 = —4)g,
4 7'{1 = 2J1V§*,
L4 ’7'24 == —4i(5’1)w1.

Proof. Proposition implies that %da(X,Y) = (Vxn,Yjin) — (Vyn, Xjin). In order
to compute da|¢, we first consider X,Y € &; according to equation , the orthogonal
projection of Vxn to &n is S(X)n. So that (Vxn,Yjin) = (S(X)n, Ji1(Y)n). Taking into
account the previous observation, and Lemma [2.36] we obtain:

%da( X,Y) = (Xn, 1S(Y)n) — (Y, J1S(X)n)
= —2(uw1 — A3wg + dows + i(Sl)wl)(Xﬂ Y)'

Finally, we compute da (R, Y); arguing as before, equation ([2.1]) implies that (Vgn,j1Yn) =
(Ven,j1Ym). In addition, (Vyn, j1Rn) = (Vyn,n) = 0, according to Lemma Thus,

1 . .
5da(R.Y) = (Ven. ji¥m) — (1B, Vyn) = (Ven, Ji(Y)n).
[
Proposition 2.38. Let n € (M) be a unit-length spinor and let (w1, w2, ws) be the 2-forms

of the SU(2) structure determined by n. Then

dwy, :a/\T§+iTé€la/\wl+T{€/\wk,
=1
where:
o THF =4X1, 79?7 = 4AXg + 203, T3P = 4Ag — 200, TP = 4Ap — 261,
o T =236k D100,
o 73 =4i(S0)g, T3 = 4i(S3)ws, T3 = —4i(Sz)ws.

Proof. Suppose that X,Y,Z are orthonormal; then according to Proposition [2.35] we have
va(Xa Y) = 2€k<VZT], XYJk77>» thus:

1 . . .
ey dwn(X, Y, Z) = (Vxn,Y Zjwn) — (Vyn, XZjxn) + (Vz1, XY jn). (2.2)
We first assume that X,Y, Z € £&. Then,
1
5k§dwk(Xa Y,Z) = (XVxn+YVyn+ ZVzn, XY Zjin).

We now let W € ¢ be the unit-length vector, orthogonal to (X, Y, Z) such that (X,Y, Z, W, R)
is positively oriented. We observe the following:
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1. XVxn+YVyn+ ZVzn=1pn—WVwn— RVgn,

2. The unit-lenght volume form is v = X* AY* A Z* A W* A R*. From the equality
vy = —jin = Ry (see Lemma [2.29] (2) and (4)) we obtain XY ZWn = n and thus,
XY Zn = —Wmn. Therefore,

XY Zjkn = erjr XY Zn = —ejtWn = —e JJe(W)n.
These observations imply:
1

From Proposition [2.34| we obtain that the orthogonal projection of —IPn to £nis (—J; (Ve+
o' 1)+ Jz(@ﬁ) + J3(05 ))7} Since J;(of)* = —Jy(a) if a € & we have:

3
(D, W) = (~ 1 (Vo) + S et (@)) (W)
=1
Morever, (W¥wn, Ju(W)n) = ex(Vwn,jxn) = €xOr(W) according to equation (2.1). In
addition, taking into account equation (2.1]), and that the spinor Rjxn = —exjrj1n is perpen-
dicular to &n, we obtain (RV ryn, JsWn) = (J1Ven, JsWn) = (J1Ve)*(JpW).
From the previous discussion, we deduce:

3
,dwk X,Y, Z Z Jl@l JkW) + 5k@k(W) = Z5l<]l@l(=]kw) .
=1 Ik

The previous equality implies that x¢(TF A wy) = 2372k €19k (J1©1), because the frame
(X,Y,Z, W) of £ is positively oriented. Taking into account Lemma we obtain 7 =
—2 Zl#k é‘lJl@l.

Consider orhonormal vectors X,Y € &; we now compute i(R)dw by using equation .
To arrange the second and the third summands of equation , we observe that if Z € &,
then:

aZjrn = acpJ(Z2)n = exJu(Z2)jin = ex(J1(Jk(Z2)))n.
Thus,

%dM(RX»Y) = er(Vrn, XYjrn) — (S(X)n, J1(Je(Y))n) + (SY)n, J1(Jx(X))n).

We first deal with the summand e, (Vgn, XYjrn). According to equation (2.1)) we have:

(Van, XYjgn) = (Ven, XY ) + £izy ¢1(im, XY jin). Due to Remark 2.30} (Ven, XYjrn) =
(—=Jp(Ve)n, XYn) = 0. We now observe that (j;n, XYjn) = erer(Jr(Ji(X))n,Yn) and we
compute:

e1{Vrn, XYj1n) = ¢3wz — ¢paws,
£2(VRgn, XYjan) = —p3w1 — p1ws,
e3(Vrn, XYj3n) = +dawi + ¢p1ws .

We now deal the summand T%(X,Y) = —(S(X)n, J1(Je(Y))n) + (S(Y)n, J1(Jr(X))n).
From Definition [2.33] one can check:

3
TY(X,Y) =2(So(X)n, Yn) + 2> Me(Je(X)n, Yn)
k=1

:2(1(50)9 + )\10.}1 + )\2&)2 + )\3W3)(X, Y)
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In addition, 7?(X,Y) = w3(S(X),Y) — w3(S(Y),X) and T3(X,Y) = —(we(S(X),Y) —
w3(S(Y), X)). Taking into account Lemma we obtain:

T*(X,Y) = 2(=Xqwi + Awz + puws + i(93)w3) (X, V),

Tg(X, Y) = 2(—)\3w1 — Hwz + \ws — i(SQ)CUg)(X, Y) .

In sum, i(R)dwy = 4i(So)g + 4Mw1 + (4X2 + 2¢3)ws + (A3 — 2¢ows). Thus, 7% = 4\,
742 = 4o + 263, 733 = 4X3 — 2¢2 and 79 = 4i(Sp)g. The remaining equalities are obtained
similarly. O

Our previous results allow us to write the equations for SU(2) structures induced by a
harmonic spinor. We equate I)n = 0 in Proposition and use the values of da and dwy,
computed in Propositions and Rewriting with the notations of Proposition [2.25
we obtain:

Corollary 2.39. The spinor n is harmonic if and only if SU(2) structure determined by n,
(o, w1, wo,ws), satisfies:

3
1

da = 783wy + 133ws — T2ws + 3 E (a AT+ 73,

k=1

dwy = +10%a Awy + 1A Aws + 14 Awr +a ATy,
dwg:—7'012a/\w1+7‘§3a/\w3~|—7'12/\w2+a/\7'22,

dwg:—T&3a/\w1—Tg3a/\w2+7'f/\w;g+oz/\7'§’.

Proof. We equate Ipn = 0 in Proposition and we obtain 4u = ¢1, Ay = 0, 4A2 = —¢3,
4X3 = ¢o, and —J1(V]*) = S_, exJi(Ok). According to Propositions and the
0-forms are related as follows:

THF =4\ =0,

107 =4Xg + 2¢3 = —4Xy = —7)

0 =4A2 + 203 = 2 = —Tp,
700 =4X3 — 20y = —4X3 =75,
76" =4 — 291 = —4p = 73,

In addition, 7 = 23 (V¢) = =233, exJi(Or) = § Xiey 71 O
In [35] Definition 1.5], the authors defined hypo SU(2) structures as those satisfying
dw; =0 and d(aAwg)=0, k=23.

The intersection between hypo and spin-harmonic stuctures is characterized by the equa-
tions:
o da=—78w + 75; o dwy =478 Aws +aATS;

e dwi = 0; . dwgz—Tg?’a/\wnga/\TQ?’.
In section [2.6| we present three nilmanifolds that admit SU(2) invariant structures in this
intersection.



Dirac operator of invariant spinors on Lie groups 75

2.5 Dirac operator of invariant spinors on Lie groups

2.5.1 Spin structures on Lie groups

Let (G, g) be an n-dimensional connected, simply connected Lie group endowed with a left-
invariant metric. Fix an orthonormal left-invariant frame (ey,...,e,); the frame bundle of
G is Pso(G) = G x SO(n) and its unique spin structure is Pgpin(G) = G x Spin(n). Fix
also an irreducible representation p: Cl, — Endy(W). The spinor bundle of G is ¥(G) =
G x W and the Clifford multiplication by a vector field X (z) = > ; X*(z)e;(x) is given by
X(z)p(z) = S0 X'(z)p(e;)p(z) where {e;} ; is the canonical basis of R™. Each spinor is
identified with a map ¢: G — W and we call the spinor ¢ left-invariant if it is constant.
Let T be a discrete subgroup of G and 7: G — I'\G be the canonical projection. We
endow I'\G with the metric, that we also denote by g, which pulls back to g under 7.

Lemma 2.40. There is a bijective correspondence between homomorphisms ¢: I' — {£1}
and spin structures on I'\G:

€ — Pgpin(I'\G)® = I'\(G x Spin(n)),
where the action is y - (x,h) = (yx,e(y)h), fory e T.

Proof. Spin structures on I'\G are in a bijective correspondence with liftings of the action
I' x Pso(G) — Pso(G),y - Fy = d(Ly),(F,) where L, denotes the left multiplication by y
(see [54, page 43]). This action commutes with the action of SO(n) on Pgo(G) and therefore
a lifting of this action commutes with the action of Spin(n) on Pgpin(G).

According to the identification Pgo(G) = G x SO(n) given by (ey,...,e,), the action
is y - (z,h) = (yx,h). A lifting of the action to Pgpin(G) = G x Spin(n) should satisfy
y - (x,1) = (yz,e(y)l) for some map e: I' — {£1}, which is necessarily a homomorphism.
The previous discussion shows that this property determines the action. ]

The spinor bundle associated to Pgpin(I'\G)® is X(I'\G)® = Pgpin(I'\G)® x, W, which
is isomorphic to I'\(G x W) via the induced action y - (z,v) = (yz,e(y)v). Spinors are
then identified with maps ¢: G — W such that ¢(yx) = e(y)é(z) for x € G, y € T,
and Clifford multiplication of a spinor ¢: G — W with a vector field X € X(I"\G) such that
X(m(x)) = X" X¥(x)dm,(ei(r)) is determined by X ¢(z) = 31| X¥(x)p(ei)d(x). Moreover,
a spinor ¢ € X(T'\G)? lifts to a unique spinor ¢ € X(G) and both are identified with the
same map G — W. Using this identification, for a left-invariant vector field X € X(G) we
have V. (x)¢(x) = Vx¢(x) and, according to [54, page 60],

_ _ 1 _
Vx¢=dxo+ 3 > 9(Vxej, en)ejend. (2.3)
i<k

In the sequel we focus on quotients I'\G and on spinors that lift to left-invariant spinors
on G; we call those left-invariant spinors. Of course, they are associated to the trivial spin
structure and they are constant. Special examples are given by nilmanifolds, where G is
nilpotent, and solvmanifolds, where G is solvable.

In particular, we restrict our attention to left-invariant harmonic spinors. Mind that the
non existence of left-invariant harmonic spinors does not imply the non existence of harmonic
spinors associated to the trivial spin structure. For instance, from Proposition [2.41] one can
deduce that a 3-dimensional nilmanifold, quotient of the Heisenberg group, does not admit
left-invariant harmonic spinors; however, Corollary 3.2 in [3] implies that every spin structure
on such a nilmanifold admits a left-invariant metric with non-zero harmonic spinors.



Dirac operator of invariant spinors on Lie groups 76

2.5.2 Dirac operator

Let (G, g) be a Lie group endowed with a left-invariant metric, let (eg,...,e,) be a left-
invariant orthonormal frame with dual coframe (e!,...,e"). Let I' be a discrete subgroup
of G and consider the spin structure associated to the trivial action on I'\G. We follow the
notation of the previous subsection.

Proposition 2.41. Let ¢ be a left-invariant spinor. Then

n

4P¢ = — Z (e Ade' +i(e;)de’) . (2.4)

=1

Proof. First we compute the covariant derivative of ¢ according to formula ([2.3). Observe
that d.,;¢ = 0 because ¢ is left-invariant. The Koszul formula allows us to obtain

2V.,ej = (z’(ei)dej + z'(ej)de")Ij — Z dek(ei, ej)ek
where V is the Levi-Civita connection and V is the spinor connection. Therefore,

Ve, ¢ = % (Z (dej(ei, er) + de'(ej, er) — de®(e;, ej)) ejek) o

i<k
1
4(deqﬁ 2%;(16 ez,ej)ejemb—i-QZde ek,ez))qﬁ.

From this we deduce:

n

AD¢ = Z eldeldp — 2 Z de*(e;, ejleiejerd + 2 Z de* (er, ei)eid

i=1 i<jk ik
n . n

= Z (e’de — 2de’e; + 2i(e;) de Z et Ade' +i (e;)de’ )(b
i=1 =1

where we have used that e'de’¢ = (e!Ade’ —i(e;)de’)¢ and (de?)elp = (e' Ade'+i(e;)det)d. [

Since our focus is on nilmanifolds and solvmanifolds, we specialize Proposition to

this setting. Recall that a frame (eq,...,ey,) of a nilpotent Lie group is called nilpotent if
lei, ej] = Z cmek
k>i,j

Corollary 2.42. Let G be a nilpotent Lie group and let (e1,...,e,) be an orthonormal
nilpotent left-invariant frame. Let ¢: G — W be a left-invariant spinor; then

n

4D =—> (e’ Nde')g. (2.5)

i=1

In particular, the operator I is (-,-)-symmetric on the space of invariant spinors.
Next, suppose that g is a rank-1 extension of a nilpotent Lie algebra n, and let G and N
be the associated simply connected Lie groups. As vector spaces g = (eg) @ n; the Lie bracket

in g is given by
leg, X]g =D(X), [X,Y]g=[X,Y]y for X,Y €n,
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where D: n — nis a derivation. In terms of covectors, D can be seen as a linear map n* — n*
such that dy o D = D o dy, where dy: A*n* — AFH1n* is the Chevalley-Eilenberg differential.
Extending o € A*n* by zero to (eg), one has

dgav = dpa + (=1)FD(a) A €l (2.6)

where dy: AFg* — AF*1lg* is the Chevalley-Eilenberg differential. We also suppose that G is
endowed with an invariant metric which makes e orthogonal to n*.

Corollary 2.43. Suppose that (e1,...,ey) is an orthonormal left-invariant frame of N and
let p: G = W be a left-invariant spinor. Then

n

4P¢ = — Z (€' Adne’ +i(e;)dne’ +e® Aet AD(e'))p — tr(D)e e . (2.7)
i=1
In particular if D is symmetric and (e1,...,e,) is a basis of eigenvectors then 4Ip¢ =

=3 (€8 Adyet) +i(e;)dnelep — tr(D)els.

Proof. The formula is deduced from Proposition and (2.6)). In addition, if D is symmetric
and (e!,...,e") is a basis of eigenvectors of D, then e’ A D(e?) = 0. O

2.5.3 The operator )?> on nilmanifolds

The square of the Dirac operator is elliptic and has positive eigenvalues. In this subsection
we fix the trivial spin structure on a nilmanifold I'\G associated to the trivial action and
obtain a formula for the square of the Dirac operator over the space of left-invariant spinors.
This allows us to understand the eigenvalues of the 5-dimensional Dirac operator in Section
2.6l A straightforward computation gives the following result:

Lemma 2.44. Suppose that (e1,...,ey) is an orthonormal nilpotent left-invariant frame of
G and ¢: G - W a left-invariant spinor, then:

160%¢ = (Z —(de®)? + Z (e“de'de’ — dejdeieij)) 0. (2.8)
i i<j

We discuss each summand of . We use the juxtaposition of indices to denote Clifford
products, for instance e;; = e;e;. Moreover, each 8 = Zi1<,_<ik Bir,..ix ehik ¢ Akg* is
identified with the element »_; .. <ip Bir,....in€i1...3,, Of the Clifford algebra. This identification
does not depend on the orthonormal basis chosen. We also set

Yij = edelde’ — delde'e .
Lemma 2.45. Consider w € A%g*; in terms of the previous identifications,
wow=—|w+wAw.

Proof. Let (e1,...,e,) be an orthonormal basis and write w = Yicjwijeij. 14,5,k 1 are
distinct indices, then it is easy to obtain that e;je;, +ejre;; = 0 and that e;jr + exiij = 2€ijk-
A combination of these properties leads to the equality:

2
2
Zwijeij == Z wij +2 Z (wijwir + wiwik, — WikWj1)eijkl ,
i<j i<j i<j<k<l

which proves the lemma. O
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Remark 2.46. The operator e;ji;- satisfies (eijkl-)Q = I and it is not an homotethy. Let AL
be the eigenspace associated to £1 and consider ¢+ € AL. Then,

(wije + wpe)2pr = —(wij F wi) 2o+ -
The endomorphism (w;je” + wyet)

kernel is A.

is invertible except when w;; = fwyy; in this case the

Lemma 2.47. Let (e1,...,e,) be an orthonormal nilpotent left-invariant frame of G and
1< j. Then
vij = —2de’ Ni(e;)de? A el +2 Z i(er)de’ A i(€k>(d€j’<ei>L) Ae,
k<i
Proof. We denote o = i(e;)de? € g* and 3 = alej|L € A%(e))!, that is, de? = €' Aa + f.
Observe that e;;de'de’ = e;jde’(e! Aa+3) = det(—e /\oz—|—B)eij and that e; 8 = Be;. Therefore,

Yij = (dei(—ei ANa+B)— (' Ao+ ﬁ)dez) eij = —(de'a + ade')e; + (de' B — Bde' ey,

We now identify the terms in the summand. On the one hand, if we write de’ = a A o/ + '
where o = i(af)de’ and ' = de’| 41y, we obtain:

(de'a + ade')e; = 2(f'a)e’ =2de' NaNel.

On the other hand, it is sufficient to prove (de’B — Bde’) = 23, i(ex)de’ Ai(ex)S in the
case that de’ = eP? and B = e!™ with | < m and p < q. We distinguish two cases:

1. If ( q) = (I,m) or p,q & {I,m}, then ePle!™ — elmeP? = 0. In addition, we have
poy 1 i(ex)eP? Aifeg)e™ = 0.

2. In other case; for instance if p = [ and ¢ # m, then eP9eP™ — PPl = 29 and
2 Ek 1 i(er)eP? Ni(ey)eP™ = 2e9™. The other instances are similar.

O]

From this we obtain:

Corollary 2.48. Let (eq,...,e,) be a nilpotent orthonormal left-invariant frame of G and
let ¢ be a left-invariant spinor; then,

160°¢ => _ (||de’||> — de’ Ade')p — 2> (de’ Nifes)de? A el)g
i=1 i<j
+2 Z ieg)de’ Ni( ek)(dejl >L)/\€Z‘7¢
k<i<j

2.6 Spin-harmonic structures on nilmanifolds

In order to determine left-invariant harmonic structures on nilmanifolds one has to compute
the Dirac operator associated to each left-invariant metric and study its kernel. In dimension
4 and 5 we give a list of all left-invariant metrics and compute the eigenvalues of the Dirac
operator by means of the metric using Corollary We also give a list of 6-dimensional
nilmanifolds that admit left-invariant harmonic structures and list one such metric on each
algebra.

Note that the existence of left-invariant harmonic spinors on a nilmanifold I'\G depends
on the Lie algebra g. For this reason, we sometimes write that the Lie algebra g admits
harmonic spinors.

For Lie algebras we use Salamon’s notation: (0,0,12,13) denotes the 4-dimensional Lie
algebra with basis (e1, ea, €3, €4) and dual basis (e!, €2, €3, e*), with differentials de! = de? = 0,
de? = e'? and de* = e!3. The list of nilmanifolds up to dimension 6 can be found in [I3].
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2.6.1 4-dimensional nilmanifolds

In terms of an orthonormal nilpotent basis, the list of non-abelian 4-dimensional metric
nilpotent Lie algebras is:

de® de*
L3 Ay (0,0,0,12) 0 /~L12€12
Ly (0,0,12,13) | p2e'? | e'(Mi2e? + pized)

Here p1;; denote structure constants which are necessarily non-zero, while \;; may vanish.

Theorem 2.49. 4-dimensional non-abelian nilmanifolds have no left-invariant harmonic
Spinors.

Proof. The Dirac operator on Ls@® A1 is D¢ = p12e'?4¢, and the square of the Dirac operator
on Ly is 160%¢ = (u?y + p25 + A25)é. Both are invertible. O

2.6.2 5-dimensional nilmanifolds

As in Section we fix an irreducible representation of Cls, ps: Cl; — Endc(W), with
complex structure j; = p5(v5) and a quaternionic stucture jy that anticommutes with the
Clifford product; define j3 = ji o jo. For instance, let pg be the representation of the real
6-dimensional Clifford algebra described on subsection [2.4.2] and define ps = pg o i5, as in
Proposition Then, j; = p5(v5) and jo = pg(eg).

We first use Corollary [2.48 to obtain the eigenvalues of the Dirac operator. In the presence
of a harmonic spinor 1, we can relate the operator 16/)? with the 1-form « of the SU(2)
structure defined by 7.

Proposition 2.50. Let (e1,...,e5) be an orthonormal nilpotent left-invariant frame of g and
let ¢ be a left-invariant spinor. Then 1610%¢ = pud + vj1¢ where p =3 ||de’||? and

4
o =% (de® A de) + 2 * (Z de' Ni(e;)de® A e5>
=3

4 3
— 2% (Z Z i(er)de’ A i(ek)(d€5|<ei>L) A ei5> .

1=3 k=1

In addition, > ||v|| and the restriction of the operator 41D to the space of invariant spinors
has four complex eigenspaces, associated to +(u £ ||v||)% The endomorphism jo maps the

eigenspace associated to (p+ Hv||)% to the eigenspace associated to —(pu=+ ||’UH)% In particular,
there exist left-invariant harmonic spinors if and only if = ||v||.

Proof. First observe that if v € A*g*, then y¢ = —(x7v)j1¢. This computation is straightfor-
ward for simple forms and is extended to A*g* by linearity. Note also that the nilpotency
property guarantees that de/ Ade/ = 0 for j < 4 and that 34 = 0. Those remarks and Corol-
lary allow us to conclude the first statement. From this we get that the eigenvalues of
160? are p =+ ||v|| > 0 and the eigenvalues of 4) are therefore, +(u & Hv||)% Finally, the
equality Vxjr¢ = jrVx®, implies IDj, = jrI) which is sufficient to conclude the rest. [

Proposition 2.51. Let (a,wi,wa,ws) be the SU(2) structure determined by a left-invariant
unit-length spinor n. Let (e1,...,e5) be an orthonormal nilpotent frame and consider p and
v defined as in Proposition |2.50. The spinor n is harmonic if and only if ||v|| = p and
v = —puak.
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Proof. Decompose v = Aaf 4+ w according to the orthogonal decomposition (of) @ €. By
Corollary @L D%n = pn + (Mof +w)jin = (u + N)n + wjrn, using that afjin = jiafy =
j1(=jin) = n, from Lemma [2.29(2). This implies, according to Lemma that w = 0 and
= —M\. Thus, v = —puat. O

From these results we observe that on a nilpotent Lie algebra, the component of v on
the subspace (e®) depends on the non-degeneracy of de®. Moreover, taking into account
the structure equations of 5-dimensional nilpotent Lie algebras given in Lemma [2.52 one
deduces that the component of v on {e?) is always 0. In any case, the vector v is determined
in Theorem

The non-abelian nilpotent 5-dimensional Lie algebras are the following:

o Ls® Ay, (0,0,0,0,12) e Ls3,(0,0,0,12,14 + 23)

e Ly® A4, (0,0,0,12,14) o Ls5, (0,0,12,13,23)

e Ls1,(0,0,0,0,12 + 34) o Ls4,(0,0,12,13,14)

e L5, (0,0,0,12,13) e Lsg, (0,0,12,13,14 + 23)
Lemma 2.52. The following table contains a list of non-abelian 5-dimensional metric nilpo-
tent Lie algebras in terms of an orthonormal nilpotent basis (e1,...,e5) with dual basis
(el, ... ,65). Here ;5 denote structure constants which are non-zero, while \j; or Aij.x denote

those which may be zero.

de? de? de®
L3 ® Ao 0 0 pigel?
Ly Ay 0 piget? el (A12e? 4+ Ai3e3 + pige?)
Ls1 0 0 pi2e'? + pgaedt
L5 0 piget? pizels
Ls 3 0 pize’? e' (M2e? + Mige® + piae?) + poge®
Ls 5 pazet? | el(A24€® + pazed) A2;5€12 + poze?
Ls 4 pize'? | el (Mioae? + pzed) el (Mz5e® + Aize® + pige?)
Ls 6 pazet? | et(Ague? + pazed) | et(Mase? + Mize? + piget) + poze®

Theorem 2.53. If a 5-dimensional nilmanifold T\G admits left-invariant harmonic spinors,
then g= L57j, ] = 1,2,3,4,6.

Proof. Following the notation of Lemma we compute x4 and v defined as in Proposition
Obviously, i is the sum of the squares of the parameters involved. In order to compute
the vector v, we suppose that the nilpotent basis is positively oriented. This assumption does
not depend on the existence of harmonic spinors. We summarize the result in the following
table:
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v
L3 & A 0
Ly Ay —2p12A13€1
Ls1 212 1434€5
Ls2 —2u120413€1
Ls 3 2(—p12A13€1 — pi2p23€2 + piapiozes)
Ls 5 2(p13Ai25€1 + A12ap23€2 — pa2jizes)
Ls 4 2(pi2p14 — M2:4A13 + pizAi2;s)er
Ls 6 2((m12p014 — M2:aM13 + pigAiis)er — pog(Aioaen + piges) + piapiozes)

We now study, on each Lie algebra, the equation that determines the presence of left-
invariant harmonic spinors: p = ||v||.

Ls ® Ay and Ly @ A; do not admit any left-invariant harmonic spinor because pu > ||v||.
Left-invariant metrics admitting left-invariant harmonic spinors on Ls 1 are characterized by
the equation p12 = £ u34. On the algebra Ls o are characterized by pi2 = $p13.

On the algebra L5 3, the smallest eigenvalue of 16192 is

1
Ao + ulo + Al + iy + 133 — 2(ufa (A5 + 133) + 1iiapds)2 > 0.

If the metric has harmonic spinors, necessarily Ais = 0. In addition, the previous condition
leads 1218 to >\2%3 = ,ujg — 3y — 3 2(p3 33— p24135) 2, whose solutions are A3 = 0, p3g > uy
and piy = poz — Hiz-

On Ls 5 the smallest eigenvalue of 16192 is,

1
1y + )\%2;4 + pis + )\%2;5 + 15y — 2(uispss + )\%2;4,“33 + /\%2;5/@3) 2 > 0.

Since this value is non-negative for every choice of the parameters, necessarily )\%2;4 + uis +

)\%2;5 + 135 — 23y 35+ )\%2;4;@3 + )\%2;5;1%3)% > 0. The smallest eigenvalue is therefore greater
or equal to ,u%Q > 0. Consequently, the metric has no left-invariant harmonic spinors.
On Ls 4 the eigenvalues of 161p? are:

(12 F p14)* + (M12:4 £ M13)? + (13 F Ai2s)?.

Metrics which admit left-invariant harmonic spinors are such that: p12 = £pu14, A2.4 = FA13
and p13 = 125
Finally, a metric on L5 ¢ has left-invariant harmonic spinors if and only if:

(H%2+>\%2;4 + s + )\%2;5 + Mg+ piy + pds)? =
= 4 (fapds + (—mshizs + Mshiza — mzina)® + Nyt + iiaii3s ) -

We now show that this equation has solutions. If we suppose that Ajg.4 = O then the
condition A1z = 0 is necessary for the presence of harmonic spinors. Moreover, the previous
equation leads us to: p3s = uds + p3, — /\%2;5 + 2i(A12;5014 — p12p13). Therefore, p?, > p3y,
A2, . — M%3M%2

125 = 7 2 and p33 = 7%4(#%4 — pi3a) (i3 + piy)- O
14

Lemma [2.52] is a list in which one fixes an orthonormal basis of R® and varies the Lie
bracket within an isomorphism class of Lie brackets. According to Lemma and the proof
of Theorem the 1-forms « of two different spin-harmonic structures on a nilmanifold
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with universal covering Ls 1, L5 2 or Ls 4 are proportional. We give an example of the forms
that determine the structure on each case; we compute them using the representation we
fixed at the beginning of the section. We also suppose that the basis (e, e, €3, €4, €5) is
positively oriented.

On the algebra Ls 1, « is parallel to €5, in particular, if pjo = 34 then o = Fe’. Then
« is contact because do = puzq(Fe!? +e34). Moreover, € = (e1, ..., e4) and therefore, dwy = 0
for k=1,2,3.

If p1o = —psq, then ker(j + a-) = ker(j + e5-) = (b1, d2, ¢3,04). Consider n = ¢y;
then w; = e!2 + €34, wy = e + €23 and w3 = e!3 — €?*. Thus, da = 74 € su(2) with

75 = p12(e'? — e34). The structure is hypo because dw; = 0 and d(a A wz) = d(a Aws) = 0.
In the same manner, when p12 = u3s we consider 7 = ¢5 and obtain w; = —e!'? + €34,
wo = el — €23 and w3 = —e!3 + 2. Again, da = 7 € su(2) with 74 = p12(e'? + €34).

On the algebras Ls 2 and Ls 4, o is parallel to el and, consequently, do = 0. These algebras
are quasi-abelian, that is, they have a codimension-1 abelian ideal, which is £ = (eq, e3, €4, €5).
In particular, taking into account the equatlons in terms of forms of harmonic structures,
dwy, = a A 7. Thus, d(wp A @) = 0. If « = —e! we choose n = 2~ 2 (01 + ¢5) € ker(j — eq).
Therefore, w; = 25 +e3 wy = €2 —e® and w3 = e?* + €%, On the one hand, the
nilpotency of the basis implies that i(es5)dw; = 0. On the other, i(—e;)dw; = 74 which is 0
or non-degenerate on . Thus, dw; = 0. The same argument holds for dws on N5 5 because
e3 is closed. The structure is hypo and the torsions which may be non-zero are 75 and 73;
we compute them:

1

1. On Ljz the condition a = —e! implies p12 = —p13. Then, dws = ui3(e!? + e!3%) so
that the unique non-zero torsion is 75 = p3(e? + 34).
2. On L5 4 the condition a = el implies H12 = [14, A3 = —A12:4 and p13 = A12;5. Then,

dwy = 0, dwy = e (A13(e?® + €34) + p3(e®* — e®)) and dwz = p12(e? + e34).

On Ls 3 metrics with harmonic spinors satisfy A2 = Aj3 = 0 and p2, = p3; — piy > 0.

Therefore, v = 2(—pu1ap23e2 =+ fi23 (135 — ,u%z)%%). Thus, da is proportional to pise'® + pi93e%3

and harmonic invariant structures are contact.

Remark 2.54. Fernandez’ first example of a balanced Spin(7)-manifold was a nilmanifold I'\G
with g = L5’2 @ As.

2.6.3 6-dimensional nilmanifolds

We fix the irreducible representation of Clg described in Section and denote by j the
Clifford multiplication by the volume form, which anticommutes with the Clifford product
with a vector. As in the 5-dimensional case we have the following:

Proposition 2.55. Let (e1,...,e5) be an orthonormal nilpotent left-invariant frame of G
and let ¢ be a left-invariant spinor. Then 1610%¢ = u¢ + vjo, where p =Y ||de||? and

6 4
v = Z* (de' A del) + Zdei Aie;)del A el>

= 1=3

56 4 3 ]
—Z (ZZ i(ey)de’ /\z(ek)(de|el ) A ell>

=5 =3 k=1

4
+ *(de® Ni(es)de® A e°) (Z i(ex)de” Ai(er)(de ))
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In addition, the restriction of the operator IP? over the space of left-invariant spinors has
eight eigenspaces, Aj, associated to £A1,EXo, £A3, £y for some 0 < A\ < Ay < A3 < N\
and j restricts to a map, j: Ay, — A_y;.

Decomposable algebras

Except for Lg @ Lg = (0,0,0,0,12,34), the structure constants of decomposable Lie algebras
can easily be obtained by those in dimension 5, listed above. We proceed to obtain a metric
classification of such Lie algebras, characterizing the structure equations in terms of an
orthonormal basis.

Lemma 2.56. The list of 6-dimensional decomposable metric nilpotent algebras is:

de* deb deb
Ls & A3 0 0 pigel?
L3 ® Ls 0 pi2et? + Aiz5etd eA(p1ae + Aigeel + Aaze?)
Li@ Ay 0 pizel? el (A2e? + Aized + pysed)
Ls1 @ Aq 0 0 pi2et? + pgae3!
Lso @ Ag 0 pi2el? pizel®
Ls3 @ Ag 0 pizel? el(M2e? + Aize® + et + pise®) + poge?
Lss @Ay | pize'? A2sel? 4+ Xe?3 4 pygett Ai26e'? + Ael® + poge?t
Lsa® Ay | pi2e'? | et (Mgpe? + puae + Aige?) el (M2 + Aize® + Aae? + pise®)
Lse ® Ay | pize'? | et(Mgse?® + pra(Msae® + eh)) | et(Mzge? + Agee® + Aige! + p15e®) + page?(Mize® + et)

Proof. The equations for L3 @ L3 are obtained from a basis (z!,...,2°%) associated to the

stucture equations (0,0, 0,0, 12, 34). First observe that we can suppose that z is orthogonal
to x*1 for i € {1,3} and that z! is orthogonal to z3. The Gram-Schmidt process allows

. . 1 3
us to obtain an orthonormal basis e! = |I£1II’ e = Hi:*H’ e? = poox? + pgze’ and et =

praszt + et + Aoge® + Agqe.

Finally take two orthogonal and unit-length forms €?, €5 € ker(d)* with de® = z'2.

The remaining algebras can be decomposed as Ls ® A1, where Ls is a 5-dimensional
nilpotent Lie algebra. Let ds be the corresponding differential. Let dt be a generator of A} and
observe that ker(d) = ker(ds) @ (dt) and d: d~'(A?ker(d)) — A?ker(ds). Therefore, a unit-
length 1-form a € ker(d) orthogonal to ker(ds) satisfies i(af)dB = 0 for all B € d~ (A% ker d).

If the Lie algebra is 2-step, the decomposition Ls & A1 is orthogonal and the equations
follow from Lemma

The equations for L5 ® A1, L5 4 © Ay and Ls 3 © Ay can be arranged using the Gram-
Schmidt process, starting with an orthonormal basis (e, ..., ¥, a) with e’ € ker(ds).

To obtain the equations for L5 @& A; consider Fy = d~}(A?kerd) N ker(d)* and Fy =
d=Y(A2Fy) N Fit. Let m the plane generated in (Ls 5 ® A1)* by dFy and observe that there is
an isomorphism d: F» — 7 ® F} obtainted from d and the projection of the space of closed
forms to 7 ® Fy. Take e* € Fy unit-length and let €°,e® € Fy and e',e? € 7 orthonormal
such that de® = p4e* and de® = pgse?*. Define the map m — m, 3 — +p(dd—1(8 ® €*)),
where * is the Hodge star and p: A?ker(d) @ (7 ® F}) — A2 ker(d) N dFj- is the orthogonal
projection. This map is diagonal with eigenvalue \ (see [I3, pp. 1017-1018]), so that de’® =
)\12;5612 + de®B 4+ ,u14614 and deb = )\12;6612 + del3 + ,u24624. O

We describe the set of metrics on L3 @ Lg with harmonic spinors.

Lemma 2.57. Following the notation of Lemma |2.50, metrics with harmonic spinors on
L3 & L3 are those which satisfy one of the following conditions:

1. Moz =0, M\i3;6 = 01112 and A\i3;5 = oapsa, for some 01,09 € {£1}.
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2. AN33( M3 + uiz) = s + My + Al + M35 + 13y — 4(0pi2hize + Misspsa)® for some
o€ {£1}.

Proof. Consider an orthonormal basis (el, ..., e®) associated to the structure equations given
in Lemma Then, p is the sum of the squares of the parameters involved. If we assume
that the basis is positively oriented, then:

v = —2(p2 M6 + Mz ez + piadaze®® — Aizspzae®).
Observe that the operators e!?j and e?3j commute. Define the operator
A = —2(A1z5hase® + puadage)j:

and observe that it anticommutes with the previous operators and that A? = 4/\%3()\%3;5 +
p25)1. We distinguish two cases:

o If Mo3 = 0 then A = 0 and the eigenvalues of I§? are (u3y & A13.6)? + (M35 £ p124)2.
Therefore, the metric has harmonic spinors if A\i3.6 = 12 # 0 and A\i3.5 = £puzq # 0.

o If Xo3 # 0 then A is invertible. Denote pu = pufy + a5 + Al + A3 + 3. Let
A+ be the eigenspaces associated to the eigenvalue £1 of e'*j and decompose Ay =
AT @ A according to the eigenspaces of e23j. Note that A(A]) = AZ and that
A% = 4X33(M35 + piy)l. Thus, the eigenvalues are of the form ¢I + ¢ with ¢1 € AT
and ¢ € AZ. The eigenvalue 0 occurs on Ai @ AZ if and only if:

Agt =(p — 2u12M13:6 + 2M\13:5134) P
Ap” =(p + 2p12M136 — 2X13;50134) 0T -

This implies that 4\3,(A\25+p2) = (1—2u12M13,6 2 13:5034) (W+ 2122136 — 2\ 13,5434 -
Moreover, if this equation holds we can take gbi € AL, define ¢~ = (u + 2p12M13:6 —
2\13;5034) A~ 1. Then,

A¢T = (1 + 2u19M3:6 — 2M13;5034) A2
= (1 — 2p12M13;6 + 21350434 P .

We can do a similar analysis on A} & AT to conclude that the metric has harmonic
spinors if and only if

4/\530\%3 + M%z)
= uly + Mg + Alsig + A33 + 134 — 4(op2disis + Aisispsa)”

for some o € {£1}. If p12 = 1, this equation has solutions if and only if, 1 + )\%3;5 +
/\%3;6 + ,u§4 —4(Mi36+ A3 u34)2 > 0. This inequality holds taking the parameters small
enough.

O]

The other decomposable cases can be obtained by taking into account the results of the
previous sections. It is clear from Theorem [2.53]and Lemma[2.56]that the algebras Ls® A3 and
L4® As do not admit left-invariant harmonic spinors and that Ls ; & A has harmonic spinors
for j # 5. Finally take an orthonormal basis (e, . .., %) associated to the structure equations
of L5 5@ A given in Lemma[2.56/and suppose p12 = 1. Now we write the Dirac operator using
the formula obtained in Corollary and then we use the fixed representation to obtain an
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endomorphism of the spinor bundle. The metric has left-invariant harmonic spinors if and
only if the determinant of the endomorphism is 0. Solving the equation we get:

1 _1 1
A= 5(1 + (p1a + p2a)®) " 2((1 + )\%2;5 + )‘%2;6 R 4/\%2;6 +4p3,)2 .
But the number on the square root is obviously positive if Aj2.6 = 0. Therefore, there are
metrics with harmonic spinors.

We have proved:

Theorem 2.58. Let I'\G be a non-abelian 6-dimensional nilmanifold with g decomposable.
Then, unless g equals Ly ® As or Ly @ Ag, T\G admits an invariant metric with left-invariant
harmonic spinors.

Non-decomposable algebras

Using the fixed representation of Clg we are able to find a metric with harmonic spinors on
each nilmanifold associated to a non-decomposable Lie algebra. We follow the same procedure
that we used to determine metrics with left-invariant harmonic spinors on Ls 5 © A1. In many
cases we are not able to determine the roots of the polynomial in terms of the parameters.
Therefore, we make some choices as the following example explains:

We consider the algebra Lg 7, which has structure equations (0,0,0,12,13,15 + 24). We
first declare the canonical basis orthonormal and compute the Dirac operator. One can
show that this metric does not have left-invariant harmonic spinors. Neither does any metric
constructed by declaring orthonormal a basis which is obtained by rescaling the canonical
basis.

Now we proceed to write the structure equations by means of an orthonormal basis with
respect to a metric. First, write I} = ker(d), Fo = d"1(A%2F}) and F3 = d"1(A%F,) = Lg 7.
One can take an orthonormal basis of Fy such that de* = pj3e'? and de® = py3e'®. Now
take €% orthogonal to Fy, then according to [13], de® is a closed form of A2F, such that
et A (de®)? =0, el Ade® ¢ A3Fy and de® ¢ ker(d) ® Fy. Those equations imply:

d€6 = )\12612 + )\13613 + /\14614 + )\15615

1
A24 35\ 2
+ Xaze® + Agge?t 4 A35e® + (/1121113) (p13€®* + p12e™),

1
with AogA3s > 0 and —Aq4 <;24235) ’ p12 + AsAaq # 0. We choose A35 = 0 and therefore,
124413
de® = Age'? + Aze! 4+ Ajgelt + Apel 4+ Aoge?t with Ajsdag # 0. We fix 1 = 3 = g1 =
A15 = Agq and vary the rest of the parameters.

The choice A3 = 1 = Ao3 leads to the condition that A3 is a root of the polynomial
Z848(A2,+8) 726+ (16)2, + 24202, +32) 24 + 3203, 73 + 4(\§, + 2401, +12802,) Z2 + (1673, +
128)03,)Z + A3, + 8X%, + 32)},. Hence, (A3, A\14) = (0,0) is a solution.

We finish with a list of the non-decomposable metric nilpotent Lie algebras in dimension
6 which admit a harmonic spinor.
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de3 de* ded deb
Le1 | (0,0,0,0,12,13 + 24) 0 0 el2 2e!3 + 24
Le2 | (0,0,0,0,13 — 24,14 + 23) 0 0 el3 — 2 el 4 e
Les | (0,0,0,0,12,15 + 34) 0 0 el2 eld 4 el 4 34
Lea | (0,0,0,12,13,23) 0 el? el? 2¢%3
Les | (0,0,0,12,13,14) 0 el2 23el3 el
Les | (0,0,0,12,13,24) 0 el2 3 2e18 + 3324 4 23
Le7 | (0,0,0,12,13,15+ 24) 0 el? el3 el? 4 el® 423 4 2 4 23
Lgg | (0,0,0,12,13,24 4 35) 0 el? eld et 4 e
Lgs | (0,0,0,12,13,24 — 35) 0 el? el3 —2e%3 4 24 — ¢35
Leo | (0,0,0,12,13,14 4 23) 0 | e el3 el 4 e 4 (2(22 — 1))2¢12
Le10 | (0,0,0,12,14,23 + 24) 0 el? el e?3 4 e
L1 | (0,0,0,12,14,13 + 24) 0 el2 eld eld 4 24
L1z | (0,0,0,12,14+ 23,13 —24) | 0 |27zel2 | 22¢l4 4 23 el3 — 232
Le1s | (0,0,0,12,14,15 + 23) 0 | el2 el !5 + 23613 4 23
Le4 | (0,0,0,12,14,15+23 +24) | 0 el? elt — Teld el? e — 32 4 212
Le1s | (0,0,0,12,14 + 23,15 — 34) 0 el? el 4 23 1(e!® + €3
Le 16 | (0,0,12,13,23,14) el? el3 e23 el
L | (0,0,12,13,23,14 + 25) el2 | 13 23 el 4 ¢4 4 12 4 2223
Lgy7 | (0,0,12,13,23,14 — 25) el2 | 13 23 eld — 25— el12 4 9323
Les | (0,0,12,13,14,15) 2| e | LM ye?) L(e!? 4 oM 4 462¢15)
Le 19 | (0,0,12,13,14,15 + 23) el? el3 el4 el® 4 23 4 el?
Le 2o | (0,0,12,13,14,15 — 34) el? el3 el4 2 _ ¢34 4 53el2
Leor | (0,0,12,13,14 4 23,15+ 24) | e!? eld Lelt 4 %) mel® 4 e
L2 | (0,0,12,13,14 + 23,15 — 34) | e'? el3 eld 423 e —e3t + (14 5%)612

\/3((459+12\/ﬁ)§ ((459+12*\/ﬁ)§+6(459+12\/ﬁ)%+57))%
where m = .

1
3(459+12/177)3

2.6.4 8-dimensional nilmanifolds with balanced Spin(7) structures

The results collected so far allow us to obtain examples of invariant balanced Spin(7)-
structures on nilmanifolds Nj, x T8 % with N}, a k-dimensional nilmanifold, &k = 5,6. By
considering Ni, x T7~*, one obtains a 7-dimensional nilmanifold with a spin-harmonic Go-
structure. If M is any 7-dimensional manifold endowed with a spin-harmonic Ga-structure,
then M x S' admits a balanced Spin(7)-structure. According to Theorem every closed
Go-structure is spin-harmonic and a coclosed Ga-structure is spin-harmonic if and only if it
is of pure type x3. Now 7-dimensional nilpotent Lie algebras with closed and coclosed Go-
structures are classified by Conti-Ferndndez [34] and Bagaglini [6] respectively. We show that
not all our examples of balanced Spin(7) nilmanifolds can be obtained by Conti-Fernandez
and Bagaglini. To do this we compare decomposable 7-dimensional Lie algebras admitting
closed, coclosed and spin-harmonic Ge-structures in the table below.

We have seen in Theorem that L3 @& As and Ly ® As do not admit any metric with
harmonic spinors; we show that the same happens when we add abelian factors of dimension
1 and 2 to these Lie algebras.



Spin-harmonic structures on nilmanifolds 87

Proposition 2.59. The Lie algebras L3 @ Ay, L3 ® As, Ly ® A3 and Ly © Ay do not admit
any metric with harmonic spinors.

Proof. We prove the result for Ls & A4 and Ly @ As, the other cases being similar. Let us

write the structure equations in term of a suitable orthonormal basis (e!,...,e") of each Lie
algebra.
1. For Ly @ A4 the structure equations are de! = 0 for i = 1,...,6, and de” = pe'?, for

some p # 0. One computes that D¢ = pe'?"¢, which has no kernel.

2. The structure equations of Ly ® Az are de’* =0 fori=1,...,5
deb = /“2612 and de’ = ,u16616 + )\12612 + )\13613.

With this one computes D¢ = 61(u12€26+M16€67+)\12627+>\13637)¢. Note that pige'%7¢
is orthogonal to el(,ulgezﬁ + Ai2e?” + )\13637)gb hence, since p16 # 0, the kernel of the
Dirac operator is trivial.

O]
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closed

coclosed

spin-harmonic

Ls & Ay

X

b

X

L3 ® Lz ® Ay

Ly @ Ag

Ls1 @ Ay

Lso @ Ay

Ls3 @ As

Lss @ As

Ls4® Ag

Lsg @ As

Le1 @ Ay

Leo @ Aq

L3 @ Aq

Lea @ Ay

Les ® Ay

Les @ Ay

Loz ® Aq

X | X | X | X| X| X|X|X|X|X|X|N]X|X|N

L(—;8@A1

X

Lag@Al

X

Lo ® A1

Le,10 ® Ay

Le,11 @ Aq

L6 12 @ Aq

Le,13 @ Aq

Le,14 ® Aq

Le,15 © Aq

L6116 @ A1

X | X[ X| X| X| X]|X]|X

X

L(;17@A1

X

NN N NN N I IR IR N RN S RN I RN EN RN N ENEN RN ENEN RN

Le1s @ Aq

Le,19 @ Ay

Le,20 ® Ay

Le21 © Aq

Lo o2 @ Aq

X | X | X | XX

XN X | X | X

NN RN NN N N NN N ENEN NN EN RN N ENEN ENENENENEN ENEN ENENENENFIEN
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RESOLUTION OF 4-DIMENSIONAL SYMPLECTIC ORBIFOLDS

Lucia Martin-Merchédn and Juan Rojo

Abstract

We give a method to resolve 4-dimensional symplectic orbifolds making use of techniques
from complex geometry and gluing of symplectic forms. We provide some examples to which
the resolution method applies.

MSC classification [2010]: Primary 57R18, 57K43; Secondary 53C25, 53D35.

Key words: Symplectic orbifolds, Symplectic resolution

3.1 Introduction

An orbifold is a space which is locally modelled on balls of R™ quotiented by a finite group.
These have been very useful in many geometrical contexts [109]. In the setting of symplectic
geometry, symplectic orbifolds have been introduced mainly as a way to construct symplectic
manifolds by resolving their singularities via symplectic blow-up. This method has served
to construct many symplectic manifolds with interesting properties such as being simply-
connected and non-Kahler and/or simply-connected and non-formal, e.g. see [11], [50], [103].
On the other hand, symplectic and Kéahler orbifolds also have interest in their own right, for
instance they play an important role in Sasakian and K-contact geometry. We refer to the
book [20] for an extensive account on these subjects.

The problem of resolution of singularities and blow-up in the symplectic setting was
posed by Gromov in [60]. A few years later, the symplectic blow-up was rigorously defined
by McDuff [89] and it was used to construct a simply-connected symplectic manifold with no
Kahler structure. The concept of symplectic blow-up was later generalized to the orbifold
setting in [57].

McCarthy and Wolfson developed in [88] a symplectic resolution for isolated singularities
of orbifolds in dimension 4. Later on, Cavalcanti, Ferndndez and Muifioz gave a method of
performing symplectic resolution of isolated orbifold singularities in all dimensions [28]. This
was used in [50] to give the first example of a simply-connected symplectic 8-manifold which
is non-formal, as the resolution of a suitable symplectic 8-orbifold. This manifold was proved
to have also a complex structure in [14].

89
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Bazzoni, Ferndndez and Munoz [11] gave the first construction of a symplectic resolution
of an orbifold of dimension 6 with isotropy sets of dimension 0 and 2, although the con-
struction is ad hoc for the particular example at hand as it satisfies that the normal bundle
to the 2-dimensional isotropy set is trivial. This was used to give the first example of a
simply-connected non-Kéhler manifold which is simultaneously complex and symplectic.

Niederkriiger and Pasquotto provided methods for resolving different types of symplectic
orbifold singularities in [96] [97]. The second deals with orbifolds arising as symplectic reduc-
tions of Hamiltonian circle actions; these singularities are cyclic and might not be isolated. In
dimension 4, the previous work in [93] serves to resolve symplectic 4-orbifolds whose isotropy
set consists of codimension 2 disjoint submanifolds. In such case the orbifold is topologically
a manifold (the isotropy points are non-singular), so the question only amounts to change
the orbifold symplectic form into a smooth symplectic form.

In a more general setting, one can try to develop a resolution method for orbifolds with any
given geometric structure. This has yielded [71],[72],[75] remarkable results for constructing
Riemannian manifolds with holonomy Go, which have been extended for closed Go-structures
in [47] and [85].

In this paper we give an elementary and self-contained method to resolve arbitrary sym-
plectic 4-orbifolds. For the symplectic part, we make use of techniques for gluing symplectic
forms. These include the so called inflation procedure introduced by Thurston in [108], and
the notion of positivity (or tameness) with respect to an almost complex structure, studied
in detail in the book [90]. For the topological part (the resolution of quotient singularities),
we mainly make use of complex local models from [28], and tools coming from invariant the-
ory. There is however an essential difficulty when dealing with non-isolated isotropy points;
this comes from the fact that the (local) resolution of the topologically-singular points must
be made compatible with the resolution of the isotropy divisors (real codimension 2) of the
orbifold. To overcome this difficulty, the desingularization of the isotropy divisors has to be
made with care. The method in [94] starts with a manifold and constructs on it an orbifold
atlas with isotropy along a configuration of divisors. This construction has to be reversed,
but with an essential change: mainly, that the orbifold and the manifold structures along the
divisors must be related through a holomorphic map.

The main result is:

Theorem 3.1. Let (X,w) be a compact symplectz'c 4-orbifold. There exists a symplectic
manifold (X,®) and a smooth map 7 : (X,®) — (X,w) which is a symplectomorphism
outside an arbitrarily small neighborhood of the isotropy set of X.

Actually, the compactness hypothesis in the above theorem can be relaxed: it suffices
that every connected component S C X of the set of isotropy surfaces has compact closure
S in X.

In addition, Theorem can be used to construct a 4-dimensional simply connected
symplectic manifold as the symplectic resolution of a suitable 4-orbifold. This symplectic
orbifold is a quotient of a Kéahler manifold M, (X2) X S1 by an action of Zy x Zg, where
M, (%5) is a non-trivial mapping torus of the genus 2 surface. The isotropy set of the action
consists of 8 isolated points and 3 tori that have 4 intersection points, so this symplectic
orbifold cannot be resolved with the methods of [28] [93].

In the recent paper [30] by Chen, it is given an alternative method for resolving arbitrary
symplectic 4-orbifolds. The techniques used in [30] for constructing the resolution (e.g. sym-
plectic reduction and symplectic fillings) are rather involved technically, and differ completely
from the ones used here.

This paper is organized as follows. In section we review the necessary preliminaries
on symplectic orbifolds. Section [3.3] studies the isotropy set of 4-dimensional symplectic
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orbifolds, giving special local models for the isotropy surfaces. With these tools at hand we
prove Theorem in section [3.4] Finally, in section we provide some examples to which
the symplectic resolution of Theorem applies.

Acknowledgements. We are grateful to Vicente Munoz and Giovanni Bazzoni for useful
conversations.

The first author acknowledges financial support by a FPU Grant (FPU16/03475).

3.2 Symplectic orbifolds

In this section we introduce some aspects about orbifolds and symplectic orbifolds, which
can be found in [93],[106], [109].

3.2.1 Orbifolds

Definition 3.2. An n-dimensional orbifold is a Hausdorff and second countable space X
endowed with an atlas {(Uy, Vi, 0, o)}, where {V,,} is an open cover of X, U, C R",
'y < Diff(U,) is a finite group acting by diffeomorphisms, and ¢, : Uy, — V, C X is a
['s-invariant map which induces a homeomorphism U, /T, = V.

There is a condition of compatibility of charts for intersections. For each point x € V,NVj3
there is some V5 C V,,NVg with o € Vj so that there are group monomorphisms psq : I's < Iy,
psg : I's = I'g, and open differentiable embeddings 15, : Us — U, 153 : Us — Ug, which
Satisfy 15a(7(2)) = pa(7)(15a(2)) and 155(y(2)) = psa(7) (155 (x)), for all 7 € L.

The concept of change of charts in orbifolds is borrowed from its analogue in manifolds.

Definition 3.3. For an orbifold X, a change of charts is the map
nglg =153 0 zgal 2150 (Us) — 255(U5)-

Note that 15,(Us) C Us and 253(Us) C Ug, so Wojz,@ is a change of charts from U, to Ug.
A change of charts between U, and Ug depends on the inclusion of a third chart Us. This
dependence is up to the action of an element in I'y. In general this dependence is irrelevant,
so we may abuse notation and write v,g for any change of charts between U, and Ug. We
may further abuse notation and write

@Dag:Ua—)Ug

for a change of charts as above, even though its domain and range do not equal in general
all U, and Ug but an open subset of them.

We can refine the atlas of an orbifold X in order to obtain better properties; given a
point x € X, there is a chart (U,V,¢,I') with U C R", U/T" = V, so that the preimage
¢~ 1({z}) = {u} is only a point, and the group I' acting on U leaves the point u fixed, i.e.
v(u) = u for all v € T'. We call T' the isotropy group at x, and we denote it by T',. This
group is well defined up to conjugation by a diffeomorphism of a small open set of R™. In
addition, using a I'j-invariant metric and the exponential chart one can prove:

Proposition 3.4. Around any point x € X there exists an orbifold chart (U,V,$,T") with
I'y =T < O(n).

Definition 3.5. The isotropy subset of X is ¥ = {x € X s.t. 'y # {1}}.

As we shall see, the isotropy set is stratified into suborbifolds; this notion is also similar
to the concept of a submanifold:
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Definition 3.6. Let X be an orbifold of dimension n. A suborbifold of dimension d or
d-suborbifold of X is defined to be a subspace ¥ C X such that for each p € Y there
exists an orbifold chart (U,V,®,T") of X around p with I' < O(n), ¢(p) = 0, and such that
U'=Un(RY x {0}) satisfies p(U') =Y NV.

Let Y C X be a suborbifold. Then Y has an orbifold structure inherited from X, as
follows. Consider the chart (U,V,¢,T") of the above definition and let us identify RY =
R% x {0} € R". Consider I = {7 € ' s.t. 7(R%) C R?} < T the subgroup of elements leaving
invariant R?. Consider the representation given by o : I — End(R%); its image is a subgroup
I" = Im(p) = T'/ker(p). Let us denote V/ =Y NV = ¢(U’), and ¢/ = ¢|p» : U’ — V. The
orbifold chart of Y around p is defined to be (U', V' ¢/, T"). Clearly, U’ is a I"-invariant set
and satisfies U'/I" XY NV.

Let us state a notion of equivalence between groups of diffeomorphisms that is useful for
orbifolds.

Definition 3.7. Let H < Diff(U), H' < Diff(U’) be two groups of diffeomorphisms of open
sets U, U’ of R?". We say that the germs (U, H) and (U’, H') are equivalent if there exists a,
diffeomorphism f: U — U’ such that foHof~! = H’. In this case we write (U, H) = (U’, H').

Note that the above gives an equivalence relation on the set of germs of diffeomorphisms
of R?". If (U,V,T,¢) is an orbifold chart, a diffeomorphism f: U — U’ gives an induced
orbifold chart (U, V,T',#'), where I" = foT o f~! and ¢ = ¢ o f~1. Hence, all the germs
(U',T) equivalent to (U,T") induce the same orbifold chart. We shall also specify this notion
for finite subgroups of O(n).

Definition 3.8. Two finite subgroups I',T” of O(n) are equivalent if there exists open sets
U,U’" C R™ containing 0 such that the germs (U,T") and (U’,T") are equivalent. We denote
' 2T in this case.

Proposition 3.9. [93, Proposition 4] Let X be an orbifold, and let ¥ be its isotropy subset.
For every equivalence class H of finite subgroup H < O(n), we can define the set

Sy ={reX st [~ H}

Then the closure Yy is a suborbifold of X, and Xy =Xy — Uy Sar is a submanifold of
X.

Definition 3.10. An orbifold function f: X — R is a continuous function such that f o
¢a: Uy — R is smooth for every a.

Note that this is equivalent to giving smooth functions f, on U, which are I',-equivariant
and which agree under the changes of charts. An orbifold partition of unity subordinated to
the open cover {Vy} of X consists of orbifold functions p,: X — [0, 1] such that the support
of p, lies inside V,, and the sum ), po =1 on X.

Proposition 3.11. [95, Proposition 5] Let X be an n-orbifold. For any sufficiently refined
open cover {Vo} of X there exists an orbifold partition of unity subordinated to {Vy}.

Orbifold tensors are defined in the same way as functions are. That is, an orbifold tensor
on X is a collection of I',-invariant tensors on each U, which agree under the changes of
charts. In particular, there is a notion of orbifold differential forms Q,,4(X) and the exterior
derivative is also well-defined.
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3.2.2 Symplectic orbifolds

Definition 3.12. A symplectic orbifold is a 2n-dimensional orbifold X equipped with an

orbifold 2-form w € Q2 ,(X) such that dw = 0 and w" is nowhere-vanishing.

The proof of the existence of an almost Kéhler structure on a manifold (see [25]) easily
carries over to the orbifold case:

Proposition 3.13. [93, Proposition 8] Let (X,w) be a symplectic orbifold. Then (X,w)
admits an almost Kéihler orbifold structure (X,w,J,g).

We denote (wo,j, go) the standard Kahler structure on C".

Corollary 3.14. Let (X,w) be a symplectic 2n-orbifold. Every point in X admits a chart
(U, V,¢,I',w) with ' < U(n).

Proof. Put any almost Kéhler structure (w, J, g) on X as provided by Proposition Fix
a chart (U,V,¢,I') around p such that ¢(0) = p, " acts linearly, and the almost Kéahler
structure (wp, Jp, gp) = (wo,j,90) at p = 0 is standard. As J is an orbifold almost complex
structure, I' preserves J; in particular at the point 0 € U we have dyy oj = j o dpy for all
v € I'. As +y is linear, we have that dypy = =, hence v preserves the complex structure of
C" = (R?",j). This means that I' < Gl(n,C). Similarly, since v preserves the standard
metric go, one sees that I' < O(2n). The conclusion is that I' < Gl(n,C)NO(2n) = U(n). O

For symplectic (almost Kéhler) orbifolds, the isotropy set inherits a symplectic (almost
Kahler) structure.

Corollary 3.15. [93, Corollary 9] The isotropy set 3 of (X,w) consists of immersed sym-
plectic suborbifolds Y. Moreover, if we endow X with an almost Kihler orbifold structure
(w,J,g), then the sets Xy are almost Kdihler suborbifolds.

The following result is a Darboux theorem for symplectic orbifolds.

Proposition 3.16. [93, Proposition 10] Let (X,w) be a symplectic orbifold and oy € X.
There exists an orbifold chart (U,V,¢,T') around xy with local coordinates (x1,y1, ..., Tn,Yn)
such that the symplectic form has the expression w =Y. dx; Ady; and I’ < U(n) is a subgroup
of the unitary group.

Any orbifold almost Kéhler structure can be perturbed to make it standard around any
chosen point. We include a proof below.

Corollary 3.17. Let (X,w) be a symplectic orbifold, and let (J,g) be a compatible almost
Kahler structure. Let p € X a point and (U,V,¢,T',wy) a Darboux chart around p. Choose
Vi a neighborhood of p such that Vi C V, and let Uy = ¢*1(V1) C U. There exists another
compatible almost Kihler structure (J', g') such that J' = J and ¢’ = g outside V', and (J', ¢')
is the standard (j, go) when lifted to the chart Uy C U.

Proof. Take a bump function p which equals 1 on V; and 0 outside V. Consider the metric
g1 = pgo + (1 — p)g, where pgo coincides with the standard metric when lifted to U;, and
extends as 0 to all of X. If we use the metric g1 as auxiliary metric in the proof of Proposition
and construct a compatible almost Kéhler structure (J', ¢’), we find that J' =j, ¢’ = go
when lifted to U; because both w and the auxiliary metric g; are standard in Uj. O]
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Let us recall a result from symplectic linear algebra that will be useful later. Consider
the retraction
r:Sp(2n,R) = U(n),  r(A) = A(A'A)~1/2 (3.1)

The fact that A(A'A)~Y2 € U(n) = Sp(2n,R) N O(2n) for any A € Sp(2n,R) can be
seen as follows. First, since A'QpA = Qq, with Qy the matrix of the standard symplectic
form on R?" it is easy to check that (A’A)!QpA'A = Qy so A'A € Sp(2n,R). Then, by
expressing the square root S'/2 as a power series in S, for S a positive definite symmetric
matrix, one sees that (AtA)l/ 2 € Sp(2n,R), hence so does its inverse and it follows that
r(A) = A(A*A)~Y2 € Sp(2n,R). Finally, using that S and S'/? commute, it follows that
r(A)tr(A) =1d, so r(A) € O(2n).

This retraction satisfies the following. If there is a group I' < U(k) and an isomorphism
p: I' = TV < U(k), such that A € Sp(2n,R) is I'-equivariant in the sense that Aoy = p(v)o A
for all 4 € T, then r(A) is also I'-equivariant, i.e. 7(A) o~y = p(vy) or(A) for all v € G. This
property is a consequence of the following result:

Lemma 3.18. [93, Lemma 21] Let A,C € U(k) and B € Sp(2n,R) such that A= B~'CB.
Then A =r(B)~'Cr(B).

3.3 Symplectic orbifolds in dimension 4.

3.3.1 The isotropy set in dimension 4.

Let (X,w) be a symplectic orbifold of dimension 4, and let € X. Put a compatible orbifold
almost complex structure on (X,w), obtaining an almost Kéhler orbifold (X, w,J). By the
equivariant Darboux Theorem, around any point we have an orbifold chart (U,V,¢,T",wp)
such that U = B.(0) C C? is a ball and ¢~ '({z}) = {0}, and I' = ', < U(2) acts on U by
unitary matrices. Unless otherwise stated, from now on we assume that every orbifold chart
of (X,w) has the form above. We will write (U, V, ¢,I",wp) if the symplectic form is standard
in the chart, and analogously for another tensors like gy and j.

In dimension 4 the isotropy set can be expressed as a union ¥ = X% U X* U X! of three
subsets with distinct properties. These are determined by a geometric condition that depends
on the action of the isotropy groups I'; < U(2) in C2, as follows.

Case 1: z € X0 if the action of T';, on C? — {0} is free.

Case 2: z € ¥* if there exists a complex line L C C? such that for every non-identity
element v € I'; we have Fix(y) = L.

Case 3: z € X! if there exist at least two complex lines L1, Ly C C? and non-identity
elements 1,72 € I'; so that L; = Fix(v;) and Lo = Fix(y2).

Note the following:

o If 2 € X0, then z is an isolated point of ¥. That is why the points of 3X° are called
isolated singular points.

o If x € ¥* then D = ¢(L) is contained on ¥* and every point on this line has constant
isotropy I';. The connected components of ¥* are therefore surfaces 5; such that all
its points have the same isotropy group I’;.
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o The points of X! are also isolated; in addition these lie in the closure of some surfaces
S; € ¥*. Given z € X! let us call I, the set of indices ¢ such that the surface S;
accumulates to x and write I'; the isotropy set of S;.

We have the following result:

Lemma 3.19. Letp € Xt and let (U, V,T) be an orbifold chart around p, withT =T, < U(2).
LetT* = (I'; s.t. i € I)) <T' be the normal subgroup generated by the isotropy groups of all
the surfaces S; accumulating at p.

1. The space U' = U/T* is a topological manifold and inherits naturally a complex orbifold
structure with isotropy set the surfaces S;.

2. The quotient group I'" =T /T* has an induced action on U' = U/T*. Moreover, U’ /T’
and U/T are canonically isomorphic (as orbifolds).

Proof. We check first that I'* is a normal subgroup of I'. Take g; € I';, and v € I'. Then
vg:7~ ! leaves fixed all the points in the surface v(S;) C U. Hence vg;7~! belongs to the
isotropy group of some of the surfaces S; = v(S;). This means that Fol;oI™! C U; Iy cI™.
If we take now a generic element of I'*, i.e. finite product []; g;, with g;, € I';,, then for any
v € T we have v([1; 9i, )7 = [1x(79i,7~!) € I'*, and this proves that T oT* o '™t C I'*, s0
I’ is a normal subgroup.

The complex orbifold structure on U/T'* exists because I' acts on U C C? by biholormor-
phisms, so it acts j-equivariantly. To see that U’ = U/T* is a topological manifold, observe
that the group I'* acts on C? and it is generated by complex reflections. Hence the algebra
Clz1, ZQ]F* of I-invariant polynomials is a polynomial algebra generated by 2 elements, say
f,g. This is proved for real reflections in [31], but the proof carries over to complex reflections
also, see [101]. Consider

H:C? - C? H(z) = (f(z1,22),9(21, 22))-

This map induces a homeomorphism H: C2/T* — C2. This ensures that U/T* is a topological
manifold.

Now consider IV = T'/T* = {#I'* s.t. v € T'}, and define its action on U’ = U/T* =
{T*u s.t. uw € U} by (4T*) - (IT™u) = I'(qyu) for w € U and v € T'. This is well defined
since for v/ = 447 and v = ~ju, other representatives of 4T and I'u, we have 7'u' =
(M) (su) = Yy )u = yv*u = cy(y*)yu, where ¢,: I' — I' is conjugation by ~ and
v* = ~ivs € T'*. Taking into account that c,(I'"*) = I'"* we obtain I'"*(y'v) = I'™*(yu). It is
immediate to check that this gives an action. Moreover, the orbit of I« in U’/I" is given by
I (T"u) = {T*(yu)|y € T'} so it equals I'u, the orbit of w in U/T. O

The following lemma proves the existence of a suitable orbifold almost Kéhler structure
in dimension 4. It gives a local Kihler model around any point in X! U X0,

Lemma 3.20. Let (X,w) be a 4-dimensional symplectic orbifold. There exists an almost
Kahler structure (X,w, J, g) such that:

1. For each point p € X0, there is an orbifold chart (U,V,T',wo,i,go) around p.

2. For each point p € X1 there is an orbifold chart (U,V,$,T',wo,3,90), and each surface
S; that accumulates to p lifts to ¢~1(S;) which is a union of disjoint complex curves in
the chart (U,j).

Proof. We use Corollary to put an almost Kéhler structure (J, g) so that there are flat
Kihler charts around any point in %' U 3°. Now, using Corollary both statements are
clear. O
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3.3.2 Tubular neighbourhood of singular surfaces

With respect to the orbifold almost Kahler structure of above, given a surface S C X%,
note that TS = T'S19_ i.e. for every z € S, the symplectic and metric orthogonal spaces
to 1,5 are the same. The following lemma gives an orbifold atlas of X such that a tubular
neighborhood of any surface S C ¥* inherits an atlas of an orbifold disc-bundle with structure
group in U(1).

Lemma 3.21. The symplectic orbifold (X,w) admits an atlas A such that for any S C X¥,
some neighborhood D¢, (S) of S in X admits an open cover D.,(S) = UaVy such that for
each « there is an orbifold chart (Uy, Vo, Lo, o, wa) € A, satisfying:

1. If Vo Nt =0, then U, = S, X D¢, is a product, with S, C S open, Do, C C a disc,
and the group I', = T is the isotropy group of the surface S. For any other Vg with
Vg N vt =, the orbifold change of charts are given by

%5 = (d)(iﬁ,wzﬁ): Ua — Uﬁa (va) = (wéﬁ(z)vAaﬂ(z)w)

with
Anp: Sa — U(1), z = Anp(2)

a smooth function taking values in the unit circle U(1). The group T' < U(1) acts in
Uy and Ug by a rotation in De,, in particular it is isomorphic to Zny,.

2. For each p € £ N S denote Vp an open set of the cover that contains p. Then the
corresponding chart (Uy, Vi, Ty, ¢p, wo) satisfies that H, x Doy C U, with H, C R? open
and ¢,(H, x {0}) = SN VP. Moreover if V,, does not contain p, the change of charts
s given by

Vop: Ua = Up,  (2,0) = (Vap(2), Aap(2)w)
with Aap(z) € U(1), and its image is Yap(Us) = Ho X Dey C Hp X Dy, with ¢p(Hq X
{0}) = SNVyNV,. If we denote pop: I'o =T — T'), the associated monomorphism of
isotropy groups, then the subgroup pa,(I') < T'p acts on Hy X D, as a rotation in Dy, .

Proof. Consider an orbifold almost Kéhler structure (w,.J,¢g) on X as in Lemma m To
see (1), take an initial cover U, V, of S with orbifold charts (U., Va,T',wo, Ja, go) such that
VoNX! = 0. Let (2,w) be coordinates in U/, such that S, = SNU’, = {w = 0}. Recall that
we have for z = (2,0) € S, an identification (7.S,)* = {2z} x C. The change of charts are
given by
€af: UC/Y — U/g
(Z? U)) = (Eéﬁ(za ’U)), 635(27 U}) = (Z/a w/))

with eiﬂ(z,O) =0 for all (z,0) € S,. Consider now U, = S, x C, and the maps
¢ag: Up=8a xC —=Ug=53xC
(z,u) — (gbéﬂ(z),A/aB(z)u) = (¢, )

with gb}lﬂ(z) = eéﬁ (2,0), and A 5(2) = 8weiﬂ|(z70). Here 8weiﬁ stands for the Jacobian matrix
of 635 in the variable w. Now we use the exponential map to identify U/, and U, = Sy X D,
where D, C C is a small disc. To this end let us consider the maps

ea: Uy =Sy x D. — UL, (z,u) — exp,(u) = (z,w)
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which are diffeomorphisms for all e < gy, maybe reducing U/,. The induced action of the
group I' in U, = S, x D, is given by complex multiplication in D.. Now, it is easy to check
that the maps ¢, are the induced change of charts with respect to the new coordinates
(z,u) and (#/,¢') in U, and Ug. In other words, ¢op = egl 0 €43 © €o. Hence we can take the
maps ¢n3 as new orbifold change of charts. The matrices

ws(2): (T25a) " hal) = (TSp)™, hgl)

are isometries with respect to the orbifold hermitian metrics hq = go + iwo(+, Jo+) and hg =
ga+iwg(-, Jg-) restricted to the orthogonal spaces to S (we use the notation h,| to express this
restriction). In particular A’QB(Z) € Sp(2) are symplectic matrices. Take orthonormal bases
of (T2Sa)t, hal) and ((T./Ss)*, hs|) so that he|. and hg|, become the standard hermitian
metric hg, and denote P,(z), P3(2’) € Sp(2,R) the matrices of change of basis. Call the new
coordinates (z,v) = (z, Pa(2)u) and (2/,v") = (', Pg(2')u’). The change of trivializations in
the new coordinates are given by the matrices

ap(2) = P(2') - Alg(2) - (Pa(2)) ™! € U(1).
These matrices are unitary as we want, but the isotropy groups act via
T,=Py(2) T -Py(2)"', T.=Psz) T Ps()*

so they are groups acting non-linearly. To fix this, consider 7: Sp(2,R) — U(1) the retraction

given in (3.1). By Lemma we have
Do =r(Pa(2) - T-r(Pa(2))™!, Lo =r(Bs(2)) - T-r(Ps(z)) "

So if we introduce further coordinates w in U/, by (z,w) = (z,7(Pa(2)) " *v) and v’ in Uj by
(z/,w") = (2',7(Ps(2"))"!v') then the corresponding transition matrices are given by

Aap(z) = r(Ps(2) " - Ags(2) - r(Pa(2)) € U(1)

and moreover the varying groups I', and I',s become I' again. This shows what we wanted.
The sought transition maps .3 are given by Q,Z)éﬁ(z) = Pop(2) and wiﬁ(z, w) = Agp(2)w.
Now let us see (2). Suppose that S accumulates at p € X!, and let (U,V,¢,T') a chart
around p = ¢(0) with coordinates (z,w) such that (w, g,J) is the standard K&hler structure
in this chart. After a complex rotation on U (which preserves the whole structure) we can
suppose that SNV = ¢({w = 0}). In this case, ey (z,w) = (z,w) so that (U, V, $,T") remains
invariant after the process described before. ]

Remark 3.22. The proof of this lemma shows that, given the Kahler chart ¢: U, — V), of
a point p € X!, the atlas for the tubular neighborhood D, (S) of a singular surface S with
p € S can be constructed making a complex rotation of the preimage ¢~1(V, N D, (S)) so
that S = {w = 0}.

Remark 3.23. Near p € X' NS we can define a compatible orbifold chart from (Up, Vi, Ty, )
we let €, > 0 be such that Bs.,(p) C V}, and let 9 > 0 such that

$p((B3s, (0) = Be, (0)) N (C X Dey)) C X = Ugras Deg (S7)-

There is a compatible orbifold chart (A3, Vas, T, ¢,) with A3 = (Bse,(0)— B, (0))N(Cx D),
Vaz = ¢p(A3) and [ ={yeT,st v(z0) = (,0)} < U(1) x U(1).
Moreover, if I'g is the isotropy of S then A,/T's — A,/ I is a covering with deck group

f‘/FS. In addition, given ¢,(z,0) € U, A3 One can restrict sufficiently the previous chart to
obtain an orbifold chart of X with isotropy I's.
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Remarks 3.24.

1. The symplectic forms w, = €}wg of the atlas above may not be standard in the charts
U!, = S4 X D., but they are standard at the points of S, so we have in coordinates
(z,w) € U], the expression

wo = —3(dz A dZ + dw A dw) + O(|w]).

2. The atlas A constructed above can be refined so that for any p € X! and any neighbor-
hood WP of p in X, there is an orbifold chart (UP,V?,¢,,I',) in A with p € VP C WP.
Also, we can assume that only one of the open sets of the atlas contains the point
pe Xt

Consider an orbifold almost Kéhler structure (X, w, J, g) of lemma Let S C ¥* be an
isotropy surface, and Dy, (S ) a neighborhood of Sin X as in Lemma With an open cover
D.,(S) = U,V, and orbifold charts (Uy, Vi, T, Ba, Wa). For p € SN let (U, Vi, Ty, dp, wo)
be the unique orbifold chart covering p. Denote 7: D¢, (S) — S the projection. The following
lemma shows the existence of an orbifold connection 1-form on D, (S)— (UpesingBe, (p) us),

where ¢, satisfies that Bs.,(0) C U, and 3¢, < 0.

Lemma 3.25. Nofatz'ons as above.There exists an orbifold 1-form n =ng € charb(D€0 (5’) _
(UpesingBe, (p) U S)) such that:

1. If Vo N XY = 0, the liftings 1, in the orbifold charts Uy, = S, x D., have the form
No = dO + T Vs for ve € QL(S,), with O the angular coordinate in D, .

2. Forp e x'nS, let H, x D, C U, with ¢(H, x {0}) = SNV,. Then, the lifting of 1 in
Up—Be,(p) equals df in Vaz, with Vs = ¢p(A2) and A2 = (Bac,(0)—B:,(0))N(Cx Dy,).

Proof. Consider 7, : Sq X Dey — D¢, and the angular function 76 which measures the angle
in each fiber D,. We have that 730 — 730 = 7", in the intersections, where {og = £ap(2)
is a function on S.

The 1-forms dng0 — dr30 = 7*d€ap = T vap are I'-invariant since I' acts on the angle 6
as a translation in the charts. The argument carries also on the chart (Ag, VAg, I', ¢p) defined

on Remark the angular form is f‘—invariant because each element of I' can be expressed
as the composition of a map (z,w) — (e%z, w) which preserves the angle, and a map that
acts on the angle 6 as a translation.

We take a cover of S — UpesingBe, (p) formed by coordinate open sets and such that all
points of VAg are covered only by VAg- We denote it by {V,}aea. Now, taking a partition
of unity p, subordinated to the cover {V,} we can define o, = Y., m*pq - 71 (d0). If we fix a
chart Ug = Sg x D,,, then the lifting of 1 to Uy is given by

Moy =D 7 pa - (15(d0) + 7 vap) = 15(d0) + D 7 (pa - Vap)-

This proves that n restricts to df on each fiber and (1).
Take p € ¥!. Since points on ¢,((Ba:,(0) — B:,(0)) N C x Dg,) are covered by a unique
open set of the covering, the connection is trivial over it. This proves (2). O

3.4 Resolution.

In this section we shall be explicit about the atlas that we consider in the space X. Let
A be the orbifold atlas of X that satisfies Lemma and denote the symplectic orbifold
structure by (X, w, A).
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First observe that we can suppose that 0 = () by employing the method described in [28]
to resolve isolated singularities; we briefly describe it in subsection In order to perform
the resolution we first endow X with the structure of a symplectic orbifold (X, /T, @) without
changing the underlying topological manifold. The isotropy points of the new structure are
isolated and consist of X% U X!, For that purpose, we first construct a manifold atlas of
X — X! and replace w with a closed 2-form w;, which is zero on a closed neighbourhood of
! and symplectic away from it. After this we extend the orbifold structure to £! to obtain
the desired orbifold structure (X,.A). The orbifold form w’ naturally extends to (X, A); we
finally use a gluing lemma (see Lemma [3.37) to contruct @.

The extension process is inspired in Lemma Following its notation, if p € X! and
(U,V,T, ¢) is an orbifold chart then V' = U/I" = (U/T*)/T”. A holomorphic homeomorphism
H:U/T* — U C C2 allows us to resolve the singularities of X*NV’; and U /T has an isolated
singularity at 0. This structure must be compatible with the atlas defined on X —X'; for that
reason we resolve the singularities on 3* using complex transformations. Riemann extension
theorem will ensure the compatibility of both structures away from 1.

We finally resolve the isolated isotropy locus of (X, A, w) using again the method of [28)].
This process yields a resolution of (X, .A,w) as follows:

Theorem 3.26. Let (X,w) be a symplectic 4-orbifold such that the closure of each conected
component S C X* is compact. There exists a symplectic manifold (X', @) and a smooth map
7 (X,0) = (X,w) which is a symplectomorphism outside an arbitrarily small neighborhood
of the isotropy set of X.

3.4.1 Resolution of isolated singularities

We briefly outline the process of resolving an isolated singularity, which can be found in [2§].
As one should observe, this method is valid for symplectic orbifolds of arbitrary dimension;
but we restrict to the case that the dimension is 4.

Let p € X0 be an isolated singular point and let (U, V,T', ¢,wo,j, go) be a Kihler Darboux
chart around p with V= U/I', I' < U(2). The space U/T" is an affine variety because one
can consider (P, ..., Py) a basis of the finitely generated C-algebra of polynomials that are
invariant by the action of I', and define the holomorphic embedding:

1 C?)T = CV, vx) = (Py,...,Pn)(x).

The model +(C2/T) is then used to perform the resolution of singularities. This consists of a
finite number of blow-ups [65], [66]. The resolution b: F — +(C2/T) is quasi-projective and
consequently Kéahler. We shall denote by wr and jr the symplectic form and the complex
structure on the resolution.

Then we replace B.(p) = ¢(B:(0)) C V by a small ball around the exceptional set
E =b71(0) in F; that is, define:

X' = (X — B:(p)) U¢_>ob b_l(Bs(O)/F)v

To endow X' with a symplectic form we interpolate b*wg and Awp on A = b~ (Bss(0) —
B5(0)/T'), where A is small enough. The interpolation is allowed due to the fact that A is a
lens space and thus H?(A,R) = 0; in order to do so one has to replace the Kéhler potential
7?2 of wy with a radial Kéhler potential on C? — Bs(0) that vanishes on Bs(0) and coincides
with 72 on C? — Bys(0), obtaining a form w;. If dn = wp —b*wy on A, ) is small enough, and
p is a radial bump function which is 1 on Bas(0) and 0 on C? — Bs;s(0), then the 2-form:

wy = b*wi + Ad((pob)n)
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extends to a symplectic form on b~ (By.(0)/T') and interpolates the desired forms; this is
similar to the gluing process described in Lemma [3.37] To ensure that w) is symplectic on
0 < r < 2§ we use the fact that both b*w; and wp are positive with respect to the complex
structure jp on F.

3.4.2 Construction of (X — X!, A ).

In this first step we resolve each surface S C ¥* separately; working away from %'. We split
the construction in two parts: we first do a preparation on the orbifold (X, .4,w) and then
change the symplectic orbifold structure.

Preparation

In order to construct a smooth atlas A of X — $! we shall modify A around singular surfaces.
For this, we use the basic fact that the map ¢: C — C, ¢(z) = 2™ gives a homeomorphism
between C/Z,, and C. This map applied to the fibers {2} x D., C D,,(S) yields a manifold
atlas of D.,(S) — X! NS, hence providing the sought manifold atlas Aon X — L.

But the symplectic form w is singular on >* with respect to the atlas A of X — X! For
this reason we replace w on the orbifold (X,.A) with a form w that is degenerate on each
S C ¥*, but it is symplectic on the manifold (X — B.(X1),.4). Here B(X!) stands for a
neighborhood of X! which is a union of balls around each p € X! that are contained in Vp,
where (Up, Vp, T'p,wp) € A is the Darboux chart as usual. More precisely, given p € X! the
ball is ¢(Bc,(0)) where €, > 0 satisfies B, (0) C Up. In addition, w} = 0 on B(X!).

As a first step, we need an orbifold symplectic form w® on X which is constant on the
fibers of D.,(S) for each S C ¥*. For that purpose we first introduce some notations; let S
be an isotropy surface, we denote 7: D.,(S) — S the projection. By Lemma we have
an orbifold connection 1-form 1 on D.,(S) — S x {0} which equals df in each punctured
fiber {z} x (D: — {0}), z € S. Denote wg = t*w € Q%(S) the symplectic form on S, with
t: 8 < D.,(S) C X the inclusion.

Lemma 3.27. For any choice of § > 0 small enough, there exists an orbifold symplectic
form W = WP () on X such that w° = w in

(X — Uscx+D2s(S)) Upest Vp,

and for every singular surface S C X*, W = Tws + rdr A+ %T‘2d77 in Dg(S); where
7w: Ds(S) — S denotes the projection.

Proof. Let S C ¥* be a singular surface; we define an orbifold 2-form by
W' = T*wg +rdr An+ $r2dn € Q24 (Dey (S))

where r is the function in D, (S) measuring the radius of the fiber D,,. A simple computation
shows that ' is smooth for 7 = 0, and that dw’ = 0. In addition, given p € ' NS, it holds
that n = df and w is the standard Kéhler form on the set H, x D,; therefore w’ coincides
with w.

It is clear that «’ is non-degenerate at every point of the zero section S x {0}, so it is non-
degenerate in a maybe smaller neighborhood which we call again D.,(S). Now we interpolate
w' and w to obtain the sought orbifold symplectic form w® on X. Since t*(w' — w) = 0 and
D.,(S) retracts onto S, we have that w’' —w = d3 for some orbifold 1-form 3 defined in D, (S)
which is 0 on H, x D.. By Remark we have |w’ — w| = O(r) in D, (S). We can take a
primitive 3 of w’ —w = df such that |3] = O(r?). Indeed, we can write w' —w = ag Adr +a;
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for ap a 1-form and oy a 2-form with «;(9d,,-) = 0. Then we set 8 = [ apdr, which is
smooth and a primitive for w’ — w such that

8] < Crlag| = Cr|(w' = w)(9y, )| < Orlw = W'|0;]| = O(r?)
since |9;| is bounded. Now consider a bump function ps(r) which equals 1 on Ds(S) and
0 outside Dos(S) and such that [pf| < 2. Here § < £ is small, to be fixed later. Define
w? = w+ d(psB). We have that

w0 — w| = [p5(r)dr A B+ psdB| = O(%) + O(r)

s0 w? —w = O(8) in Das(S). Hence w? is symplectic on Dys(S) for § small. Outside Dogs(S)
we have w? = w so it is also symplectic, and then w? is a global orbifold symplectic form on
X. Note that w® equals w’ on Ds(S), as desired. Finally, it is clear from the construction of
w? that w = w® on a neighborhood Up V), of »l O

We now modify w’ in order to obtain an intermediate form, w, € Q?(X — B(X!)). This is
a closed form which is symplectic on X — (X* U B(X1)) but w, # 0 on 9B(X*); we contruct
later the desired form w} from w,. The construction of w, follows the ideas of the proof of
Lemma [3.27 and consists of defining a symplectic form which is adapted to a splitting of the
tangent bundle of each singular surface S C ¥* into two distributions that we now introduce.

Recall that our atlas provides a well-defined radial function around S. The connection
1-form 7 defined in Lemma [3.25allows us to define the horizontal subbundle H = ker(rdr An)
and the vertical subbundle V = ker(dn); these can be endowed with an almost Kéhler
structure:

1. On the horizontal space we consider the symplectic form 7*wg; if Jg tames wg on S, we
extend it to H via the isomorphism dm and continue denoting it with the same name.
This extension tames m*wg because (dr)t(ws) = T wg.

2. On the vertical bundle V we consider the standard metric gy = dr? + r2d6? and
the complex structure Jy induced by the complex multiplication by i in the atlas
(Uas Vay Ty ). The induced form is wy = rdr A df = rdr A nly.

Note that H* = Ann(V) = C® ® 7*(Q21(S)) and that V* = Ann(H) = C™ ® (dr,n), so we
can extend any tensor initially constructed in the horizontal (vertical) distribution as being
zero in the vertical (horizontal) distribution respectively. This applies especially to Jy.

Before stating the result in which we construct the form w,, we introduce some notations.
Consider the neighborhoods Ds(S) for 0 < § < g¢; there exists (55* > 0 such that for any
0 < & < 65 it holds Ds(S) N Ds(S") € B(X!) for any pair of singular surfaces 5,5 Fix a
singular surface .S, define for 0 < § < 55* the d-normal neighborhood of S — B(X!)

Ns(S) = U Pa(Sa x Bs(0)),

a€lg

where Ag denotes the set of indexes a such that V, NS # () and V,, € X — B(X'). To ease
notation, we assume that ¢ is chosen so that ¢g < (55*. Hence the neighborhoods N, (S) are
disjoint for the different surfaces S.

Proposition 3.28. For every isotropy surface S there exist 0 < 05 < %55*, 65 < %55, and

as > 0 such that for every a < ming{a3} there is a closed form w, € (X — B(XY)) which is
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non-degenerate on X —(B(X1) U X*), such that w, = w on X — (Upezl Bc,(p) Uses- N25§(S)),
and on N(;ég(S) we have:

1 1
Wy = T wg — Zded(r2m5 + a2)’"s

where Ly, is the isotropy group of every x € S. On Uyesn (Ba:,(p) — Be,(p)) — X* the form
wq 15 j-tamed and Kdhler.

Proof. We describe the process in a neighborhood of a fixed singular surface S. To ease
notations, we denote the order of its cyclic isotropy group by m instead of mg. Note that
Jy(dr) = —rn for r # 0, so in particular

Lo, 1 1 2
2d(r n) = zd(rJydr) = 4djvd7“ .
Let w® be the symplectic form of Lemma such that
1 1
w? = 7*(ws) + §d(r2n) =" (wg) — Zd.fydr2

on Nj,(S) and w® = w on X — Nas, (S), for some §p with 0 < Jp < %55*.
Define the 2-form: .
we =" (ws) = dIvd(f(r*,a)),

where f(r,a) = (r™ +ﬁa2)%. B
Given a function f: R — R, the 2-form —%ded( f(r?)) is expressed as follows:
—Ydndf(r?) = — Ldn(rf (r?)dr) = Ld(f (r*)r*n)
=32 f' () ke + (P f(r?) + £/ (r?))rdr A,
where 7*(k) = dn is the curvature of the connection. In addition, we observe:
1. The projection of —%dedf to the space A2V* is
—1dIvdfly = (%) + F'(r%))rdr A,

It is Jy-tamed on an annulus Ry < r < Ry as long as f”(2)+f'(x) > 0 for x € [R%, R?].

2. Denote || - || the norm with respect to the metric gg + gy. If < 1 then,
IzdTudf Il <gIF )™ sll + 1 ()] + 1F ()],

In particular, if A = [d1,d2] C [0,1] and £, is a family of functions such that f,|a tends
uniformly to 0 as @ — 0 in the C? norm, then given ¢ > 0 one can choose ag > 0 small
enough such that for a < ag, ||id,]vdfa|] <eonreA.

We now check that we can choose §; < %(50 and a; > 0 such that for every a < a; the
form w? is non-degenerate on 0 < r < &;. The vertical part w0|y, = —%djydf(?”Q,a)h; is

non-degenerate and Jy-tamed on r # 0 because:

(25 ) =t s >0

(d%f) (r,0) =a*(m — 1)r™ (™ + a?)m 2 > 0.
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The horizontal part is wl|y = 7*(ws) + 37 (d%f) (r?, a)m* K, whose first summand 7*(wg)

is non-degenerate and Jg-tamed on H; since 72 (d% f) (r2,0) = r? we conclude the existence

of 41 < %(50 and aj > 0 such that wg\q.[ is non-degenerate and Jg-tamed on H for r < §; and
a<aj.

Choose 9 < %(51; we now show that there exists as < a1 such that for every a < as
there is a form w, on X with w, = W if 0 < 7 < 0y, w, = W if 7 > 255 and such that w,
is Jy + Jy tamed on 9 < r < 202. Let p = p(x) be a smooth function such that p = 1 if
r < 1land p=0if z > 4 and define ps(x) = p(53). We also define h(z,a) = f(z,a) — =,
H(x,a) = ps,(x)h(z,a) and the closed form

1
wy = w® — ZdJyd(H(r% a)).

We now show that this is Jy + Jy tamed on do < r < 2§2. Note that the function H is
smooth on (z,a) € (0,00) x R and satisfies that H(x,0) = ps,(x)h(x,0) = 0. Thus, the
family f,(z) = H(x,a) converges uniformly to 0 in the C2 norm on the domain z € [03, 463].
Let € > 0 be such that an e-ball with respect to gs + gy around w? is (Js + Jy,)-tamed on
b2 < 1 < 209. Our previous observation ensures the existence of as > 0 such that for every
a < ag:
Jwa — &0l = | 2dIyd(Hy(r2, a))]| < =

on 9o < 1 < 209, and thus w, is Jy + Jy-tamed on ds < r < 269, so it is a symplectic form
there.

Note also that on the chart Ba.,(p) C V) the connection is flat, i.e. n = df), and moreover
(ws, Js) becomes the standard Kéhler structure on S NV, so that Jy + Jy = j becomes
standard on U, C C2. Thus, the computation above proves that wq is j-tamed and Kéhler

on Upes (Bae, (p) — B, (p)) — X*. O

Remark 3.29. For a fixed surface S, the formula defining w, near S clearly extends to a non-
degenerate closed 2-form on D.,(S)—%!. However, for different surfaces S, S’ these extended
2-forms may differ in D.,(S;) N D-,(S;) € B(X'). That is why we restrict the definition of
wa to X — B(Zh).

To construct w; we interpolate w, with 0 near X!; for that purpose we first prove that
W, admits a Kihler potential on a neighbourhood of ¥.!. This neighbourhood consists of the
union of the annuli A, = Ba.,(p) — B:,(p) C X for each p € X'; these are covered by the
orbifold charts Uy, = Ba.,(0) — B, (0).

Proposition 3.30. Let p € X1; there is a Kdhler potential F,: A, — [0,00) for the lifting
of wa to the chart Ua,. That is, in Uy, we have

i -
Wq = iﬁaFa
In addition, a can be chosen so that there exists 0 < ty < t1 such that:
B, (0) C F, '([0,t)) C Bsc,/2(0) € F, '([0,1)) C Bae, (0) .

Proof. First of all recall that the preparation of Lemmadoes not alter wly,,, being V =V,
a neighborhood of p containing Bs.,(p). To ease notation let us suppose from now on that
V' = Ba.,(p), so V is covered by an orbifold chart U = Ba.,(0) — V with coordinates (z,w).
Fix a surface S C ¥*. We cover V — B, (p) with the charts W = U, — (B.,(0) Us N5(5))
and W' = UgWy, with W§ = Nas(S) NV, so V=W UW’'. The Kéhler potential over W is
of course:

Fulw = 22 + w]2
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We now look for the Kéhler potential near a singular surface S. Consider a rotation of V' in
which S corresponds to w = 0. By Remark on the set W§ = Nos(S) NV the expression
of w, is: _ )

Wa = % (dz A dz + dw A di) = 7dJydH (Jwf?, a)

where H(z) = ps,(z)h(z,a). In addition, dJydH (|w|?,a) = didH (|w|?, a) because Jy + Jg =
i, and dH (Jw|?,a) € V*. Moreover, taking into account that j(d¢) = id¢ and j(d¢) = —id( for
a complex variable {, we get jO = i0 and j0 = —i0d. Hence we obtain:

did = (0 + 0)j(0 + 0) = —2i00.

Thus, —3dJvdH (|w|?,a) = 100H (Jw|?, a) and the Kéhler potential is:

Folwy, = 12 + [w]* + H(Jwl*, a).

Note that if [w| > 203 then H(|w[?, a) = 0; thus Fylysas, = 2> + |w|*.

If we consider another singular surface S’ with p € S’, we make another rotation in V and
repeat the process to construct F, near S’. Since transition functions are rotations, these
functions glue together and give a function F, well-defined on A. Note that, as discussed
above, the global expression of F, in A depends on both the radius r? = |2]2 + |w|? and
the distance dg from a surface S. That is, we have in global coordinates (z,w) € A the
expression:

Fo(z,w) = |27 + [w]* + 3 H(ds(z,w)?, a)
S

where each H(ds(z,w)?) extends as 0 outside Nas,(S). Finally, the choice of 0 < ty < t;
with

Be,(0) € F71([0,t)) C Bse, 2(0) € F~1([0,%1)) C Bae,(0)
can be made for a small enough. Indeed, the function |z|? 4 |w|? satisfies the above property
for tg = Sepand ty = gep, and H,(z) = H(z, a) are positive functions that converge uniformly
to0asa— 0. O

We now prove a technical result that enables us to perform the desired interpolation.

Lemma 3.31. Let V C C" open, and F: V — R a smooth functz’oﬁn such that é&?F is j-
semipositive. Let h: R — R smooth with h' > 0, " > 0. Denote w = 500F, wy, = 500(hoF).

Then the form wy is j-semipositive. Moreover, wy is j-positive on the subset of V where
w = $00F is j-positive and W' (F) > 0.

Proof. A computation in the complexified tangent bundle TV ® C gives that
$00(ho F) = Lh"(F)OF A OF + L1 (F)0OF.
On the other hand denote
B=0FNOF =Y (0.,F)(0:,F)dz N dz; .
i,J

Recall that S(v,jv) = —% (v —ijv, v +ijv) for every v € TV, with v — ijv € T*°V. Take a
vector u = v — ijv = ¥, a;0,, € TV and compute:

,B(U, ﬂ) = Z (@F VAN 5F)(ai6,zi, Eljagj) = Z aifzj(aziF)(ang)
1,5 .3

= (a0, F)(a;05,F) = | > a0, F|* = |0F (u)|*.

.3
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Here we have taken into account that 85].F = asz because F' is _real. This shows that
$B(v,jv) = 1B8(u,u) = §|0F(u)|?* for v € TV. Finally, since w, = +h"(F)B + I/ (F)w, the
result is clear. O

Consider the Kéhler potential for w, in the chart Uga, given by F,: Us — [0,00). As
shown in Proposition 3.30} we can take numbers ¢; > to > 0 so that

B.,(0) C F;71([0,t0)) C Bs., /2(0) C EF;1([0,t1)) C Bae,(0).

Let h: R — R be a function which vanishes for ¢ < tg, such that h(t) =t + ¢ for t > ¢;, and
with A/, h” > 0. For instance one can take a bump function ¢ with ¢’ > 0 so that o vanishes
in (—o0,%p) and equals 1 in (¢1,400), and then define h(t) = ffoo 0.

Let us define w} = $00(h o F,). This gives a closed 2-form in Uy = Bs.,(0) — B, (0)
which is j-semipositive by Lemma above; moreover it extends to Be,(0) as zero. The
global formula on U4 for the Kahler potential F,, shows that Fj, is invariant by the isotropy
group I',, therefore h o Fy, is also I'p-invariant. On the other hand, as I',, acts by holomorphic
maps, we have that 9v* = v*0 and 9v* = v* as operators acting on forms, for any ~ € r,.

It follows that w} = 9d(ho F,) is I'p-invariant in U,. Since w} equals w, outside By, (0),
we see that w} is a global orbifold 2-form defined on X. We summarize the above discussion
in the following:

Corollary 3.32. There exists a closed orbifold 2-form w} in X satisfying:

o It vanishes on Be,(p).

o It is j-positive on Bac,(p) — (Be,(p) UX"). In fact, w; = 00(h o F,) there.

o It coincides with w, outside Bac,(p).

Desingularisation

As explained before, we now define a smooth atlas Aon X — %! that makes the map Id: (X —
¥l A) — (X =X, A) differentiable; we also prove that @ = Id,(w}) is the desired 2-form. In
order to make the presentation clearer, we first check in Proposition that @, = Id.(wg)

endows (X — Upes1 Be, (p), A) with the structure of a symplectic manifold. For simplicity let
us denote B(X!') = Upesi B:, (p).

Proposition 3.33. Notations and hipotheses as above. The following holds:

1. There is a manifold atlas A ={(Us,Vay 60, Ta)} on X — B(SY) (i.e. an orbifold atlas
with isotropy T, = {1}) such that the identity

Id: (X — 2L, A) —» (X - 21, A),

18 a smooth orbifold map, and it is a diffeomorphism away from X*.

-~

2. The push-forward &, = (Id).(wy) is smooth on (X — B(X1),A), and is a symplectic
form for a < ay. In addition, on (Upes: (Ba:,(p) — B:,(p)), A) we have that &, is tamed

by j.
Proof. We shall modify some orbifold charts of A to obtain A. First, if z ¢ Y¥* we consider
an orbifold chart (Uy, Vg, ¢z, {1}) € A around = with V, NX* = () and we take this as a chart
of z in A. Now, given a singular surface S with isotropy isomorphic to Z,,, we consider the
cover of D¢, (S) as in Lemma Take (Uq, Vi, Ta, ¢o) in this cover with U, = So X Dy,
and p ¢ V,. We define Uy = Sa X Dcym, V., = V,, and gga(z’,w’) = (;Sa(z’,w’%). Despite
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the fact that w'm is not well-defined on C, the composition @a o (2, i) is because ¢, is a
I',-invariant map. The manifold coordinates (2’, w') of A and the orbifold coordinates (z,w)
of A are related by w' = w™, 2 = z. We now check that the change of charts of A are
smooth. Denote

Vs = (Vs ¥2p): Ua = Up

the change of charts of the atlas A. Let Vi, C D, (S ) be a chart from A not containing any
p e X and take (Ua, Vi, o, T «) another chart in A. Two cases arise:

1. If ‘7/3 C D.,(S) — ! we have induced transition functions given by

~

Yag: Ua = Ug, (2, 0') = ($ap(2'), Aap(2)™0') = thag(',w'm)

because
~ ~ ~ 1 1 -~
¢,8(¢aﬁ(2/, ’IU,)) = ¢ﬂ(waﬁ(z/7 ’U)/H» = (ba(z/a wlﬁ) = ¢a(2,7 w/)'
The map zzag is a diffeomorphism because A,3(2) € U(1).

2. If 175 ¢ D.,(S) and ‘75 N D, (S) # 0, then by construction ‘75 N X* = (. The induced
change of chart in the atlas A is

Pap (2 w') = (ag (2, w), W2s(2, w)™);
this is a local diffeomorphism since V3 N X* = () and therefore 1?2 s(z,w) # 0.
The identity map Id restricted to D, (S) is covered by the local maps:
Idy: Uy = Uy, (z,w) = (z,0™) = (2, ),

which are diffeomorphisms outside w = 0. Note that the radial function r’ = '] is again
well-defined on (Dgan(S) A) and Id* (') = ™ = |w|™.

We now consider the symplectic form around a singular surface S; we follow the notation
of Proposition First observe that if 7, = 7*(va) + df, then (Id)«(na) = 7*(va) + m do,
where 7: DEBn(S’) — S is the projection. If we define / = L1d.(n), then 7 is a connection
form on Dgp (S). Again, one can define smooth distributions H' = ker(r'dr’ A7) and V' =
ker dm = Id.(ker d7), and almost Kéhler structures as before: (7*wg, Jg), (r'dr’ A0/, J{, =
i). Taking into account that Id*(r') = =™ and the fact that (Id,)Jy = J{, (since Id is
holomorphic), we obtain:

1
()" ("ws — JdTd(r'® +a®)) = we, 7' <O

-~

Therefore @, = Ids«(w,) extends smoothly to (X — B.,(p),A), it is closed, and it is non-
degenerate outside of S. Moreover, near S it has the form:

1
Wy = mrwg — ZdJ{/d(rlz + a2)i .

At every point of S = {7/ = 0}, taking into account the formula obtained for d.Jy-df(r?) in
Proposition the form @, coincides with:

N 1
T wg + - r'dr’ A,
ma  m
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which is Jj, + Jp-tamed.

Take the set V§ = (Bac,(p) — Be,(p)) N Ns,(S), covered by the chart Ug = (B, (0) —
B, (0))n(C ><AD52) € A; this has isotropy I' = {y € T, s.t. 7(2,0) = (/,0)}. Consider the
induced chart U$ € A which has coordinates (2/,w’) given by

Mdys: Us = Us (zw) = (z,0™) = (2, 0).

Its isotropy is f/ Zin, that acts without fixed points on US. We claim that &, is tamed by
the standard complex structure j on U; Moreover, we can push-forward an almost complex
structure on (X — X!, A) to (X — %!, A), and near ©* this push-forward gives the standard
almost complex structure. Note that w, is j-tamed in U§ and, outside S, &, coincides with
wq via the local biholomorphism IdUg. Indeed, we saw that the form w, was tamed on Ug
by Jg + Jy =j; outside S we have

Ty + Jy = (duz)«(Jv + Ji) = (Idyz)« () = J,

the last equality since Idy is holomorphic. Hence W, is j-tamed in U §—S, and also in SN (7;
because it is J{, + Jy-tamed on S and Ji, + Jj; = near p. O

To finish this section we extend the form &, by zero as we did with w, in Corollary
Corollary 3.34. There exists a closed orbifold 2-form & in (X — El,.ﬁ) satisfying:

o It vanishes on B(X!).

o It is j-positive on Upexn Bac, (p) — Be, (p).

o It coincides with &, outside Upesn ngp (p). In particular it is symplectic there.

Proof. Consider the orbifold symplectic form w} on (X,.A) of Corollary We need to
check that the form Id.(w?|x_x+) extends to a closed 2-form & on (X — B(X!),A); the
extension has the required properties. As w; = w, outside Ba.,(p) and Ids(ws) = @a, we only
need to check that the push-forward of w; extends on By, (p).

Let us consider an isotropy surface S C X* and denote by ¢: U s — V& the manifold
chart in A that we constructed in the proof of Proposition in order to desingularize
Vi = (V — B, (p)) N Ns(S). The restriction of the identity map

-~

Id: (V§,A) — (V5,A)
is holomorphic, and its inverse is holomorphic on Vg —.S. This leads to the following equality
on Vg —S: ‘
Id (w;|x-3+) = 500(h o Fu),
where h: R — R is the smooth function constructed in Corollary and
Falz,w) = |2 + [w]7 + ps, (Jw] %) (([w]? +a) — fwl7).

The function F, has a smooth extension defined on V¢ because near w = 0 the expression of
1

E, is Fy(z,w) = |22 + (|w]% + a)m. Thus, we can extend Id,(w}) over S. O

3.4.3 Symplectic orbifold structure with only isolated singularities.

Now first extend our manifold atlas A of X — ¥! to an orbifold atlas of X with only isolated
singularities, and then we extend the symplectic form; ending up with (X, .4,&) a symplectic
orbifold with only isolated singularities.
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Extension of the orbifold structure.

Let p € ¥ and let (U,V,T,j,wo) be a Kéhler orbifold chart of (X,.A) around p. We have
' <T < U(2), with T'* the isotropy group of the surfaces S C ¥* accumulating at p and
I' = I'/T* the quotient, which acts in U/T*. The manifold (V — {p}, A) has a complex
structure induced from the orbifold chart (U — {0},j) € A, as was shown in Proposition [3.33]
On the other hand, V' = U/I" has the structure of a complex orbifold induced by .A. The
identity map Id: (V — {p}, A) — (V — {p}, A) is holomorphic and a biholomorphism outside
of ¥*. In both cases, the complex structure is the restriction to U — {0} of the standard
complex structure j on C2.

We also have a covering map (U — {0})/T"* — (U — {0})/T" because I'" acts freely on
(U — {0})/T*. This allows us to consider the complex manifold (U — {0}/T*, A) and the
complex orbifold (U — {0}/I'*, A); the complex structure is again in both cases induced
from C2, and the identity map (U — {0}/I*, 4) — (U — {0}/I'*, A) is holomorphic and
biholomorphic outside ¥*. The next proposition shows that the orbifold (U — {0}/, A)
can be naturally seen as an open set of C2, allowing us to extend the complex structure
(U — {0}/T*, A) at the point 0.

Proposition 3.35. The complez manifold structure on (U — {0})/T*, A) can be naturally
extended to a complex manifold structure on U/T* so that the group T" = T'/T* acts by
biholomorphisms in the complex manifold (U/T*, A).

In addition, there is an open set U c 2 containing 0, a group T acting on U by
biholomorphisms, and a biholomorphic map G: (U,j) — (U/T*, A) such that G is (I",T")-
equivariant.

Proof. As explained in the proof of Lemma there is a homeomorphism,
H:C*—C*  H(z) = (f(z1,22),9(21, 22)). (3:2)

where {f,g} is a basis of the algebra C[z1,22]'" of I'*-invariant polynomials. This map
induces a homeomorphism H: C?/I"* — C? which is holomorphic as an orbifold map and a
biholomorphism outside of the singular locus ¥*; here we have considered C2?/T'* as a complex
orbifold, covered by a unique chart (C2,T'*). The structure that (U — {0})/T'* inherits when
viewed as an open subset of C?/I'™* is precisely the orbifold structure determined by A. Let
us call ' = H!, define U = H(U) € C?, 5o U/T* = U via H. Let G =Ido G': U — U/T*

and consider the restriction
G|: (U = {0}.3) < (U = {0}/T", A) % (U - {0})/T", A),

which is bijective and biholomorphic outside of G|~(X*), and can be extended as a homeo-
morphism from U to U/T*. The inverse G|~* is holomorphic outside of ¥*, being $* N U a
union of complex hyperplanes. Also, G|~! is a homeomorphism onto the set U — {0} C C2
which is bounded. By the Riemann extension theorem, G|~! is holomorphic. The inverse
function theorem ensures that G| is a biholomorphism. This shows that the complex man-
ifold structure on (U — {0})/T*, A) can be extended naturally to all U/T*, in such a way
that G: (U,j) — (U/T*, A) is a global complex chart, hence a biholomorphism.

We consider I'' = { = G~ ' o [y] 0 G: [y] € I' = T'/T*}. Observe that, since v € U(2),
the action of I in (U/T*, A) is holomorphic outside the isotropy, i.e. on (U —X%)/T*, A) with
¥ = ¥*U{0} a complex subvariety. Again by the Riemann extension theorem, the action of
I must be holomorphic on all (U/T*, A). Since G is a biholomorphism, every 7/ € I' is a
biholomorphism of (U, j). Hence I acts on U by biholomorphisms.

We call ¢: U/T* — (U/T*)/T" 2 U/T the quotient map. Consider Y = (U/I'*, A) a
complex manifold and I" = I'” equivalent groups acting on Y by biholomorphisms, so the
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space Y/I" is a complex orbifold. In addition, (U,Y/I”, ¢,I") gives a global orbifold chart
of Y/T", with ¢g = qo G: U — Y/I" the orbifold chart that induces ¢o: U/T” — Y/I” a
homeomorphism.

Finally, using the homeomorphism h: Y/I" — V given by Y/I" = (U/T™)/T" = U/T 2V
we have (U,V, 6, T ) with ¢ = h o ¢y ; this gives an orbifold chart around the point p € X
which is compatible with the manifold structure (X — £, A). O

Corollary 3.36. The map G induces an orbifold chart (U,V,$,T") of V.= VP which is
compatible with the manifold structure (X — X!, A).

Symplectic form on (X, A)

Adding to A the charts defined in Corollary we obtain an orbifold atlas A’ on X with
isolated singularities. We also have a symplectic form &* on (X — B(X1), A) given by Propo-
sition The last step now is extending the symplectic form @ to all the orbifold (X, .A’).
The following lemma is useful for our purpose:

Lemma 3.37. Denote B, = B.(0) a ball of radius r, and let U C C™ be an open set
containing By,. Let wy,wy € Q2(U) be closed 2-forms so that:

o The form wy vanishes on Be,, it is j-semipositive in B, — Be,, and it is j-positive in
U — Be,, for some €1 < g3 < 1.

e The form wy is non-degenerate in U and j-tamed.

Then, for any choice of es with ro > €3 > o there is a j-tamed symplectic form w in U so
that w|BE1 = dwsy for some § > 0 small, w = wy outside B,.

Proof. Let p = p-(r) be a radial bump function which equals 1 in 0 < r < g9 and equals 0
in r > e3. Let 8 € QY(B,,) such that d3 = ws. Let us define w = ws = w1 + dd(pB). We
have that w = dws on r < g1, so it is symplectic and j-tamed there. On g1 < r < &9 we
have w = w; + dws; as w; is j-semipositive and wq is j-positive in B,, — B, we see that w is
j-positive in B., — B.,. Also, w =w; on r > e3.

Finally, on €9 < 7 < e3 we have w = wy + ddp A B+ dpwe. Since w; is j-positive on the
compact annulus e < 7 < €3, there exists a constant C' > 0 with wy(u,ju) > Clul? for all
u € R?™ and all points in the annulus. Hence

|w(u, ju)| = |wi(u,ju) + ddp A Bu, ju) + dpwa(u, ju)|
> wi(u,ju) + dpwa(u,ju) — [ddp A B(u, ju)|
> Cluf? = d||dp A B||ul®
= (C = dldp A BI)|ul?

. C .. .
so if § < TaPABTT then w is j-tamed and symplectic. O

Now recall the closed 2-form & of Corollary The form &} is defined on (X, A’),
vanishes on B(X?!), coincides with &, outside B, (p), and it is j-positive on Upex1 (Bae, (p) —
B.,(p)). By Lemma we can glue @} with the standard symplectic form wy near p to
construct an orbifold symplectic form on (X, A") extending @,.

Corollary 3.38. There exists an orbifold symplectic form o, on (X, A") which coincides
with @, outside of some neighborhood of L.
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Proof. Consider the orbifold chart (ﬁ ,V, g/g, ") arouzld a point p € 3! of Corollary
Consider a local representative of W, in the chart U, denote it w1 = w;. Consider also
wy = —3(dz A dz + dw A dw) the standard symplectic form on U C C?. Take balls B:, C U
so that

B, C 5_1(35,7 (p)) C $_1(B25p (p)) C Be, C By

We have that w; vanishes on B, it is j-semipositive on B,, — B, and coincides with @,
outside B.,, so it is j-positive there.AWe are in the hypothesis of Lemma and this gives
our desired symplectic form @, in U with &, = @&, outside B.,. The only point is that @,
may not be I'-invariant; in case it is not, replace it by its average over I'”, which is also
j-tamed because diffeomorphisms on I'” are holomorphic. Being wq invariant under I'”, the
average coincides with &, outside B,,. O

Corollary 3.39. The symplectic orbifold (X, A’,w,) has only isolated singularities.

3.4.4 Cohomology groups of the resolution

The computation of the cohomology groups of the resolution can be obtained from the results
in [2§].

Proposition 3.40. Let 7: ()N(,CJ) — (X,w) be a symplectic resolution of a symplectic orb-
ifold. Define the subset of X!

A= {{L‘ S ! s.t. Fx/F?; 7é {1}}7

where Iy is the subgroup of 'y, generated by the isotropy surfaces accumulating at x. For
each p € AUXY, let E, = 7~ Y(p) be the exceptional set. For k > 0 there is a short exact
sequence:
0— H'X) ™ BHYX) S @ H*E,) —o.
peXOUA

Proof. The symplectic resolution of (X,.4,w) is divided into two steps; we first perform a
partial resolution (X, ﬁ,@) — (X, A,w). The underlying topological space of the partial
resolution does not change but its singularities are isolated and consists precisely of the
points in A U X0, After this, we construct a resolution ()?, .AT,(I)) — (X, A, @) employing the

method described in [28, Theorem 3.3]. The cohomology ring of X was computed in [28,
Proposition 3.4] and implies the statement. ]

3.5 Examples

In this section we give some examples of 4-orbifolds to which the resolution described above
can be applied.

Products of orbifolds

Let (S,w) be a compact symplectic 2-dimensional orbifold. Its isotropy set consists of an
isolated set of points {po,...,pn}; we denote the isotropy group of p; by G;.

Consider the product orbifold (S xS, w+w) and the symplectic involution R(z,y) = (y, ).
Let us define the symplectic orbifold X = (S x S)/Za, where Zy = {R,1d}, and denote
q: S x S — X the projection to the orbit space. The isotropy set of X is ¥* U X!, where:

L 2% =q(U_ (S —{p1,-- - pn}) x {p;}) Ua({(z,2),2 € S = {p1, ..., pn}}),

2. %' =q({(pj,pr), 1<j<k<n}).
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The isotropy group of points on ¢((S — {p1,...,pn}) X {pj}) is G;, and for points on
q{(z,2),z € S —{p1,...,pn}}) it is Zo. If j < k, the isotropy group of (pj,px) is Gji =
G; x G. If j = k a presentation of the isotropy group G;; is (€, G; xG;| &2 =1, &(v,) =
(v,7)€). Indeed if (U,V,¢,T;) is an orbifold chart around p; on S, then an orbifold chart
around ¢(pj;,p;) on X is:

(U xU,q(VxV),qo(¢x9¢),Gjj;)

where the action of ¢ is given by £(z,w) = (w, z), and the action of G; x G; is (v,7)(z,w) =
(72, 7'w).

Theorem allows us to obtain a symplectic resolution of the orbifold (X,w); this reso-
lution is homeomorphic to X because one can check that G;k = {1}, following the notation
of Lemma B.19

Now let (S’,w’) be a compact 2-dimensional symplectic orbifold (possibly different from
(S,w)), with singularities {py, ..., pl,} and isotropy groups I'},...,I'},. We can also consider
the product orbifold (S x S’,w +w’). The isotropy set is X*UX!, with ! = {(p;,p}), 1<
j < n,1 <k < m}. The isotropy group of (pj,pr) is Gj, = I'; x I', and satisfy that

"t = {1}. The orbifold (S x ' ,w + w') satisfies the hypothesis of Theorem and
its resolution is homeomorphic to S x S’. Note that one could also have constructed the
resolution as (S x S',& + @), where ¢: (S,&) — (S,w) and ¢: (5,&) — (S,w) are the
symplectic resolutions provided in [2§].

Mapping torus over a surface of genus 2

Consider ¥ a genus 2 surface smoothly embedded in R? with coordinates (z,y,z) € R3.
We require that ¥ is symmetric with respect to the planes {z = 0}, {y = 0} and {z = 0}.
Consider the symplectic form in X9 given by ws, = tn(vols)|s,, being N the outer unit
lenght normal to ¥, and vols = dz A dy A dz the volume form of R3. Consider the maps
o(x,y,2) = (—x,y,—2), v(z,y,2) = (—z,—y, 2); these restrict to symplectomorphisms of
(32, ws, ) since they preserve N and vols.

Consider M, (¥2) the mapping torus of ¥y by «; that is, M, (X2) = (X2 x I)/~ where
(p,1) ~ (y(p),—1) and I = [-1,1]. In the space M,(32) x S* we lift the action of ¢ as

¢([p7 t]v S) = ([¢(p)a t]’ S)

for [p,t] € My(%2), s € S* = [-1,1]/~.

Note that this action is well defined because if we take (p,1) and (y(p),—1) two repre-
sentatives of the same class, they get mapped to (¢(p),1) and (¢(v(p)), —1) = (v(¢(p)), —1),
so their images represent the same class also. Take also the map £ acting on M, (32) x ST as

é([ 7ﬂ7$) - ([p, _t]7_3)'
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The above action is well-defined because (p, 1, s) and (y(p), —1, s) are mapped to (p, —1, —s)
and (y(p),1,—s), and (y(p),1) ~ (p,—1) since 42 = Id. On the other hand let us consider
the symplectic form on M, (X2) x S! given in coordinates as

w = wy, +dt Ads.
Near a point ([p,1],s) = ([v(p), —1], 8) € M,(Z2) x S! we consider a chart of the form
(U7 x (1= 2,1 x (s — 2,5+ 2)) U (1(U7) x [-1, =1 +£) x (5 — &,5 +£)),

where the above expression for w is well-defined, since « is a symplectomorphism of .

We can describe M, (X2) x S! in an alternative manner. Consider Y = 5 x C? and the
isometries of Y, 71 (p,w) = (v(p),w + 1), 72(p,w) = (p,w +i). These determine a Z>-Kihler
action on Y and M, (33) x S' =Y/Z?, hence M, (¥3) x S is Kéhler.

Note that in the symplectic manifold (M, (X2) x S*,w) the group I' = (¢, &) = Zg x Zo
acts by symplectomorphisms. We define a 4-orbifold X as

M, (22) x St

)

so (X,w) is a symplectic orbifold.

Let us study the isotropy subset of X. We may abuse notation and identify the isotropy
points of X with the isotropy points of the action of (¢, £) in M, (Z2) x X1 the context should
clarify each case. The maps ¢,7y,v o ¢: 3o — Yo have the following fixed points

Fix(¢) = {4, B}, Fix(y) = {C, D}, Fix(yo ¢) = {E,F,G,E',F',G'} C ¥,

with A = (0,1,0), B = (0,-1,0),C = (0,0,1), D = (0,0,—1), and Fix(y o ¢) corresponds
to the six points of intersection of 3o with the z-axis. Note also that v(A) = B,~(B) = A,
6(C) = D, 6(D) = C, and 6(E') = E, o(F") = F, 6(G') = G.

The isotropy points for the group (¢, &) acting on M., (32) x St are as follows:

o Isotropy surfaces given by

Sy = {([A,1],8) s.t. (t,s) € I*YU{([B,1],s) st. (t,8) € I*},
Sgl = {([p,0],0) s.t. p € X},
S¢ ={([p,0],1) s.t. p € Ta}.

Note that Sy is a torus, since (A4,1,s) ~ (B, —1,s), and Sé are surfaces with genus 2,
identified with 5. The generic points of S, have isotropy (¢) = Za, and those of S¢
have isotropy (§) = Zs.

o The intersection of Sy and the Sé are the points Ay = ([A,0],0), By = ([B,0],0),
A1 = ([A,0],1), and By = ([B,0], 1); these are points of isotropy (¢, &) = Za X Zs.

« Eight isolated isotropy points. Two of them, Cy = ([C,1],1) and D; = ([D, 1],1), have
isotropy (£) = Zg; the rest of them are the points Ey = ([E,1],1), Fi = ([F,1],1),
(¢po&) =Zs.

Of the above fixed points in M, (33) x S* not all of them are different in the quotient X:

we have Ey ~ Ej, Fi ~ F{, G1 ~ G}. Moreover S} becomes a torus Ya/(¢) in X, and Sg
becomes a sphere.
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Following the previous notation for the isotropy points of an orbifold X, the isotropy
subset ¥ of X decomposes as ¥ = £* UX! U, with B! = {4y, By, A1, B1}, % = (S, U
551 @] sz) — El, and EO == {Cl,Dl,El,Fl,Gl}.

Now we compute the Betti numbers of X. For this it is useful to express X in an
alternative way. Recall that the quotient T' = 33 /(¢) is a torus; its fundamental domain being
Dy = Y9N {z > 0} C R? with identifications (0,y,2) ~ (0,5, —2). The map v: 3y — 3o
commutes with ¢, so it descends to a homeomorphism of 7T'. Consider the mapping torus

My(T) = (T x [=1,1])/ ~

where ([p],1) ~ ([v(p)], —1). It is immediate to check that X = (M, (T) x S1)/(¢).
The following lemma is necessary for the computation of the fundamental group of X.

Lemma 3.41. Let T be a CW-complex, and v: T — T a homeomorphism which fizes a
point xg € T. Let M, (T) = T x [0,1]/ ~ with (z,0) ~ (y(x),1). Then m(M(T)) =
7T1(Sl) Xy, 7I‘1(T).

Proof. Recall first that the operation in 1 (S) x.» 71 (T) is
(n7g) ’ (nlv g,) = (n + nlv g- Vf(g/)) )

where 7, : m (T, xg) = w1 (T, x0) is the induced map.

We have a bundle structure on M, (T) given by T i M(T) = S, where i(z) = [x,0]
and 7([z,t]) =t. This gives a short exact sequence

1= m(T) 25 m (My(T)) =5 1 (SY) — 1.

There is a section s: ST — M, (T),t — (zo,t); it is well-defined because y(zg) = x¢. This
gives s.: m1(S1) — w1 (M,(T)) a right inverse for 7, which gives a splitting of the above short
exact sequence; then m (M, (T)) is the semi-direct product of m(T) and 7 (S'), where the
action of 71(S1) in 7 (T) is by conjugation.

Let us call a = s,(1), where 1 € 71(S!) is the generator. Note that a(t) = [(zo,1)],

t € [0,1]. Tt only remains to see that every g € mi(7T) satisfies that aga=™! = v.(g) in
™1 (M(T)).
Consider the homotopy H: S x [0,1] — M, (T) given as
(z0, 3ts), t €0, %],
Hy(t) = (g3t = 1)), 5), t€[53],
($073(1 - t)S), te [%7 1]
It is immmediate to check that [Ho] = v«(g) and [H1] = aga™!, proving the lemma. O

Now we compute the fundamental group of M, (T), with T' = ¥5/(¢) as above. Take as
base point [C] = [D] € T, which is a fixed point by 7, and choose generators a, b for m(T')
so that a representative for a = [a] in the fundamental domain Dy is the circle

a=DrN{z=1}={(2+cost,sint,1): 0 <t < 27}.
Similarly, a representative for b = [f] is a semicircle

B = {(cost,0,sint): m/2 <t < 3mw/2}
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going from C to D in Dy N {y = 0}; 8 descends to a loop in the quotient T'= Dp/ ~. By
Lemma the fundamental group of M, (T) is

m (M (T)) = m1(S1) xq, m(T) = Z x4, 2

with operation (n,z) - (n/,2') = (n +n/,x + (74)"(2')), being v, : 1 (T) — w1 (T) the auto-
morphism induced by v: T'— T in m1(T') = w1 (T, [C]).

In order to compute ., we take the representatives in Dp of a and b described above
and compute their image by ~,; note that -+ seen as a map in s does not map Dy to itself,
but ¢ o y(z,y,2) = (x,—y, —z) does, and both maps induce the same map on the quotient
T = 3/{(¢p). The loop a = [(2 + cost,sint,1)], 0 < ¢t < 27, is mapped to ¢ o y(a) =
[(2 4 cost,—sint, —1)], and this is a circle in Dy N {z = —1} homotopic to a but with the
opposite orientation as a, so v4(a) = —a. Similarly, b = [(cost,0,sint)], 7/2 < t < 37w/2, is
mapped to ¢ o~y(b) = [(cost,0,—sint)], again the same circle but with opposite orientation,
50 Yx(b) = —b. We conclude that

Ve = —1d: m(T) - m(T), v — —x.
It follows that m (M, (T)) = Z x Z?* with operation given by
(n,z) - (n,2") = (n+n, 2+ (=1)"").

We claim that the abelianization of this group is Hi(M(T),Z) = Z x Zy x Zy. Indeed,
if we impose the condition that (1,z) - (0,z) and (0,z) - (1,x) coincide we get that (1,0)
equals (1,2z), hence 2z = 0 for all  in the abelianization. This applies to the generators
a,b. Once we impose that in the abelianization every x equals —x, the operation - becomes
commutative, hence the claim.

From this it follows that

(M (T) x SN 2 (Zx Z*) x Z
Hy(M(T) x S Z) 27 x Ty x Lo x L=T73 < 72

Note that torsion part of the homology comes from the torus 7" and the free part comes
from the two circles associated to the coordinates (s,?). When passing to real coefficients we
can consider de Rham cohomology and we get H' (M, (T) x S',R) = (dt,ds). As the action
of £ in M, (T) x S! sends dt,ds to —dt, —ds, it follows that the cohomology of the orbifold
X = (M,(T) x S1)/(¢) is the &-invariant part of (dt,ds), i.e. HY(X,R) = 0.

Now let us compute the fundamental group of X. Recall that M, (T) x S 1'is a torus
bundle over a torus, i.e. T — M (T) x S1 — S x S! where fibers are given by T =
{([p, t0], s0) s.t. p € T'} and the bundle map sends ([p,t],s) to (t,s). We have a short exact
sequence

1 m(T) & m(My(T) x §) I my (S x §1) — 1

where i: T — M(T) x S', p — ([p,t],s) is the inclusion of the fiber Fyg = T, and the
bundle map is 7: M, (T) x St — St x S, ([p,t],s) ~ (t,s). Consider

q: My(T) x 8" = X = (M,(T) x 8")/(€)

the quotient map. Take as base points Ag and q(Ap) respectively. Since Ay is fixed by &, we
have ¢~ 1(g(Ao)) = {Ao}. This gives that q.: m1 (M, (T) x S') — 71(X) is an epimorphism
by [21], Corollary 6.3].

In M, (T) x S! there are two fibers invariant by the action of ¢ and not formed by fixed
points, namely F(; ) and F{; ;). Let us take as base points 4, ([4, 1],0) and (1, 0) respectively.
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Call F 2 T any of these fibers. Under the quotient map ¢, F' is mapped to q(F) = T'/(y).
This is so because

&([p.1],0) = (Ip, 1], 0) = ([v(p), 1], 0),
hence q o i(p) = goi(y(p)) for p € T, being i: T — F C M,(T) x S! the inclusion. Recall
that q(F) = F/{y) = X5/(¢,) = S? is topologically a sphere, so we call S = T/(y). The
map ¢ 0ix: w1 (F) — m (M, (T) x St) factors through m (S?) = {1}, so it is constant. Hence
Im(i,) = ker(m,) C ker(gs), so the map ¢, induces a map G,: m1(S* x S') — 71(X) in the
quotient 1 (M~ (T) x SY)/m(F) = 7 (St x Sh).
Note that 71 (S x S1) can be seen as a subgroup of 71 (M, (T) x S') via the section

([A,1+21,s), te[-1,0]

1 gl g1 —>M,Y(T) X 517 (t,s) — {([B,—1+2t]73)> t €[0,1].

The image of f is precisely the isotropy surface Sy, whose image by ¢ is q(S¢) = S¢/(§) =
52, homeomorphic to a sphere. As g, = gx o f. factors through 71(g(Sy)) = 1, we see that
g+ = 1,80 ¢ =1 and X is simply connected.

Now let us compute the second homology of X over R.

Proposition 3.42.
H*(X,R) = (ws,, dt A ds)

Proof. First of all one can prove that H2(X,R) = H?(M,(X2) x S',R){*E) by averaging
closed forms. The Kiinneth formula ensures that

H*(M,(%2) x SY,R) = H' (M, (Z2),R) A (ds) @ H*(M,(X2), R).

The first summand is of course equal to (dt Ads); to compute the second we take into account
[10, Lemma 12]:

H*(M,(29)) =ker(Id — v*: H*(X2,R) — H?*(Xa,R))
@® Coker(Id — v*: H' (22, R) — H'(Zo,R)) A (dt).

On the one hand, v* = Id: H?(X2) — H?*(X2) because v.(ws,) = ws,, as was previously
argued. On the other, v* = —Id: H'(X3,R) — H'(32,R); this can be deduced from the fact
that v, = —Id. Thus,

H?(M,(22)) = (ws,).

The proof concludes by observing that both wy, and dt A ds are invariant under the action

of (¢,€). O

Proposition 3.43. Let m: X — X the symplectic resolution of X. Denote $0 = {p1,...,p5};
then E; = n~Y(p;) is diffeomorphic to CP. In addition,

1. m(X) = {1}.
2. H*(X,R) = (n*(ws,), 7 (dt A ds), w1, w2, w3, wa, ws), where w; is the Thom class of E;.

Proof. First observe that A = (), where A is defined as in Proposition In addition, if
p € X0 is an isolated singularity then I'), = Zs; the Kéhler local model around p is necessarily
of the form C2/Zy, with Zs = (Id, —Id). The algebraic resolution of this space is C2/Zs,
where C? stands for the blow-up of 0 in C?; that is:

C%)Zy = {(v,1) € C? x CP' s.t. v € 1}/ (v,1) ~ (—=v,1).
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We compute 71(X) using the Seifert-Van Kampen theorem. Let B5 be an e-ball centered
at p; with e small enough to ensure that B5 are pairwise disjoint. Let N; be a neighbourhood
of a path between p; and p; 1 that does not intersect B5 for k % 4,5 + 1. Define:

U=(U_Bf)U(ULN;),  V=X-U_B"

The space U NV is pathwise connected and has the homotopy type of \/?:1 S? /22, where
we denoted a copy of S? as S]?-’. Its fundamental group is the free product of 5 copies of Zs.
Being U contractible, it holds that 1 = 71 (X) = m (V) /ix(m (U NV)), withi: UNV — V.
In addition define U = a~L(U), V= 77 1(V). The space U has the homotopy type of
?:1 (CIP’jl-; which is simply connected. Thus, m1(X) = 71 (V) /j.(m(UNV)), with j: TNV —
V. Taking into account that 7: (f/, Un f/) — (V,UNV) is a homeomorphism of pairs; this
ensures that 71 (X) = 7 (X) = {1}.
We finally compute H Q(X ,R). By Propositions and there is a short exact

sequence:
5

0 — (ws,, dt Ads) =5 HX(X,R) ©+ 3" H*(E;,R) — 0.
j=1

The restriction of w; to E; is a volume form of E; because the bundle C? - CP! is
non-trivial. This yields a splitting: i*(w;) — w;. This finishes the proof.
O



CHAPTER 4

A COMPACT NON-FORMAL CLOSED Gy MANIFOLD WITH b; = 1
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Abstract

We construct a compact manifold with a closed Gg structure not admitting any torsion-free
Go structure, which is non-formal and has first Betti number b; = 1. We develop a method
of resolution for orbifolds that arise as a quotient M /Zs with M a closed G2 manifold under
the assumption that the singular locus carries a nowhere-vanishing closed 1-form.
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4.1 Introduction

A Gs structure on a 7-dimensional manifold M is a reduction of the structure group of its
frame bundle to the exceptional Lie group Go. Such a structure determines an orientation,
a metric g and a non-degenerate 3-form ; these define a cross product x on T'M by means
of the expression

P(X.,Y,Z) = g(X x Y, 2).

The group Go appears on Berger’s list [I7] of possible holonomy groups of simply con-
nected, irreducible and non-symmetric Riemannian manifolds. Non-complete metrics with
holonomy Go were given by Bryant in [22] and complete metrics were obtained by Bryant
and Salamon in [24]. First compact examples were constructed in 1996 by Joyce in [71] and
[72]. More compact manifolds with holonomy Gy were constructed later by Kovalev [77],
Kovalev and Lee [78], Corti, Haskins, Nordstrém and Pacini [36] and recently by Joyce and
Karigiannis [75].

The torsion of a Gg structure (M, ¢, g) is defined as Vi, the covariant derivative of .
Fernandez and Gray [48] classified Gg structures into 16 different types according to equations
involving the torsion of the structure. In this paper we focus on two of them, namely torsion-
free and closed Go structures. A Gg structure is called torsion-free if the holonomy of g is
contained in Gg, that is Vi = 0 or equivalently dp = 0 and d x ¢ = 0, where x denotes
the Hodge star. A Gg structure is said to be closed if it satisfies dp = 0; these are also

117
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named calibrated. Metrics defined by such types of Gy structures have interesting properties;
while torsion-free Go manifolds are Ricci-flat, closed Go manifolds have non-positive scalar
curvature and both the scalar-flatness and the Einstein condition are equivalent to the fact
that the structure is torsion-free (see [23] and [33]).

This paper contributes to understanding topological properties of compact manifolds with
a closed Gg structure that cannot be endowed with a torsion-free Go structure. First examples
of these were provided by Ferndndez in [44] and [45]; the example in [44] is a nilmanifold
and the examples in [45] are solvmanifolds. Nilmanifolds and solvmanifolds arise as compact
quotients of Lie groups by lattices; these Lie groups are nilpotent in the first case and solvable
in the second. In both examples the Go structure is induced by a closed left-invariant Go
form on the Lie group. The solvmanifolds in [45] have by = 3. In [34] the authors classify
nilpotent Lie algebras that admit a closed Go structure; this list provides more examples
of compact manifolds with b; > 2 endowed with a closed Go structure but not admitting
torsion-free Gy structures. In [81] the author develops a method that allows to construct
7-dimensional solvable Lie groups endowed with a closed G structure and as an application
provided an example with b; = 1. Recently in [47] the authors construct another example
that has by = 1. Their starting point is a nilmanifold M with by = 3 that admits a closed Go
structure and an involution that preserves it. The quotient X = M/Zy is an orbifold with
b1 = 1 and its isotropy locus consists of 16 disjoint tori. Then they resolve the singularities
to obtain a smooth manifold.

Being this the geography of such manifolds, this paper provides an example of a compact
manifold carrying a closed Gy structure. Its topological properties are different from those
that the already mentioned ones have, as we shall discuss later. Our construction consists of
resolving an orbifold; for that purpose we first develop a resolution method that is summarized
in the following result:

Theorem 4.1. Let (M, ¢, g) be a closed Go structure on a compact manifold. Suppose that
j: M — M is an involution such that j*¢ = ¢ and consider the orbifold X = M/j. Let
L = Fix(j) be the singular locus of X and suppose that there is a nowhere-vanishing closed
1-form 6 € QY(L). Then, there exists a compact Go manifold endowed with a closed G
structure ()Z', ©,9) and a map p: X — X such that:

1. The map p: X — p~Y(L) — X — L is a diffeomorphism.
2. There exists a small neighbourhood U of L such that p*(o) = @ on X — p~1(U).

The fixed point locus L is an oriented 3-dimensional manifold (see Lemma [4.10); the
existence of a nowhere-vanishing closed § € Q!(L) is equivalent to the fact that each connected
component of L is a mapping torus of an orientation-preserving diffeomorphism of an oriented
surface. In our example, the singular locus is formed by 16 disjoint nilmanifolds whose
universal covering is the Heisenberg group.

The resolution method follows the ideas of Joyce and Karigiannis in [75], where they de-
velop a method to resolve Zy singularities induced by the action of an involution on manifolds
endowed with a torsion-free Gy structure in the case that the singular locus L has a nowhere-
vanishing harmonic 1-form. The local model of the singularity being R3 x (C2/{£1}), the
resolution is constructed by replacing a tubular neighbourhood of the singular locus with a
bundle over L with fibre the Eguchi-Hanson space. Then they construct a 1-parameter fam-
ily of closed Gg structures on the resolution; these have small torsion when the value of the
parameter is small. Then they apply a theorem of Joyce [74, Th. 11.6.1] which states that if
one can find a closed Go structure ¢ on a compact 7-manifold M whose torsion is sufficiently
small in a certain sense, then there exists a torsion-free Go structure which is close to ¢ and
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it determines the same de Rham cohomology class. This method provides a torsion-free Go
structure on the resolution; if its fundamental group is finite then its holonomy is Ga.

The main difficulty of their construction relies on the fact that two of the three pieces
that they glue, namely an annulus around the singular set of the orbifold and a germ of
resolution, do not come naturally equipped with torsion-free Gy structures. However, there
is a canonical way to define a Go structure on them and to obtain a closed Go structure by
making a small perturbation. The torsion of the structure is too large so that they need to
make additional corrections. We shall follow the same ideas to perform the resolution; the
method is simplified because we avoid these technical difficulties.

In this paper we are interested in the interplay between closed Gg manifolds with small
first Betti number and the condition of being formal. Formal manifolds are those whose
rational cohomology algebra is described by its rational model. This is a notion of ratio-
nal homotopy theory and has been successfully applied in some geometric situations. The
Thurston-Weinstein problem is a remarkable example in the context of symplectic geometry;
this consists in constructing symplectic manifolds with no Kéhler structure. Deligne, Grif-
fiths, Morgan and Sullivan proved in [40] that compact Kéhler manifolds are formal; thus,
non-formal symplectic manifolds are solutions of this problem. Formality is less understood
in the case of exceptional holonomy; in particular, the problem of deciding whether or not
manifolds with holonomy G and Spin(7) are formal is still open. There are some partial
results for holonomy Go manifolds; in [38] authors proved that compact non-formal mani-
folds with holonomy Gg must have second Betti number by > 4. In addition, in [29] authors
proved that compact manifolds with holonomy Gs are almost formal; this condition implies
that triple Massey products (£1,&2,&3) are trivial except perhaps for the case that the degree
of &1, & and &3 is 2. Non-trivial Massey products are obstructions to formality but there are
examples of non-formal compact 7-manifolds that only have trivial triple Massey products
(see [38]). However, the presence of a geometric structure makes the situation different; for
instance in [95] the authors prove that simply-connected 7-dimensional Sasakian manifolds
are formal if and only if its triple Massey products are trivial.

Formal examples of closed G2 manifolds that do not admit any torsion-free Go structure
are the solvmanifolds provided in [45] and [8I], and the compact manifold with b; = 1
provided in [47]. Non-formal examples are the nilmanifolds obtained in [34]; these have
b1 > 2. In this paper we prove:

Theorem 4.2. There exists a compact non-formal closed Go manifold with by = 1 that
cannot be endowed with a torsion-free Go structure.

The manifold X that we construct is the resolution of a closed Gy orbifold X , obtained
as the quotient of a nilmanifold M by the action of the group Zy. The orbifold has b; = 1
and a non-trivial Massey product coming from M. The resolution process does not change
the first Betti number; in addition the non-trivial Massey product on X lifts to a non-trivial
Massey product on X.

This paper is organized as follows. In section we review some necessary preliminaries
on orbifolds, G2 structures and formality. Section is devoted to prove Theorem and
in section [£.4) we characterise the cohomology ring of the resolution. With these tools at hand
we finally construct in section the non-formal compact closed Gy manifold with b; = 1.
Acknowledgements. I am grateful to my thesis advisors Giovanni Bazzoni and Vicente
Muiioz for suggesting this problem to me and for useful conversations. I acknowledge financial
support by a FPU Grant (FPU16/03475).
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4.2 Preliminaries

4.2.1 Orbifolds
We first introduce some aspects about orbifolds, which can be found in [28] and [93].

Definition 4.3. An n-dimensional orbifold is a Hausdorff and second countable space X
endowed with an atlas {(Ua, Vi, ¥a, )}, where {V,} is an open cover of X, U, C R",
'y < Diff(U,) is a finite group acting by diffeomorphisms, and ¥,: U, — Vo, C X is a
['y-invariant map which induces a homeomorphism U, /T, = V.

There is a condition of compatibility of charts for intersections. For each point x € V,,NVj3
there is some V5 C V,NV3 with x € V; so that there are group monomorphisms psq : I's < Iy,
psp: I's = I'g, and open differentiable embeddings 15, : Us — Uq, 255: Us — Ug, which satisfy
15a(V(@)) = psa(7) (15 () and 155(v(2)) = psg(7)(2sp(2)), for all v € T's.

We can refine the atlas of an orbifold X in order to obtain better properties; given a
point x € X, there is a chart (U,V,4,T") with U C R", U/T" = V| so that the preimage
“1({z}) = {u}, and satisfies y(u) = u for all ¥ € T. We call T the isotropy group at x, and
we denote it by I',. This group is well defined up to conjugation by a diffeomorphism of a
small open set of R™. The singular locus of X is the set S = {z € X s.t. T', # {1}}, and of
course, X — S is a smooth manifold.
We now describe the de Rham complex of an n-dimensional orbifold X. First of all, a
k-form n on X consists of a collection of differential k-forms {7, } such that:

1. 0 € Q¥(U,) is I'y-invariant,
2. If V5 C V,, and 154 : Us — U, is the associated embedding, then 5, (na) = 75.

The space of orbifold k-forms on X is denoted by QF(X). In addition, it is obvious that
the wedge product of orbifold forms and the exterior differential d on X are well defined.
Therefore (Q*(X),d) is a differential graded algebra that we call the de Rham complex of X.
Its cohomology coincides with the cohomology of the space X with real coefficients, H*(X)
(see |28, Proposition 2.13]).

In this paper the orbifold involved is the orbit space of a smooth manifold M under the
action of Zy = {Id,j}, where j is an involution. The singular locus of X = M /Z, is Fix(j).
In addition, let us denote by Q¥(M)?%2 the space of Zy-invariant k-forms. Then

QF(X) = QM (M),

and both the wedge product and exterior derivative preserve the Zs-invariance. An averaging
argument ensures that H*(X) = H*(M)%2.

4.2.2 Gy structures

We now focus on Gy structures on manifolds and orbifolds. Basic references are [23], [48],
[61], [74] and [105).

Let us identify R” with the imaginary part of the octonions @. The multiplicative struc-
ture on O endows R” with a cross product x, which defines a 3-form @g(u, v, w) = (ux v, w),
where (-,-) denotes the scalar product on R”. In coordinates,

00 = 0127 BT 56T 4 135 _ 236 146 _ 245 (4.1)

where (v!,...,v") is the standard basis of (R7)* and v*“* stands for v* A v A v*. The
stabilizer of ¢o under the action of G1(7,R) on A3(R7)* is the group Gs, a simply connected
14-dimensional Lie group which is contained in SO(7).
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Definition 4.4. Let V be a real vector space of dimension 7. A 3-form ¢ € A3V* is a Gy
form on V if there is a linear isomorphism u: V' — R” such that u*(wg) = ¢, where g is

given by equation (4.1)).

A Gg structure ¢ determines an orientation because Go C SO(7); the choice of a volume
form vol on V' compatible with the orientation determines a unique metric gy, with associated
unit-length volume form vol by the formula:

i(x)e Ni(y)e A @ = 6gyol(, y)vol,

which ensures that the metric u*(go) is determined by the volume form u*(volg7). Note that
the metric u*(go) does not depend on the isomorphism u with u*(pg) = ¢. We say that
g = u*(go) is the metric associated to . Of course, a Go form ¢ induces a cross product x
on V by the formula ¢(u, v, w) = g(u x v,w).

The orbit of g under the action of GI(7,R) is an open set of A3(R7)*, thus the space of
Gy forms on R” is an open set.

Definition 4.5. Let M be a 7-dimensional manifold. A Gg form on M is a 3-form ¢ € Q3(M)
such that for every p € M the 3-form ¢, is a G form.

Let X be a 7-dimensional orbifold with atlas {(Uy, Va,%a,La)}. A G form on X is a
differential 3-form ¢ € Q3(X) such that ¢, is a Gy form on U,,.

Let ¢ be a Gg form on a manifold M or an orbifold X. In both cases, ¢ determines
a metric g and a cross product x. In this case we say that (M, p,g) or (X,p,g) is a G
structure. In addition, G manifolds are of course oriented. We state a well-known fact about
Go structures (see for instance [74, Chapter 10, Section 3]).

Lemma 4.6. There exists a universal constant m such that if (M, p,g) is a Ga structure
and ||¢ — ¢l|co g < m then ¢ is a G form.

Proof. Let (R7, g, go) be the standard Gg structure. Being the space of Gy forms on R”
open in A3(R7)*, there exists a constant m > 0 such that if a 3-form ¢q satisfies that
lléo — @ollgy < m, then ¢g is a G form. We now check that m is the claimed universal
constant. Let (M, ¢, g) be a G manifold; let ¢ such that ||¢, — |, < m for every p € M.
In order to check that ¢, is a Go form, let A: (T,M, ¢p, g,) — (R, ¢0, go) be an isomorphism
of G vector spaces, then:

1A%, — wollge = lldp — wpllg, <m
and therefore A'¢, is a Gy form. Since A is an isomorphism, ¢, is also a Gg form. O

In [48] Fernandez and Gray classified Gg structures (M, ¢, g) into 16 types according to
Vo, where V denotes the Levi-Civita connection associated to g. The motivation for such
classification is the holonomy principle, stating that the holonomy of g is contained in Gg if
and only if Vi = 0. In [48] they also prove that V¢ = 0 if and only if dp = 0 and d(xp) = 0,
where * denotes the Hodge star. In this paper we are interested in closed and torsion-free
Go structures on manifolds and orbifolds:

Definition 4.7. Let (M, ¢, g) or (X, ¢, g) a Gg structure on a manifold or an orbifold. We
say the Gy structure is closed if dp = 0. If in addition d(*¢) = 0 we say that the Go structure
is torsion-free.

Definition 4.8. Let (X, ¢) be a closed Ga structure on a 7-dimensional orbifold. A closed
G2 resolution of (X, ¢) consists of a smooth manifold endowed with a closed Gg structure

(X,¢) and a map p: X — X such that:
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1. Let S C X be the singular locus and E = p~!(S). Then, Pls g X-E—>X—-Sisa
diffeomorphism,

2. Outside a neighbourhood of E, p*(¢) = ¢.

The subset E is called the exceptional locus.

Go involutions

Definition 4.9. Let (M, ) be a Go manifold, we say that j: M — M is a Gg involution if
i(p) =9, ? =1d, and j # 1d.

In this paper we shall focus on orbifolds that are obtained as a quotient of a closed Ga
manifold (M, ¢) by the action of a Gy involution j; that is X = M/j. The next result states
that the fixed locus L of j is a 3-dimensional submanifold.

Lemma 4.10. The submanifold L is 3-dimensional and oriented by ¢|r. In addition, |r, is
the oriented unit-length volume form determined by the metric g|r..

Proof. The result is deduced from the fact that if (R, @g, (-,-)) is the standard G structure
on R” and if j € G5 is an involution, j # Id, then j is diagonalizable with eigenvalues +1 and
dim(Vp) = 3, dim(V_1) = 4, where V1; denotes the eigenspace associated to the eigenvalue
+1. In addition, ¢o(v1,v2,v3) = £1 if (v1,v2,v3) is an orthogonal basis of V.

We now prove this statement; first j is diagonalizable with eigenvalues 41 because j? = Id,
j #1d and j € SO(7). Let us take a unit-length vector v; € Vi; the vector space W = (v1)*+
is fixed by j because j € SO(7), and carries in addition an SU(3) structure determined by
w = i(v1)po, Re(Q) = wolw (see [104]). Of course, the SU(3) structure is preserved by j.
Viewed as a complex map, j: W — W has three complex eigenvalues A1, Ag, A3 that satisfy
A? =1 and A\ A2)3 = 1 because j> = Id and j preserves the SU(3) structure. Being j # Id,
we obtain that Ay = 1 and Ay = A3 = —1 up to a permutation of the indices; this proves
that dim(V;1) = 3 and dim(V_;) = 4. Now observe that j(u x v) = j(u) X j(v), where x is the
cross product on R7 that determines . Thus, let (v1,vs,v3) be an orthogonal basis of Vi,
then vy X ve € Vi; so necessarily, v1 X vo = tv3 and ¢g(v1,v2,v3) = 1. O

Remark 4.11. If dp = 0, Lemma states that L is a calibrated submanifold of M in the
sense of [61].

SU(2) structures

Let us identify R* with H and SU(2) with Sp(1) as usual. The multiplication by 4, j and
k on the quaternions yields Sp(1)-equivariant endomorphisms I, J and K that determine
invariant 2-forms by the contraction of these endomorphism with the scalar product on R*.
In coordinates, these are:

W0 = w!? 4wt W) = wid — w2, W) = w4 W, (4.2)

where (w1, ws, w3, wy) denotes the standard basis of R*.

Definition 4.12. Let W be a real vector space of dimension 4. An SU(2) structure on W is
determined by 2-forms (w1, wa,ws) such that there is a linear isomorphism u: W — R* with

u*(w?) = wj, where the forms wg-] are given by equation 1}
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An SU(2) structure on a vector space W determines a Go structure on W @ R3. To
check this we can suppose that (W, w1, ws,ws) = (R, W), wd, w]). Denote by (vs, v, v7) the

standard basis of R?, then comparing with formula ([4.1]), we see:
o = v + W AvT 4+ wd AvS — w§ A S, (4.3)
In addition if we fix on R3 the orientation determined by v°7, then W is oriented by %(w?)g.

Definition 4.13. Let N be a 4-dimensional manifold. An SU(2) structure on N consists of
2-forms (w1, ws,ws) € Q%(N) that determine an SU(2) structure on T,N for every p € N. In
addition, if dw; = dwe = dws = 0 we say that (w1, w2, ws) is a hyperKéahler structure.

Let Y be a 4-dimensional orbifold with atlas {(Uy, Vi, ¥a,Ta)}. An SU(2) structure on
Y consists of 2-forms (wq,ws,w3) € Q2(Y) such that (w§,ws,ws) is an SU(2) structure on
Ug. In addition, if dwy = dws = dws = 0 we say that (w1,ws,ws) is a hyperKahler structure.

In view of Lemma the local model of X around L is (C?/Zs) xR3, with Zo = (—Id, Id).
The standard Go form induces the orbifold hyperKihler SU(2) structure (w{,w),wd) on
C2/Zs. We now detail the hyperKihler resolution of Y = C?/Zy; this will be useful in order
to construct the resolution of X in section L3l

The holomorphic resolution of Y is N = C? /Zs; where C2 is the blow-up of C? at 0. That
is,

C? = {(21, 22, ¢) € C? x CP' s.t. (21, 2) € £},
and the action of —Id lifts to (z1,22,¢) — (—z1,—22,¢). We shall call the exceptional
divisor E = {0} x CP* ¢ N. Note that there is a well-defined projection op: N — CPL.
Let us consider 79: Y — [0,00) the radial function induced from C?; one can check taking
coordinates that 73 is not smooth on N, but r§ is.

Consider the blow-up map, xo: N — Y. Then, one can check that x4(w9) and x*(w$)
are non-degenerate smooth forms on N; this holds because w) + iw) = dz; A dze and the
pullback of a holomorphic form under a holomorphic resolution is holomorphic.

A computation in coordinates shows that x(w?) has a pole on E. Let a > 0 and define
fo(z) = ga(x) + 2alog(z), where g, (z) = (z* 4+ a?)¥/? — alog((z* 4+ a?)'/? + a). Consider on
Y - E:

oy = —%dldﬂz(ro).

One can check that (&, x§(w9), x§(wy)) is a hyperKéhler structure on N — E; it can be
extended as a hyperKéahler structure on N because:

1 *
—ZdId(log(rg)) = 09 (wept ),
where wepr stands for the Fubini-Study form of CP!.

4.2.3 Formality

In this section we review some definitions and results about formal manifolds and formal
orbifolds; basic references are [40], [42], and [100].

We work with commutative differential graded algebras (in the sequel CDGAs); these
consist of a pairs (A4,d) where A is a commutative graded algebra A = @®;>¢A" over R, and
d: A* — A*T1is a differential, which is a graded derivation that satisfies d> = 0. If a € A is
an homogenous element, we denote its degree by |a|, and a = (—1)l%a.

The cohomology algebra of a CDGA (A,d) is denoted by H*(A,d); it is also a CDGA
with the differential being zero. If a € A is a closed element we denote its cohomology class
by [a]. The CDGA (A, d) is said to be connected if H(A,d) = R.
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In our context, the main examples of CDGAs are the de Rham complex of a manifold or
an orbifold. In section we also make use of the Chevalley-Eilenberg CDGA of a Lie group
G, that consists of the algebra A*g*, the differential of a 1-form is da(z,y) = —afz,y], and
is extended to A*g* as a graded derivation.

Definition 4.14. A CDGA (A4, d) is said to be minimal if:

1. A is free as an algebra, that is A is the free algebra AV over a graded vector space
V= @ivi.

2. There is a collection of generators {a;}; indexed by a well ordered set, such that |a;| <
la;| if i < j and each da; is expressed in terms of the previous a; with ¢ < j.

Morphisms between CDGAs are required to preserve the degree and to commute with
the differential; a morphism of CDGAs k: (B,d) — (A, d) is said to be a quasi-isomorphism
if it induces an isomorphism on cohomology «: H*(B,d) — H*(A,d).

Definition 4.15. A CDGA (B,d) is a model of the CDGA (A,d) if there exists a quasi-
isomorphism x: (B,d) — (A,d). If (B,d) is minimal we say that (B,d) is a minimal model
of (A,d).

Minimal models of connected DGAs exist and are unique up to isomorphism of CDGAs.
So we define the minimal model of a connected manifold or a connected orbifold as the
minimal model of its associated de Rham complex.

Definition 4.16. A minimal algebra (AV,d) is formal if there exists a quasi-isomorphism,
(AV,d) — (H*(AV,d),0).
A manifold or an orbifold is formal if its minimal model is formal.

We now recall the definition of triple Massey products; these are objects that detect
non-formality of manifolds. Let (A,d) be a CDGA and let &1,&2,£3 be cohomology classes
such that £;& = 0 and £¢3 = 0. Under these assumptions we can define the triple Massey
product of these cohomology classes (£1,&2,£3). In order to provide its definition we first
introduce the concept of a defining system for (&1, &2, &3).

Definition 4.17. A defining system for (£1,&2,&3) is an element (a1, as,as, a2, azs) such
that:

1. [ai] =& for 1 <i <3,
2. dalg = alag, and da23 = dgag.

One can check that ajags + aigas is a closed (Jai| + |az| + |as| — 1)-form. The triple
Massey product (&1, &2, &3) is the set formed by the cohomology classes that defining systems
determine, that is:

{[ara23 + @12a3] s.t. (a1,as,as, a2, azs) runs over all defining systems}.

If 0 € (&1,&2,&3) we say that the triple Massey product is trivial.

Theorem 4.18. Let (AV,d) be a formal minimal algebra. Let &1, &2, &3 be cohomology classes
such that the triple Massey product (£1,&2,&3) is defined. Then (&1,&2,&3) is trivial.

As a consequence, we obtain:
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Corollary 4.19. Let (AV,d) be the minimal model of (A,d). Let &1,&2,&3 € H*(A,d) such
that the triple Massey product (£1,&2,&3) is defined. If (£1,&2,&3) is not trivial then (AV,d)

is not formal.

Proof. Suppose that (AV,d) is formal and let x: (AV,d) — (A, d) be a quasi-isomorphism.
Let us take cohomology classes {1, £3, &5 € H*(AV, d) with £(£}) = &; then the Massey product
(&1,&5,&5) is well-defined and there is a defining system (a1, ag, as, a12, as3) such that

ajazz + ajzaz = da.
But of course 0 = klajags + ajzas] € (&1, &2, &3); yielding a contradiction. O

We finally outline some aspects about finite group actions on minimal models. Let M be
a compact manifold and let x: (AV,d) — (2(M), d) be its minimal model. Let I be a finite
subgroup of Diff (M) acting on the left; the pullback of forms defines a right action of I" on
(QUM),d).

Lifting theorems for CDGAs ensure the existence of a morphism 7: AV — AV that
lifts up to homotopy the pullback by each v € I'; that is, kK o7 ~ ~* o k; in particular,
[k(¥(a))] = [y*k(a)] if da = 0. This implies that Id ~ Id and that 4y’ ~ F7¥'; therefore these
liftings provide an homotopy action on AV. These liftings can be modified making use of
group cohomology techniques (see [99, Theorem 2|) in order to endow AV with a right action
of T.

Theorem 4.20. Let M be a compact connected manifold and let T be a subgroup of Diff (M)
acting on the left.

There is a right action of T on the minimal model k: (AV,d) — (2(M),d) by morphisms
of CDGAs such that [k(ay)] = [vY*k(a)] for every closed element a € AV and every v € T.

If there is a right action of a finite group I" on a CDGA (A, d) one can consider the CDGA
of I'-invariant elements (A", d). An average argument leads us to H*(A,d)" = H*(A',d).
In addition, if " also acts on (B, d) on the right by morphisms and i: (4,d) — (B,d) is a
morphism such that [i(ay)] = [(ia)y] for every closed a € A and v € I" one can define:

i: (A% d) — (B",d),  ia=[TI"") i(a)y,
yerl’

where |T'| denotes the cardinal number of I'. This satisfies that [i(a)] = [i(a)] for closed
elements a € A'. In particular if i is a quasi-isomorphism so is i.

Lemma 4.21. Let T" be a finite group acting on a compact connected manifold M by diffeo-
morphisms. If M is formal then M /T is also formal.

Proof. First of all, the fact that (Q(M/T),d) = (Q(M)',d) and our previous argument
ensures that H*(M/T) = H*(M)'. Let x: (AV,d) — ((M),d) be the minimal model of M
as constructed in Theorem The CDGA ((AV)',d) is a model for (2(M/T),d) because
of the quasi-isomorphism x: ((AV)'',d) — (Q(M)',d) defined as above. Consider (AW,d)
the minimal model of (Q(M/T'),d) and let 1: (AW, d) — ((AV)', d) be a quasi isomorphism.

Being M formal one can consider a quasi-isomorphism i: (AV,d) — (H*(AV,d),0) and
define i: (AV)L',d) — (H*(AV,d)",0) = (H(AW,d),0), which is also a quasi-isomorphism.

Then we can construct a quasi isomorphism:
iot: (AW,d) — (H*(AW,d),0).

Therefore, M/T" is formal. O
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4.3 Resolution process

Let (M, g, g) be a closed Gg structure on a compact manifold M, let j: M — M be a Go
involution, and let X = M/j. The singular locus of the closed Gy orbifold (X, ¢, g) is the
set L = Fix(j), a 3-dimensional oriented manifold according to Lemma m This section is
devoted to constructing a resolution p: X — X under the extra assumption that L has a
nowhere-vanishing closed 1-form 6 € Q'(L).

This hypothesis yields a topological characterisation of L that we now outline. Let us
denote by Li,..., L, the connected components of L; according to Tischler’s Theorem [110]
each L; is a fibre bundle over S! with fibre a connected surface ¥;; that is, L; is the mapping
torus of a diffeomorphism v; € Diff (3;):

L; =%; x[0,1]/(z,0) ~ (¢i(z),1).

Let us denote q;: ¥; x [0,1] — L; the quotient map and b;: L; — S! the bundle map. The
construction described in this section does not need the choice any specific nowhere-vanishing
closed 1-form 6 € Q!(L). However, to determine the cohomology ring of the resolution in
Proposition we need that 6|y, = b¥(fy), where 0y denotes the angular form on S?.
Therefore, we make this assumption from the beginning. In addition, taking into account
that L; is oriented and that H3(L;) = {[a] € H*(%;) s.t. ¥f[a] = [a]} (see [10, Lemma 12]),
we obtain that Y; is oriented and ¢} = Id on H?(%;).

The resolution process consists of replacing a neighbourhood of L with a closed Go man-
ifold. The local model of the singularity is R? x Y where Y = C?/Zy as we discussed in
section The closed Gg manifold that we introduce is the blow-up of v/j at the zero
section, where v denotes the normal bundle of L in M. Its local model is R?® x N where
N =C? /Zo. This requires the choice of complex structure on v/j which is determined by a
choice of a unit-length vector V' on L by means of the expression I(X) =V x X, where X is
the cross-product associated to . This vector field exists because L is parallelizable, but we
shall choose V = ||0]|~16* in order to guarantee that the Go form that we later define on the
resolution is closed.

Before constructing a Gz form on the resolution we study the O(1) term of exp*(¢) by
splitting Tv into an horizontal and a vertical bundle with the aid of a connection. This
allows us to obtain a formula for the O(1) term that resembles the standard G structure on
R3 x Y. Its pullback under the blow-up map has a pole at the zero section; a non-singular Go
structure is defined on the resolution following the ideas we introduced in subsection [£.33]
for resolving the local model. This form is not closed in general, so that we need to consider
a closed approximation of it. In addition, the resolution process requires the introduction
of a 1-parameter family of closed forms; small values of the parameter guarantee that these
are non-degenerate and close to exp*(¢) on an annulus around L after a diffeomorphism. As
Remark [£.33] states, the size of the exceptional divisor decreases as the parameter tends to 0.

This section is organized as follows: in subsection we introduce some notations con-
cerning the normal bundle v of L and we understand its second order Taylor approximation
¢9 in subsection this is an auxiliary construction. In subsection we obtain local
formulas for the O(1)-terms and introduce the parameter ¢; these tools allow us to perform
the resolution in subsection [£.3.4l

4.3.1 Splitting of the normal bundle

We now introduce some notations that we need for the resolution process. Let m: v — L be
the normal bundle of L. We consider R > 0 such that the neighbourhood of the 0 section
Z, vr = {vp € vps.t. ||vp|| < R} is diffeomorphic to a neighbourhood U of L on M via
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the exponential map. In this section we also denote by vy = {v, € v, s.t. ||vp]| < s} for
s < R. On vg we consider ¢ = (exp)*p, which is a closed Gg form on vg. In addition, the
induced involution on v is dj(vp) = —vp; but we shall also denote it by j. It shall be useful
to denote the dilations by Fi: v — v, Fy(vp) = tv,. We also define the vector field over v,
R(vp) = %’ Oetvp.
t=

A connection V on v induces a splitting Tv = V & H where V = ker(dr) = 7*r and
dmy,: Hy, — T,L is an isomorphism; being T'M | = v @ TL, the connection induces an
isomorphism 7 : T — 7*(TM|). The choice of V is made in subsection [4.3.4]

Note that any tensor T on T'M |y, defines a tensor on 7*(T'M|r) because 7*(T'M|L )y, =

T, M]|r,. Using this we define on v:

1. A metric, g1 = T*(g[r); that is, g1 makes (H,,,g1) and (T,L,g) isometric, H,, is
perpendicular to V,,, and V,,, isometric to v).

2. A Gg structure ¢; = T*(¢|r) with ¢ as an associated metric.

Of course, T is an isometry. These tensors are constant in the fibres in the following sense;
under the identification ﬁp = ’76;1 o Ty, Ty,v — To,v it holds that ’t’;(gl) = ¢ and
’t*; (¢1) = ¢1. Note also that these values coincide with exp* g|z and ¢ respectively because
(dexp)|z = Id. These tensors are thus independent of V only on Z.

We shall also denote W;; = A'V* ® AJH* where we understand V* = Ann(H) and
H* = Ann(V). There are gj-orthogonal splittings A*T*v = EBHj:kWi'fj and given o € AFT*v
we denote by [a]; ; the projection of a to W ;.

Observe also that one can restrict each 5 € AFV* to the fibre vp, and the restriction
), NPT 0 — ARV, 1%(8)v, = Bu, v, is an isomorphism because Ty, v, = V,,.

We now state some technical observations concerning vertical forms; proofs are compu-
tations in terms of local coordinates that we include for completeness.

Remark 4.22. Note that H* = 7*(T™* L) does not depend on the connection but V* does. More
precisely, in local coordinates (z1, 2, 3,91, Y2,Y3,y4) € U X R* the horizontal distribution

at (z,y) is generated by:
4

a:r;i - Z AZ (ZE, y)ayj’

i=1

where Ag (z,y) = Sty Ai i ()yi for some differentiable functions A{k Then V* is generated
by:

3
nj =dy; + Y Al(z,y)dz;.
i

Note also that since Ag (z,ty) = tAz (z,y) we get that F}*(n;) = tn;.
Lemma 4.23. The following identities hold:

1. Ff(é1) = [d1]os + *[¢1]2:1

2. Ff(91) = giluen + tailvey

Proof. We shall prove the first equality being the second similar. Note that ¢;|z is a Go
structure whose induced metric makes V' perpendicular to H and H|z; = T'Z; thus taking
into account formula (4.3) we can write in local coordinates:

3
o1lz = f(p)dxy A dxg A dzs + Z Z fijk(p)dz; A dy; A dyy,.
i=1j<k
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Thus, ¢1 = [¢1]o3 + [P1]2,1, where ([¢1]03)s, = f(p)dw1 A dra A drs and ([p1]21)s, =
2;":1 ek Jijk(P)dzi A (0f)v, A (), Therefore, Fy*([¢]o3) = [¢]o,3 and, according to Re-

mark (£33, F (o2 = 2[0la.. -

Lemma 4.24. 1. Let pp € V* be a form such that p =0 on Tv|z. Then, [dul11 =0 and
[dlo2 =0 on Tv|z.

2. Suppose that o € Wy 1 satisfy that oo = 0 on Tv|z. Then, [da)i2 = 0 and [da)oz =0
onTv|z.

Proof. For the first equality, we write in local coordinates pn = 3>, fi(z,y)n; with f;(z,0) =
0as u=0on Tv|z. Then,

dp = ZZ& (x,y)dx; A n;

1= 1] 1
fz
+Zza xydygAerZfzxydm
i=17=1 =1

Since fi(z,0) = 0 and n;|7,|, = dy; the following equalities hold on Tv|:

4 4
[d/‘LZO'IO ZZ /\dyh
=1 j5=1
4 3
[dp)1,1(x, 0) ZZ A =0,
[dpt]o,2(x,0) =0.

For the second, we write v = >, 7*(\;) Ap; with \; € QY(L) and p; € V* satisfying pu; = 0
on TV‘Z. Then [dahg = Zz‘(ﬂ'*(d)\i)/\/h‘_W*(/\i)/\[dlii]l,l) and [da]o,g = — Zz W*()\i)/\[dui]og.
The claim follows from (1). O

Lemma 4.25. Consider coordinates (x,y) = (21,72, 23,Y1,Y2,Y3,y1) € B x R* of v, with
B C R? a closed ball. Let n; be the projection of dy; to V* as in Remark |4.24 Then,

1) @0 llor = 1(1) @) llgr and [[(d2i)(z0)llgr = (di) @ y)llg1 -

There exist C > 0, Cy > 0 such that ||[dn;]oz2llg, < Cir and ||[dn);, < Cy on v.

Proof. The first two equalities are clear taking into account that 7*(n;) = n;, T*(dz;) = dz;
and that 7 is a gj-isometry. For the third and fourth equality we first compute dn;

dn; = Z Z yk )dxl ANdzx; + Z ZA x)dyg N\ dx;.

k=114l=1 k=11=1
This implies that:
L& 04 ()
[dn;lo2 = Z Z yka’ikdﬂfz A dx; — Z Z A ()yndxm A dr;,
k=14,1—=1 Zi kon=14,m=1

. aAl
The absolute values of the functions A7, 8;;’“ are bounded on B, and the gi;-norms of the
terms 7, A dxj and dx; A dzj are constant on the fibres as explained before. Taking into

account that L is compact the choice of constants C; and Cy becomes clear. L]
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4.3.2 Taylor series

We now introduce the Taylor series of ¢ and interpolate it with the seccond order approxi-
mation. This is an auxiliary tool for our resolution process.

Consider the dilation over the fibres F}: v — v, and define the Taylor series of F}¢ and
FYg near t = 0 (note that F{j(¢) and F{j(g) are defined on v). That is,

o0 [e.e]
)~ 12k g~ 3 12k g2k
k=0 k=0

Note that we only wrote even terms because both ¢ and g are j invariant and j = F_;. In
addition, the equalities F}(¢?*) = s2¢¢?F, F¥(g%F) = s?#¢%* follow from F;; = Fy o F,. For
i+j =3 and p+q = 2 we define qﬁ?’; = [¢%*]; ;. gg,kq = ¢?*|ypoma ; here VP denotes the tensor
product of V' with itself p times.

We have the following properties:

1. ||qb?7’;||g1 = O(r?*=%), where r is measured with respect to the metric on v. To check
it let ||vplg, = 1; taking into account Lemma and the fact that Fy: (v, g1|gen +
291|lvev) — (v,g1) is an isometry we get:

k k k k k
1825 rop llgy =l Es (625) o, ln = 71075 v lgs vy 7201 v o

k—i k
=r? “II( ’L%j)vagl'

2. The previous statement ensures that qb%“ =0if i > 2k.

3. If k > 1, ¢! is exact.
Being ¢%* homogeneous of order 2k, we have that Lg(¢?) = 2k¢?*; where R(v,) =
% 0 (e'vp) is defined as above. In addition, d¢?* = 0 for every k because ¢ is closed.
Thus, 2k¢?* = d(i(R)¢%*).

Taking these properties into account we construct a Go form ¢3 . that interpolates ¢ with
the approximation ¢y = ¢°+ ¢2. The parameter ¢ > 0 indicates that the interpolation occurs
on r < ¢ and is done in such a way that ¢>375|T§% = ¢o. Of course, this is possible because
the difference between ¢ and ¢4 is small near the zero section.

Proposition 4.26. The form ¢3 = ¢° + ¢? is closed and ¢ = ¢+ O(r). There exists g > 0
such that for each € < ey there exists a j-invariant Gz form ¢3. such that ¢3. = ¢z if r < 5
and ¢3. = ¢ if r > €.

Proof. The first part is a consequence of the previous remark; zero order terms are ¢ = ¢8,3
and <Z>%’1, thus ¢ = ¢ + O(r). In addition, ¢s is closed because each ¢2* is.

Since ¢|z = ¢2|z the Poincaré Lemma for submanifolds ensures that ¢ = ¢o+d¢ for some
j-invariant 2-form £; more precisely, &,, = fol i(Rru,)(¢ — ¢p2)dr. In addition, ||£]|ls, = O(r?)
because {|z = 0 and ||d¢llg, = ||¢ — P2llg; = O(r). Let w be a smooth function such that
w=1ifz <1and @w=0if z>1 and define w.(z) = w(%). Then, |w.| < g so that

¢3,z—: =¢— d(ws (T)f)

is a Go form on r < ¢ if ¢ is small enough because it is O(e)-near ¢. The form ¢3 . interpolates
¢2 with ¢ over the stated domains and it is j-invariant because both ¢ and w.(r)¢ are. [
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4.3.3 Local formulas

The purpose of this section is making an additional preparation; we first provide a local
formula for ¢ that will be useful in order to construct the Go form of the resolution. Later
we change ¢2 by O(r) terms so that we control its local formula and we introduce the
parameter t; these preparations are essential to construct a closed Go form on the resolution.

Formula for ¢

We first write ¢; and g; in terms of the components of the Taylor series of g and ¢. This is
an easy consequence of the homogeneus behaviour of the tensors involved:

Lemma 4.27. The following equalities hold:
1. ¢1=¢° + ¢%,1

2. g1 =902+ 930
Proof. We prove the first equality, being the second similar. Using the fact that ¢° = ¢8,3
and gb%,l are homogeneous one can check that these are constant on the fibres. We shall do
it for ¢3 , write in local coordinates (x,y):

3

@b%,l = Z Z fijk(mv y)dxz A (nj)(:r,y) A (nk)(ac,y)‘
i=1j<k
Taking into account that Ft*qﬁg,l = t2¢%71 and Fyn; = tn; we get fip(x,ty) = fijr(z,y).

Therefore, fijr(w,y) = fiju(z,0). Since ¢1|7ar, = dlrar, = (¢0+¢%,1>‘TM|27 we obtain that
[#1]03lT), = ¢0|TV|Z and [¢1]2,17w), = ¢%,1‘TV\Z' But these forms are constant on the fibres
of the bundle Tv — v, so that the previous equalities hold on T'v. ]

We now obtain a local formula for ¢1. For that purpose let us define e; = ||0]| 710 and
consider an orthonormal oriented frame (ey, e, e3) of T'L on a neighbourhood U C L. Define

also the SU(2) structure (w¥,wf, wl) on v by means of the equality:

go]L:61/\62/\eg—i—elAwlL—i—eg/\wQL—eg/\wé.

More precisely, the complex structure is determined by wf = i(e§)<p| v, that is I(X) = e’i x X

where x denotes the vector product associated to ¢|r,. The complex volume form is w2L —i—iw?’};
note that a counterclockwise rotation of angle o in the plane (ez,e3) changes wi + iw? by
the complex phase e'”. Using 7 we obtain:

o1 =m'ey Amfea Amfes +mier Awy + e Awy — Te3 A ws,

where the forms w; € A%V* are j-invariant and satisfy wjlz = exp*(ij). For fixed p € L,

(wilv,> w2lv,, w3y, ) determines an SU(2) structure on the 4-manifold v, because the restriction
ro is an isomorphism. The associated metric on T, is g1, and the complex form is induced
by I on v under the canonical isomorphism.

Therefore, wi,, = —1dy, (I[dr?],,). In addition, since the complex volume form is dz; A
dzg = %d(zldzg—Zdel) there is a j-invariant 1-form p € V* such that d,, (11/,,) = (W2+iw3)|s,
and p|ry,), = 0. We decompose it as = 1 + ipsa.

Being the restriction to the fibre ro a monomorphism, we obtain

1 .
wy = —Z[d[IdT’Q]Lo]z,o, wa + iws = [du]2,0,
here we also denoted by I the complex structure on V* determined by the complex structure
I(X) = e§ x X on V = 7*(v), this depends on the splitting. Observe that the complex
structure I on v satisfies jol = Ioj and thus, the complex structure on V* satisfies jla = Ija.
In particular, I« is j-invariant if « is.
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Changing ¢y by O(r) terms.
First of all define the 1-parameter family
¢y = ° + 129 = F'(¢).

These forms are well-defined on v because ¢° and ¢? are homogeneous. We now change this
1-parameter family by O(r) terms so that we have an explicit local formula for it. Consider
the exact j-invariant form:

1
8= _ZW*Q A d((||9\|*1 o F)I[d?‘2]170) — d(w*eg N 2 — mres A Mg) € W271 D W1,2 D W(),g,

and note that ¢1 = 7*(e1 AeaAe3)+[F]2,1. In addition, 8 does not depend on the orthonormal
oriented basis (ez,e3) of (9%)*.
We now introduce a 1-parameter family of closed j-invariant forms:

¢4 = m*(e1 A ez Aes) + t2[A].

We claim that for fixed s > 0 there exists t; > 0 such that $§ is a Go form on vy, if t < g
To check this we compare ¢4 with Fy*¢; and use Lemma to conclude. Denote g; = FY(¢g1)
and observe that Lemma implies that F¢; = ¢° + t2¢§’1 and g; = t2ga 0 + go,2, then:

17 ¢1 = Ghllg, = th[Blr2llgs + 11150,

so one can bound ||[3], I[8]o,3]lg: on s and choose ts > 0 such that for each ¢t < t,
18112/l + 2B, 3||g1 < m where m is the universal constant obtained in Lemma

We construct a Go form gbg s that interpolates ¢2 with ¢4. The parameter s>0 1ndlcates

)

that the interpolation occurs on the disk » < s and we require that d>3 slr< <s ngQ. In
subsection [4.3.4] we employ large values of the parameter.

Proposition 4.28. There is £ € Wy such that ||€]|lg, = O(r?) and ¢* = B + dE.
For fized s > 0 there exists t), > 0 such that for each t < t’,, there is a closed j-invariant
Go form qbg,s on vos that coincides with ¢ on r < 5 and @ onr > s.

Proof. Write the second term of the Taylor series of ¢ as ¢ = (Z%l + (Zﬁ%g + ¢(2)73 and note
that gbgl = [B]2.1. Being 8 and ¢? closed, we obtain d(gzﬁ%z + (;5373) = d([B]1,2 + [Blo,3). The
Poincaré Lemma ensures that ¢%72 + qﬁ%’?’ = [Bli,2 + [Blo,3 + d§ with

1

1
§vz=/0 i( mz)(¢12+¢03 [5]1,2_[5]073)‘17:/0 (R T”z)((bl? [Bl1.2)dr.

Hence { € Wy 2. One can check that ¢ is j-invariant by taking into account that gbiQ — B2
is j-invariant and that Ry, ) = j(Rew, )-

In addition [|¢]ly, = O(r?) because &|z = 0 and [|d€|lg, < (|63 allg + 165 3llg1 + I [Bl1.20lg, +
I18Jo,3llg = O(r). Here we used that [|¢7 ollg, = O(r), 65 3llg, = O(r?), and ([8]1,2+[8]o,3) =
0 on Tv|z. To obtain the last equality observe that 8 = do where o € W;; vanishes on
Tv|z; then use Lemma [1.24] (2).

1

Let @ be a smooth function such that w = 1if x < 5 and w = 0 if > 1, and let

ws(x) = w(%). The form QA%S = ¢+ 128 + t2d(ws(r)€) is closed and j-invariant; it coincides
with QA% onr < % and with gbé onr > s.

It is clear that &:3,3 is a G form on the region r > s for t < ts; we now check that it is

also a Go form on r < s for some choice of t. We are going to compare q%s with Fy¢, and
use Lemma to conclude the result.
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Since wy& € Wy 2 we have that d(wsf) € W12 @ Wp3. As a consequence if t < 1, then
[£2d(co5(r)E)|lg, < tlld(ws(r)E)]lg, = HO(r?s™1) + O(r)) so that:
185 s — Fy d1llge =t([B11.2llg1 + tl[Blosllgy + O(*s™ 1) + O(r))
<t([[B811.2llg: + IBlo3llg + O())-

For the last equality we used that ¢ < 1 and that » < 2s. Then quSgS is a Gg form if the
parameter t < tg satisfies

t (maxy<os ([[Pl12llg + [[Blosllgr +O(r)) <m

where m is the constant provided by Lemma |4.6 O

4.3.4 Resolution of v/]

The resolution process is inspired in the hyperKéhler resolution N = C2/Zy of Y = C2?/Zs
described in subsection Consider the blow-up map xo: N — Y and the hyperKahler
structure (¢, x§(w3), x§(wy)) on N. Recall that & denotes the extension of —tdIdf,(ro),
where 7 is the radial function on C? and:

fa(l') = ga(l’) + 2a log(x), ga(lU) — ($4 + a2)1/2 _ alog((:v4 + a2)1/2 + a).

We now focus in the resolution of v/j. For that purpose, consider the complex structure
I on v determined by the 2-form i(eg)cp\ v and define P as the fiberwise blow-up of v/j at 0.
That is P = Py (v) Xy(2) N, where Py2y(v) denotes the principal U(2)-bundle associated
to v. This construction yields projections x: P — v/j and pr = 7 o x; where 7: v/j — L
denotes the map that 7: v — L induces.

We also define @ = x~1(0); this is a CP! bundle over L that can be expressed as Q =
Pya) (V) xu(2) CP!. Note that there is a projection og: N — CP! that induces a complex
line bundle o: P — Q.

A j-invariant tensor on v descends to v/j and its pullback by x is smooth over P — @,
but it may not be smooth on P. If the tensor preserves the complex structure I on P then
the pullback is smooth on P because P = Py 2)(v) Xy(2) N. We choose V such that VI = 0,
so that we can lift V to P and define TP = V' @ H’; this is compatible with the splitting
Tv = V@O H in the sense that dx,(H') = H, ), and dx,(V') = Vyp) if p € P—Q. In addition,
2, 113, w1, w2, ws induce forms on v/j and x*(ux), x*(wk) are smooth for k = {2,3}. We shall
also consider A*T*P = @, ;—A*(V')* ® AJ(H')* and define Wi, = AN(V')* @ A (H')*. The
projection of a to W ; is denoted by [a]; ;.

In order to define a Go structure on P we need to find a resolution of wy. For that purpose
denote by r the pullback of the radial function on v and define:

&1 = — A0 Tldfi ()]s,

where [0] = [[0]| o pr. Observe that gy (r) is smooth on P because r* is. In addition,
—2dI[d(log(r?))]1,0 = 0*(Fg) on P—Q, where F is the curvature of the line bundle o: P —
Q. Fiberwise it coincides with the Fubini-Study form on CP'. Note also that pr*f A [©1]2,0 =
—ge1 A [d(I[dfig]1,0))2,0-

We now define a Gy form ®! which is near x*(F;¢1) on r > 1, this is:

D! = pri(e; Aey Aes) +t2[Bla,

where R
B =pr0Awy —dpries A x (u2) — prres A x*(us)).
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Observe that 3 does not depend on the orthonormal oriented basis (eg,e3) of (#*)1. In
addition, the metric induced by CI% on T'P has the form hy = hog + ho2 where hog and hg 2
are metrics on V/ and H' respectively. Observe that

In addition, the metric that ®} induces is hy = t2h270 + ho,2. We define a family of closed
forms:

@ = prH(es Aeg Aes) + t25.

Note that (IDQ is a Go structure on X_l(VQS) for some t < ¢”. This is ensured by Lemma
because:

hy +t2||[5]073”h1’

[y on X7 (v2s).
The parameter t is devoted to compensate errors introduced by ||[5]1,2
that mainly come from the terms [Fg]i,1 and [Fglo 2.

195 — I, = tll[B]1.2

-~ ~

and one can bound ||[f]12]ln, and [|[8o3

~ ~

ry and |[[B]o,3(In,

Lemma 4.29. Let g1 = 9870 + 9(2)72 be the metric on v/j. On r > 0, we have the following:
1. X«(h2,0) = 90,2,
2. |Ix«(hao) = g3 ollgz, = O(r™2).

Proof. For the first equality we consider the local ggjz—orthonormal basis (e1, ez, e3) of T*L
as before. Denote ®1 = (x~1)*(®}) on r > 0 and observe that:

Pl =eB L el Ay + e Ay —e® A s,
where @01 = (X_l)*[al]zo, and (:)j = [d,uj]g,o for j € {2,3} Observe that ((:}1,@2,(.:)3) is an
SU(2) structure on V and therefore, @ = @3 = @3 = 2voly and @; A@; = 0 if i # j. Of

course, voly coincides with the unit-length volume form determined by 9872. To conclude, we
compute hg 2 by the formula:

G (ho2) (el ) (€' A voly) = i(el) ] Ai(eh) @] A 31
Taking into account that (@;, @e, @3) is an SU(2) structure on V' we obtain that x.(ho2)(es, ;) =
0if ¢ # j and x«(ho2)(ei, €;) = 1.

For the second equality, observe that

1 _

= (A1 fo (r)]1.0]2.0 (X, I(Y)),
where f,(z) = fa(v/2) — 2 = a®((2® + az)l/Q + )71 — alog((z? + a®)'/2 + a) + alog(x) for
a > 0. Note that |f.(z)] = O(z™!) and |f/(x)| = O(z~2). )

From the expression of x.(ha,0) —g3 ¢ it is enough to show that || [dI[df|9|(742)]1’0]270“% L=

(x+h2,0 — 93,0)(X,Y) =

O(r=2). For our purposes we consider a complex gg,o—unitary local trivialization (z,y) =
(21, 22,23, Y1, Y2, Y3, y4) € B x R* of v; that is, I(x,y) = (1,22, 23, —y2,y1, —y4,¥y3) and the
vectors that the trivialization determines have g%yo—length one. In addition, the connection
forms satisfy Imy = —no, In3 = —mn4; to check this one has to observe that the matrices
(A} )k, defined in Remark are complex linear because VI = 0. We now observe that

1dfio|(r*)]1,0 = 2flp (r?) (1712 —y21m +y3na—yans). Let us define 1 = y172—yom +ysna—yais €
V* and observe that ”77”930 = O(r). Then,

4
[dI[dfig(r*)]10l20 = 45 (r?) <Z yini N 77) + 4 (r?) (m A + 13 A ).
i=1

Thus, taking into account Lemma and the estimates for | f|’9|\ and | f(é' |, we obtain that
lldI[d e (r*)]10l20llg2 , = O(r™?). O
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Remark 4.30. From Lemma one deduces that if o € V* then [laly, ) = (1 +
O(r~")llallg, on r > 0. Therefore, if a € W;; then |ally, 4,y = (1 + O 1)) |y, on
r > 0.

Proposition 4.31. There exists so > 1, such that for each s > sg one can find t' such
that for each t <t there is a closed Gy structure ®%  such that ®4 , = ®4 onr < § and

(1)573 = X*(d)g,s) onr> 3.

Proof. On the anulus ¢ <7 < 7 we have that:

B~ x*(@h.) = pd(rer A (TldlFg(r) — 7)1o)).

We now let @ be a smooth function such that w =1 if z < % and w = 0if z > % and
ws(z) = w(%); then |wl| < % We define f,(z) = f,(vz) — 2 = a®((2® + a®)V/? +2)" ! —
alog((z? + a®)'/? + a) + alog(z) for a > 0 and

fs = wspr*el AN (Id[FQ(TQ)]L[)).
The form d¢, lies in Wa 1 @ W12 @ Wy 3. We claim that on r > 1:
I[d€s)2,111n, =|lmsprier A [dI[dfjg(r)]1,0]2,0 + [ds]10 A prier A [dfg (7)ol
=0(r 2+ 0(r~ts71,
I[d€s)121ln, =llwspr*er A [dI[dfg(r)]10]1,1 + @spr*(der) A I[dfjg(r)]10
+ [dwsJo, A prer ALdfig (M1l = O ™) +O(s™),
[[d€s]o.3lln, =llwwsprrer A [d[dfig)(7)]1,0]0.2]ln, = O(1).

We now prove some of the estimates. For that purpose, we take into account that
aliilln, = 1(x™H* s n on r > 1. To ease notations we identify [a]; ; € W/ . with
»J 1Th Jx (ha) J (2%
~1)*[a);; € W; ;. Following this notation, the formulas that we check are:
(X)) [ediy 0J g )
I[ds]1,0 A prier A I[dfjg (r)]10
l[dzoc o0 A pres A I[dfjg (r)]10

X« (h1) :O(T_ls_l)a
wo(hn) =O(s71).

These terms appear in the second and third estimates; the remaining are proved similarly.
According to Remark [4.30] it is sufficient to prove the estimates on the g;-norm. For instance,
if we check |[|[dws]1,0 Apre; A I[dﬂm(r)]l,o”gl =O(r~ts7!) onr > 1, then ||[dws]10 Apr¥er A
I[df|9‘(r)]170| a(hy) = (1 + O(r=)N20(r'sH =0@r"1sHonr>1.

For that purpose, we consider a complex g%o—unitary local trivialization of v:

(‘Tay) = ($17$2;$37y17y27y3ay4) S B x R47

as in the proof of Lemma According to Lemma we have: HI[alf_w‘(7"2)]170”91 =
2]f|’9|(r2)| ly1m2 — Yo + y3na — yansllg, = O(r_l). In addition, we compute:
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Taking into account that ||A§-(:L’,y)||g1 = O(r) we obtain that ||[dws]10lly; = O(s7!), and
that ||[dws]o1]lg, = O(rs™!). A multiplication yields the desired estimates.
Our previous discussion leads to:

[t2dés||n, = O(r2) + O(rLs™) + t(O(r™1) + O(s™Y)) + t20(1)

Take sg such that for each 0 < ¢t < 1 and s > sg it holds that |O(r=2) + O(r~ts71) +
tO@r™ 1) +0(s™)) <2 on g <r<% Lets>sgand take ¢ < ts such that [20(1)] < %
and ||®4 — ®Y||, < & on x !(vas); this is possible as we argued before. Define the closed
form
t2
w0 D,
which coincides with @} if » < £ and with x*(gggs) if > 7. On the neck § <r < 7 we have
that:
195 s — ®illn, < (1954 — Polln, + 185 — Py [[n, < m.

The statement is therefore proved. O

The map F; o x allows us to glue an annulus around the zero section on (v/j, ¢2) and an
annulus around @Q on (P, ®%); this yields a resolution.

Theorem 4.32. There exists a closed Go resolution p: X > X. In addition, let us denote
Dy (Q) the s-disk of P centered at Q; then

X = X — exp(v/i) UexpoFrox Ds(Q)
for some e >0,t>0 and s > 0.

Proof. Let g < R and sp > 0 be the values provided by Proposition [£.26] and [£.31] Fix
s > so and choose t <t with st = § for some € < g9. The map F; o x identifies s < r < 2s
on P with § <r < § on v/j.

Consider the Gy forms <I>§’8 on X (ves/j) and ¢3 . on on vy /j; on the annulus s < r < 2s
of x (ras/j) we have that DL, = X*(QA%S) = ¢hand on § < r < § on v/j we have that

2
¢3,e = ¢2-
Being (F} o x)*d2 = x*(¢}), the Gg structure is well defined on the resolution. O

Remark 4.33. The radius of the disc r < 2s with respect to the metric h; is 2st. For fixed
sop > 0 the map F} o x identifies 0 < r < 2sg on P with 0 < r < 2sgt on v; therefore if we
choose t — 0 then the size of the exceptional divisor decreases.

4.4 Topology of the resolution

This section is devoted to understanding the cohomology algebra of the resolution; we shall
make use of real coefficients and denote by H*(M) the algebra H*(M,R). We start by
describing H*(X) in terms of H*(X) and H*(L) and we then compute the induced product
on it.

The fibre bundle v is topologically trivial; this follows from the fact that every 3 manifold
is parallelizable. For a proof see [75, Remark 2.14]. However, it might not be trivial as a
complex bundle as we shall deduce from the computation of its total Chern class.

Let us suppose for a moment that L is connected; then L is the mapping torus of diffeo-
morphism : ¥ — X, where X is an orientable surface of genus g. In section we denoted
by q: ¥ x [0,1] — L the quotient projection, and by b: L — S* the bundle projection. We
also chose that § = b*(fy) with 6y the angular form on S?.
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In Proposition [£.34] we compute the total Chern class of v by observing first that v admits
a section and thus v = C @ ker #; where C denotes the trivial line bundle over L. Then we
identify ker(f) with the tangent space of the fibres taking into account that 6 = b*(6y). A
formula for ¢(v) follows from these remarks.

In order to state the result it shall be useful to note that 2-forms on ¥ determine closed
2-forms on L. More precisely, let us consider @: [0, 1] — R a bump function with @|jg ;4 = 0
and @|j3/41) = 1. Let 8 € Q*(2) and let o € Q(X) such that ¢*3 = 3 + do; note that this
is possible because 1* = Id on H?(X). Then § = 8 + d(w(t)a) € Q%(T x [0,1]) induces a
2-form on L via the push-forward. Of course, one can show that the cohomology class of 3
does not depend on «. In addition, from the Mayer-Vietoris long exact sequence we deduce

that [a.(B)] # 0 if [3] 0,
We denote by wy, € Q%(L) a closed 2-form induced by a volume form voly, of ¥ that

integrates to 1 on X. This class represents the Poincaré dual of a circle C' C L such that
q({po} x [0,1]) € C and C — q({po} x {0}) is an embedded line on q(3 x {0}) if it is not a
point.

Proposition 4.34. The total Chern class of v is c¢(v) = 1+ (2 — 2g)[wx].

Proof. Let x be the cross product on T'M |1, determined by ¢. Consider on E = ker(6) C T'L

the complex structure JW = W x e%, where e; = [|0]|7'6. This is well-defined because x

defines a cross product on T,L and if 6(X) = 0, then X x e% 1 eg. Recall also that the
f

complex structure on v is: I(v) = e] X v.
We prove that there is an isomorphism of complex vector bundles:

CoFE — v

A nowhere-vanishing section s: L — v exists because dim L = 3 < 4 = rk(v); we define
the isomorphism C & £ — v,

(Zl+i22,W)|—>218+22€§ x s+ W x s.

In order to check that the isomorphism is complex linear one uses the equality [104, Lemma
2.9]:
ux (vxw)+vx(uxw)=gluwv+ glv,wu—2g(u,v)w.

where g denotes the restriction to v of the metric on M. In our case taking u = e’i, v=-Ss

and w = W we obtain that e’i x (W xs)= (W x eﬁ) X S.

From the isomorphism we get that ¢(v) = ¢(C)c(E) = 1+ ¢1(E). We now compute ¢1(E);
note that E is the vertical distribution dq(T%X x [0,1]) € TM. First consider a compactly
supported 2-form v € Q?(TY) representing the Thom class of the bundle 7Y — S that
integrates to 1 over the fibres. Being the diffeomorphism di: T — T3 volume-preserving
we obtain that (diy)*v is also a compactly-supported 2-form that integrates to 1 over the
fibres. Thus, (di)*v = v + da for some compactly-supported o € QY(TX). In addition let
so: 2 — TX be the zero section; then [s§(v)] = (2 — 2g)[volx].

The push-forward q. (v + d(wa)) € Q?(E) of course induces the Thom class of E. Being
s[p, t] = dqp) (so(p,t)) the zero section of £ we obtain:

c1(E) = 57[q« (v + d(wa))] = [g(sov + d(wspar))] = (2 = 29)[ws].

To obtain the last equality we have taken into account that si(dw) = 0, si(¢v*v) = sjv +
d(sga) and [s§(v)] = (2 — 2g)[volx].
U
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The projectivized bundle of v coincides with @ because P(v) = Py (v) Xy CP! = Q.
An obstruction-theoretic argument ensures that it is trivial:

Lemma 4.35. The bundle Q — L is trivial.

Proof. First recall that the spaces Diff (%) and SO(3) have the same homotopy type. Clas-
sifying S? bundles is therefore equivalent to classifying rank 3 vector bundles. In our case,
denoting by E = ker(6) as in the proof of Proposition if gop € SO(2) are the transition
functions of F, taking into account the diffeomorphism CP! — S2 one can compute that the
transition functions of () are

hap(z)(v1,v2,v3) = (gap(v1,v2),v3)

Therefore, the associated rank 3 vector bundle V' has transition functions g, x Id € SO(3).
This is trivial if and only if @ is. We now observe that V is trivial if and only if its second
Stiefel-Withney class vanishes. For that purpose consider a CW-decomposition,

L=U}_oL"

Then V|1 is trivial because SO(3) is connected. The trivialization extends to L? if the
primary obstruction cocycle is exact; this coincides with the second Stiefel-Whitney class
(see [63, Proposition 3.21]). If it vanishes, then the last obstruction cocycle lies in the
cohomology group H3(L,m(SO(3))) = 0 and therefore the trivialization extends to L.

We now compute the second Stiefel-Whitney class of V. Regarding the transition func-
tions V. = E @ R and thus wa(V) = wa(F). Being E a complex vector bundle, we obtain
wa(E) = c1(F) (mod 2) = (2 — 2¢g)wx, (mod 2) = 0. O

Using Proposition we re-state a well known fact. For that purpose consider the
tautological bundle associated to v:

P = Pyp)(v) xy(e) C*.

Denote frames in Pyg)(v) by F. There is a well-defined Z; action on P, determined by
[F, (21, 29,0)] — [F,(=21,—22,¢)]. The quotient P/Zy coincides with P. We denote by

o0: P — P the projection.

Proposition 4.36. Let e(P) be the Euler class of the line bundle P — Q. Denote by
H*(L)[x] the algebra of polynomials with coeffiecients in H*(L) The map:

F: HY(L)[x]/(x* + (2 = 29)ws]x) = H*(Q), F(B) = pr'p, F(x) = ¢(P),
is an isomorphism of algebras.

Proof. The conclussion follows from Proposition and formula (20.7) of p. 170 in [19]. O

Recall that we denoted the projection by pr: P — L. Consider 7 € Q%(P) the Thom
2-form of the line bundle P — @ and note that we can suppose that 7 is Zs-invariant because
the involution preserves the orientation on the fibres. From Proposition [£.36] we obtain:

[T A7) = —=(2—=29)[(¢opr)ws AT].
We also denote by 7 the pushforward g.7 € Q(P); on H*(P) it also satisfies that:

[TAT] =—(2—2¢)[priws A T].
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Of course, we can extend 7 to a 2-form on X and it corresponds to the Poincaré dual of Q).

We now compute the cohomology of X ; for this we do not assume that L is connected
and we denote by Lq,..., L, its connected compontents. Each L; is the mapping torus of a
diffeomorphism ;: ¥; — ¥;, where ¥; is an orientable surface of genus g;; we denote by w;
the 2-form wy,, as constructed before. We also denote Q; = Q|r,, Pi = P|r, and 7; the Thom
form of Q; C P;.

Proposition 4.37. There is a split exact sequence:

®

0—— H*(X) "> H*(X) — &}_ H* (L)) @ (xi) —> 0
where x; has degree two.

Proof. The existence of such exact sequence is contained in the proof of [75, Proposition

6.1]; we outline it. Consider the long exact sequence of pairs (X, L) and ()~( ,Q). There is a
commutative diagram:

*

H*(X,L) — H*(X) —% @, H*(L;, R) —> H*(X, L)

|- |- ) |- |-

X, Q) — HF(X) — 2> @, H%(Q,) — 2> HM1(X, Q)

Here we denoted the inclusions er,: L — X and eg: Q@ — X. The first and fourth columns

are isomorphisms; these correspond to the identity map. The third column is injective with
cokernel @; H*(Q;)/H*(L;); this is isomorphic to @; H*2(L;) ® (x;), because Q; = L; x S2.
Thus we get a commutative diagram with exact columns:

Coker(7*) *iQEBin#(Li) ® (xi)

Of course, €q is the action induced by e, on the quotient. In addition, the fact that first
and fourth columns are the identity implies that Im(e}) = Im(eg)).
The Snake Lemma ensures that there is an exact sequence:

0 — ker(e}) — ker(eg;) — ker(eq) — Coker(e}) — Coker(eg,) — Coker(eg) — 0.

The maps are induced by 7%, except for the connecting map ker(eg) — Coker(er). The
map 7 ker(e}) — ker(eg)) is an isomorphism because the first column is an isomorphism
and the diagram is commutative. In addition, taking into account that the fourth column
is an isomorphism and that the diagram is commutative one can also check that 7* is an
isomorphism between Im(D;) and Im(D3). Moreover:

Im(D;) = &;H*(L;)/ ker(Dy) = @; H* (L;)/Im(e}) = Coker(e?),
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and the isomorphism is induced by the map that 7* induces on the quotient. Similarly,
Coker(ep,) is isomorphic to Im(Dz) via 7*. This means that ker(eq) = 0 = Coker(eq) so,

Coker(m*) = @; H*(L;) ® (x;).
Consider 7; the Poincaré dual of Q; C X as constructed before. Then,
B ®x; — pr(B)m
is a splitting of the previous exact sequence. O

This result implies that there is an isomorphism of vector spaces between H*(X) and
H*(X) ® @F_,H*(L;) ® (x;). The algebra structure of H*(X) induces an algebra structure
on H*(X) @ &{_1H*(L;) ® (x;) that we compute in Proposition [4.38] This is necessary in
order to decide whether the resolution X is formal or not, because the formality condition
involves products of cohomology classes.

Proposition 4.38. There is an isomorphism
H*(X) = H*(X) @ - H*(Li) @ (xi).

Let a, p € H*(X), vi € H*(Li), v; € H*(L;) and let e;: L; — X be the inclusion. The wedge

product on H*(X) determines the following product on the left hand side:
1. af=aANp,
2. a(vi ®@xi) = (e (@) A i) ©xi,
3 (i @x)(v;@x) =0 if i # j,
4. (i @ %) (7 @ %3) = —2(7; AY;)PDILi] — (2 — 29:) (wi @ x;).

Proof. Let s: @;_; H*(L;) ® (x;) — H*(X) be the splitting map constructed in the proof of
Proposition Then, the isomorphism is determined by:

T = (p*,5): H*(X) @D @it H* (L) ® (x;) — H*(X).

In order to obtain a formula for the product between forms 7, 7’ we have to compute
(T)~1(Tn ATx'). All the statements are evident except for the last one. We only check
x? = —2PD[L;] — (2—2¢;)(w; ®X;), the announced formula is deduced from this and the fact
that H*(X) is an algebra. First of all, Tx; A Tx; = [1; A 73]; we now compute T~![r; A 7;].
On the one hand taking into account the equality

[1i ATi] = —(2 — 2g;)[pr* (wi) A Til,
we obtain that the restriction of T~1[r; A 73] to H*(L;) ® (x;) is —(2 — 2¢;)(w; ® x;). On the

other hand, note first that if 2 € L; then 7;|p, is the Thom form of ), C P, because 7; is
the Thom form of Q; C P;. Thus:

[ mam=1QQ) = -2
Py

The restriction of T~![r; A 7;] to H*(X) has compact support around L; and

/ p*(Ti/\Ti):/ p*(Ti/\Ti):/ Ti/\Ti:/ T ANT = =2
Vg ve—0 Pr—Qq Py

The restriction in thus equal to —2PD[L;]. O
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4.5 Non-formal compact G, manifold with b; =1

Nilpotent Lie algebras that have a closed left-invariant Gg structure are classified in [34]; from
these one obtain nilmanifolds with an invariant closed Gg structure. Of course, excluding
the 7-dimensional torus, these are non-formal and have b, > 2. From a Zs action on a
nilmanifold, in [47] authors construct a formal orbifold whose isotropy locus are 16 disjoint
3-tori; then they prove that its resolution is also formal. In this section we follow the same
process to construct first a non-formal Gg orbifold with b; = 1 from a nilmanifold; its isotropy
locus consists of 16 disjoint non-formal nilmanifolds. Later we prove that its resolution is
also non-formal and does not admit any torsion-free G structure.

4.5.1 Orbifold with b; =1
Let us consider the Lie algebra g with structure equations
(0,0,0,12,23, —13, —2(16) + 2(25) + 2(26) — 2(34)),

and let (eq,eq,es3,e4,€5,€6,e7) be the generators of g that satisfy the structure equations,
that is, [e1,e2] = —eq, [e2,e3] = —e5 and so on. Recall that the simply connected Lie
group G associated to g is the vector space g endowed with the product % determined by the
Baker-Campbell-Hausdorft formula.

Remark 4.39. The Lie algebra g belongs to the 1-parameter family of algebras 147 E1 listed in
Gong’s classification [58]; we choose the parameter A = 2. The associated Lie group admits
an invariant closed Gg structure as proved in [34].

Define u; = eq, us = e, ug = eg, Uy = %64, Us = %65, Ug = %66 and uy = %67.

Proposition 4.40. If z = 22:1 Apug and y = 22:1 prug then

ok y =(A1 + pr)ur + (A2 + p2)ug + (A3 + pz)us + (Mg + pa — (Arp2 — Aopin))ug
+ (A5 + p5 — (Aapg — Azp2))us + (A6 + pe + (A1pz — Azpir))ue
+ (A7 4+ p7 4+ (A1 — 1 = Ao+ p2)(Maps — Aspa) — (A3 — ps) (Apz — paA1))ur
+ (=(A2 — p2)(Aapz — Azp2) + 3(A1pe + Aepa) )ur
+ (—3(A2ps — Asp2) — 3(Aape — Aepa) + 3(Azpea + Aaps))ur.

Proof. Being g is 3-step, the Baker-Campbell-Hausdorff formula yields:
1 1
Taking into account that uy € Z(g) and that [u;, [uj,ug]] =0if i >4 or j >4 or k >4, it
follows:
7

1
zry =y (A4 pi)ui + 5 Do iy = Ajpa)[wi, uy)
k=1 1<i<j<7
1
+ 15 S k=) Y iy — Ajga) [u, [ui, ug]];
1<k<3 1<i<5<3

The non-zero combinations [u;, u;] and [ug, [u;, u;]] are:

[u1,ug] = — 2uy, [ug, us] = — 6ur, [us, [u1, us]] = — 12uy
[u1, us] =2us, [ug, ug] = — 6ur, [ug, [u1, ug]] =12ur
[u1, ug] =6uz, [us, ug] =6uy, [ug, [u1, us]] = — 12uy,
[ug, us] = — 2us, [ug, [ug, ug]] =12ur

The announced formula easily follows from this. O
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Proposition ensures that
7
I'= {anuz, s.t. n; € Z},
i=1

is a discrete subgroup of G, which is of course co-compact. Indeed, a straightforward com-
putation gives a fundamental domain for the left action of I on G:

Proposition 4.41. A fundamental domain for the left action of I' on G is
7
D= {thuz st 0<t; < 1}.
i=1

According to [34, Lemma 5|, the group G admits an invariant closed Gg structure deter-

mined by:

347 567

o = 127 PAT | 567 | 135 236 146 245
where:
o vl =32 + &5 —e? +€b); o 5 =+/2(eb —€d);
o v2=3e?—¢ed + e o 0 =1/6(ed+ %),
o v3 =¢34 2ek; o vr =2V2(et —¢?).

o vi=13(e+¢€);

Consider M = G/T'; points of M will be denoted by [z], for some x € G. The nilmanifold
M inherits a closed Go structure that we also denote by . We now define an involution j
on M such that j*¢ = ¢. For that purpose it is sufficient to define an order 2 isomorphism
j: G = G of G with j*¢ = ¢, and jI" =T'. The desired map is:

J(ek) = €, ke 3,4, 7, J(ek) = —ég, ke {1, 2,5,6}.

Looking at the structure constants of G it becomes clear that j is an automorphism of g.
The Baker-Campbell-Hausdorff formula ensures that j is an homomorphism. In addition, it
is clear that j(I') C I'. Finally, one can easily deduce that j*(¢) = ¢.

We define the orbifold X = M/j, which has a closed Gy structure determined by ¢. We
now study its singular locus:

Proposition 4.42. The isotropy locus has 16 connected components; these are all diffeo-
morphic and their universal covering is the Heisenberg group. Let us define Hy = {Agus +
Aug + Aug, s.t. A\j € R} and € = {e1u1 + equg + esus + cpup, S.t. €5 € {0,%}} The 16
connected components of the isotropy locus are:

H.=[L.Hy], c€é&,
where Le denotes the left translation on G by the element € € £.

Proof. Tt is clear that Hj is a connected component of Fix(j) that contains 0, which is the
unit of G. Being j an homomorphism, we conclude that Hy is a subgroup of G. It is thus
sufficient to prove that the Lie algebra h of Hy is the Heisenberg algebra. This is of course
true because h = (e3, e4, e7) with [e3, e4] = e7 and [e;,e7] = 0 for j € {3,4}.



Non-formal compact Go manifold with by =1 142

Let £ = {1,2,5,6} and consider x = > ,cxc Apup € D, that is, Ay € [0,1]. We now
check that if v x = j(z) for some v € I" then [x] € H. for some ¢ € £. Let us denote
v = 22:1 npug; taking into account Proposition one obtains:

v*x =(n1 + A1)ug + (ng + Ao)ug + naus + (ng — nidg + nodi)uy
+ (n5 + A5 + ngA2)us + (n6 + A6 — ngA1)us + Nz,

for some X' € R. The equation j(x) = v % = yields immediately to 2\; = —n; for j = {1,2}
and n3 = 0. Taking this into account, ng — niAa + nad1 = ng, N5 + A5 + n3Ao = ns + As,
ng + ag — n3A\1 = ng + A¢ and thus ng = 0, 25 = —n5 and 2\¢ = —ng. Thus, z =
—% > kek NkUk, so that x € H, for some € € £.

We now let [y] be an isotropy point; one can write: y = x1 * x9; with 1 = >, cc Apus
and x2 = Zkgélc prug € Hg. The choice becomes clear from the equality:

Tl * T2 =AU + Agug + psus + praug + (As — Aapz)us + (A + o ps)ue
+ (u7 + (A1 = A2)(Aips) + Aaps)ur,

that is of course deduced from Proposition
Using this decomposition we obtain the equality v * z129 = j(y) = j(z1)x2 that implies
j(z1) = ya1. Take 2 € € with 1 = '}, then [y] = [y/2z2] = [2]22] € [Ly Hol. O

4.5.2 Non-formality of the resolution

We start by computing the real cohomology algebra of the orbifold. Nomizu’s theorem [98)]
ensures that (A*g*,d) is the minimal model of M. Taking into account that H*(X) =
H*(M)%2 we obtain that ((A*g*)?2,d) is a model for X. The cohomology of X is:

H'(X) =([e”]),

H2(X) =([e*], [e"° — e*], [e"® — ™)),

(X) =<[6 ] [ 135] [ 356],[6124],[6146],[6245],[6127+26145],
[

o125 | o167 _ (257 _ 9,56 _ (347))

We now prove that X is not formal.

Proposition 4.43. The triple Massey product ([e3], [e!® — %], [€3]) of ((A*g*)?2,d) is not
trivial. Therefore, X is not formal.

Proof. First of all, one can check that that space of exact 3-forms of ((Ag)?2,d) is:
B3((A*g")%2, d) = (e123, 135 _ 6236 _ 136 4 235 4 (236 12T _ 9,146 | 9,245 | 9,216y
and the space of closed 2-forms is:
Z2(A*g")%2, d) = (12, —e!6 4 2 4 26 _ 34 625 (15 _ o2 15 _ 31y,

Let us take & = [e?] = &, & = [e!® — €%6]; the representatives of these cohomology
classes are a3 = a3 = €3 and ag = ' — €26 + dz for some x € (g*)?2; our previous
computations ensure that the Massey product (£1,&2,&3) is well defined. More precisely,
a1 Aag = d(—e% + 3z + B1) and ag A az = d(e’% — e3x + B2), where 1 and B are closed
forms. Defining systems for (£, &2, &3) are (€3, e!® —e?0 +dx, €3, —e?0 +e3x+ 31, €0 — ez + 32)

and the triple Massey product is
(€1,60,&3) = {[2¢¥ + €*B] s.t. dB = 0}.

The zero cohomology class is not an element of this set due to our previous computations.
Corollary [£.19 ensures that X is not formal. O
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Let p: X — X be the closed G resolution constructed in Theorem u Lifting this
triple Massey product to X we prove that X is not formal.

Proposition 4.44. The resolution X s not formal.

Proof. Let (AV,d) be the minimal model of X with V = @7_, V% and let k: AV — Q(X) be
a quasi-isomorphism. From Proposition we deduce that H1(X) = (p*(e3)) and that:

H*(X) = (p"(e”), p*(e"® =€), p* (" — ), 71, T6).

In addition, p*(e3 A (e —e20)) = dp* (%) and p*[e?3°] and p*[e!3®] are linearly independent
on H3(X,R). Then, according to Proposition one can choose:

Vi =(a),
V2 :<b1> b27 b37y17 cee 7y167n>'

with da = 0, db; = dy; = 0 and dn = aby and the map & is:

K(a) =p*(e?), k(ba) =p*(e'® — %), K(n) =p*(e%),
r(br) =p" (), k(bs) =p (e’ — ), K(y;) =T;-

We now define a Massey product. Let us take £ = [a] = &3, {2 = [ba]; the representatives of
these cohomology classes are a; = a3 = a and ag = by. Then a3 A g = d(—n + S + w1)
and ae A ag = d(n + B2 + we) with B, B2 € (b1, ba,b3) and wy,ws € (y1,...,y16). Therefore,
defining systems of ({1, &2,&3) are (a, b2, a, —n+ 1 +w1,n+ P2 +ws) and the Massey product
is the set

{[2an + af + aw] s.t. B € (b1,b2,b3), w € (Y1,...,Y16)}
We now observe that [2an+af+aw] = 0in H*(AV,d) if and only if w = 0 and [k(2an+af)] =
0. This is because [k(aw)] = [p*(€?) A k(w)] = 0 if and only if w = 0, and if [w] # 0, the
elements [k(aw)] and [k(2an + af)] are linearly independent.
In addition, k(2an +aB) = p*(2e3® +e3 A B), with 5 € (%, e!® — 26 e!5 — ¢34). Taking
into account Proposition m [k(2an + aB] = 0 if and only if [2e3°¢ + €3 A '] = 0 on X. But
[2e3%6 + €3 A '] # 0 as shown in Proposition O]

There is another non-trivial triple Massey product that comes from the isotropy locus.
In order to describe it we have to construct the subspace V3 of our minimal model; it is a
direct sum V2 = C @ N; such that dC = 0 and there are not closed elements on N. To
construct C one takes a basis of the space H3(X)/H'(X)H2(X); for instance:
<p*[6346],,0*[6124],p*[6146],p*[6245],p*[6127 + 26145]
,0*[6125 + e167 _ 6257 o 26456 _ e347]> @ <{[€4 ® Xi] Z161>
Let C = (¢1,...,¢6,21,...216) with dC = 0 and define /@(01) = p*(e319) k(c2) = p*(e'®), ...,

K(cg) = p* (125 + 167 — €27 — 26456 _ 317) and k() = et ® x;.
With this notation, the triple Massey product coming from the singular locus

([a]; [z, ~lal)

is not trivial.

Proposition 4.45. The fundamental group of X is m1(X) = 7 X Zy x Zs.
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Proof. Let us denote m: M — X the quotient projection. In order to compute 71 (X) we first
observe that 71 (M) is isomorphic to I' due to the exact sequence 0 — 71 (G) — w1 (M) —
I' = 0. Of course, each generator u; € I' is identified with the homotopy class f; determined
by the image of the path from 0 to u; under the quotient map ¢: G — M. Denote by [, ]
the commutator of two elements on 71 (M ); then the product structure on I" determines that
the non-zero commutators are:

L1, fo] =f1 2, 1. 2] =52, [fo. 5] =£7°, [f3, fa] =12
[f1, f3] =13, [f1, fo] =12, [fa, fo] =17 C,

Taking into account [2I, Corollary 6.3] the map m,: m (M) — m(X) is surjective; we now
analyze 7. (f;j). First of all, under the projection 7 the image of the loop f; is the same as
the path from 0 to %xl followed by the same path in the reverse direction; this is of course
contractible and thus m,(f1) = 0; in the same manner 7, (f2) = m.(f5) = m«(fs) = 0. Taking
into account commutator relations this implies that m.(f7) = 0, m(f¢) = 0 and that 7.(f3),
T« (fa), m«(f7) commute. Thus, m1(X) = Z x Zg x Zg.

We now prove that the resolution process does not alter the fundamental group. For each
g € &£ consider a small tubular neighbourhood B¢ of H. and suppose additionally that B¢
are pairwise disjoint. Take D* C B® a smaller tubular neighbourhood of H.. Define U a
connected open set containing U, B® that is homotopy equivalent to \/, H. and V = X —U.D°®.

Seifert-Van Kampen theorem states that 71 (X) is the amalgamated product of 71 (V') and
m1(U) via 71 (UNV). Define U = p~Y(U), V = p~1(V); note that V and V are diffeomorphic
via p; in addition, p,: 711([7 ) — m1(U) is an isomorphism because U is homotopy equivalent
to \/. H. x S%. This observation and a further application of the Seifert-Van Kampen theorem

ensures that m1(X) = m(X). O
Proposition 4.46. The manifold X does not admit torsion-free Go structures.

Proof. Suppose that X admits a torsion-free Gy structure. Since g is Ricci flat and b; = 1,
[18] ensures that there is a finite covering N x St — X; with N a compact simply connected
6-dimensional manifold. Note that the covering is regular because wl()? ) is abelian; thus
(N x §81)/H = X, where H denotes the deck group of the covering.

The manifold N is formal because it is simply-connected and 6-dimensional (see [49]
Theorem 3.2] ); therefore N x St is formal (see [49, Lemma 2.11]). Lemma allows us to
conclude that (N x S')/H = X is formal; yielding a contradiction. O

Remark 4.47. We can also prove Proposition by making use of the topological obstruc-
tion of torsion-free Gy structures obtained in [29]. Suppose that X has a torsion-free Gy
structure, then [29, Theorem 4.10] guarantees the existence of CDGAs (A, d) and (B, d) with
the differential d: B*¥ — B**! being zero except for k = 3, and quasi-isomorphisms:

(UX), d) <— (4,d) — (B, d).

This implies [29, Corollary 4.13] that non-zero triple Massey products (£1, &, €3) on ((X), d)
satisfy that [£1] 4 [€2| = 4 and [&2| + [€3] = 4. Let (A, d) be the minimal model of (A,d),
then one can obtain quasi-isomorphisms:

(A‘/, d) DI (A/7d> - (Bv d)

The same conclusion holds for non-zero Massey products on (AV,d). This contradicts the
fact that there is a non-zero Massey product (£1,&2,&3) on (AV,d) with || = €3] = 1 and
|€2| = 2 as it is obtained in the proof of Proposition Therefore X does not have a
torsion-free Go structure.
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Remark 4.48. There exists a finite covering ¥ — X such that 71(Y) = Z because m(X) =
Z x Zs x Zg. The manifold Y is also non-formal as a consequence of Lemma [£.21] and of
course, it has first Betti number b7 = 1 and admits a closed Gy structure. Arguing as in
the proof of Proposition [4.46] one can conclude that Y does not admit any torsion-free Go
structure.



RESUMEN EN ESPANOL

Esta tesis se compone de cuatro articulos que he redactado en el transcurso de mi doctorado,
dos de ellos en colaboracién con otros autores. Estos trabajos abordan varios problemas en
el drea de las estructuras geométricas, tales como el estudio de las estructuras Spin(7) y la
construccién de variedades compactas con estructura simpléctica y de tipo Go cerrada. En el
caso de las variedades con estructura Geo, prestamos especial atencién a dos propiedades topo-
logicas: formalidad y primer niimero de Betti. Las técnicas que empleamos son basicamente,
teoria de espinores, estructuras invariantes por la izquierda en nilvariedades y resolucién de
orbifolds. Dedicamos este resumen a presentar el estado del arte de estos temas y a exponer
los resultados principales de la tesis.

Dentro de la geometria Riemanniana, la teoria de holonomia motiva el estudio de las
estructuras geométricas no integrables. El grupo de holonomia Hol(g) de una variedad Rie-
manniana (M, g) es un invariante que cuantifica cémo cambia cada vector de T,M tras su
transporte paralelo a lo largo cada uno de los lazos con punto base p. Tras su definicién, el
interés por determinar los grupos de holonomia que pueden tener las variedades Riemannia-
nas simplemente conexas, completas e irreducibles crecié rapidamente. La hipotesis de que
M sea simplemente conexa garantiza que Hol(g) sea un subgrupo de Lie conexo de SO(n).
Bajo ésta, la completitud de (M, g) junto con su irreducibilidad descartan que Hol(g) sea un
producto. En concreto, el teorema de descomposicién de de Rham [39] demuestra que toda
variedad Riemanniana (M, g) simplemente conexa y completa es un producto Riemanniano
(Mi,g91) X ... x (My,ge) tal que la accion de Hol(g;) en T, M; es irreducible. Cartan carac-
teriz6 los grupos de holonomia de las variedades simétricas en [26], 27] utilizando la teoria
de grupos de Lie como herramienta. Mas tarde, Berger aborda el caso de las variedades no
simétricas en [I7], obteniendo:

Teorema Sea (M, g) una variedad Riemanniana simplemente conexa, completa, irredu-
cible y no simétrica de dimension n. Ocurre exactamente uno de los siguientes casos:

146
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En conjunto, los grupos U(m), SU(m), Sp(k), y Sp(k) - Sp(1) se conocen como grupos de
holonomia especial. Mientras que Go y Spin(7) son los grupos de holonomia excepcional. Es
interesante destacar que los grupos de holonomia del teorema de Berger estan relacionados
con las élgebras de divisién reales. Los grupos U(m) y SU(m) se asocian a las variedades
Kdhler y Calabi- Yau; éstas son complejas desde el punto de vista de la geometria diferencial.
Los grupos Sp(k) y Sp(k)-Sp(1) se asocian a los cuaterniones y corresponden a las variedades
hyperKdhlery quaternionic-Kdhler. Los grupos Go y Spin(7) son simplemente conexos y estan
relacionados con los octoniones. El producto octoniénico en R® = Q determina un producto
vectorial triple x, esto es, una aplicacién multilineal R® x R® x R® — R® tal que el producto
u X v X w tiene norma |[u A v Awl| y es perpendicular a los vectores u, v y w. La contraccién
de x con el producto escalar proporciona la 4-forma Qg (u, v, w, z) = (u X v X w, ), que tiene
la siguiente expresion respecto de la base canédnica (eg,...,e7):

Qg = (0123 _ 0145 _ L0167 _ 0246 4 0257 _ 0347 _ 0356

+ 64567 _ e2367 _ 62345 _ 61357 + 61346 _ 61256 _ 61247.

Denotemos R® = R(eg) x R7; el producto triple de R® determina un producto vectorial en R”
mediante la expresién u X’ v = eg X u X v. De manera equivalente, la 4-forma €y determina
una 3-forma ¢y = i(eg)§2y en R”. Spin(7) es el subgrupo de SO(8) que preserva el producto
vectorial triple de R®, o sea, Stab(€), y G2 es el subgrupo de SO(7) que preserva x’, o sea,
Stab(pg). Naturalmente, Go C Spin(7).

La demostracion del teorema de Berger es algebraica y en el momento de su publicacién
no se conocian ejemplos de métricas completas con holonomia G o Spin(7). Bryant y Sa-
lamon [24] construyeron ejemplos de este tipo en 1898. A partir de esta lista también surge
el problema de construir variedades Riemannianas compactas con holonomia SU(m), Sp(k),
Sp(k) - Sp(1), Ge, y Spin(7). Estas construcciones requieren profundos teoremas del area del
andlisis; por ejemplo, la construccién de variedades compactas de holonomia SU(m) y Sp(k)
emplea el teorema de Yau, que demuestra la conjetura de Calabi e implica que toda variedad
Kéhler compacta con fibrado candnico trivial admite una métrica Calabi-Yau. Las variedades
compactas con holonomia Gg y Spin(7) fueron las tltimas en aparecer alld por 1996. Mas
adelante en este resumen revisaremos la construccién de Joyce desarrollada en [71], [72] [73].

El principio de holonomia permite interpretar la condicién Hol(g) C G como una combi-
nacién de dos obstrucciones, una topolégica y otra analitica ([74, Lema 2.5.2]).

Proposicién [2l Sea (M, g) una variedad Riemanniana, sea p € M y sea Hol(g) el grupo de
holonomia con punto base p. Entonces,

1. Si'T es un tensor paralelo de M entonces Hol(g) C Stab(T),).

2. SiS es un tensor de R™ tal que Hol(g) C Stab(S), existe un tensor paralelo T de M tal
que T, = S.

La dificultad para encontrar ejemplos con holonomia especial y excepcional, junto con el
principio de holonomia, motivaron el estudio de las estructuras geométricas asociadas a grupos
de Lie G € SO(n). Una G estructura en una variedad Riemanniana (M, g) es una reduccién
del fibrado SO(n) principal de M al grupo G. Esta nocién es equivalente a la existencia de
tensores {T;} con estabilizador comtin G. Por este motivo denotamos por (M", g,{T;}) a
una G estructura en una variedad Riemanniana de dimensién n. Centrémonos en el caso de
los grupos U(m), SU(m), G2 y Spin(7):
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1. (M?™ g,J) es una estructura U(m) o una estructura casi hermitica si J es una estruc-
tura casi compleja compatible con g. Es decir, para cada p € M?™ existe una isometria
fo: (T,M?™, g,) — (C™, (-, -)) tal que f,oJ,o fp_l(v) = jv para cada v € C™. En este
caso, definimos la 2-forma w(v,w) = g(Jv, w).

2. (M?m,g,.J,0) es una estructura SU(m) si (M?™,g,J) es una estructura U(m) y las
aplicaciones { f,}pen también verifican f(dzi A--- Adzpy) = Oy,

3. (M7, g, ) es una estructura Go si ¢ es una 3-forma tal que para cada p € M7 existe
una isometrfa f,: (T,M7, g,) — (R, (-,-)) tal que froo = pp.

4. (M8,g,9) es una estructura Spin(7) si Q es una 4-forma tal que para cada p € M?®
existe una isometria f,: (T,M®,g,) — (R®, (-,-)) tal que f3Qo = €,

Asimismo, las estructuras geométricas permiten estudiar situaciones geométricas que el gru-
po de holonomia no puede distinguir. Este es el caso de las estructuras U(m) y SU(m) en
variedades de dimension impar (2m + 1). Las primeras se llaman estructuras casi contacto
métricas y estan relacionadas con la geometria de contacto.

En general, se obtienen propiedades geométricas interesantes cuando los tensores que de-
finen la estructura geométrica verifican ciertas ecuaciones en derivadas paricales. Estas son
normalmente mas faciles de resolver que la condiciéon Hol(g) C G. Los ejemplos incluyen
las variedades casi Kéhler y las estructuras hermiticas, que son variedades simplécticas y
complejas desde el punto de vista de la geometria diferencial. Una estructura U(m) es casi
Kéhler si dw = 0 y hermitica si el tensor de Nijenhuis N; se anula. Esto motivé a Gray y a
Hervella a comenzar un programa de clasificacion de G estructuras en [59], que aborda el caso
de las estructuras casi hermiticas. La torsion intrinseca I' es el objeto que permite clasificar
las G estructuras. Esta es una seccién de un fibrado W sobre M con fibra R" ® g; donde g
denota el dlgebra de Lie de G C SO(n) vista como un subespacio de A2R™ = so(n), donde
tomamos su complemento ortogonal. El G médulo R ® g se descompone como suma directa,
de subespacios invariantes irreducibles, determinando una descomposiciéon W = ®;c1W;. Las
clases no integrables se definen por I' € ®;c;W; para algin J C I, J # 0; el caso paralelo
corresponde a I' = 0, condicién que equivale a Hol(g) C G.

Estas clases se describen normalmente en términos de la derivada covariante o la derivada
exterior de los tensores que definen la estructura. Centrémonos en el caso de las estructuras
Ga, obtenidas por Ferndndez y Gray en [48] y posteriormente reformuladas por Bryant en
[23]. Las clases de estructuras Gg estdn determinadas por dy y d * ; més precisamente, las
formas de torsion T, € QF(M) verifican:

dp =19 *p+ 371 A @+ *T3,
dxp =411 AN*xp+ T2 N\,

y ademas 7o y 73 satisfacen: m Axp = 0, 3 Axp = 0y 73 A ¢ = 0. Naturalmente, estas
ecuaciones se deducen de la descomposicién de los espacios A*(R7)* y A®(R7)* en subes-
pacios Go invariantes irreducibles. La 1-forma 6 se conoce por el nombre de forma de Lee
de la estructura. Las clases puras son aquellas en las que se anulan todas las formas de
torsién salvo una; los casos més estudiados son las clases nearly parallel, caracterizada por
dyp = 19 * @, cerrada, definida por dp = 0, y localmente conformemente paralela, descrita por
dp =311 Ap y dxp = 411 A*p. Las estructuras cocerradas son aquellas que verifican dxp = 0;
Crowley y Nordstrom demostraron en [37] que existen en cualquier variedad compacta con
una estructura Gg. La prueba emplea el h-principio de Gromov [60]. Ejemplos explicitos son
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las hipersuperficies una variedad con una estructura Spin(7) paralela, tal como R®, dotadas
de la estructura Gg inducida por la estructura Spin(7). Si la hipersuperficie es totalmente
umbilica, como la esfera S7 C R8, la estructura es nearly parallel.

Fue Wang quien exploré por primera vez la conexiéon entre el grupo de holonomia y la teo-
ria de espinores. El teorema de Wang [112] enuncia que una variedad Riemanniana completa
simplemente conexa e irreducible tiene un espinor paralelo si y solo si su grupo de holono-
mia es simplemente conexo, o sea, si es uno de los siguientes: SU(m), Sp(k), Ge, Spin(7).
En cuanto a estructuras geométricas, si el grupo de estructura G es simplemente conexo,
entonces la variedad es spin y estd dotada de una cierta cantidad de espinores nunca nulos.

La teoria de espinores tiene sus origenes en la busqueda, llevada a cabo por Dirac, de
un operador de ondas I) acorde con la teoria de la relatividad. El objetivo era, basicamente,
encontrar la raiz cuadrada del operador Laplaciano en R™. Este cédlculo llevé a Dirac a intro-
ducir el dglgebra de Clifford Cl,, de R™: el R-algebra con unidad generado por R™, cocientado
por las relaciones v - v = —|v|? - 1. El operador I es el operador de Dirac; la introduccién de
[54] recoge una exposicién detallada de su desarrollo. Uno de los principales logros de la teoria
de espinores es el toerema del indice de Atiyah-Singer, que relaciona el indice del operador
de Dirac con un invariante topolégico: el fl—género. La teoria de espinores juega un papel
importante en diferentes situaciones geométricas: proporciona todos los campos de vectores
linealmente independientes en las esferas, e interviene tanto en la existencia de métricas con
curvatura escalar positiva como en el caracter entero de ciertas clases caracteristicas.

El recubridor universal Ad: Spin(n) — SO(n) se construye a partir del algebra de Clifford:
Spin(n) es el subgrupo multiplicativo de Cl,, — {0},

Spin(n) = {vy - - - voy, tales que 2k < n, |vj| = 1},

y la aplicacién recubridora es la conjugacion Ad(g)(x) = grg~!. El formalismo espinoral en
R™ consiste en un Cl,, médulo ireducible A,, que proviene de un isomorfismo p: Cl,, — k(m)
o p: Cl, — k(m) @ k(m); donde hemos denotado por k(m) al dlgebra de matrices de di-
mensién m sobre el cuerpo (o dlgebra de division) k € {R,C,H}. Durante un tiempo se
encontraron problemas para generalizar el formalismo espinorial en variedades orientables.
Estos fueron solventados a través de la nocién de estructura spin. Las variedades que admi-
ten una estructura spin se llaman variedades spin y son aquellas que tienen segunda clase de
Stiefel-Whitney nula.

Sea (M, g) una variedad Riemanniana orientada de dimensién n; denotemos por Pgo (M)
su fibrado SO(n) principal. Una estructura spin consiste en un fibrado principal p: Pgpin (M) —
Pso(M) compatible con la aplicacién Ad: Spin(n) — SO(n), esto es, p(yy) = Ad(y)p(y) si
v € Spin(n), y € Pgpin(M). El fibrado espinorial de una variedad spin (M, g) es:

B(M) = Pspin(M) X A,

donde p': Spin(n) — End(A,) es la restriccién de una respresentacién irreducible Cl,, —
End(A,,). La particularidad de las secciones de este fibrado, los espinores, es que pueden ser
multiplicados tanto por vectores como por formas; este producto existe porque la represen-
tacion p’ extiende a Cl, — End(A,,). Ademas, la conexién de Levi-Civita levanta al fibrado
espinoral, permitiendo definir ecuaciones en derivadas parciales sobre espinores sin introducir
informacién adicional. Este es el caso de la condicién armdnica, determinada por la anula-
cién del operador de Dirac. Este es un operador autoadjunto de primer orden, que tiene la
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siguiente expresion en términos de una base ortonormal local (eq, ..., ep):
n
an = Z eiveﬂ]-
i=1

Friedrich demostré en [53] que el primer autovalor A del operador de Dirac esta relaciona-
do con la curvatura escalar a través de la desigualdad A\? > ﬁ minyep{scal,}, y que la
igualdad se alcanza en presencia de un espinor Killing. Los espinores Killing son aquellos
que verifican Vxn = puXn, y si bien ya se estudiaban en el area de la relatividad general,
aparecieron por primera vez dentro de la geometria Riemanniana en el articulo [53]. La re-
lacién entre espinores armoénicos y estructuras geométricas serd explorada més adelante en
este resumen, dado que comprende parte del trabajo desarrollado en el Capitulo [2| Los es-
pinores Killing nunca nulos determinan las estructuras Go nearly parallel y las estructuras
SU(3) nearly Kdhler; las ultimas estan caracterizadas por las condiciones dw = 3%Re (0) y
dIm (0) = —2w?. Las esferas S y S equipadas con su métrica estdandar son ejemplos de
tales estructuras.

La presencia de ciertas estructuras geométricas dan lugar a propiedades de curvatura
especiales. El tensor de cuarvatura Riemanniano R verifica puntualmente R € Sym?(hol(g));
esta relacion restringe la forma del tensor Ricci cuando la variedad tiene holonomia especial
o excepcional. El tensor de Ricci de una variedad Kéhler estda determinado por la 1-forma de
Ricci y es nulo cuando el grupo de holonomia es simplemente conexo. Asimismo, las varieda-
des con holonomia Sp(k) - Sp(1) son Einstein. En el caso de las G estructuras, el tensor de
Ricci esté determinado por las formas de torsion tal y como expresan [23] y [69] para estruc-
turas Go y Spin(7). Un ejemplo ilustrativo son las G estructuras determinadas por espinores
Killing; en este caso la métrica asociada es Einstein. Esta propiedad es consecuencia de la
féormula que relaciona el tensor de Ricci con la derivada covariante del espinor en [54) p. 64].
En el caso de las variedades con grupo de holonomia simplemente conexo, se demuestra que
el tensor de Ricci es nulo combinando esta férmula con el teorema de Wang.

La interaccion entre la holonomia de una variedad Riemanniana y sus propiedades coho-
moldgicas es bien conocida en el caso de las variedades compactas Kihler. Estas son formales
y su 4algebra de cohomologia admite una descomposicién de Hodge y verifica la propiedad
dura de Lefschetz. La férmula de Weitzenbock para el Laplaciano permite generalizar la
descomposicién de Hodge en variedades Riemannianas compactas (M, g) con holonomia con-
tenida en un grupo G C SO(n) de la lista de Berger. El espacio de las formas armoénicas
H*(M,R) admite una descomposicién en suma directa de subespacios determinados por las
componentes irreducibles de la respresentaciéon de G en AF(R™)*. Esta permite definir los ni-
meros de Betti refinados. De manera explicita, sea A*¥(R")* = @ [Af la descomposicién en
subespacios G invariantes e irreducibles. Descompongamos Q¥ (M) = @;c;QF (M), la férmula
de Weitzenbock garantiza que el Laplaciano actiia en cada uno de los subfibrados QF(M).
En consecuencia,

HM (M) = ©ierHE(M).
Ademss, si dos representaciones A¥ y Aé- son isomorfas entonces H¥ (M) = Hé(M ). Los nu-
meros de Betti refinados son b¥ = dim(H¥(M)). Cuando el grupo de holonomia es igual a

G se obtienen mds obstrucciones, por ejemplo, las variedades con holonomia Gy y Spin(7)
tienen by = 0.

Deligne, Griffiths, Morgan, y Sullivan demostraron en [40] que las variedades Kéhler com-
pactas son formales. Este resultado es consecuencia del Lema 90. La nocién de formalidad
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proviene del area de la homotopia racional fundada por Sullivan en [107]. Su objeto de estudio
es la parte libre de torsién de los grupos de homotopia de orden superior 7 (M) ®@Q, k > 2 e
introduce nociones algebraicas como la de dlgebra diferencial conmutativa graduada (ADCG)
y su modelo minimal. El modelo minimal de una ADCG (A, d) es una ADCG minimal (véase
la definicién [4.14]) (M, d) y un homomorfismo ¥: (M, d) — (A, d) que induce un isomorfismo
entre sus grupos de cohomologia.

Sea M un complejo simplicial conexo de tipo finito y sea (Apr(M),d) el ADCG de las
formas racionales polinémicas. Una k-forma racional polinémica estd determinada por una
k-forma en cada simplex o de M cuyos coeficientes son polinomios sobre Q, de manera que
Wo = We|e cuando o C do’. El teorema PL de de Rham garantiza que la cohomologia de
(Apr(M),d) es H*(M,Q). El invariante introducido por Sullivan es el modelo minimal de
M, que es el modelo minimal del ADCG (Apr(M),d). Este siempre existe y es tnico salvo
isomorfismo. La relacién entre los grupos de homotopia racionales y los modelos minimales
se establece en [I07, Teorema 10.1]:

Teorema Sea M un complejo simplicial conexo de tipo finito y nilpotente, y sea (M, d)
su modelo minimal. El grupo de homotopia racional (M) ® Q con k > 2 es el espacio dual
del subespacio de grado k en M

La hipétesis de que M sea nilpotente requiere que 71 (M) sea nilpotente y que actie en
7k (M) como un homomorfismo nilpotente. Si el modelo minimal de (Apr(M),d) coincide
con el modelo minimal de (H*(M,Q),d = 0) decimos que M es formal. El célculo del modelo
minimal es un proceso formal, hecho que explica el nombre de la propiedad: los grupos de
homotopia racional de los espacios formales se obtienen de manera formal a partir de los
grupos de cohomologia racional.

Cuando M es una variedad, su modelo minimal real se obtiene a partir del complejo de
de Rham (Q*(M),d). En la practica, el cilculo del modelo minimal puede ser dificil; el con-
cepto de s-formalidad se emplea normalmente para decidir si una variedad es formal o no. De
modo breve, esta propiedad depende de los generadores del modelo minimal de grado menor
o igual que s. El teorema de dualidad de Poincaré permite probar en [49] que una variedad
compacta orientable de dimensién 2n o 2n—1 es formal si y solo si es (n— 1)-formal. Ademés,
los productos de Massey se utilizan frecuentemente para probar que una variedad es no for-
mal. Su definicién y relacién con el concepto de formalidad se puede leer en [100, Seccién 1.6].

El resultado de [40] implica que las variedades compactas con holonomia SU(m) y Sp(k)
son formales. Las variedades compactas con holonomia contenida en Sp(k) - Sp(1) y curva-
tura escalar positiva son también formales [4]; en la prueba se utiliza la formalidad de las
variedades compactas Kéahler. Ain no se ha demostrado ni descartado que las variedades
con holonomia excepcional sean formales. Se han obtenido resultados parciales en [29], [38§]
y [76]. Los resultados en [29] y [76] se basan en una idea de Verbitsky en [I11], donde define
un operador diferencial £,, en una variedad Kéhler (M, g, J) para dar una prueba alternativa
de la formalidad de las variedades Kéhler. Este operador estd bien definido en las variedades
Riemannianas dotadas de una k-forma paralela; el estudio de los operadores Ly, L4, 0 Lo
definidos por ¢, xp 0 Q cuando la holonomia estd contenida en G o Spin(7) ha resultado fruc-
tifera pero no responde la pregunta. Ademés, el articulo [38] estudia el caso de 7-variedades;
entre otros resultados, los autores prueban que si existiese una variedad compacta no formal
con holonomia Go tendria by > 4.

La bisqueda de variedades compactas con clases concretas de estructuras geométricas co-
mienza normalmente en nilvariedades y solvariedades. Estas son cocientes compactos de un
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grupo de Lie G por un reticulo I'; el grupo de Lie es nilpotente en el primer caso y resoluble
en el segundo. Las nilvariedades y solvariedades son especiales desde el punto de vista topo-
légico: son asféricas con 71 (I'\G) = T" y su primer nimero de Betti es mayor o igual que 2 en
nilvariedades y mayor o igual que 1 en solvariedades. El teorema de Nomizu [98] establece que
el modelo minimal real de una nilvariedad I'\G es el ADCG de Chevalley-Eilenberg (Ag*, d),
cuya diferencial estd determinada por da(X,Y) = o[X,Y] si @ € g*. Hemos denotado por
g el algebra de Lie de G. La situacion es distinta en caso de solvariedades; el teorema de
Hattori [64] enuncia que el ADCG de Chevalley-Eilenberg es un modelo para una subclase de
solvariedades, pero puede no ser el modelo minimal. Esta es la subclase de las solvariedades
completamente resolubles, aquellas en las que los endomorfismos ad(X): g — g, X € g, solo
tienen autovalores reales. Ademas, las nilvariedades no abelianas son no formales, mientras
que las solvariedades pueden ser tanto formales como no formales.

Normalmente dotamos a estos espacios de estructuras geométricas invariantes por la iz-
quierda, inducidas por el grupo de Lie. La curvatura de las métricas asociadas a éstas es
especial: tal como se prueba en [91], las métricas son planas o tienen curvatura escalar estric-
tamente negativa. Ademas las métricas no planas nunca son de tipo Einstein. En cuanto a las
estructuras geométricas, las ecuaciones en derivadas parciales que definen cada clase se trans-
forman en un sistema de ecuaciones que involucran las constantes de estructura del algebra
de Lie. Este enfoque simplifica el problema y es la razoén por la que hablamos de estructuras
geométricas en algebras de Lie nilpotentes y resolubles. Las algebras de Lie de dimensién
menor o igual que 7 estdn clasificadas, véase [I4] y [58]; apoyandose en dicha clasificacién
numerosos articulos tratan de determinar las algebras de Lie nilpotentes que admiten una G
estructura particular.

El comportamiento las estructuras geométricas en nilvariedades y solvariedades es am-
plio pero limitado. Un ejemplo ilustrativo es el caso de la variedad de Kodaira-Thurston, una
nilvariedad de dimensién 4. Esta fue la primera variedad simpléctica sin estructuras Kéh-
ler conocida. Naturalmente, el caracter no formal de las nilvariedades no abelianas impide
que éstas sean Kéhler. Ademas, las solvariedades completamente resolubles no abelianas no
admiten métricas con holonomia contenida en Gg o Spin(7). De acuerdo con el teorema de
Cheeger-Gromoll, si este fuera el caso de una solvariedad completamente resoluble (I'\G, g)
entonces su recubridor universal serfa un producto R¥ x N donde k = b1(I'\G) y N es una va-
riedad compacta simplemente conexa. Como el recubridor universal de I'\G es G, isomorfo a
R” 0 a R8, tenemos que by (Ag*,d) = 7,8; por tanto, el grupo G es abeliano. De modo similar,
algunas clases de G estructuras no ocurren en nilvariedades y solvariedades. Este es el caso
de aquellas que inducen métricas de curvatura escalar positiva, tales como las estructuras
SU(3) nearly Kéhler y las G nearly parallel. Lo mismo ocurre en una subclase de estructuras
localmente conformemente paralela (LCP) de tipo Ga o Spin(7). La segunda esta definida
por la ecuacion d§2 = 0 A€); la 1-forma 6 también se llama forma de Lee. Cuando la forma de
Lee es cocerrada, la curvatura escalar es positiva. De hecho, las variedades LCP con forma
de Lee nunca nula verifican un teorema de estructura [70]. Estas son mapping torus de una
variedad N con recubridor universal compacto. La variedad N posee una estructura SU(3)
nearly Kéahler en el caso de Ga y una estructura Gy nearly parallel en el caso de Spin(7). De
esta caracterizacion se sigue que las solvariedades no admiten estructuras LCP invariantes
por la izquierda.

Las propiedades topologicas de las nilvariedades y las solvariedades son limitadas. Las
técnicas de resolucién de orbifolds se ofrecen como alternativa para construir ejemplos com-
pactos con propiedades topolégicas diferentes. Este es la idea que se sigue en [II] y [50]
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para construir variedades simplécticas simplemente conexas. Las acciones de grupos finitos
en nilvariedades no son dificiles de construir. Cuando la accién preserva alguna G estructura
invariante por la izquierda, el espacio cociente de la nilvariedad por la accién determina un
orbifold dotado de una G estructura. La desingularizacion, si es posible, proporciona una
variedad con dicha G estructura y con propiedades topolédgicas diferentes. Més adelante en
este resumen detallaremos este procedimiento.

Procedemos ahora a exponer los resultados principales de cada capitulo. Dividiremos la
discusién en dos partes: el estudio de las estructuras Spin(7) desde el punto de vista de la
teoria de espinores y la resoluciéon de orbifolds simplécticos y Go. Los articulos que avalan la
publicacién de esta tesis por compendio son [85] [86], [87]. Los articulos [85] y [87] corresponden
a la segunda parte de la tesis y estan respectivamente contenidos en los Capitulos 4] y [3] El
articulo [86] se incluye dentro de la primera parte y corresponde al Capitulo (1} El trabajo
[12] esta siendo revisado para su publicacién y complementa el trabajo desarrollado en el
articulo [86]. Por tanto, su exposicién es relevante para desarrollar el estado del arte de la
tesis. Para hacer la exposicién mas clara presentamos su contenido en el Capitulo[2], en lugar
de desarrollarlo en la parte de introduccion a la tesis.

Un enfoque espinorial de las estructuras Spin(7) y estructuras geométricas
definidas por espinores

Desde que Fernandez clasificase las estructuras Spin(7) no integrables en [43], pocos trabajos
se han dedicado a su estudio. Una de las razones es que todavia quedan muchos problemas
abiertos acerca de las estructuras Go. Ademds, la casificacién de las estructuras Spin(7) es
pequena: solo hay 4 clases, frente a los 16 tipos de estructuras Go y U(m). Una propiedad
distintiva de la geometria Spin(7) es que las propiedades de ser paralela y cerrada son equi-
valentes para la 4-forma que define la estructura. Las clases estdn determinadas por df2; el
espacio A%(R®)* descompone como suma directa de dos subespacios Spin(7) invariantes y por
tanto las clases no integrables puras son:

1. Localmente conformemente paralelas, si d€2 = 8 A Q donde 6 es una 1-forma cerrada.
2. Balanced, si (xdQ2) A Q = 0.

En el Capitulo [I] empleamos el enfoque espinorial para rescribir la clasificacion de las es-
tructuras Spin(7) en términos de la derivada covariante del espinor que define la estructura.
Este estudio nos motiva a disenar un método para construir estructuras Spin(7) de tipo ba-
lanced en el Capitulo [2| que sugiere definir una nueva clase de estructuras geométricas: las
estructuras spin-harmonic.

Clasificacion espinorial de las estructuras Spin(7)

Dedicamos el Capitulo [1] al estudio de las estructuras Spin(7) desde el punto de vista de la
teorfa de espinores. Este trabajo continia el formalismo espinorial desarrollado en [I] para
estructuras SU(3) y Gg, y complementa el articulo [69], que investiga algunas propiedades de
las estructuras Spin(7) a través de la geomeria espinorial. Ademds, este enfoque nos permite
recuperar los resultados de [83], 84] sobre estructuras Go en hipersuperficies de variedades
con estructura Spin(7) y la construccién de estructuras Spin(7) en fibrados S!-principales
sobre variedades Go. Este marco conceptual prueba ser ttil en la construccion de ejemplos
de estructuras Spin(7) de tipo balanced y localmente conformemente balanced.
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En la primera parte de este capitulo, reescribimos la clasificacién de las estructuras Spin(7)
en términos de espinores. Antes de enunciar los resultados, describimos algunos conceptos ne-
cesarios para comprenderlos. El dlgebra Clg es isomorfa a R(16), y por tanto la representacion
espinorial es Ag = R16. Este espacio se descompone como suma directa de dos subespacios
AL de dimensién 8, que se conocen como el subespacio positivo y negativo. Los espacios
A4 son los autoespacios asociados al endomorfismo determinado por la multiplicaciéon por
el elemento de volumen e ---eg € Clg, y por tanto son invariantes bajo la accién del grupo
Spin(8). El estabilizador de un espinor no nulo del subespacio positivo o negativo bajo la
accién del grupo Spin(8) es isomorfo a Spin(7); las imagenes de dichos grupos a través de la
aplicacién recubridora Ad: Spin(8) — SO(8) no son conjugadas en SO(8), pero si lo son en

0(8).

Sea (M, g) una variedad spin de dimensién 8; la igualdad Ag = Ay @& A_ induce una
descomposicién del fibrado espinorial (M) = X+ (M) @ X~ (M). Tal y como se enuncia en la
Proposicién un espinor de norma unidad 1 en 37 (M) da lugar a una estructura Spin(7)
a través de la expresion:

1
W, XY, 2) = J(-WXYZ +WZYX)n,n).

Ademas, la Proposicion demuestra que la derivada covariante de 1 y la torsién intrinseca
de la estructura Spin(7) contienen la misma informacién. La relacion entre estos objetos nos
permite demostrar el Teorema que pasamos a enunciar:

Teorema |A| (Teorema [1.21)). La estructura Spin(7) determinada por un espinor n es,
1. Paralela si Vn = 0.
2. Balanced si Ipn = 0.

3. Localmente conformemente paralela si existe un campo vectorial V- € X(M) tal que
Vxn= %(X* AV*)n. En tal caso, IPn = V.

El operador de Dirac juega un papel central en la clasificacién dado que determina la
forma de Lee, definida por la igualdad 6 = —1 x (x(d€2) A Q). En términos del Teorema
0 = %V* (véase la Proposicién. Si bien la existencia de una estructura Spin(7) balanced
en una variedad es una condicién geométrica, ésta proporciona una solucién a la ecuacién de
Dirac que es interesante desde el punto de vista analitico.

Nuestro planteamiento es diferente al propuesto por [I] para el estudio de las estructuras
SU(3) y Ga. Sea ¢ el espinor que determina la G estructura, entonces Vx¢ = %F(X)gi);
donde T' ddenota la torsién intrinseca de la G estructura, y G € {SU(3), Ga, Spin(7)}. Sea
(N,g,J,0) una estructura SU(3), existen v € Q'(N) y Sy € End(TN) tales que I' =
i(Sn)Re (O©) — %fy ® w, donde (i(Sy)Re(0))(X,Y,Z) = Re (0)(Sn(X),Y, Z). Sea (Q,g,»)
una estructura Go, existe Sg € End(T'Q) tal que I' = —2i(Sg)¢. Estas igualdades son
ciertas dado que su(3)t = (w) @& i(R)Re (0), ygz = i(R")p. Sean ¢y y ¢ los espinores
que determinan la estructura geométrica en N y @. De acuerdo con [I, Lemas 2.2 y 2.3] se
cumple:

Vixon =5T(X)on = Sx(X)x +1(X)j(on).

Vo =5T(X)oq = S(X)¢.
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donde j es una estructura compleja en ¥(/N) que anticonmuta con el producto de Clifford por
campos vectoriales de N (véase la subseccién EI) Dado que spin(7)* no contiene a R® co-
mo subrepresentacion, (véase la subseccion @l para una descripcion explicita), no podemos
seguir la misma estrategia en nuestro caso. De hecho, Vxn € ¥t (M) y S(X)n € ¥~ (M).
Por este motivo, trabajamos directamente con la ecuacién Vxn = $T'(X)n.

En este capitulo introducimos la nocién de distribuciones Go: una distribucién de dimen-
sién 7 coorientada con una estructura Go en una variedad Spin(7). Este formalismo unifica
distintas situaciones geométricas que involucran estructuras Gg y Spin(7), tales como hiper-
superficies Gy de variedades Spin(7), productos warped de variedades Go con R y fibrados
Sl-principales con base una variedad Go; algunos de éstos habfan sido estudiados por Martin-
Cabrera en [83],[84]. Por ejemplo, una hipersuperficie @ de (M, g, ) tiene una estructura Go
inducida por ¢ = i(N)Q, donde N es un campo vectorial normal de norma unidad. Tal como
establece el Teorema la clase de ¢ como estructura Go depende tanto del tipo de €2
como estructura Spin(7), como de las propiedades Riemannianas del embebimiento de @ en
M. La idea clave de esta parte, que también serd explotada en el Capitulo [2] es la siguiente:
el espinor que determina la estructura Spin(7) de la variedad ambiente también induce una
estructura Gy en la distribucién. Esto es, un tnico objeto codifica toda la informacién geo-
métrica.

El formalismo de las distribuciones Go nos permite estudiar las estructuras Spin(7) in-
variantes por la izquierda en grupos de Lie cuasi-abelianos. El estudio de las estructuras Go
en algebras de Lie cuasi abelianas de dimensién 7 ha sido fructifero; esto nos motiva a llevar
a cabo un estudio anélogo en el caso de Spin(7). En [51] el autor determina qué algebras de
Lie admiten una estructura Go cocerrada. Ademads en [52] el autor construye variedades de
cohomogeneidad 1 con holonomia SU(4) resolviendo las ecuaciones de Hitchin partiendo de
las estructuras Go obtenidas en [51].

Estos grupos de Lie resolubles son productos semidirectos R x. R” donde ¢ = exp(ad(£))
con £ € R(7). Una estructura Spin(7) invariante por la izquierda en R x, R” determina una,
estructura Gg paralela en cada hipersuperficie {t} x R”. La clase de la estructura Spin(7) de-
pende tnicamente del endomorfismo £, como probamos en el Teorema Las clases puras
se obtienen imponiendo condiciones a los autovalores complejos de la parte antisimétrica de
E. Ademas, la traza de £ determina la componente de la forma de Lee que es paralela a dt.
Este estudio nos permite obtener ejemplos compactos cuando encontramos reticulos. Dado
que no existen solvariedades con una estructura LCP invariante por la izquierda, buscaremos
ejemplos de tipo balanced. De hecho, en la seccién proporcionamos el primer ejemplo de
una estructura Spin(7) balanceada con b; = 2 que no es un producto S' x N7,

Nuestros resultados nos permiten abordar problemas de clasificacion de estructuras Spin(7)
en algebras de Lie nilpotentes cuasi-abelianas, que son 14 salvo isomorfismo. Determinamos
aquellas que admiten una estructura Spin(7) balanced o una estructura estrictamente local-
mente conformemente balanced. Las ultimas se introdujeron en el contexto de la teoria de
supergravedad y verifican que la forma de Lee es cerrada y no nula. Nuestro andlisis concluye
el siguiente resultado:

Teorema [B| (Teorema [1.4). Sea L3 el dglgebra de Lie del grupo de Heisenberg de dimensidn
3, sea Ly el unico dlgebra de Lie nilpotente e indescomponible de dimension 4, y sea A; el
dlgebra abeliana j-dimensional.

1. Toda estructura Spin(7) invariante en Ag es paralela.
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2. Las algebras de Lie g = A5 @ L3y y g = As @ L4 admiten una estructura estrictamente
localmente conformemente balanced pero no admiten estructuras balanced.

3. El resto de dlgebras de Lie cuasi abelianas nilpotentes admiten tanto una estructura
balanced como una estructura estrictamente localmente conformemente balanced.

Estructuras spin-harmonic y nilvariedades

El objetivo del Capitulo [2| es contruir estructuras Spin(7) de tipo balanced en nilvariedades
de dimensién 8. Emplemos las ecuaciones espinoriales obtenidas en el Capitulo [I} Nuestro
enfoque nos lleva a estudiar una nueva clase de estructuras geométricas en variedades de
dimension baja: las estructuras spin-harmonic.

El primer ejemplo compacto de una estructura balanced [46] es el producto de una nil-
variedad de dimensién 5 con un 3-toro. Posteriormente se obtienen méas ejemplos compactos
gracias a los trabajos [83, 84], éstos incluyen productos N x S' donde (N, g, ) tiene una
estructura Go cerrada o puramente cocalibrada, esto es, que verifica 7; = 0 si ¢ # 3. En este
capitulo trabajamos con nilvariedades Riemannianas de la forma (N® x T2, gg + go), donde
(NS, g6) es una nilvariedad de dimensién 6 y (72, g2) es un toro plano; asumimos también
que la estructura Spin(7) es invariante en la direccién de T2. La razén de nuestra simplifica-
ci6én radica en que las algebras nilpotentes de dimensién 8 no estén clasificadas y la lista en
dimensién 7 es muy extensa. Analizamos de manera separada el caso en que Nb = N° x S1
Y g6 = g5 + g1, donde g1 es la métrica plana de S'. Nuestro estudio nos permite recuperar la
estructura Spin(7) de [46].

La estructura Spin(7) de N x T2 induce una estructura SU(3) en N% o una estructura
SU(2) en N® cuando N® = N® x S!. Tal como se obtiene en [35], las formas (o, wy,ws,ws) €
QY(N®) x Q%(N®)3 determinan una estructura SU(2) si:

L wiAw; =0fori+#j, w? =ws=wiyaAw?#£0,
2. Sii(X)wr = i(Y)wa, entonces ws(X,Y) > 0.

La condicién balanced induce condiciones sobre las estructuras SU(3) o SU(2); éstas no
son clases recogidas en la clasifificacién de las estructuras SU(3) o SU(2) tal como se prueba
en [I, Teorema 3.7] y el Corolario Dado que las ecuaciones en términos de las formas
que definen las estructuras son complicadas, empleamos el enfoque espinorial desarrollado en
el Capitulo [1| y que consiste en encontrar espinores arménicos en N* x T87% con k € {5, 6}.
Dividimos nuestra btisqueda en tres pasos: reduccién dimensional, eleccién de una estructura
spin y obtencion de una férmula para el operador de Dirac en términos de las ecuaciones de
estructura.

La reduccién dimensional consiste en relacionar el espinor arménico de N¥ x T8F que
determina la estructura Spin(7) con un espinor en N*. El fibrado espinoral de N* resulta
ser el pullback mediante la inclusién al producto N*¥ x T8F del fibrado X+ (N* x T8F);
esto se deduce de las igualdades Cl; = C(4) y Clg = R(8). Como consecuencia de nuestras
hipétesis, existe un tnico modo de definir un espinor 1’ € L(N*) partiendo de un espinor
n € YT(NF x T8F); el espinor 7 es arménico si y solo si 7/ lo es. Motivados por esta re-
duccién dimensional, definimos una estructura spin-harmonic como la estructura geométrica
determinada por un espinor armoénico de norma unidad. Las ecuaciones en términos de las
formas que definen la estructura se recogen en [I] en los casos de G y SU(3); y en la seccién
del Capitulo [2| en el caso de SU(2).
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Después nos centramos en los espinores que determinan estructuras geométricas invarian-
tes por la izquierda: dotamos a la variedad de su fibrado espinorial trivial y elegimos espinores
constantes. Esto es, las propiedades geométricas estan determinadas por el algebra de Lie y
no dependen del reticulo. Finalmente obtenemos una férmula para el operador de Dirac de
un espinor de este tipo en términos de las constantes de estructura del algebra de Lie:

Proposicién |C| (Proposicién [2.41)). Supongamos que (e1,...,e,) es una base ortonormal y
sea ¢ un espinor invariante por la izquierda en un dlgebra de Lie resoluble. Entonces,

n

4D¢ = — Z (e' Ade’ +i(e;)de) .

i=1

Resolveremos la ecuacién D¢ = 0 de manera directa cuando tratamos con nilvariedades
de dimensién 6. La estrategia en dimension 5 es diferente y consiste en calcular el cuadrado
del operador de Dirac JP2. Este planteamiento en dimensién 5 nos permite determinar todas
las métricas invariantes por la izquierda que admiten espinores armoénicos de este tipo. De
acuerdo con la Proposicién tenemos:

D26 = jé + vj19.

La contante 2 > 0 y el campo invariante v € X(N°) estan determinados por la métrica y las
ecuaciones de estructura del algebra de Lie. De esta formula deducimos que las métricas que
admiten estructuras spin-harmonic estén caracterizadas por la condicion ||[v|| = p. Ademads, el
espacio de espinores armoénicos invariantes tiene dimensién 4. Cuando existe una estructura
spin-harmonic, el vector v tiene una interpretaciéon geométrica: la 1-forma obtenida a través
del endomorfismo musical v* es proporcional a «. El siguiente teorema resume nuestros
resultados:

Teorema @ (Teoremas Subseccién y Proposicién [2.59). Sea N* una nil-

variedad de dimension k y sea n el dlgebra de Lie de su recubridor universal. Supongamos
ademds que n no es abeliana.

1. Sik =5y N° admite estructuras spin-harmonic invariantes por la izquierda entonces
n= L57j, ] = 1,2,3,4,6.

2. 8ik =6y NS no admite estructuras spin-harmonic invariantes por la izquierda enton-
cesn es L3 ® Az 0 Ly @ As.

3. Las dlgebras de Lie Ly & As y Ly ® Aq no admiten estructuras Spin(7) balanced.

Los resultados del Capitulo sugieren que hay muchas estructuras Spin(7) balanced. Este
fenémeno estd relacionado con un resultado de Hitchin en [67] que establece que toda variedad
spin de dimensién 8 admite un espinor armoénico. Sin embargo, este espinor no determinaria
una estructura Spin(7) balanced si se anulara en algiin punto. Ademaés, la ecuacién Py = 0
esta sobredeterminada; ambos hechos nos llevan a pensar que podria investigarse la existencia
de un h-principio en el sentido de Gromov para este tipo de estructuras.

Orbifolds con estructuras geométricas y sus resoluciones

Los orbifolds fueron introducidos por Satake en [106] y se han mostrado utiles en numerosos
contextos geométricos. Los orbifolds estdn modelados localmente en R™/T" donde I' es un sub-
grupo finito de O(n). Por tanto, tienen singularidades que en el modelo local son los puntos
fijos de alguna isometria de I' distinta de la identidad. Muchos de los objetos empleados en
geometria Riemanniana también son tutiles en el contexto de los orbifolds: métricas, formas,
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fibrados y operadores.

En esta tesis construimos resoluciones de orbifolds con una estructura simpléctica o de
tipo Go cerrada para asi obtener variedades con tales estructuras geométricas y diferentes
propiedades topoldgicas. Los orbifolds de los que partimos son normalmente el cociente global
de una variedad por un grupo finito de difeomorfismos que preservan la estructura geomé-
trica. Algunas propiedades topoldgicas de la resolucién, tal como el grupo fundamental o
los grupos de cohomologia, pueden ser deducidos de las propiedades del orbifold y del lugar
singular; vease por ejemplo la proposicién

Este procedimiento permitié a Joyce construir variedades compactas con holonomia Go y
Spin(7). Sus resultados combinan técnicas de resolucién de orbifolds y resultados de existencia
analiticos. Estos orbifolds son cocientes de un 7 u 8 toro plano bajo la accién de un grupo de
isometrias que preserva la estructura. El orbifold, bajo ciertas hipétesis, puede ser resuelto
y dotado de una familia 1-paramétrica de estructuras geométricas cuya torsion tiende a 0;
este procedimiento requiere técnicas de geometria algebraica. Los Teoremas 11.6.1 y 13.6.1.
de [74] garantizan la existencia de una estructura sin torsiéon. En ambos casos, la accién del
grupo se construye de modo que el grupo fundamental del orbifold sea finito; en el caso de
Spin(7) también requiere que su fl—género sea 1. Estas propiedades topolégicas garantizan
que el grupo de holonomia de las variedades construidas sea precisamente Go o Spin(7).

Resolucién de orbifolds simplécticos de dimension 4.

En el Capitulo [3]demostramos que los orbifolds simplécticos de dimensién 4 pueden resolver-
se; empleamos técnicas que provienen del area de la geometria algebraica, en la linea de los
articulos [11], [50] y [93].

Desde el punto de vista de la geometria diferencial, los teoremas clasicos en geometria
simpléctica se adaptan al contexto de los orbifolds; en [93] encontramos una exposicién clara
y precisa de estos resultados. Un ejemplo es la existencia de cartas de Darboux, que son
de la forma (U,wp) donde U C C™/I'; el grupo de isotropia I' es un subgrupo de U(m) y
wop es la forma simpléctica estandar de C™. Otros ejemplos incluyen la construccién de una
estructura casi compleja en el fibrado normal de una singularidad. El primer contrajemplo
[50] de la conjetura de Thurston- Weinstein en dimensién 8 es un logro notable de las técnicas
de resolucién de orbifolds simplécticos. Esta conjetura establecia que una variedad simpléc-
tica simplemente conexa de dimension mayor o igual que 8 es necesariamente formal. Su
falsedad en dimensién > 10 fue demostrada en [5]. Otro ejemplo destacado es la construccién
de una variedad de dimensién 6 que no es Kéhler pero es a su vez compleja y simpléctica [I1].

El procedimento empleado en [IT], 50] es ad-hoc y aprovecha técnicas procedentes de la
resolucién algebraica de singularidades. Estas técnicas ya habian sido utilizadas antes para
la desingularizar orbifolds simplécticos cuyas singularidades son puntos aislados [28]. Pro-
cedemos a discutir brevemente su estrategia; en esta situacion el tnico punto fijo de cada
elemento distinto de la identidad es 0. Por tanto, podemos reemplazar un entorno del 0 en el
orbifold por un entorno del divisor excepcional en la resolucién proyectiva de la singularidad
cociente C™/T", que existe apelando a los teoremas clésicos de Hironaka [65] [66]. La forma
simpléctica se construye interpolando la forma Ké&hler de la resoluciéon con wy mediante el
proceso de inflacion introducido por Thurston en [108].

A1n no se ha probado que cada orbifold simpléctico admita una resoluciéon simpléctica.
Tal como se expone en la introduccién del Capitulo [3] existen casos especiales en las que la
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desingularizacion si es posible. En el Capitulo [3| demostramos:

Teorema [E| (Teorema [3.26)). Sea (X,w) un orbifold simpléctico compacto de dimension 4.
Eziste una variedad simpléctica (X,0) y una aplicacion diferenciable w : (X,0) — (X,w)
que es un simplectomorfismo excepto un entorno pequeno del lugar de isotropia de X.

Este teorema fue probado previamente por Chen en [30] empleando técnicas propias de
geometria simpléctica tales como rellenos simplécticos de variedades de contacto y reduccio-
nes simplécticas. Nuestro método es diferente y sigue las ideas de [28] y su generalizacién [93].
El articulo [93] trata el caso de los orbifolds con isotropia homogénea, que son aquellos en los
que los lugares de isotropia no se intersecan unos con otros. La desingularizacién tiene lugar
en el fibrado normal, que tiene una singularidad compleja en la fibra; para garantizar que la
resolucién en distintas fibras sean compatibles, los autores necesitan la resolucion algebraica
de [41] en lugar de los teoremas clésicos de Hironaka. La propiedad distintiva de la resolucién
construida en [4I] es su equivarianza bajo la accién de grupos.

La ventaja de los orbifolds simplécticos de dimensién 4, en comparacién con los de dimen-
sién superior, reside en que la configuracién de sus singularidades es més simple. Esto se sigue
del hecho de que los elementos de U(2) distintos de la identidad fijan el origen o una linea
compleja. Aparte de las singularidades aisladas, definimos los conjuntos de singularidades >*
y ¥ mediante una carta de Darboux (U,wp) con U C C2/T:

1. 2 € ¥* si existe una linea compleja L C C? tal que para todo elemento 1 # v € T se
cumple Fix(y) = L.

2. x € X! si existen al menos dos lineas complejas L1, Ly C C? y 71,72 € I tales que
Ly = Fix(m) y L2 = Fix(12).

Las componentes conexas de ¥* son superficies y las de X! son los puntos de interseccién de
los cierres de las componentes conexas de Y*. Lo desafiante de la resolucién es compatibili-
zar las resoluciones de diferentes superficies singulares de 3* cuyos cierres se intersecan en
puntos de X!. Los puntos de ¥* tienen entornos contenidos en C x (C/Z,,), que es topolé-
gicamente una variedad. Hay distintos modos resolver el modelo local, pero elegimos dotar
al cociente de estructura de variedad compleja y cambiar la forma simpléctica mediante una
perturbacion. Para pasar del modelo local al caso general, construimos el fibrado normal de
la singularidad e introducimos una conexion. Ademas, los modelos locales entorno a puntos
r € X! se pueden cambiar por otro modelo local en el que x es una singularidad aislada.
Para probarlo, en primer lugar argumentamos que C?/I" = (C%/T")/(I'/T"), donde T" es el
subgrupo normal de I' formado por los elementos que fijan alguna linea compleja. Posterior-
mente, un resultados cldsico de teorfa invariante de grupos nos permite afirmar que C2/T”
es una variedad compleja. Finalmente observamos que I'/T” acttia libremente en (C2—{0})/T".

Esta discusion nos lleva a disefiar una estrategia en cuatro pasos para resolver los orbifolds
simplécticos de dimensién 4 sin singularidades aisladas. En primer lugar, definimos un atlas
de variedad en X — X! y una 2-forma cerrada w’ que es 0 en un entorno perforado de X! y es
simpléctica fuera del mismo. El teorema de extension de Riemann nos permite extender este
atlas a X de modo que las singularidades del nuevo atlas son aisladas. Mas tarde construimos
una forma simpléctica partiendo de «’. Finalmente, resolvemos las singularidades aisladas
empleando el método descrito en [2§].
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Una variedad compacta no formal con b; = 1 dotada de una estructura G,
cerrada

En el Capitulo [4 construimos una variedad compacta no formal con b; = 1 dotada de una
estructura Gy cerrada y probamos que esta no admite ninguna estructura G paralela. Este
es el primer ejemplo conocido de tales caracteristicas. La construccion sigue algunas ideas
del articulo [47] y requiere el desarrollo de técnicas de resolucién de orbifolds Gg cerrados,
inspirados en el articulo [75].

El problema de determinar las propiedades topolégicas de las variedades compactas con
una estructura Go cerrada que no admiten ninguna estructura Go paralela estd lejos de ser
entendido. Tal como se expone en la introduccién al Capitulo [4] antes de este trabajo los
ejemplos conocidos con by = 1 eran formales [47], [81]. Sin embargo, no habia razones para
descartar la existencia de un ejemplo no formal con b; = 1. De hecho, los ejemplos en [34]
son nilvariedades y por tanto no formales con b; > 2. Merece la pena mencionar que ain
no se ha construido ningtin ejemplo con b; = 0. Tal como anunciabamos antes, el teorema
principal del Capitulo [ es el siguiente:

Teorema [F| (Proposiciones 4.46). Eziste una variedad compacta no formal M con
b1 = 1 dotada de una estructura Go cerrada que admite ninguna estructura Go paralela.

Nuestra construccion, al igual que la realizada en el articulo [47] emplea técnicas de re-
solucién de orbifolds. Definimos un orbifold X con una estructura Go cerrada a través del
cociente de una nilvariedad N bajo la accién del grupo Zs. Esta accién preserva la estruc-
tura Go de N, que es la obtenida en [34]. La resolucién M de X es no formal; de hecho X
tampoco lo es, dado que la accién de Zy preserva un producto de Massey no nulo en N. El
producto de Massey no nulo de X levanta a M por pullback. Ademds, para garantizar que
b1 (M) = 1 construimos la accién de manera que b;(X) = 1 dado que el primer nimero de
Betti no cambia tras el proceso de resolucién (véase la Proposicién . El lugar singular
del orbifold se compone de 16 copias disjuntas de la variedad de Heisenberg de dimensién 3;
hasta donde sabemos, esta es la primera vez que tal configuracién ocurre.

Para desingularizar nuestro orbifold, desarrollamos un método de resolucién de orbifolds
con una estructura Go cerrada. Este se inspira en el trabajo de Joyce y Karigiannis en [75],
en el que resuelven orbifolds X definidos como el cociente de una variedad N con holonomia
contenida en Go bajo la accién de el grupo Zs; la holonomia de la resolucion también esta
contenida en Gy. Hasta la fecha, éste y el trabajo fundacional de Joyce [71] [72], son los tnicos
que abordan la resolucién de orbifolds con estructura Gy paralela. El torema de resolucion de
[75] funciona en el caso en que el lugar singular L de la accién, que tiene dimensién 3, tenga
una 1-forma armoénica nunca nula. La estrategia que siguen es parecida a la empleada por Joy-
ce en [71,[72] y estéd descrita en la introduccién al Capitulo centrémonos en algunos detalles.

El fibrado normal a L en N tiene una estructura compleja determinada por una 1-forma
nunca nula; el fibrado normal a L en X tiene por tanto fibra C?/Zs, cuya resolucién algebraica,
es el espacio de Eguchi-Hanson (véase la subseccién . Se asume que la 1-forma sea
cerrada para garantizar que las formas Go definidas sean cerradas, y que sea cocerrada para
asegurar que la torsion de éstas sea pequenia. El teorema que probamos en el Capitulo (] es
el siguiente:

Teorema |G| (Teorema 4.32). Sea (M, ¢, g) una estructura Go cerrada en una variedad com-
pacta. Supongamos que j: M — M es una involucion tal que j*¢ = @ y consideremos el
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orbifold X = M/j. Sea L = Fix(j) el lugar singular de X y supongamos que existe una 1-
forma cerrada nunca nula 6 € QY(L). Entonces existe una variedad compacta dotada de una
estructura Ge cerrada (X, @, g) y una aplicacion p: X — X tales que:

1. La aplicacién p: X — p~YL) = X — L es un difeomorfismo.
2. Existe un entorno U de L tal que p*(p) = @ en X — o HU).

Dado que en nuestro trabajo no estimamos la torsién, las hipétesis de nuestro teorema
son mas laxas que las de [75]. En nuestro caso, la 1-forma nunca nula del lugar singular ha
de ser cerrada en lugar de armonica; esta condicion significa que cada componente conexa
del lugar singular es un mapping torus sobre una superficie. Asimismo, aunque empleamos
la misma estrategia para probar la existencia de la resolucién, algunas partes técnicas se
simplifican o evitan.

Finalmente, los dos argumentos que proporcionamos para probar que la variedad M cons-
truida en este capitulo no admite ninguna métrica con holonomia contenida en Go se basan
en la formalidad. La variedad M no verifica la obstruccion de casi formalidad obtenida en
[29], que describimos brevemente. El élgebra de de Rham de una variedad con holonomia
contenida en G es cuasi-isomorfo a un ADCG con todas las diferenciales 0 salvo en grado 3.
El 4lgebra se construye mediante el operador diferencial £, introducido anteriormente. Esto
implica que los productos de Massey son nulos salvo quizd aquellos ([a], [5],[7]) tales que
la|+ 5] =4y |B] + |y| = 4, donde |a| denota el grado de . La variedad M no es casi formal
porque tiene un producto de Massey no nulo ([a], [5], [v]) tal que |a| = |y]| =1y |8] = 2.
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