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a b s t r a c t

The number of devices, from smartphones to IoT hardware, interconnected via the Internet is growing
all the time. These devices produce a large amount of data that cannot be analyzed in any data
center or stored in the cloud, and it might be private or sensitive, thus precluding existing classic
approaches. However, studying these data and gaining insights from them is still of great relevance
to science and society. Recently, two related paradigms try to address the above problems. On the
one hand, edge computing (EC) suggests to increase processing on edge devices. On the other hand,
federated learning (FL) deals with training a shared machine learning (ML) model in a distributed
(non-centralized) manner while keeping private data locally on edge devices. The combination of
both is known as federated edge learning (FEEL). In this work, we propose an algorithm for FEEL
that adapts to asynchronous clients joining and leaving the computation. Our research focuses on
adapting the learning when the number of volunteers is low and may even drop to zero. We propose,
implement, and evaluate a new software platform for this purpose. We then evaluate its results
on problems relevant to FEEL. The proposed decentralized and adaptive system architecture for
asynchronous learning allows volunteer users to yield their device resources and local data to train a
shared ML model. The platform dynamically self-adapts to variations in the number of collaborating
heterogeneous devices due to unexpected disconnections (i.e., volunteers can join and leave at any
time). Thus, we conduct comprehensive empirical analysis in a static configuration and highly dynamic
and changing scenarios. The public open-source platform enables interoperability between volunteers
connected using web browsers and Python processes. We show that our platform adapts well to the
changing environment getting a numerical accuracy similar to today’s configurations using a given
number of homogeneous (hardware and software) computers as a static platform for learning. We
demonstrate the fault-tolerance of the platform in self-recovering from unexpected disconnections of
volunteer devices. We then prove that EC, coupled with FL, can lead to scientific tools that can be
practical involving real users for final competitive numerical results in real problems for science and
society.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The current advances in Artificial Intelligence (AI) make it
ossible to train machine learning (ML) models by exploiting
aily generated data that was previously considered useless [1,2].
tatista1 stated that there are 23.8 billion interconnected and ac-
ive computing devices worldwide and that they will produce 149
ettabytes of data by 2024. Also, Cisco2 estimated that at least 85
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E-mail addresses: jamorell@uma.es (J.Á. Morell), eat@lcc.uma.es (E. Alba).

1 www.statista.com/statistics/1101442/iot-number-of-connected-devices-
orldwide.
2 blogs.cisco.com/sp/five-things-that-are-bigger-than-the-internet-findings-

rom-this-years-global-cloud-index
https://doi.org/10.1016/j.future.2022.02.024
0167-739X/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
nc-nd/4.0/).
(10%) of the 850 zettabytes created in 2021 are usable, while we
will only store seven zettabytes. We cannot store/process most of
this data in the cloud due to the exponential increase in data gen-
eration [3]. Furthermore, some data are private or confidential,
and we should not share them with third parties (e.g., medical
images) [4]. Besides, edge devices are becoming more and more
powerful, allowing us to use them in training ML models and
not just for inference [5,6]. We cannot use them yet for training
the larger models. However, we can use medium models that
may be very useful for a wide range of tasks such as learning
users’ activities while maintaining their privacy [7], for federated
vehicular networks [8] or for predicting air pollution [9].

Two related proposals [10] have recently emerged that address
network congestion of sending all user data to the cloud and data

privacy issues. On the one hand, edge computing (EC) [3] proposes
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o increase the amount of processing on edge devices while re-
ucing data exchange with the cloud. On the other hand, federated
earning (FL) [11–13] deals with training a shared ML model in a
distributed (non-centralized) manner while keeping private data
locally on edge devices. The combination of both is known as
federated edge learning (FEEL) [14]. However, they also add new
challenges such as unbalanced and non-identically distributed
data (e.g., non-i.i.d.) [15], heterogeneity of hardware (HW) and
oftware (SW), dynamicity of the environment (i.e., edge devices
re managed by volunteers or are unreliable) [6], and security.
he challenges are detailed in Section 2.1. We can see FEEL as
type of Volunteer Computing (VC) [16–20] distributed system
here users, and devices (i.e., volunteers), with local and private
atasets voluntarily donate their computing resources to a project
nd collaborate to train a shared ML model.
Despite the increase in FEEL research in recent years and

ts many real-world applications, there is still no open-source
oftware platform that meets all the challenges and desirable
eatures for a volunteer, decoupled, asynchronous, and scalable
EEL platform that allows researchers to study new techniques
sing real volunteers and resource-constrained edge devices. A
oftware platform that meets FEEL purposes must be (i) modular
to allow easy addition of new algorithms), (ii) fault-tolerant, (iii)
calable, (iv) accessible (to provide easy connection of new volun-
eer participants with minimal user configuration), (v) adaptive
ready to adapt learning to variations in connected edge de-
ices), (vi) and prepared to deal with heterogeneous hardware
nd software.
Most published works use preconfigured parameters in con-

rolled laboratory environments [10–13,21,22]. They use a fixed
umber of workers or always take a constant subset of all avail-
ble ones at each iteration, needing a pre-configuration identify-
ng the participant devices before learning starts (devices do not
onnect and disconnect during learning). They assume that there
re always thousands or millions of devices connected, choosing
ome of them in each iteration. However, they do not consider
he possibility that the number of devices may decrease to just
few (or even zero) and how they must adapt the algorithm
ccordingly. They usually use synchronous training algorithms
aving to wait for the slowest node to continue learning in each
teration. Nevertheless, this may not be practical in a realistic
nvironment where devices are unreliable (can disconnect at
ny time) and heterogeneous with diverse performances. We
hink, in real-world problems, we must use asynchronous training
llowing collaborators devices to join or leave during learning.
lso, these approaches do not consider the interoperability [23]
f the participating devices. Some of them deal with multiple
erformances, but none with the diverse software, like various
earning libraries. Furthermore, they need a centralized node to
anage the whole process and take care of the partial results
ergers.
Some of the papers address part of these points, but none

over all of them. As a result, there is a need for an open and mod-
lar software platform in a decentralized, asynchronous, fault-
olerance, and adaptive way to help researchers explore new
echniques and ideas in FEEL. In this work, we define the chal-
enges and desirable features for a volunteer, decoupled, asyn-
hronous, and scalable FEEL platform. We propose an algorithm
or FEEL that adapts to asynchronous clients joining and leaving
he computation. We propose, implement and evaluate a new
oftware platform for distributed deep learning on volunteer edge
evices. We then evaluate its results on problems relevant to
EEL. We performed twenty experiments organized into four case
tudies and used from 1 to 64 workers. We use two types of
orkers: Python processes (TensorFlow) limited to one core and

GB RAM on HTCondor [24] as constrained devices and up to 24

54
esktops collaborating from web browsers (TensorFlow.js). We
nalyze how asynchrony, dynamic connections, and disconnec-
ions of devices affect learning and how we can adapt learning to
eep high accuracy.
We show that the proposed decentralized and adaptive system

rchitecture for asynchronous learning allows volunteer users to
ield their device resources and local data to train a shared ML
odel. Devices can join and leave the system at any time without
topping the learning process. This architecture does not need
o know where or when the participating devices will connect.
his system is fault-tolerant, so unexpected disconnections of
orkers do not interrupt the learning. Besides, our open-source

mplementation enables collaboration between devices with het-
rogeneous hardware and software. User devices can join the
earning in different ways, such as from a web browser or by
unning a Python process on the client device, allowing almost
ny device to participate. All code is available in a public Git
epository, and it is packaged in Docker containers to allow for
eproducibility3 (programmability and usability).

Finally, we conducted an exhaustive empirical analysis for the
evaluation of the proposal. We analyzed the main features of the
platform mentioned above. We organized the study into four case
studies:

• Case study 1: We analyze the robustness and interoperabil-
ity of the platform when using heterogeneous hardware and
software. We demonstrate that the platform achieves high
accuracy despite heterogeneity.

• Case study 2: We examine the most suitable setting when
using asynchronous FEEL. We show that it is necessary
to adapt the aggregation parameter when the number of
workers varies to get high accuracy.

• Case study 3: We test the fault-tolerance of the software
platform to variations in the number of collaborating de-
vices. We also evaluate the learning algorithm self-adapt-
ation to these changes. We prove that the platform is fault-
tolerant, can continue its learning, and keep offering a high
accuracy despite connections and disconnections of volun-
teer devices.

• Case study 4: We evaluate the self-adaptation and fault-
tolerance of the platform using a more extreme non-i.i.d
data. Also, we perform an analysis of the scalability and
random drops. We confirm that when the system uses the
adaptive algorithm and random drops, we can get similar
results as when the system uses a constant number of
workers during learning.

In summary, the main contributions of this work are:

1. We define the challenges and desirable features for a vol-
unteer, decoupled, asynchronous, and scalable FEEL plat-
form.

2. We propose an algorithm for FEEL that adapts to asyn-
chronous clients joining and leaving the computation.

3. We propose, implement and evaluate a software platform
for performing FEEL that meets the defined challenges and
desirables features. We evaluate our proposal via exten-
sive experimentation in a static configuration and highly
dynamic and changing scenarios. We then show that the
platform adapts well to this changing environment get-
ting a numerical accuracy similar to today’s configura-
tions using a given number of homogeneous (hardware
and software) computers as a static platform for learning.
Next, we demonstrate the fault-tolerance of the platform
that recovers from unexpected disconnections of volunteer
devices.

3 github.com/jsdoop/jsdoop.

http://www.github.com/jsdoop/jsdoop
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Table 1
Desirable features for volunteer computing platforms.
Desirable feature Description

Accessibility Users must connect to the platform easily
Adaptability/Dynamicity The environment is ever-changing, devices join and leave at will
Availability A highly available environment has minimal service interruption
Fault-Tolerance The platform should be tolerant of failures and disconnections
Heterogeneity Connected devices may have different performance, HW and SW
Programmability Developers should be able to add new features to the platform quickly
Scalability The platform must handle a growing number of connections
Security The machines of the volunteers should not be compromised
Data privacy The access to customer’s data must be restricted and remain private
Usability The platform has to be easy to deploy and use
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4. We released a modular open-source library that covers
most FEEL and VC desirable features.

The following section briefly presents the technical back-
round and related works. Section 3 introduces the proposed
oftware platform. Section 4 shows the experimental study and
he results. Section 5 discusses the threats to validity. Lastly,
ection 6 outlines the main conclusions and proposes future
ork.

. Technical background and related work

FEEL enables devices to collaboratively learn a shared ML
odel while keeping all training data on the device. In this work,
e use a convolutional neural network (CNN) as a ML model.
ometimes we interchangeably use the term deep learning (DL)
nstead of neural network (NN). That is commonly accepted when
e refer to a NN with multiple nonlinear layers [25]. In this sec-
ion, we first introduce the main challenges of FEEL and the desir-
ble features of VC. We then briefly describe NN and distributed
N training.

.1. FEEL and VC: Challenges and desirable features

In this subsection, we present the main challenges of FEEL and
he desirable features of VC platforms [20,26,27] (see Table 1). As
e will see, both concepts share many similarities. We are faced
ith heterogeneous hardware and software, asynchronism, fault-
olerance, and devices arbitrarily joining and leaving the system,
mong other things. In Section 3, we explain how our proposal
overs this.
Adaptability/Dynamicity. In FEEL, edge devices usually are man-

aged by volunteers, or if not, their connections are unreliable, so
we cannot be sure that they will always be available. In either
case, devices can join and leave the learning at any time, thus
the platform must be ready for unexpected disconnections and
failures. That is the same problem that occurs in traditional VC
systems, so we follow the same guidelines. Besides, the variations
in connected devices during learning implies that the dataset
available for training at any given time also varies. Traditional
distributed NN training algorithms use highly controlled environ-
ments with high connection speeds where the data is divided into
i.i.d. (i.e., sufficiently randomly disordered to make the order of
the data unrelated) balanced datasets [28]. However, when we
perform FEEL, we keep the data locally to maintain data privacy,
so we are sure to face unbalanced and not identically distributed
data (e.g., non-i.i.d.) [15,29].

Availability. A highly available environment has minimal ser-
ice interruption. Like most distributed systems, a VC platform
ust be as decoupled as possible. Each element of the system
ust be independent of the others components. They should
ommunicate with each other in a decoupled manner, e.g., via
EST APIs. The platform must be ready to replace actors in case
 d

55
of failures and disconnections. It is necessary to adopt a de-
centralized approach. Our proposal follows these guidelines (see
Section 3).

Fault-Tolerance. The platform should be tolerant of failures
nd disconnections. As mentioned above, volunteer users’ devices
an be disconnected at any time without prior notice due to
rrors, connection failures, or because the user decided to stop
ollaborating. Therefore, the platform must continue learning de-
pite these obstacles. There are different techniques for tackling
ault tolerance, such as checkpointing, redundant processing, and
eartbeat monitoring [27]. As for checkpointing and heartbeat,
hey are useful when the processing time before communication
s high. In our work, each processing time before communica-
ion is low. Also, we wanted to minimize communications and
educe coupling. Therefore, we preferred to use a maximum time
hreshold between result communications to determine when
volunteer was disconnected or lagging (see Sections 3 and

.2.4). Nevertheless, we plan to consider adding both in the future
f longer processing times are required. Regarding redundancy,
ther authors claimed that these techniques have to deal with
large amount of redundant computing and that new methods
eed to be found to improve the efficiency of big data processing
n VC [30]. Although some authors propose to use these tech-
iques with minimal impact on performance [27], distributed
raining of a NN is slow, and it is necessary to find techniques
hat avoid redundancy to speed up processing. Furthermore, in FL,
ata is located on the edge devices and is private, so we cannot
uarantee redundancy in processing as each device will compute
ifferent data. In our case, we circumvent all the mentioned
eaknesses by going for an adaptive algorithm that continues job
rocessing despite the failures of the volunteer nodes.
Scalability. The platform must handle a growing amount of

onnections. The decentralized approach and the decoupling be-
ween the different actors involved are paramount to achieve this.
ur proposal is based on these principles. Related to scalability
s bottleneck in communications. There are different techniques
o reduce the communications bottleneck during distributed DL
in Section 2.2 we detail distributed DL) such as model quan-
ization, quantization of gradients/weights, sparsification of gradi-
nts/weights [29,31,32]. They relate to compressing the ML model
before or after the training), compressing gradients/weights, or
ending only the most representative values of gradients/weights
bove a specific threshold. Another way is by increasing local
omputation, allowing nodes to train their local ML model using
heir local data for more iterations before synchronizing with the
lobal shared model. Besides, to avoid waiting for the slowest
ode, it is possible to perform asynchronous training allowing
he aggregator for summarizing device results of different ages.
n this case, we can use a threshold [33] to discard old results
i.e., bounded asynchronous training) or/and a different learn-
ng rate depending on how outdated they are. Likewise, data
ccess can be another bottleneck. In traditional distributed DL,
ata is divided among the participating nodes before training
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egins and shuffles after each epoch. In FEEL, the training data
s dynamic and remains local. However, local devices may access
he same database on a local network while collaborating with
ther remote devices. The best way to deal with this problem is
o use random access to data, the equivalent of sampling with
eplacement [15,34,35]. It allows accessing data simultaneously
nd without waiting for each other. Our proposal makes use of
everal of these techniques (see Section 3).
Heterogeneity. Connected devices may have different perfor-

ance, hardware and software.

• SW Heterogeneity. Using FEEL, interoperability of each node’s
dataset is a prerequisite. Also, each node may use differ-
ent software, including a distinct NN learning library. They
exchange gradients, weights, and model topologies with
the server and the other devices. The Open Neural Net-
work (ONNX)4 tries to achieve interoperability of the var-
ious NN libraries but is not yet fully compatible with all of
them. Also, software containers, such as Docker,5 allow us
to package and deploy algorithms into standardized services
and applications. Our proposal solves this problem and al-
lows heterogeneous hardware and software to collaborate
in learning (see Section 3).

• HW Heterogeneity. FEEL deals with a heterogeneous set of
clients with different performances, such as smartphones
and IoT devices. To address this problem, some researchers
[13,36] have proposed algorithms to adapt learning to de-
vices with various performances. For instance, each node
may use customized local steps based on its power. Al-
though the vanilla FedAVG [12] uses random node selection,
it is also possible to use an intelligent node selection algo-
rithm [27] to deal with HW heterogeneity. In this case, node
selection should be based not only on the performance of
the edge devices but also on the distribution of the edge
devices’ data. We do not use this technique in this work
but plan to investigate it further in future work. Despite
the heterogeneity, most works typically use synchronous
learning algorithms. They are often more accurate, simpler
to apply and make the results easier to analyze. In these
papers, the experimentation uses fixed and preconfigured
workers, and no connections and disconnections occur dy-
namically during learning. We think this does not fit into a
real scenario where all devices are not always available but
are dynamic, and thus the algorithm must adapt to these
changes and continue with learning. We believe that the
natural way to deal with this is to use asynchronous learning
despite its challenges and difficulties. We are aware of the
risks of this scenario. However, we firmly believe that this
has to be the ultimate goal of FEEL.

Accessibility. Volunteers must connect to the platform easily
hile avoiding complex configurations or installations. In FEEL,
sers yield their device resources and local data to train a shared
L model. However, for this to happen, they must be able to do it
imply without much hassle. Besides, it is possible to use gamifi-
ation [37] to make users stay connected for longer and feel that
hey are participating in a global project for the good of science
nd society. Our proposal allows volunteers to easily connect to
he platform by just running a simple Python process or through a
eb browser (see Section 3). Plenty of IoT devices allow running
eb browsers such as Raspberry Pi, mobile phones, smart TVs,

etson Nano or Alexa. We indeed emphasize the importance of
eing able to connect through a web browser [20]. If users do

4 onnx.ai.
5 www.docker.com.
56
not have to install anything, it is easier for them to collaborate as
volunteers in collaborative projects. Allowing workers to connect
using Python or web browsers ensures that virtually any device
can use the system.

Programmability. Developers should be able to add new fea-
tures to the platform quickly. For a software platform to be
accepted by the research community, it must be open-source
to allow for reproducibility. It must also be modular and easily
extensible so that researchers can effortlessly add new techniques
and algorithms. The proposed platform’s code fulfills all of these
requirements.

Usability. The platform has to be easy to deploy and use.
esearchers must be able to deploy the software platform on their
achines quickly. For this purpose, it is essential to use packing
ontainers such as Docker, allowing us to forget the problems of
ependencies between different software libraries. The proposed
oftware platform is packaged in Docker containers for ease of
eployment and use by researchers.
Data privacy. The access to customers’ data must be restricted,

nd they must remain private. This aspect is the cause of the
mergence of FL aiming to learn a global ML model from end-
sers data without accessing the data directly at any time, these
lways remaining private and on local devices.
Security. There are many challenges related to user data secu-

ity and privacy [38]. However, these issues are outside the scope
f this work.

.2. Distributed neural network training

Backpropagation is a widely used algorithm for training feed-
orward NNs [1,2,39]. Its goal is to minimize the difference be-
ween the actual output and the predicted output of the NN
i.e., the error). The loss function computes this error (e.g., mean
quare error) and propagates it to previous layers. The opti-
ization function (e.g., gradient descent) calculates the gradients,

.e., the partial derivative of the loss function with respect to
eights, and the weights are modified in the opposite direction
f the calculated gradient.
Gradient descent (GD) is the most common method to opti-

ize NNs [1,2,39]. There are three variants of GD. Vanilla gradient
escent (i.e., batch gradient descent) computes the gradient using
he entire training dataset. Stochastic gradient descent (SGD)
erforms a parameter update for each training example. Mini-
atch gradient descent approximates the partial derivative over
he loss function using a randomly sampled subset of the data
i.e., a mini-batch). The last is the standard for training a NN,
nd the term SGD is also often used when we use mini-batches.
any algorithms improve on the basic SGD algorithm, such as
dagrad, RMSprop, Adam, and more [39]. In this work, we use
istributed mini-batch gradient descent (distributed SGD from
ow on). In the experimentation, we specifically employ the
MSprop variation.

.2.1. Mini-batch gradient descent
Here we present a canonical SGD (see Table 2 for main nota-

ion summary). We define D as a dataset. For each data example
, we define the loss function [40] as f (w, xj, yj), which we write
s fj(w) in short. For each mini-batch of data B where B ⊆ D, we
efine the loss function obtained after applying the mini-batch Bk
n iteration t as:

k,t (wt ) =
1

|Bk|

∑
jϵBk

fj(wt ) (1)

Then, we update the weights of the model using an optimiza-
tion function, e.g., if we use canonical SGD:

wt+1 = wt − η∇Fk,t (wt ) (2)

where η > 0 is the step size (i.e., the learning rate).

http://www.onnx.ai
http://www.docker.com
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Table 2
Main notation summary.
wi,t Local model weights of node i at time t
w

global
t Global model weights at time t

fj(w) Loss function for each data example j
Fk,t (wt ) Loss function for minibatch k at time t
η Learning rate
t Iteration index
T Total number of global aggregations
τ Number of local update steps between two global aggregations
N Maximum number of edge devices (connected or disconnected)
E Current set of connected edge devices
P Number of gradients used to calculate the new weights
D The entire dataset
Di Local dataset in node i
Bk Minibatch k of data
Z A threshold variable to accept or discard old gradients
S Time of inactivity before disconnection happens

2.2.2. Canonical distributed mini-batch gradient descent
A canonical synchronous distributed gradient descent algo-

ithm [12] is shown in Algorithm 1. Assuming we have N edge
nodes with local datasets D1,D2, . . . ,Di, . . . ,DN , ∪

N
i Di = D and

Di ∩ Di′ = ∅ for i ̸= i′.

Algorithm 1 Sync Distributed Gradient Descent.
Input: τ , T
Output: Final model parameter w

global
t=T

1: Initialize: w
global
t=0 , wlocal

i,t=0 to the same value for all i;
2: for t = 1, 2, ..., T do
3: for u = 1, 2, ..., τ do
4: Each node i, in parallel, compute local update (3)
5: end for
6: // Each node sends local changes sync

// Global aggregation in server (4)
// Each node load global weights
Set wi,t ⇐ w

global
t for all i;

7: end for
Each node i has its local model parameter wi,t where t is the

teration index. At t = 0, the local parameters for all nodes
are initialized to the same value. In each iteration, a local
pdate is performed using an optimization function, e.g., if we use
anonical SGD:

i,t+1 = wi,t − η∇Fi,k,t (wi,t ) (3)

After one or multiple local updates (τ ), a global aggregation (4)
s performed through the aggregator to update the local parame-
er at each node to the weighted average of all nodes parameters.

global
t =

1
N

N∑
i=1

wi,t (4)

2.2.3. Adaptive distributed mini-batch gradient descent
In adaptive distributed mini-batch gradient descent, the num-

ber of connected edge nodes is dynamic and varies over time. We
assume that the maximum number of edge nodes is N (connected
or disconnected), that each local dataset Di is unbalanced and
non-i.i.d, ∪N

i Di = D and ∀i∀j
⏐⏐Di ∩ Dj

⏐⏐ ≥ 0. We define the current
set of connected edge nodes as E where |E| ≤ N . We dynamically
adapt the global aggregation to the current connected edge node
devices using:

w
global
t =

1
P

P∑
wlocaly , P ≃ |E| (5)
y=1

57
We define |E| as the number of connected edge node devices
(workers) and P as the number of gradients the aggregator ac-
cumulates each aggregation. The adaptive algorithm dynamically
adjusts P ≃ |E|. We refer to connected nodes |E| as the nodes
that have communicated with the logical server(s) in the last S
seconds (see Section 3.1). Also, we use asynchronous training,
so devices do not have to wait for each other. Therefore, a new
threshold variable Z has been defined to accept or discard old
gradients depending on how old they are (see Algorithm 2).

Algorithm 2 Async-Adapt Distributed Gradient Descent.
Input: τ , Z
Output: Final model parameter w

global
t=T

1: Initialize:
// Each worker loads global weights when connected.
wi,t ⇐ w

global
t ;

// Aggregator initialize list of weights for aggregation
W <- [] ;

2: while termination criterion is not met (each worker async)
do

3: for u = 1, 2, ..., τ do
4: // Each node i compute local update (3)
5: end for
6: // Each node sends local weights wi,t
7: // Aggregator receives the local weights async

// Aggregator receives info of connected workers |E| and
update P

8: P = |E|

9: // Aggregator checks if received weights are too old
10: if ti + Z >= tglobal then
11: // Aggregator adds weights to list for aggregation

W .insert(wi,t )
2: end if

13: if W .size() >= P then
14: // Global aggregation (5)
15: W = []

6: end if
17: end while

2.2.4. Learning communications cost
In vanilla FL [12], the total number of connected workers can

be thousands, and the subset of workers participating in each
iteration is a fixed number of them chosen randomly. In this
paper, we deal with the problem where the number of workers is
low and can even be zero during training and how the algorithm
must adapt to these changes.

In our adaptive asynchronous approach, when a worker first
connects, it downloads the job setting Cjget + Cjres (get request
and response). Later the model topology Ctget + Ctres , and finally
he current state of the problem (i.e., weights) Cwget + Cwres . Then
iteratively, it processes the local steps, return the results (i.e., gra-
dients/weights) and again downloads the current state of the
problem Cgpost +Cwres (post request with results and response with
updated weights) until the completion criteria are completed
(see Section 3.2). However, the size of the problem settings and
the model topology so do the communication time needed for
its transmission are negligible compared to the size of the NN
weights. Besides, the size of the current state weights Cwres is
similar to the size of the gradients sent Cgpost . We refer to each
one as C .

Cjget + Cjres + Ctget + Ctres + Cwget + Cwres ≃ Cwget + Cwres (6)

Cwget + Cwres ≃ Cwres (7)
Cgpost ≃ CWres = C (8)
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Fig. 1. High-level execution flow. P changes accordingly to the number of
connected devices. When the number of gradients (ngrads) is equal to P a global
ggregation is performed. In this example, two global aggregations occurred
sing P = 1, and Ctotal is equal to 5. W1 received weights and sent gradients 2
imes. W2 received weights once. W1 received an empty buffer once because
he global model did not change.

When we use a constant and fixed number of workers N
ithout connections and disconnections, and we set P equal to
he number of connected workers |E| = N = P , the total
ommunication would be:

total = 2 · C · N · T (9)

n this case, we can see how the total amount of data transmitted
epends on the number of connected nodes |E| = N and the
umber of global aggregations T we perform. Also, we see that
he data batch used in the global aggregation depends on |E| (the
ore workers used, the larger the data batch used in each global
ggregation step).
When we allow connections and disconnections of workers

uring learning (see Fig. 1), we match P to the number of con-
ected workers dynamically P ≃ |E|. In this case, the size of
he data batch at each global aggregation step varies during
earning according to |E|. In addition, if we assume that when a
orker goes offline, it has already downloaded the current state
f the problem Cwget before going offline, then the total amount
f communications Ctotal would be:

total ≃ A · C +

T∑
t=1

|E|t · 2 · C (10)

here A is the total number of disconnections during learning
nd t is the ID of global aggregation. In this case, Ctotal depends on
E| in each t and A, i.e., it depends on how reliable the connected
orkers are. That is a problemmore related to fault tolerance [41]
nd is common in volunteer computing. To solve it, we have
o find a balance between the probability of failure of a task
nd the execution time (e.g., using a custom number of local
teps). We want to face it more deeply in future. Nevertheless, in
ur approach, when a disconnection occurs, |E| decreases, fewer
radients are used for a global aggregation, and therefore Ctotal
an be lower than when |E| = N with no disconnections.

. The proposed platform

In this section, we present the design decisions. Next, we
escribe the flow of execution of the proposed platform.
58
Fig. 2. High-level system architecture.

3.1. Design decisions

In this subsection, we introduce the design decisions we made
to design a software platform to meet the FEEL challenges pre-
sented above and with the desirable features of VC platforms [20,
26] (see Table 1). We follow a decentralized approach in which
the actors are as decoupled as possible. There are six types of
actors involved (see Fig. 2).

1. The initiator is the user who creates the problem to be
solved (i.e., job). It participates before starting the training
to specify the required parameters.

2. The workers are the user edge devices that yield their com-
puting resources and data in learning a shared ML model.
These devices may be very different from each other, from
smartphones and IoT devices to laptops and desktops.

3. The aggregator can be an edge device or a remote machine.
It is in charge of averaging the results calculated by the
workers and updating the shared ML model.

4. The logical server can be in the cloud or the edge net-
work. It is a server in charge of the orchestration and job
scheduling.

5. The distributed in-memory database (DIMDB) is in the cloud
and is the place where the logical server stores the inter-
mediate results (i.e., gradients/weights).

6. The queue server is in the cloud and is used by the log-
ical server to inform the aggregator that new results are
available.

We distinguish between jobs and tasks. A job is the whole NN
raining process we want to complete, and it has an ID associated
ith it. There may be multiple jobs being solved at the same time

by different workers. A job contains the parameters of the NN
training process, such as the NN model topology, the optimization
algorithm, the loss function, the learning rate, and the termina-
tion criterion (e.g., the number of global aggregations). We call
the user who creates a job and uploads it to the platform an
initiator. We call a task each local processing that is performed on
a worker to complete the job. Each one has a task ID associated
with it.

The logical server is in charge of the orchestration and job
scheduling. It is only an intermediary that redirects messages
between the participants and the DIMDB. It can be in the cloud
or the edge network. The DIMDB is in the cloud and is the place
where we store the intermediate results (e.g., tasks solved by a
worker that are gradients/weights). When the logical server re-
ceives results from the workers (i.e., gradients/weights), it stores
them in the DIMDB. Next, it sends a message to a message queue
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The aggregator is a process subscribed to a message queue of a
ob ID waiting for results. When it receives a message that a new
ntermediate result is available, it downloads it from the DIMDB.
he aggregator uses them (i.e., gradients/weights) to calculate the

new global shared model. Subsequently, the aggregator sends the
pdated model to the logical server who stores it in the DIMDB.
he aggregator can be in the cloud or the edge network.
Workers are volunteer devices that collaborate by solving tasks.

hey can connect and disconnect at any time for different rea-
ons during the execution. Therefore, when a worker connects, it
ownloads the current state of the job, computes locally for the
et number of local steps, and then sends the results to the logical
server. Thus, they can connect with a job ID that had previously
started collaborating.

The aggregator uses an adaptive algorithm to adjust the num-
ber of gradients to aggregate to the number of connected workers
(see Section 2.2.3). Therefore, the aggregator needs to know how
many workers are connected to adapt the aggregation parameter
P . To this end, the logical server stores the worker’s information
from the workers who have communicated with it in the last S
seconds. This information is included in the message that the
logical server sends to the message queue. Thus, the aggregator
can know how many workers are connected and adapt the aggre-
gation parameter accordingly. Note that the more gradients the
aggregator accumulates, the bigger is the batch size used in each
aggregation. As we can see, this decentralized approach allows
multiple logical servers as load balancers connected to the same
DIMDB (availability and scalability).

When workers stop communicating with the logical server, it
considers that they have disconnected, deletes them, and self-
adapts the learning to the number of available devices (adaptabil-
ity/dynamicity). Therefore, workers can disconnect unexpectedly,
freeze or otherwise fail without stopping global learning (fault-
tolerance). Also, asynchronous training allows the platform to
continue the learning process without waiting for slower devices.
Each job has a threshold parameter for accepting old results from
workers. Thus, results may arrive late from slower devices, and
it is up to the aggregation technique used to decide how best
to aggregate them (e.g., discarding old results or using different
learning rates in aggregation). Furthermore, since workers in the
same local network can access the same local database, we use
random access to the local database to avoid synchronization
with the rest of the local workers.

All participants interact through the logical server using REST
API protocol. Workers can connect to the platform using a web
browser by following a web link (accessibility). That maximizes
the number of collaborators by requesting a minimum effort (just
a click) from volunteers. The platform also supports connections
from devices that do not have a web browser by running a Python
process.

In Python, we use the TensorFlow library, and in the web
browser, we use TensorFlow.js, a JavaScript library for training
and inference directly in the browser or Node.js (interoperabil-
ity and SW heterogeneity). In recent years, the performance of
programs executed in the web browser has improved and is
already approaching that achievable with native code. These ad-
vances lead us to believe that web browser computing is the
way forward for this type of volunteer computing thanks to its
ubiquity, sandboxing, and no need for software installation [42].
It is present in desktops, many IoT devices, and smartphones (HW
heterogeneity).
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Fig. 3. Initialization execution flow. The worker obtains all the necessary
information to start collaborating.

Fig. 4. Execution flow of the collaborative learning process.

We use Redis6 for DIMDB, RabbitMQ7 (AMQP protocol) for the
queue server, the HDF5 format8 to share the model topology, and
the NPY file format9 to share the weights and gradients between
the diverse NN libraries in web browsers and Python processes.

The software platform is modular, open-source, packaged in
Docker containers, and is publicly available in a Git repository
to allow for reproducibility. The flow of execution is detailed in
Section 3.2.

3.2. Flow of execution

In this subsection, we explain the platform execution flow
of a distributed learning process (see Figs. 3 and 4). Note that
we previously used the term gradients/weights because we can
follow both approaches. For simplicity, we will use the word
gradients to refer to the workers’ results and weights to refer to
the model.

An initiator setups a problem and creates a job. A job contains
all the information needed to train the NN. If the NN model

6 redis.io.
7 www.rabbitmq.com.
8 www.hdfgroup.org/solutions/hdf5/.
9 https://numpy.org/devdocs/reference/generated/numpy.lib.format.html.

http://www.redis.io
http://www.rabbitmq.com
http://www.hdfgroup.org/solutions/hdf5/
https://numpy.org/devdocs/reference/generated/numpy.lib.format.html
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t
opology associated with the job is not stored in the remote
DIMDB, he/she must first upload it and associate a name to it.
Also, he/she initializes the weights of the shared ML model and
uploads them to the platform. Now, the job is ready for the
workers to collaborate.

A worker requests job information from the logical server using
the job ID (see steps 1 and 2 in Fig. 3). The server responds
with the job information needed to know how to solve that job.
The worker then downloads the NN model topology associated
with that job (see steps 3 to 6). It then downloads the current
weights. A worker can connect when the training process had
already started, so the weights may not be the initial ones. The
current weights have an associated ID that indicates the number
of global aggregations performed (see steps 7 to 10). Now, the
worker has all the necessary information to start collaborating.

The platform allows access to data locally or remotely, allow-
ing in the latter case for a traditional distributed DL (see steps 1 to
4 in Fig. 4). When we use FEEL, the access to data is done through
a database deployed in the edge device or another device in the
same local network (i.e., keeping data privacy) with the data
ready to perform the training and not through the logical server.
In either case, data requests use the same REST API through an
intermediate module and are transparent to the user.

After the worker gets the data, it calculates the gradients for
the local steps indicated in the job information. Next, it sends the
accumulated gradients in those steps to the logical server (see step
6 in Fig. 4). Then the logical server stores them in a remote DIMDB
(see steps 7 and 8). Later, it sends a message to the queue server
notifying that those results are now available (see step 9).

The logical server then checks for updated model weights
related to that job ID in the remote DIMDB. If there are new
weights, the server responds to the worker with a buffer contain-
ing those weights. Otherwise, the server responds to the worker
with an empty buffer. Next, if the worker receives new up-to-
date weights, it updates the model. The worker then iterates again
to calculate new gradients. This process is repeated as a loop
until a termination criterion is satisfied. We use the number of
global aggregations as the termination criterion, but the library is
modular, and it is easy to add new different termination criteria.

The aggregator is another machine that can be an edge device
or a remote one and is subscribed to a message queue associated
with a job ID (see step 0 in Fig. 4). When messages arrive at
the queue notifying newly available results (see step 10), the
aggregator requests the server for these results from the remote
DIMDB (we do not show this request in the figure for the sake of
simplicity).

When the aggregator has the required number of gradients, it
calculates the new model weights using the selected aggregation
technique (e.g., the most common is averaging) (see step 11 and
12 in Fig. 4). The number of gradients to be summarized can be
set or adaptive depending on the number of workers connected.
It then sends the new weights from the shared ML model to the
logical server (see step 13). We use a threshold Z to discard old
gradients (see Algorithm 2).

4. Experimental study

In this section, we present a deep experimental study divided
into five subsections. The first subsection describes the experi-
mental settings. The next four subsections describe the four case
studies. The first analyzes the robustness and interoperability of
the platform when using heterogeneous hardware and software.
The second one examines the most suitable configuration when
using asynchronous FEEL. In the third one, we tested the fault-
tolerance of the software platform to variations in the number
of collaborating devices during learning. In the fourth one, we
evaluate the self-adaptation and fault-tolerance of the platform
using a more extreme non-i.i.d data. Also, we perform an analysis
of the scalability and random drops.
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Fig. 5. Number of samples of each label in each worker in case studies 1, 2,
and 3. Each worker selects portions of the dataset randomly.

4.1. Experimental settings

For experimentation, we train a CNN [25,43] (12 layers and
887,530 trainable parameters) to predict the Mnist dataset [44].
The Mnist dataset contains 70,000 images of handwritten digits:
60,000 for training and 10,000 for testing. In all experiments,
the models were trained using the training set, and then we
evaluated them using the test set. All accuracy and loss results
shown in all figures refer to the test set. Besides the accuracy and
loss, we report the Cohen’s Kappa coefficient (CK score) [45]. In
multi-class classification, metrics such as accuracy do not provide
enough information of our classifier’s performance. In contrast,
the CK coefficient is an extremely valuable metric that can handle
very well both multi-class and imbalanced class problems.

We use the RMSprop optimizer (decay = 0.0, rho = 0.9, mo-
mentum = 0.0, epsilon = 1e-08, centered = False), mean squared
error as loss function, and a learning rate η = 0.001. Both the
topology and the model parameters are from an example in a
Kaggle notebook10 to allow for reproducibility. We performed
twenty experiments organized into four case studies and used
from 1 to 64 workers. We use two types of workers: Python
processes (TensorFlow) limited to one core and 2 GB RAM on
HTCondor [24] as constrained devices and up to 24 desktops
collaborating from web browsers (TensorFlow.js). The aggregator
runs in a Python process using the TensorFlow library. The logical
server that provides access to the database run in a Java process.
The dataset, model topology, gradients, and weights are stored
in an in-memory database (Redis). The last three are different
processes, but they all run on the same machine in our experi-
mentation. All the computers used in the experimentation were
interconnected in an Ethernet LAN 100 Mb. That is an average
Internet speed similar to that available to most users.11

To perform FL, each worker only has access to a fraction of
the dataset. In case studies 1 to 3 (see Fig. 5), the different

10 www.kaggle.com/yassineghouzam/introduction-to-cnn-keras-0-997-top-6.
11 worldpopulationreview.com/country-rankings/internet-speeds-by-country.

http://www.kaggle.com/yassineghouzam/introduction-to-cnn-keras-0-997-top-6
http://www.worldpopulationreview.com/country-rankings/internet-speeds-by-country
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Fig. 6. Number of samples of each label in each worker in case study 4. Each
worker has a different number of samples of each class and a maximum of five
classes.

fractions may overlap, are unbalanced, and non-i.i.d. We divided
the dataset into mini-batches of size 8. We use a maximum of 64
workers (N = 64). For experimentation, each worker randomly
chooses (using a different seed depending on the worker ID) the
mini-batches that are part of the local dataset of size 1/64. Hence,
some data may be overlapping in local datasets of different work-
ers. That is something that could happen in the real world. In
case study 4 (see Fig. 6), we use a more extreme non-i.i.d data,
partitions do not overlap, each one has a maximum of five classes,
and the number of elements in each one can be different.

Each worker performs 50 local steps before communicating
with the server. We use bounded asynchronous training. There-
fore, workers can have different models for a certain period and
then load the shared model. That means that we must add a
new parameter to decide which weights will be too outdated
to be used. We allow the aggregator to use results from up to
5 previous generations (Z = 5) to calculate the new global
weights. The aggregation technique used is averaging selected
results. Finally, the termination criterion is to reach 300 global
aggregations.

4.2. Case study 1: robustness and interoperability

In this case study, we analyze the robustness and the inter-
operability of the software platform when using heterogeneous
HW and SW. For this, we experiment with 64 heterogeneous
devices. We use 40 Python processes running TensorFlow on
constrained devices (one core and 2 GB of RAM) and 24 desktops
running TensorFlow.js in the Chrome web browser. We call this
experiment mixW64P64.

Then, we compare mixW64P64 with a new one when using
64 homogeneous constrained devices running a Python process.
We call this experiment W64P64. In case study 1, the number of
workers and the aggregation parameter are fixed and constant
throughout the experiment.

As we can see in Figs. 7, and Table 3, in W64P64 we got 0.9894
accuracy, 0.0016 loss, and 0.9878 CK score, while in mixW64P64
61
Table 3
Results of case study 1. The results using homogeneous and heterogeneous
hardware and software, W64P64 and mixW64P64, are very similar.
Job Workers P Min Loss Max Acc. CK score

W64P64 64py 64 0.0016 0.9894 0.9878
mixW64P64 24js40py 64 0.0017 0.9887 0.9860

Fig. 7. Accuracy progress in case studies 1 to 3 every 30 aggregations. The larger
the number of workers, the better the accuracy.

we got 0.9887 accuracy, 0.0017 loss, and 0.986 CK score. In both
experiments, we got almost identical results, slightly better in
W64P64. The learning was excellent even when we used het-
erogeneous hardware and software. These results show that the
interoperability of the platform works remarkably well.

4.3. Case study 2: asynchronous configuration

In case study 2, we analyze the most suitable configuration
to perform asynchronous FEEL. We do not yet employ self-
adaptation but study learning using a static and fixed number of
workers |E| and the aggregation parameter P in each experiment
or comparison. Subsequently, in case 3, we use the results of case
tudy 2 to configure real-time self-adaptation of the algorithm to
hanges in a dynamic environment.
In this case study, we conduct two groups of related experi-

ents. All of them use up to 64 Python processes.

(a) First, we perform a group of experiments using a given
constant number of workers, 64, 32, 16, 8, 4, 2, and 1.
In each experiment, the aggregation parameter is constant
and is the same as the number of workers used (i.e., P =

|E|). Both remain constant throughout the learning. We
want to analyze what accuracy and CK score we get when



J.Á. Morell and E. Alba Future Generation Computer Systems 133 (2022) 53–67

o
m
s
1
0
0

a
a
w
c
w
c

g
W
b

i
w

Table 4
Results of case study 2-a. When we repeated the experiment with progressively
fewer workers, the accuracy gradually decreased.
Job Workers P Min Loss Max Acc. CK score

W64P64 64py 64 0.0016 0.9894 0.9878
W32P32 32py 32 0.0018 0.9878 0.9842
W16P16 16py 16 0.0019 0.9876 0.9843
W8P8 8py 8 0.0025 0.9844 0.9817
W4P4 4py 4 0.0029 0.9811 0.9770
W2P2 2py 2 0.0043 0.9741 0.9724
W1P1 1py 1 0.0055 0.9663 0.9626

Table 5
Results of case study 2-b. We can obtain high accuracy when the number of
workers is different from the aggregation parameter as long as they are not too
distant. Otherwise, learning gets worse and worse.
Job Workers P Min Loss Max Acc. CK score

W64P32 64py 32 0.0017 0.9889 0.9867
W32P32 32py 32 0.0018 0.9878 0.9842
W16P32 16py 32 0.0020 0.9865 0.9846
W8P32 8py 32 0.0722 0.6706 0.5116

we use a different number of workers. Each one only has
access to a small local dataset. Therefore, we expect to
get greater accuracy when using more workers because of
having access to more training data.

(b) In the second group of experiments, we use 64, 32, 16, and
8 workers, but we fix the aggregation parameter to 32 in
all cases (i.e., P ̸= |E|). We want to analyze how learning
is affected when the number of workers is different from
the aggregation parameter. It causes the aggregator to use
old results to compute the new shared model. We suppose
that when the number of workers and the aggregation
parameter are different the final accuracy will be lower.

In Figs. 7, and Table 4, we can see the results of the first group
f experiments (2-a). We observe when we repeated the experi-
ent with progressively fewer workers, the accuracy and the CK
core gradually decreased as we expected. From 64 (W64P64) to
worker (W1P1), we got 0.9894, 0.9878, 0.9876, 0.9844, 0.9811,
.9741, 0.9663 accuracies and 0.9878, 0.9842, 0.9843, 0.9817,
.9770, 0.9724, 0.9626 CK scores.
We see that the more workers we use, the better the final

ccuracy we get. However, we can also see that even if we have
low number of workers, and therefore less dataset available,
e can obtain high accuracy. That corroborates our idea that we
an continue the learning even if the number of workers varies if
e match the aggregation parameter P to the number of workers
onnected |E|.
In Figs. 7, and Table 5 we can see the results of the second

roup of experiments (2-b). There are some exciting results.
hen the aggregation parameter P is half or double the num-
er of online workers |E| (W16P32 and W64P32), the accuracy

obtained is high (0.9865 and 0.9889, respectively), even W64P32
s slightly better than when P is equal to |E| (W32P32) (0.9878). If
e look at the CK score, the W64P32, W32P32, and W16P32 obtain

very similar results (0.9867, 0.9842, and 0.9846). Using a different
value of the aggregation parameter P to the number of workers
|E| adds noise to the learning. However, some researchers [46,47]
claim that training deep networks by adding some noise allows
you to avoid overfitting and even obtain a lower loss. That is what
happens in W64P32 and W16P32. The added noise, when it was
not too excessive, allowed them to achieve high accuracy and CK
score.

However, when P is very distinct from |E| (W8P32), we get a
lower accuracy and CK score (0.6706 and 0.5116) as we are using
too many results from previous old model states to calculate
62
Table 6
Results of case study 3. Using the adaptive algorithm and random drops, we get
a similar accuracy to when the system used a given constant number of workers
during learning (i.e., W64P64 and W32P32).
Job Workers P Min Loss Max Acc. CK score

W64P64 64py 64 0.0016 0.9894 0.9878
adaptive dynamic adaptive 0.0017 0.9884 0.9859
W32P32 32py 32 0.0018 0.9878 0.9842

the current weights (i.e., there was too much noise). That leads
us to believe that we can obtain high accuracy by adapting the
aggregation parameter P to the current online workers |E| in real-
time. Also, that allows for new connections and disconnections of
workers during training getting a fault-tolerant algorithm.

In conclusion, we showed in case study 2 that we can continue
learning despite the number of workers, even when we only
have a small percentage of the theoretical global dataset still
getting a high accuracy and CK score. Also, we saw that even if
the number of workers and the aggregation parameter are not
identical, we can still get high accuracy and a high CK. Therefore,
using outdated model results to calculate the new shared model
may not be detrimental for model performance if the added noise
is moderate.

4.4. Case study 3: self-adaptation and fault-tolerance

In this case study, we analyze the self-adaptation and fault-
tolerance of the platform. We analyze learning performance in
a changing environment where workers can connect and dis-
connect at any time for any reason. We use up to 64 Python
processes on constrained devices. However, the devices are con-
nected and disconnected stochastically during learning following
two exponential distributions [48]. In the beginning, half of the
workers are connected. Then, each one uses an exponential dis-
tribution to get how long they will be online. We do the same for
the disconnected ones using the other exponential distribution.
When a worker has to be disconnected, we kill the process.
When a worker has to be connected, we create a new process.
Therefore, there are connections and disconnections without any
prior negotiation. When a worker reconnects, it must reload the
current state of the problem to start collaborating. On average,
half of them were online, but not always the same ones. The
algorithm automatically adapts the aggregation parameter P in
real-time to the current number of connected workers |E|.

In Figs. 7, and Table 6 we present the result of the case
study 3 and we compare it to the W64P64 and W32P32. Ta-
ble 7 shows the comparison of all the experiments performed.
The adaptive algorithm got a maximum accuracy of 0.9884 and
a CK score of 0.9859, while the best results obtained in the
previous experiments was 0.9894 accuracy and 0.9878 CK score
(W64P64). It is important to note that the adaptive algorithm
does not have access to the entire dataset the whole time since
not all workers are online at the same time. Therefore, we ex-
pected the accuracy of W64P64 to be slightly higher than that of
the adaptive experiment, although we can see from the results
that this difference is minimal. Besides, it is interesting to show
that the adaptive experiment achieved better accuracy and CK
score than the experiment in which we had 32 fixed workers
(W32P32 0.9878 accuracy and 0.9842 CK score). That proves the
adaptive algorithm was able to adapt perfectly to the changing
environment and at the same time take advantage of the extra
information (new local dataset) provided by the new workers
when they connected. Taking all these constraints into account,
the adaptive algorithm achieved excellent results.
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Table 7
Comparison of experiments in case studies 1 to 3.
Job Workers P Min Loss Max Acc. CK score

W64P64 64py 64 0.0016 0.9894 0.9878
W64P32 64py 32 0.0017 0.9889 0.9867
mixW64P64 24js40py 64 0.0017 0.9887 0.9860
adaptive dynamic adaptive 0.0017 0.9884 0.9859
W32P32 32py 32 0.0018 0.9878 0.9842
W16P16 16py 16 0.0019 0.9876 0.9843
W16P32 16py 32 0.0020 0.9865 0.9846
W8P8 8py 8 0.0025 0.9844 0.9817
W4P4 4py 4 0.0029 0.9811 0.9770
W2P2 2py 2 0.0043 0.9741 0.9724
W1P1 1py 1 0.0055 0.9663 0.9626
W8P32 8py 32 0.0722 0.6706 0.5116

Fig. 8. Accuracy progress in case study 4 every 30 aggregations. The larger the
number of workers, the better the accuracy.

4.5. Case study 4: extreme non-i.i.d data

In this case study, we evaluate the self-adaptation and fault-
tolerance of the platform using a more extreme non-i.i.d data.
Also, we perform an analysis of the scalability and random drops.
We use an even more truncated data distribution than we would
handle in a real-world scenario (see Fig. 6). First, we create a
random distribution for the clients. We use a range between
10 and 100 on each client that corresponds to the proportion
of data holds on that client. Next, we split data among clients
ensuring that every client can hold five classes, worker’s datasets
do not overlap, and the number of samples is proportional to the
random number selected before.12 In each experiment, we choose

12 towardsdatascience.com/preserving-data-privacy-in-deep-learning-part-2-
c2e9494398b.
 c

63
Table 8
Results of case study 4. Each worker has a different number of samples of each
class and a maximum of five classes. The larger the number of workers, the
better the accuracy.
Job Workers P Min Loss Max Acc. CK score

W64P64#5 64py 64 0.0020 0.9866 0.9833
W16P16#5 16py 16 0.0022 0.9859 0.9840
W32P32#5 32py 32 0.0023 0.9856 0.9834
adaptive#5 dynamic adaptive 0.0022 0.9854 0.9822
W8P8#5 8py 8 0.0035 0.9782 0.9728
W4P4#5 4py 4 0.0047 0.9701 0.9618
W2P2#5 2py 2 0.0088 0.9431 0.9228
W1P1#5 1py 1 0.0758 0.4776 0.2001

workers in order from 0 to 63. For instance, if we use four workers
in an experiment, we select workers with IDs from 0 to 3.

We perform first a group of experiments using a given con-
stant number of workers, 64, 32, 16, 8, 4, 2, and 1. In each
experiment, the aggregation parameter is constant and is the
same as the number of workers used (i.e., P = |E|). The num-
er of workers and the aggregation parameter remain constant
hroughout the learning. Next, we perform the adaptive experi-
ent of case study 3 but using the more extreme data non-i.i.d
ata to compare with the previous experiments. Our purpose is
o analyze whether the adaptive algorithm can be competitive
n the case of an extreme non-i.i.d distribution of data and an
npredictable and dynamic scenario compared to experiments
sing constant workers in a static environment.
Fig. 8 and Table 8 show the accuracy, CK score and loss of the

xperiments of the case study 4. The experiments that obtained
he best results were W64P64#5, W16P16#5, W32P32#5, and
daptive#5. Their accuracies were 0.9866, 0.9859, 0.9856 and
.9854, their CK scores were 0.9833, 0.9840, 0.9834, 0.9822, and
heir losses were 0.0020, 0.0022, 0.0023 and 0.0022. In these
our experiments, we got similar results. We observe that the
daptive algorithm is competitive in this challenging case and
btains similar accuracy, CK score, and loss to the best of the
ther results.
On the other side, experiments using few workers obtained

ow accuracy and CK score. That was due to little or no informa-
ion on some classes. W8P8#5, W4P4#5, W2P2#5, W1P1#5 got
rogressively worse results because they had fewer data avail-
ble. Their accuracies were 0.9782, 0.9701, 0.9431 and 0.4776,
heir CK scores were 0.9728, 0.9618, 0.9228, 0.2001, and their
osses were 0.0035, 0.0047, 0.0088 and 0.0758. These results
how that if the data are distributed strongly differently among
he nodes, we need more than eight workers to obtain good train-
ng results. However, six of the 300 aggregations performed by
ur adaptive algorithm used eight gradients or less. Despite this,
he adaptive algorithm performed well. In future work, we want
o study in more depth whether we should stop the adaptive
lgorithm in these cases, whether these extreme variations are
ositive for training, or how we can use different aggregations
echniques in these cases.

The purpose of our adaptive and asynchronous design is not
o improve performance but to adapt to changes in connections
nd disconnections from initially unknown volunteer devices.
owever, we also measured the scalability, i.e., the number of
rocessed tasks to the number of connected workers. The results
re shown in Fig. 9. We can observe that the scalability is log-
rithmic and this is due to the fact that in our experiments all
he actors were connected through the same 100 Mb Ethernet
etwork. Despite this, the system scales as we add workers up
o 64, which we consider a good result given the communication

hannel constraints [49]. In future work, we plan to perform a

https://towardsdatascience.com/preserving-data-privacy-in-deep-learning-part-2-6c2e9494398b
https://towardsdatascience.com/preserving-data-privacy-in-deep-learning-part-2-6c2e9494398b
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Fig. 9. Case study 4: Relative speedup when devices share the same 100 Mb
Ethernet network. The adaptive algorithm with random drops (39.3±11.1) scales
roportionally in the same way as the others.

Fig. 10. Case study 4: Evolution of worker’s connections and disconnections in
the experiment adaptive#5.

Fig. 11. Percentage of tasks solved by each worker when using the adaptive
lgorithm. The upper graph is from case study 3, and the lower is from case
tudy 4.
64
more comprehensive scalability analysis using different commu-
nication channels (shared and not shared) and network speeds to
get a more accurate result on scalability.

In adaptive#5, an average of 39.3 workers were connected
concurrently with a standard deviation of 11.1 (see Fig. 10).
Furthermore, the scalability when using random drops of workers
(i.e., adaptive algorithm) is proportional to the case of using a
given constant number of workers (see Fig. 9). Therefore, the im-
pact of random drops of connected workers on the performance
of the adaptive algorithm was negligible, which is a great result.
In Fig. 11, we see the percentage of tasks solved by each worker in
the experiments where we use the adaptive algorithm. We note
that random disconnections have caused some workers to end up
performing up more than twice as many tasks as others. Despite
this, the adaptive algorithm adapted to these changes and got a
result similar to the best results using a static scenario.

4.6. Summary of results

The results presented in Section 4.5 show that the imple-
mentation of our adaptive proposal is effective for FEEL in very
different scenarios even with extreme non-i.i.d data, unreliable
dis/connecting volunteers and the difficulties mentioned in Sec-
tion 2.1. The main findings are as follows:

1. Modifying the variable that aggregates the results of work-
ers P according to the available workers |E| together with
using a threshold Z for old results computed by workers is
effective for achieving a high level of accuracy and CK score
in highly dynamic scenarios of FEEL with the participation
of a crowd of unreliable devices.

2. The noise generated by the above techniques, if it is not
too great, not only does not worsen the resulting accuracy
and CK score but can improve them. Experiments show
that the most suitable value for P is between |E|

2 and E · 2.
Therefore, it is necessary for the adaptive algorithm to
always maintain P within these margins to get a high final
accuracy and CK score.

3. When the number of workers is kept too low and un-
changed for too long (in this case, less than 8), little or no
data available of some classes limits learning. Recall that
the local dataset of each worker may be unbalanced and
non-i.i.d. Therefore, it is necessary to find new techniques
to cope with this problem, such as decreasing the learn-
ing rate or even temporarily interrupting training if this
situation continues for a long time. That does not happen
if the available workers shift or the number of workers
temporarily decreases and later increases again because
then the model learns using different data, obtaining a high
level of accuracy and CK score.

4. Connections and disconnections of both new and old vol-
unteers, without the need for pre-configuration, do not
compromise the resulting accuracy and CK score if we
dynamically adapt P to |E|. Nonetheless, further research
is still needed to analyze the best trade-off between the
parameters used and the best aggregation technique ac-
cording to the distribution of the data and the available
workers.

5. To the authors’ knowledge, this is the first work on dis-
tributed NN training in which web browsers collaborate
with processes executed from a terminal (i.e., Python pro-
cesses), then proving the interoperability [42,50] of our
proposal. We believe web browser computing is the way
forward for this type of volunteer computing thanks to its
ubiquity, sandboxing, and no need for software installa-
tion [20].
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. Threats to validity

This section discusses the main threats to the validity, with
pecial attention to issues that were not reviewed in this study.
irst, we refer to the communications bottleneck. In the exper-
ments conducted in this work, we spent most of the time on
ommunication rather than processing using a 100 Mb Ethernet.
he small communication channel resulted in lower than the
esired scalability [49]. Communication cost is often a bottle-
eck in FL and other distributed computing. Some systems like
orovod [51] use MPI to minimize the IO costs requiring to use
f static workers, defining howmany workers will participate and
heir addresses. Yet, in VC, users should be able to join and leave
he collaboration at any time without prior configuration.

Some authors have proposed to use process redundancy with
inimal impact on performance [27] to deal with unreliable
olunteers. However, other authors claimed that these techniques
re more suited to different VC scenarios [30]. In FEEL, the train-
ng of the distributed NN is slow, we have to reduce commu-
ications, and the user data is private. In addition, each worker
rocesses different data, so redundancy in processing is simply
ot possible, so we think that our proposal of an adaptive al-
orithm is better suited to deal with this specific VC scenario.
egarding BOINC, its long computation cycle [30] and the soft-
are installation need are not the most suitable approaches for
olunteer FEEL. Alternatively, Ray [52] is also used in a static com-
uter cluster and does not address the possibility of not knowing
hich nodes and when will participate in learning. Configuring
evices when we do not know which ones or when they will
e connected is completely impossible in VC systems. We pro-
ose a decoupled and asynchronous system that allows volunteer
articipating nodes to connect and disconnect during execution
ithout stopping the learning. We believe that these frameworks
ust implement our contributions in this paper for performing
olunteer, adaptive and dynamic FL on constrained devices in the
uture. On the other side, from a learning point of view, we use
ifferent techniques to alleviate communication bottlenecks, like
ncrementing local steps before communicating. There are also
ther methods to reduce IO cost that we want to research in fu-
ure work, such as quantization and sparsification [29,31,32]. We
onsider that data communications optimization during learning
s a topic of great interest and needs specific work. We hope to
xplore this topic in more depth in the future.
Working with non-i.i.d. and unbalanced dataset is another

roblem. The literature proposes different strategies to meet this
oncern [15]. In this work, we have shown how despite non-i.i.d.
ata, even in extreme cases, the adaptive algorithm can get simi-
ar results to the best results of the static scenario. In future work,
e plan to investigate other aggregation strategies depending on
he statistical distribution of the data in each worker. Moreover,
e face heterogeneous devices with different performances. We
se asynchronous training to deal with this problem using a
hreshold to discard too old results. There are other techniques
o address this issue. For example, we can use a different number
f local steps depending on the device’s performance, or we can
se a different learning rate, among other possibilities [15]. We
lan to investigate them in future work. We are aware of the dif-
iculties and challenges of performing asynchronous and adaptive
EEL using volunteer devices. However, we firmly believe that
his should be the ultimate goal of FL. We think this work is a
romising first step for future research in which researchers can
asily explore new techniques in a real environment with our

ool.
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6. Conclusions and future work

In this work, we propose an algorithm for FEEL that adapts
to asynchronous clients joining and leaving the computation. We
propose, implement and evaluate a new software platform for
distributed deep learning on volunteer edge devices. We then
evaluate its results on problems relevant to FEEL. We analyzed
the main features of the platform (i) decentralized computing,
(ii) asynchronous learning, (iii) dynamicity of connected devices,
iv) collaboration between heterogeneous devices in hardware
nd software, (v) the ability of the platform and algorithm to
elf-adapt to changes, (vi) and fault-tolerance.
We show that the platform can adapt to changes and continue

learning in a changing environment where volunteer devices
connect and disconnect at any time. We test the system using
different data distributions. Also, the platform enables interop-
erability and obtains high accuracy when using heterogeneous
devices in hardware and software with different NN training
libraries collaborating (i.e., web browsers using TensorFlow.js and
Python processes using TensorFlow). Next, we release a mod-
ular open-source library publicly available in a Git repository
that enables FEEL in a decentralized, asynchronous, and fault-
tolerant way. There is no need for the previous configuration of
participating workers. Instead, the platform allows workers to
join and leave at any time. That opens up an exciting avenue
for research allowing researchers to experiment with new FEEL
techniques on real edge devices and real users easily. In future
work, we plan to research communication reduction techniques
such as quantification and sparsification. Also, analyze how to
improve learning when using non-i.i.d. datasets, and study new
aggregation techniques, among others.
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