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We are interested in the numerical approximation of discontinuous solutions in non 
conservative hyperbolic systems. An extension to second-order of a new strategy based 
on in-cell discontinuous reconstructions to deal with this challenging topic is presented. 
This extension is based on the combination of the first-order in-cell reconstruction with 
the standard MUSCL-Hancock reconstruction. The first-order strategy allowed in particular 
to capture exactly the isolated shocks and this new second-order extension keep this 
property. Moreover, the well-balanced property of the method is also studied. Several 
numerical tests are proposed to validate the methods for the Coupled-Burgers system, Gas 
dynamics equations in Lagrangian coordinates and the modified shallow water system.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

We consider first order quasi-linear PDE systems

∂tu +A(u)∂xu = 0, x ∈ R, t ∈R+, (1.1)

in which the unknown u(x, t) takes values in an open convex set � of RN , and A(u) is a smooth locally bounded map 
from � to MN×N (R). The system is supposed to be strictly hyperbolic and the characteristic fields Ri(u), i = 1, . . . , N , are 
supposed to be either genuinely nonlinear:

∇λi(u) · Ri(u) �= 0, ∀u ∈ �,

or linearly degenerate:

∇λi(u) · Ri(u) = 0, ∀u ∈ �.
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Here, λ1(u), . . . , λN (u) represent the eigenvalues of A(u) (in increasing order) and R1(u), . . . , R N(u) a set of associated 
eigenvectors.

Under some hypotheses of regularity for A(u), the theory introduced by Dal Maso, LeFloch, and Murat [14] allows one 
to define the nonconservative product A(u) ∂xu as a bounded measure for functions u with bounded variation. To do this, a 
family of Lipschitz continuous paths � : [0, 1] × � × � → � has to be prescribed, which must satisfy certain regularity and 
compatibility conditions, in particular

�(0;ul,ur) = ul, �(1;ul,ur) = ur, ∀ul,ur ∈ �, (1.2)

and

�(s;u,u) = u, ∀u ∈ �. (1.3)

The interested reader is addressed to [14] for a rigorous and complete presentation of this theory. The family of paths can 
be understood as a tool to give a sense to integrals of the form

bˆ

a

A(u(x)) ∂xu(x)dx,

for functions u with jump discontinuities. More precisely, given a bounded variation function u : [a, b] �→ �, we define:

−
bˆ

a

A(u(x)) ∂xu(x)dx =
bˆ

a

A(u(x)) ∂xu(x)dx +
∑

m

1ˆ

0

A(�(s;u−
m,u+

m))
∂�

∂s
(s;u−

m,u+
m)ds. (1.4)

In this definition, u−
m and u+

m represent, respectively, the limits of u to the left and right of its mth discontinuity. Observe 
that, in (1.4), the family of paths has been used to determine the Dirac measures placed at the discontinuities of u.

If such a mathematical definition of the nonconservative products is assumed to define the concept of weak solution, the 
generalized Rankine-Hugoniot condition:

1ˆ

0

A(�(s;u−u+))
∂�

∂s
(s;u−,u+)ds = σ(u+ − u−) (1.5)

has to be satisfied across an admissible discontinuity. Here, σ is the speed of propagation of the discontinuity, and u− and 
u+ are the left and right limits of the solution at the discontinuity.

Once the family of paths has been prescribed, a concept of entropy is required, as it happens for systems of conservation 
laws, that may be given by an entropy pair or by Lax’s entropy criterion.

Since the concept of weak solution depends on the family of paths, which is a priori arbitrary, the crucial question is how 
to choose the ‘good’ family of paths. In fact, when the hyperbolic system is the vanishing-viscosity limit of the parabolic 
problems

∂tuε +A(uε) ∂xuε = ε(R(uε)∂xuε)x, (1.6)

where R(u) is any positive-definite matrix, the adequate family of paths should be related to the viscous profiles: a function 
v is said to be a viscous profile for (1.6) linking the states u− and u+ if it satisfies

lim
χ→−∞ v(χ) = u−, lim

χ→+∞ v(χ) = u+, lim
χ→±∞ v′(χ) = 0 (1.7)

and there exists σ ∈R such that the traveling wave

uε(x, t) = v
(

x − σ t

ε

)
, (1.8)

is a solution of (1.6) for every ε . It can be easily verified that, in order to be a viscous profile, v has to solve the equation

−ξv′ +A(v)v′ = (R(v)v′)′, (1.9)

with boundary conditions (1.7). If there exists a viscous profile linking the states u− and u+ , the good choice for the path 
connecting the states would be, after a reparameterization, the viscous profile v.

The main difference with the conservative case is that now every choice of viscous term R leads to different jump con-
ditions, while for standard conservative systems the usual Rankine-Hugoniot conditions are always recovered independently 
of the choice of the viscous term.
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The definition of numerical methods for system (1.1) that converge to the correct weak solutions is not a simple task. 
It is well known that, although Lax’s equivalence Theorem ensures that consistency and stability implies convergence for 
linear systems and methods, this is not the case in general for nonlinear problems. For instance, in the case of systems 
of conservation laws, stable conservative methods may converge to solutions that are not admissible weak solutions: this 
is the case for Roe method that may converge to weak solutions that are not entropy solutions. In order to ensure the 
convergence to the right weak solutions, besides consistency and stability, entropy has to be well controlled: for instance, 
entropy-fix techniques have to be added to Roe method (see for example [17]). In the case of nonconservative systems, 
consistency, stability, and control of the entropy are not enough: the numerical viscosity and, in general, the numerical 
dissipation effects, have to be well-controlled as well (see [19] for a review on this topic).

The design of finite-difference or finite-volume methods satisfying these four properties is difficult in general. Neverthe-
less, different techniques have been introduced to overcome, at least partially, this convergence issue: [4], [3], [2], [5], [8], 
[12], [13], [15], [22], [11]. In particular the path-conservative entropy stable methods introduced in [8] and extended to DG 
high-order methods in [18] significantly reduce the convergence error: to do this, entropy-conservative numerical methods 
are first introduced that are stabilized by means of a discretization of the viscous term of the regularized equation (1.6).

More recently, in [11], an in-cell discontinuous reconstruction technique has been added to first-order path-conservative 
methods that allows one to capture correctly weak solutions with isolated shock waves.

The goal of this article is to extend the in-cell discontinuous reconstruction methods introduced in [11] to second-order 
accuracy. To do this, these numerical methods will be first written as high-order path-conservative schemes (see for example 
[6,10]) and then, depending of the smoothness of the numerical solution, a standard MUSCL-Hancock reconstruction (see 
[25] and [26]) or a discontinuous one is used in the cell to update the numerical solution. Moreover, the well-balanced 
property of the method is also analyzed.

The paper is organized as follows: In Section 2 a brief introduction to path-conservative methods is given, then in 
Section 3 the new family of second-order in-cell discontinuous reconstruction methods is presented. First the semi-discrete 
method is introduced including the description of the reconstructions in the cells; then a temporal discretization based on a 
second order Taylor development is introduced. The shock-capturing property of the method is then enunciated and proved. 
Next, the well-balanced property of the method is studied. Section 4 is devoted to show numerically the efficiency of the 
proposed numerical scheme. More precisely, first the Coupled-Burgers nonconservative system introduced as a toy problem 
in [7] is considered: the application of the method to this system is described and several numerical tests are shown to 
validate the methods. Next, we focus on the Gas dynamics equations in Lagrangian coordinates and the modified shallow 
water system introduced in [9]. These systems were used in [1] and [9] respectively to illustrate the convergence issue of 
path-conservative methods when small-scale effects are not controlled: the method proposed in this paper is applied to 
these system to put on evidence that the convergence issue is corrected. The paper finishes with some conclusions and an 
Appendix where we describe the reconstruction procedure for non-isolated shocks for the modified Shallow Water system.

2. Path-conservative methods

According to [22], a first order numerical method for solving (1.1) is said to be path-conservative if it can be written in 
the form

un+1
j = un

j − �t

�x

(
D+

j−1/2 +D−
j+1/2

)
, (2.1)

where the following notation is used:

• �x and �t are the space and time steps respectively. They are supposed to be constant for simplicity.

• I j =
[

x j− 1
2
, x j+ 1

2

]
are the computational cells, whose length is �x.

• tn = n�t , n = 0, 1 . . . .
• un

j is the approximation of the average of the exact solution at the jth cell at time tn , that is,

un
j ≈ 1

�x

x
j+ 1

2ˆ

x
j− 1

2

u(x, tn)dr. (2.2)

• Finally,

D±
j+1/2 = D±(un

j ,un
j+1

)
,

where D− and D+ two Lipschitz continuous functions from � × � to � that satisfy

D±(u,u) = 0, ∀u ∈ �, (2.3)

and
3
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D−(ul,ur) +D+(ul,ur) =
1ˆ

0

A
(
�(s;ul,ur)

)∂�

∂s
(s;ul,ur)ds, (2.4)

for every set ul, ur ∈ �.

The definition of path-conservative methods is a formal concept of consistency for weak solutions defined on the basis 
of the family of paths �. In fact, this is a natural extension of the definition of conservative methods for systems of 
conservation laws: it can be easily shown that, if (1.1) is a system of conservation laws, i.e. if A(u) is the Jacobian of a 
flux function F (u), then every method that is path-conservative for any family of paths can be rewritten as a conservative 
method (see [10] for a recent review).

This framework makes it easy to extend many well-known conservative schemes to nonconservative systems. Let us 
show two examples:

• Godunov method:

D−
G (ul,ur) =

1ˆ

0

A(�(s;ul,u0))
∂�

∂s
(s;ul,u0)ds, (2.5)

D+
G (ul,ur) =

1ˆ

0

A(�(s;u0,ur))
∂�

∂s
(s;u0,ur)ds, (2.6)

where u0 is the value at x = 0 of the self-similar solution of the Riemann problem⎧⎪⎨⎪⎩
∂tu +A(u)∂xu = 0,

u(x,0) =
{

ul if x < 0,

ur otherwise.
(2.7)

If the family of paths satisfies some conditions of compatibility with the solutions of the Riemann problems, the method 
can be interpreted in terms of the averages of the exact solutions of local Riemann problems in the cells, as it happens 
for system of conservation laws: see [20].

• Roe method:

D±
R (ul,ur) = A±

�(ul,ur) (ur − ul), (2.8)

where A�(ul, ur) is a Roe linearization of A(u) in the sense defined by Toumi in [24], i.e. a function A� : � × � �→
MN×N (R) satisfying the following properties:
– for each ul, ur ∈ �, A�(ul, ur) has N distinct real eigenvalues λ1(ul, ur), . . . , λN(ul, ur);
– A�(u, u) =A(u), for every u ∈ �;
– for any ul, ur ∈ �,

A�(ul,ur) (ur − ul) =
1ˆ

0

A(�(s;ul,ur))
∂�

∂s
(s;ul,ur)ds. (2.9)

As usual A±
�(ul, ur) represent the matrices whose eigenvalues are the positive/negative parts of λ1(ul, ur), . . . , λN(ul, ur)

with same eigenvectors.

First order path-conservative numerical schemes can be extended to high-order by using reconstruction operators:

u′
j(t) = − 1

�x

⎛⎜⎜⎝D−
j+ 1

2
(t) +D+

j− 1
2
(t) +

x
j+ 1

2ˆ

x
j− 1

2

A(P t
j(x))

∂

∂x
P t

j(x)dx

⎞⎟⎟⎠ , (2.10)

where P t
j(x) is the smooth approximation of the solution at the jth-cell provided by a high-order reconstruction operator 

from the sequence of cell values {u j(t)} and

D±
j+1/2(t) = D±

j+1/2(u−
j+1/2(t),u+

j+1/2(t)),

where u− (t) = P t (x 1 ) and u− (t) = P t (x 1 ) (see [10] for details).
j+1/2 j j+ 2 j+1/2 j+1 j+ 2

4
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In [9] it was shown that, if the numerical solutions provided by a path-conservative method converge uniformly in 
the sense of graphs as �x → 0, the limit is a weak solution according to the chosen family of paths. Nevertheless, this 
notion of convergence is too strong and the numerical solutions provided by finite-difference or finite-volume methods do 
not converge usually in this sense. This is not to say that path-conservative methods do not converge: in practice, it can be 
observed that numerical methods like the extensions of Godunov or Roe schemes described in the previous section converge 
in L1-norm under the usual CFL condition. What happens is that the limit may be a weak solution according to a different 
family of paths, i.e. it is a classical solution in the smoothness regions but its discontinuities satisfy a jump condition (1.5)
different of the expected one: see [9], [1]. In fact, the family of paths that controls the jump conditions satisfied by the 
limits of the numerical solutions is related to the viscous profiles of the equivalent equation of the method: see [9]. If, 
for instance, the family of paths is based on the viscous profiles related to a regularization (1.6), the leading terms in the 
equivalent equation that represent the numerical viscosity of the scheme may not match the viscous term in (1.6).

Observe that, as it has been mentioned before, the definition of path-conservative method is a formal notion of con-
sistency. Nevertheless, as pointed out before, this consistency, together with stability and control of the entropy, is not 
enough to ensure the convergence towards the correct weak solution: the numerical viscosity and, in general, the numerical 
dissipation effects, have to be well-controlled. Let us stress, before finishing this section, that:

• The convergence to wrong weak solutions is not due to the consistency property, but to the lack of control of the 
small-scale effects in the numerical solutions.

• This convergence issue affects to every methods in which the small-scale effects are not controlled, whether its consis-
tency is based on the notion of path-conservative method or not.

• It is possible to design path-conservative methods that overcome, at least partially, this difficulty, as shown in [11] or 
[8].

3. Second-order in-cell discontinuous reconstruction path-conservative methods

In this section, a new numerical method of the form (2.10) is described. The scheme is based on a first-order path-
conservative numerical method with fluctuation functions D± , which is combined with a particular novel reconstruction 
operator. A standard second-order reconstruction operator in smoothness regions is used, while a discontinuous reconstruc-
tion operator close to discontinuities is performed, so that numerical viscosity is removed in the non-smooth regions.

3.1. Semi-discrete method

Once the numerical approximations un
j of the averages of the solutions have been computed at time tn = n�t , the first 

step is to mark the cells I j where a discontinuity is present. More explicitly, the cells such that the solution of the Riemann 
problem consisting of (1.1) with initial conditions

u(x,0) =
{

un
j−1 if x < 0,

un
j+1 if x > 0,

(3.1)

involves a shock wave. Let us denote by Mn the set of indices of the marked cells, i.e.

Mn = { j s.t. the solution of the Riemann problem (1.1), (3.1) involves a shock wave}. (3.2)

To advance in time the following semi-discrete numerical method is considered:

u′
j(t) = − 1

�x

⎛⎜⎜⎝D−
j+ 1

2
(t) +D+

j− 1
2
(t) + −

x
j+ 1

2ˆ

x
j− 1

2

A(Pn
j (x, t))

∂

∂x
Pn

j (x, t)dx

⎞⎟⎟⎠ , t ≥ tn, (3.3)

where

u j(t) ≈ 1

�x

x
j+ 1

2ˆ

x
j− 1

2

u(x, t)dx,

D±
j+1/2(t) = D±

j+1/2(u−
j+1/2(t),u+

j+1/2(t)),

with

u−
j+1/2(t) = Pn

j (x j+ 1
2
, t), u+

j+1/2(t) = Pn
j+1(x j+ 1

2
, t),

and Pn(x, t) is defined as follows:
j

5
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• If j − 1, j, j + 1 /∈ Mn then Pn
j is the MUSCL-Hancock reconstruction (see [25] and [26]), i.e. the approximation of the 

first degree Taylor polynomial of the solution given by:

Pn
j (x, t) = un

j + ∂̃xu
n
j (x − x j) −A(un

j )∂̃xu
n
j (t − tn).

Here, ∂̃xu
n
j is the minmod approximation of the first order spacial derivative of u at x j at time tn , whose kth component 

is given by

(
∂̃xu

n
j

)
k
= minmod

(
α

un
j+1,k − un

j,k

�x
,

un
j+1,k − un

j−1,k

2�x
,α

un
j,k − un

j−1,k

�x

)
,

where un
j,k represents the kth component of un

j , α is a parameter with 1 ≤ α < 2 and

minmod(a,b, c) =

⎧⎪⎨⎪⎩
min{a,b, c} if a,b, c > 0,

max{a,b, c} if a,b, c < 0,

0 otherwise.

Observe that for the Taylor polynomial we have used the approximation:

∂tu(xi, tn) = −A(u(xi, tn))∂xu(xi, tn) ≈ −A(un
j )∂̃xu

n
j .

• If j ∈Mn then

Pn
j (x, t) =

{
un

j,l if x ≤ x j−1/2 + dn
j�x + σ n

j (t − tn),

un
j,r otherwise,

where dn
j is chosen so that

dn
j u

n
j,l,k + (1 − dn

j )un
j,r,k = un

j,k, (3.4)

for some index k ∈ {1, . . . , N}; and σ n
j , un

j,l , and un
j,r are chosen so that if un

j−1 and un
j+1 may be linked by an admissible 

discontinuity with speed σ , then

un
j,l = un

j−1, un
j,r = un

j+1, σ n
j = σ . (3.5)

Observe that this in-cell discontinuous reconstruction can only be done if 0 ≤ dn
j ≤ 1, i.e. if

0 ≤ un
j,r,k − un

j,k

un
j,r,k − un

j,l,k

≤ 1,

otherwise the index j is removed from the set Mn and the MUSCL-Hancock reconstruction is applied in the cell. 
Moreover, if dn

j = 1 and σ n
j > 0 (resp. dn

j = 0 and σ n
j < 0) the cell is unmarked and the cell I j+1 (resp. I j−1) is marked 

if necessary: note that in these cases, the discontinuity leaves the cell I j for any t > tn .
• Otherwise (i.e. if j /∈Mn but j − 1 ∈Mn or j + 1 ∈Mn) then

Pn
j (x, t) = un

j .

Remark 3.1. In the case j ∈ Mn , if one of the equations of system (1.1), say the kth one, is a conservation law, the index k is 
selected in (3.4), so that the corresponding variable is conserved. Moreover, if there is a linear combination of the unknowns ∑N

k=1 αkuk that is conserved, (3.4) may be replaced by:

dn
j

N∑
k=1

αkun
j,l,k + (1 − dn

j )

N∑
k=1

αkun
j,r,k =

N∑
k=1

αkun
j,k. (3.6)

If there are more than one conservation laws, the index k corresponding to one of them is selected in (3.4).
6
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3.2. Choice of σ n
j , un

j,l , u
n
j,r

Two different strategies are considered here: the first one is based on the exact solutions of the Riemann problems and 
the second one on a Roe linearization:

• First strategy: Assume that the solutions for Riemann problems are explicitly known. Then, for any given marked cell j, 
we may choose σ n

j , un
j,l , u

n
j,r as the speed, the left, and the right states of (one of the) discontinuous waves appearing in 

the solution of the Riemann problem with initial data un
j−1, un

j+1. Observe that, if the solution of the Riemann problem 
consists of only one discontinuous wave of speed σ linking un

j−1 and un
j+1, then necessarily σ n

j = σ , un
j,l = un

j−1, 
un

j,r = un
j+1 and (3.5) is satisfied.

• Second strategy: If a Roe matrix is available, for any given marked cell j, we may choose σ n
j , un

j,l , u
n
j,r as the speed, the 

left, and the right states of a non-trivial wave appearing in the solution of the linearized Riemann problem with initial 
data un

j−1, un
j+1. To do this, first the coordinates {αk} of un

j+1 − un
j−1 in the basis of eigenvectors of A�(un

j−1, u
n
j+1), are 

computed, i.e.

un
j+1 − un

j−1 =
N∑

k=1

αk Rk(un
j−1,un

j+1).

Next, an index k∗ such that αk∗ �= 0 is selected. Then, σ n
j , un

j,l , and un
j,r are chosen as follows:

σ n
j = λk∗(un

j−1,un
j+1), un

j,l = un
j−1 +

k∗−1∑
k=1

αk Rk(un
j−1,un

j+1), un
j,r = un

j,l + αk∗ Rk∗(un
j−1,un

j+1).

Observe that, if un
j−1 and un

j+1 can be linked by an admissible discontinuous wave of speed σ , then the Roe property 
implies

A�(un
j−1,un

j+1)
(

un
j+1 − un

j−1

)
= σ

(
un

j+1 − un
j−1

)
,

so that σ is an eigenvalue of the Roe matrix and un
j+1 − un

j−1 an associated eigenvector. Therefore, the solution of the 
linearized Riemann problem consists of only one wave of speed σ linking un

j−1 and un
j+1. Therefore, σ n

j = σ , un
j,l = un

j−1, 
un

j,r = un
j+1 and (3.5) is again satisfied.

Notice that in both cases, (3.5) is always satisfied regardless of the discontinuous wave that is selected to build the 
discontinuous reconstruction. As a general strategy, the discontinuous wave whose amplitude is maximal can be selected: 
this is done for instance in Subsection 4.3. Nevertheless, in some cases, the specific knowledge of the problem may lead to 
a different choice, as it will be seen in Subsection 4.2.

These two strategies can be easily extended to any approximate Riemann solver.

3.3. Time step

The time step �tn is chosen as follows:

�tn = min(�tc
n,�tr

n). (3.7)

Here

�tc
n = C F L · min

j

(
�x

maxl |λ j,l|
)

(3.8)

where C F L ∈ (0, 1) is the stability parameter and λ j,l, . . . , λ j,N represent the eigenvalues of A(un
j ); and

�tr
n = min

j∈Mn

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − dn

j

|σ n
j | �x, i f σ n

j > 0,

dn
j

|σ n
j |�x, i f σ n

j < 0.

(3.9)

Observe that, besides the stability requirement, this choice of time step ensures that no discontinuous reconstruction leaves 
a marked cell.
7
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3.4. Fully discrete method

Once the time step is chosen, (3.3) is integrated in the interval [tn, tn+1], with tn+1 = tn + �tn , to obtain:

un+1
j = un

j − 1

�x

tn+1ˆ

tn

⎛⎜⎜⎝D−
j+ 1

2
(t) +D+

j− 1
2
(t) + −

x
j+ 1

2ˆ

x
j− 1

2

A(Pn
j (x, t))∂x Pn

j (x, t)dx

⎞⎟⎟⎠dt,

and the mid-point rule is used to approximate the integrals in time:

un+1
j = un

j − �tn

�x

⎛⎜⎜⎝D−
j+ 1

2
(tn+ 1

2 ) +D+
j− 1

2
(tn+ 1

2 ) + −
x

j+ 1
2ˆ

x
j− 1

2

A(Pn
j (x, tn+1/2))∂x Pn

j (x, tn+1/2)dx

⎞⎟⎟⎠ . (3.10)

The computation of the dashed integral in this expression depends on the cell:

1. If j − 1, j, j + 1 /∈Mn the mid-point rule is used again to approximate the integral:

x
j+ 1

2ˆ

x
j− 1

2

A(Pn
j (x, tn+1/2))∂x Pn

j (x, tn+1/2)dx ≈ �xA(u
n+ 1

2
j )∂x Pn

j (x j, tn+1/2) (3.11)

= �xA(u
n+ 1

2
j )∂̃xu

n
j ,

where

u
n+ 1

2
j = Pn

j (x j, tn+ 1
2 ) = un

j − �t

2
A(un

j )∂̃xu
n
j .

2. If j ∈Mn , taking into account the definition of the dashed integrals (1.4), one has:

−
x

j+ 1
2ˆ

x
j− 1

2

A(Pn
j (x, tn+1/2))∂x Pn

j (x, tn+1/2)dx =
1ˆ

0

A(�(s;un
j,l,un

j,r))∂s�(s;un
j,l,un

j,r)ds. (3.12)

Observe that, if un
j,l and un

j,r can be linked by a shock whose speed is σ n
j , then the generalized Rankine-Hugoniot 

condition (1.5) leads to

−
x

j+ 1
2ˆ

x
j− 1

2

A(Pn
j (x, tn+1/2))∂x Pn

j (x, tn+1/2)dx = σ n
j

(
un

j,r − un
j,l

)
. (3.13)

3. If j /∈Mn but j − 1 ∈Mn or j + 1 ∈Mn then

x
j+ 1

2ˆ

x
j− 1

2

A(Pn
j (x, tn+1/2))∂x Pn

j (x, tn+1/2)dx = 0. (3.14)

The final expression of the fully discrete numerical method is then as follows:

un+1
j = un

j − �tn

�x

(
D−

j+ 1
2
(tn+ 1

2 ) +D+
j− 1

2
(tn+ 1

2 ) +D j

)
, (3.15)

where

D j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
�xA(u

n+ 1
2

j )∂̃xu
n
j if j − 1, j, j + 1 /∈ Mn;

1ˆ

0

A(�(s;un
j,l,un

j,r))∂s�(s;un
j,l,un

j,r)ds if j ∈ Mn;

0 otherwise.

(3.16)
8
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Observe that the numerical method satisfies the following properties:

• Far from discontinuities it coincides with the standard MUSCL-Hancock.
• Close to discontinuities it corresponds to the numerical method introduced in [11]. Nevertheless, there is a slight vari-

ation when compared with [11]: in that reference, the discontinuities are allowed to leave the marked cells and the 
contribution to the neighbor cells are then taken into account. While this technique allows one to avoid additional 
restrictions to the time step, it makes more difficult the implementation of the numerical method. Nevertheless, the 
technique proposed here may as well be implemented as in [11].

3.5. Shock-capturing property

Let us prove that isolated shock waves are exactly captured by the scheme and contain no spurious numerical diffusion. 
Although the proof is essentially the same as in [11], it is included for the sake of completeness.

Theorem 3.2. Assume that ul and ur can be joined by an entropy shock of speed σ . Then, the numerical method provides an exact 
numerical solution of the Riemann problem with initial conditions

u(x,0) =
{

ul if x < 0,

ur otherwise,

in the sense that

un
j = 1

�x

x j+1/2ˆ

x j−1/2

u(x, tn)dx, ∀ j,n (3.17)

where u(x, t) is the exact solution.

Proof. Let us suppose that 0 ∈ I j∗ and 0 = x j∗−1/2 + d�x, with 0 ≤ d ≤ 1. Then the initial cell averages are:

u0
j =

⎧⎪⎨⎪⎩
ul if j < j∗;

dul + (1 − d)ur if j = j∗;

ur otherwise.

If 0 < d < 1 the only marked cell at time t0 = 0 is I j∗ , i.e. M0 = { j∗}. The only non-constant reconstruction is then P 0
0 and 

the equalities

u1
j = u0

j = 1

�x

x j+1/2ˆ

x j−1/2

u(x, t1)dx, ∀ j �= j∗

can be easily deduced from the definition of the numerical method.
Let us compute u1

j∗ . Observe that, in order to have (3.4), necessarily d0
0 = d. Therefore, since ul and ur can be linked by 

an admissible discontinuity of speed σ , using (3.5) one has:

P 0
0(x, t) =

{
ul if x ≤ σ t,

ur otherwise.

Observe that P 0
0 coincides with the exact solution. We have now:

u1
j∗ = u0

j∗ − �t0

�x

(
D−

1
2
(t

1
2 ) +D+

− 1
2
(t

1
2 ) +D0

)
= u0

j∗ − �t0

�x
D0

= u0
j∗ − �t0

�x
σ(ur − ul)

=
(

d + σ�t

�x

)
ul +

(
1 − d − σ�t

�x

)
ur,

where it has been used that
9
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u−
j−1+2(t

1/2) = u+
j−1+2(t

1/2) = ul,

u−
j+1+2(t

1/2) = u+
j+1+2(t

1/2) = ur,

so that

D+
− 1

2
(t

1
2 ) = D−

1
2
(t

1
2 ) = 0.

On the other hand, due to the time step restrictions one has

x j∗−1/2 ≤ x j∗−1/2 + d�x + σ�t = σ�t ≤ x j∗+1/2.

Thus, it can be easily checked that:

1

�x

x j∗+1/2ˆ

x j∗−1/2

u(x, t1)dx = u1
j∗ ,

and (3.17) has been proved for n = 1.
If d = 1 (resp. d = 0) the only marked cell is I j+1 (resp. I j−1) and the proof is similar.
The proof of the equality (3.17) for n ≥ 2 is similar to the case n = 1.

3.6. Well-balanced property

In this section, we analyze under what conditions the proposed numerical method is well-balanced. Note that the sta-
tionary solutions of System (1.1) verify

A(u)∂xu = 0, ∀x. (3.18)

Observe that, if there exists a smooth stationary solution u such that ∂xu(x) �= 0 for every x, then 0 is an eigenvalue of 
A(u(x)) and ∂xu(x) is an associated eigenvector for every x: let us suppose without loss of generality, that λN (u(x)) = 0. 
Therefore, x � u(x) is an integral curve of the Nth characteristic field and, since the value of λN is constant through the 
integral curve, it is linearly degenerate. Let us denote by  the set of all the integral curves γ of the Nth characteristic field.

We assume here that the chosen family of paths � satisfies the following property:

(P) Given two states ul and ur that belong to the same integral curve γ ∈ , the path linking them is a parameterization 
of the arc of this curve that connects the two states.

As a consequence of this property, the stationary contact discontinuity

u(x, t) =
{

ul, x < x∗,
ur, x > x∗,

(3.19)

is an admissible weak solution of the system.
According to [23] we introduce the following

Definition 3.3. A numerical scheme (2.1) is said to be well-balanced if, given any pair of states ul and ur belonging to γ ∈ 

one has

D±(ul,ur) = 0. (3.20)

Notice that, if a numerical method satisfying (3.20) is applied to the initial condition

u0
i = u∗(xi), ∀i,

where u∗ is a stationary solution, then

un
i = u0

i , ∀i.

Moreover, in [23] and [22] it has been shown that Godunov and Roe methods are well-balanced according to this definition 
if the property (P) holds. We will assume here that the first-order path-conservative method satisfies (3.20), that is, it is 
well-balanced.

Now, we must prescribe how the marking process is performed in the in-cell discontinuous reconstruction to preserve 
the well-balanced property of the method.
10
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3.6.1. First-order in-cell well-balanced discontinuous reconstruction path-conservative methods
Once the numerical approximations un

j have been computed at time tn = n�t , let us consider the set of indices:

Cn = { j s.t. the solution of the Riemann problem (1.1), (3.1) consists (3.21)

of only a stationary contact discontinuity},
i.e. j ∈ Cn if un

j−1, un
j+1 belong to the same curve γ ∈ .

Observe that, since Mn ∩ Cn = ∅, the cells in which a stationary contact discontinuity is detected are not marked so that 
the scheme reduces to the standard first-order path-conservative method. Therefore, the method is well-balanced.

3.6.2. Second-order in-cell well-balanced discontinuous reconstruction path-conservative methods
In order to obtain a second-order in-cell well-balanced discontinuous reconstruction path-conservative method, it is 

enough to add the following case to the ones in Subsection 3.1:

4. If j ∈ Cn then

Pn
j (x, t) = un

j .

In effect, if the numerical method is applied to the initial condition

u0
j = u∗(x j), ∀ j,

where u∗ a stationary solution, then all the indices belong to Cn and the numerical method reduces to the chosen first-order 
path-conservative methods. Therefore, the method is well-balanced.

3.6.3. Systems with source terms
An important particular case of systems with a linearly degenerate field associated to the null eigenvalues is given by 

problems with source term:

∂tu +A(u)∂xu = S(u)Hx, x ∈R, t ∈R+, (3.22)

where S(u) is a smooth locally bounded map from � to RN , and H is a known piecewise continuous function. If H is 
considered as an artificial unknown that satisfies the equation

∂t H = 0,

System (3.22) can be rewritten as follows:

∂tU + Ã(U)∂xU = 0, x ∈R, t ∈R+, (3.23)

where

U =
[

u
H

]
, Ã(U) =

[
A(u) −S(u)

0 0

]
,

and λN+1(U) = 0 is an eigenvalue of the matrix for every U: the numerical methods introduced in the two previous sub-
sections can be thus applied. Nevertheless, instead of applying the MUSCL-Hancock reconstruction to H , its exact value is 
used, i.e. the second-order reconstruction will be as follows:

P̃ n
j (x, t) =

[
Pn

j (x, t)
H(x)

]
,

where Pn
j is the MUSCL-Hancock reconstruction of the u variables.

4. Numerical tests

The following numerical methods will be applied here to three nonconservative systems:

• O1_noDisRec: standard first-order path-conservative Roe or Godunov (it will be indicated between parentheses) meth-
ods;

• O1_DisRec: first-order path-conservative method with discontinuous reconstruction;
• O2_noDisRec: Standard second-order extension of the first order path-conservative method based on the MUSCL-

Hancock reconstruction;
• O2_DisRec: second-order path-conservative method that combines MUSCL-Hancock and discontinuous reconstruction;
11
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4.1. Coupled Burgers system

4.1.1. Equations
Let us first consider the toy system⎧⎪⎪⎨⎪⎪⎩

∂t u + ∂x

(
u2

2

)
+ u∂x v = 0,

∂t v + ∂x

(
v2

2

)
+ v∂xu = 0,

(x, t) ∈R×R+, (4.1)

introduced in [7], where u = (u, v)T belongs to the state space � = {u ∈R2, u + v > 0}. This system can be written in the 
form (1.1) with

A(u) =
[

u u
v v

]
.

The system is strictly hyperbolic in � with eigenvalues

λ1(u) = 0, λ2(u) = u + v,

whose characteristic fields, given by the eigenvectors

R1(u) = [1,−1]T , R2(u) = [u, v]T ,

are respectively linearly degenerate and genuinely nonlinear.
The sum u + v satisfies the standard Burgers equation

∂t(u + v) + ∂x

(
1

2
(u + v)2

)
= 0,

and thus the variable u + v is conserved.

4.1.2. Simple waves
Once the family of paths has been chosen, the simple waves of this system are:

• Stationary contact discontinuities linking states ul , ur such that

ul + vl = ur + vr .

• Rarefactions waves joining states ul , ur such that

ul + vl < ur + vr,
ul

vl
= ur

vr
.

• Shock waves joining states ul and ur such that

ul + vl > ur + vr

that satisfy the jump condition:

σ [u] =
[

u2

2

]
+

1ˆ

0

φu(s;ul,ur)∂sφv(s;ul,ur)ds,

σ [v] =
[

v2

2

]
+

1ˆ

0

φv(s;ul,ur)∂sφu(s;ul,ur)ds.

As usual, for any variable φ, [φ] stands for the jump on the variable φr − φl . Remark that this leads, independently of 
the choice of the family of paths, to

σ = ul + vl + ur + vr
,

2

12
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If, for instance, the family of straight segments is chosen

φu(s;ul,ur) = ul + s(ur − ul); φv(s;ul,ur) = vl + s(vr − vl), (4.2)

the jump conditions reduce to:

σ [u] =
(

ul + ur

2

)
(ur − ul + vr − vl),

σ [v] =
(

vl + vr

2

)
(ur − ul + vr − vl),

and two states can be joined by an admissible shock if

ul + vl > ur + vr,
ul

vl
= ur

vr
.

A Roe matrix is given in this case by:

A(ul,ur) =
[

0.5(ul + ur) 0.5(ul + ur)

0.5(vl + vr) 0.5(vl + vr)

]
. (4.3)

As it will be seen in Test 1, the corresponding Roe method captures correctly the discontinuities of the weak solutions, 
what puts on evidence that being path-conservative is not in itself a barrier to the convergence to the right solutions. 
Nevertheless this is not true for other choices of family of paths. Let us consider, for instance, the family of paths given by 
the viscous profiles of the regularized system:⎧⎪⎪⎨⎪⎪⎩

∂t u+∂x

(
u2

2

)
+ u∂x v = εuxx,

∂t v + ∂x

(
v2

2

)
+ v∂xu = εvxx,

(x, t) ∈R×R+, (4.4)

introduced in [4]: see this reference for the expression of the corresponding family of paths.

4.1.3. Cell-marking criterion and in-cell discontinuous reconstruction
It will be seen in Test 2 that Godunov’s method does not converge to the right weak solutions. In [11] the in-cell 

discontinuous reconstruction technique has been used to correct this issue with good results. To apply this technique, a cell 
is marked if

un
j−1 + vn

j−1 > un
j+1 + vn

j+1.

Strategy 1 (based on the exact solutions of the Riemann problems) is followed here to select the discontinuous reconstruc-
tion (see Subsection 3.2). More precisely, in a marked cell the left and right states are chosen as follows:

σ n
j = 1

2
(un

j−1 + vn
j−1 + un

j+1 + vn
j+1), un

j,l = u∗(un
j−1,un

j+1), un
j,r = un

j+1,

where u∗(un
j−1, u

n
j+1) represents the state at the left of the shock wave appearing in the solution of the Riemann problem. 

Finally, the conserved variable u + v is chosen to determine dn
j , i.e.

dn
j (un

j,l + vn
j,l) + (1 − dn

j )(un
j,r + vn

j,r) = (un
j + vn

j ).

This method is extended here to second order following Section 3.

4.1.4. Numerical tests
Test 1: Coupled Burgers’ equations with straight segment paths

In this test case we consider the definition of weak solution related to the family of straight segments (4.2) and the 
corresponding Roe matrix (4.3). Let us consider the following initial condition

u0(x) = [u0(x), v0(x)]T =
{

[2.0,2.0]T if x < 0.5,

[1.0,1.0]T otherwise.

The solution of the Riemann problem in this case consists of a shock wave joining the left and right states.
Fig. 1 compares the exact solution with the numerical approximations at time t = 0.1 obtained with Op_noDisRec and 

Op_DisRec, p = 1, 2 using a 1000-cell mesh and CFL=0.5: notice that, in this particular case, the standard path-conservative 
13
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Fig. 1. Coupled Burgers system. Test 1: exact solution and numerical solutions obtained at time t = 0.1 with 1000 cells. Left: variable u. Right: variable v .

methods capture correctly the right weak solution. The same comparison has been done for a number of different Riemann 
problems and, in all cases, the numerical solutions converge to the weak solution.

Test 2: Isolated shock wave
From now on, the family of paths given by the viscous profiles of the regularized equation (4.4) is considered. Let us 

consider the following initial condition taken from [8]

u0(x) = [u0(x), v0(x)]T =
{

[7.99,11.01]T if x < 0.5,

[0.25,0.75]T otherwise.

The solution of the Riemann problem consists of a shock wave joining the left and right states.
Fig. 2 compares the exact solution with the numerical approximations at time t = 0.03 obtained with Op_noDisRec(Go-

dunov) and Op_DisRec(Godunov), p = 1, 2 using a 100-cell mesh: as it can be seen Godunov’s method and its second order 
extension do not capture the discontinuity properly what is not the case for the methods based on the discontinuous re-
construction. Fig. 3 compares the numerical and exact solutions using a 1000-cell mesh. We remark that the differences 
between them do not disappear for the standard path-conservative methods as the mesh is refined. This clearly indicates a 
convergence failure. CFL = 0.5 has been considered.

Remark 4.1. If a path-conservative method based on the family of straight segments like the one considered in Test1 is used 
in this case, the numerical solutions converge to the entropy weak solution corresponding to that family of paths that is 
different to the one corresponding to the viscous profiles of the regularized problem (4.4).

Test 3: Contact discontinuity + shock wave
We consider now the initial condition

u0(x) = [u0(x), v0(x)]T =
{

[5,1]T if x < 0.5,

[1,2]T otherwise.

The solution of the corresponding Riemann problems consists of a stationary contact discontinuity followed by a shock. 
Fig. 4 shows the exact and the numerical solutions at time t = 0.05 using a 1000-cell mesh and CFL = 0.5. The conclusions 
are the same: the in-cell discontinuous reconstruction methods of order 1 and 2 get the exact solution while the standard 
Godunov methods do not.

Test 4: Contact discontinuity + rarefaction
We consider the initial condition

u0(x) = [u0(x), v0(x)]T =
{

[1,2]T if x < 0.5,

[5,1]T otherwise.

The solution of the corresponding Riemann problem consists of a stationary contact discontinuity followed by a rarefaction.
Fig. 5 shows the exact and the numerical solutions at time t = 0.05 using a 1000-cell mesh. In this case all the methods 

converge to the exact solution but the second order one captures better the solution, as expected.
14
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Fig. 2. Coupled Burgers system. Test 2: exact solution and numerical solutions obtained at time t = 0.03 with 100 cells. Left: variable u. Right: variable v .

Fig. 3. Coupled Burgers system. Test 2: exact solution and numerical solutions obtained at time t = 0.03 with 1000 cells. Left: variable u. Right: variable v .

Table 1
L1 errors ‖� · ‖1 at time t = 1 for the Coupled Burgers model with initial conditions (4.5).

‖�u‖1 (1st) ‖�v‖1 (1st) ‖�u‖1 (2nd) ‖�v‖1 (2nd)

3.40e-19 8.88e-19 1.17e-18 1.78e-18

Test 5: Stationary solution
We consider the initial condition

u0(x) = [u0(x), v0(x)]T = [sin(x),1 − sin(x)]T , (4.5)

that is a stationary solution of the system (4.1). We show in Fig. 6 the numerical solution obtained with the first- and 
second-order discontinuous in-cell reconstruction using a 1000-mesh. The results in Fig. 7 and Table 1 show that the both 
schemes are well-balanced.

Test 6: Perturbed stationary solution
We consider finally the initial condition

u0(x) = [u0(x), v0(x)]T = [sin(x) + 0.2e−2000(r−0.5)2
,1 − sin(x)]T , (4.6)

that is the stationary solution (4.5) with a perturbation in the variable u. Figs. 8 and 9 show the numerical solutions 
obtained at time t = 0.2 and t = 1 using a 1000-cell mesh together with a reference solution obtained with the first order 
in-cell discontinuous reconstruction Godunov scheme using a 10000-cell mesh. As it can be seen the second order methods 
15



Fig. 4. Coupled Burgers system. Test 3: exact solution and numerical solutions obtained at time t = 0.05 with 1000 cells. Top: variable u (left), zoom middle 
state (right). Down: variable v (left), zoom middle state (right).

capture better the smooth parts of the solution and the ones with the in-cell reconstruction capture better the shock 
appearing in the perturbation. Observe that, in this case, the stationary solution (4.5) is not restored: a different equilibrium 
with a stationary bump placed at the initial location of the perturbation is obtained once the waves generated by the 
perturbation leaves the computational domain.

4.2. Gas dynamics equations in Lagrangian coordinates

4.2.1. Equations
Let us consider the gas dynamics equations in Lagrangian coordinates:⎧⎨⎩ ∂tτ − ∂xu = 0,

∂t u + ∂x p = 0,

∂t E + ∂x(pu) = 0,

(4.7)

where τ > 0 represents the inverse of the density, u is the velocity, p = p(τ , e) > 0 is the pressure, e is the specific internal 
energy, and E = e + u2/2 the specific total energy. For the sake of simplicity, we consider a perfect gas equation of state 
p(τ , e) = (γ − 1)e/τ where γ > 1. System (4.7) can be rewritten in nonconservative form as follows⎧⎨⎩ ∂tτ − ∂xu = 0,

∂t u + ∂x p = 0,

∂te + p∂xu = 0,

(4.8)

that can be written in the form (1.1) with
E. Pimentel-García, M.J. Castro, C. Chalons et al. Journal of Computational Physics 459 (2022) 111152
16



E. Pimentel-García, M.J. Castro, C. Chalons et al. Journal of Computational Physics 459 (2022) 111152

Fig. 5. Coupled Burgers system. Test 4: exact solution and numerical solutions obtained at time t = 0.05 with 1000 cells. Top: variable u (left), zoom 
rarefaction (right). Down: variable v (left), zoom rarefaction (right).

Fig. 6. Coupled Burgers system. Test 5: numerical solution of (4.5) at time t = 1.00 with 1000 cells. Left: variable u. Right: variable v .
17
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Fig. 7. Coupled Burgers system. Test 5: difference between the numerical solution at t = 1.00 and the stationary solution. Left: variable u. Right: variable v .

Fig. 8. Coupled Burgers system. Test 6: variable u. Top: initial condition (left), reference and numerical solutions obtained at time t = 0.2 with 1000 cells 
(right). Down: zoom of the perturbation area at time t = 0.2 (left), reference and numerical solutions obtained at time t = 1 (right).
18
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Fig. 9. Coupled Burgers system. Test 6: variable v . Top: initial condition (left), reference and numerical solutions obtained at time t = 0.2 with 1000 cells 
(right). Down: zoom of the perturbation area at time t = 0.2 (left), reference and numerical solutions obtained at time t = 1 (right).

u =
⎛⎝ τ

u
e

⎞⎠ , A(u) =

⎛⎜⎜⎜⎝
0 −1 0

− (γ − 1)e

τ 2
0

γ − 1

τ

0
(γ − 1)e

τ
0

⎞⎟⎟⎟⎠ .

The system is strictly hyperbolic with eigenvalues

λ1(u) = −√γ p/τ , λ2(u) = 0, λ3(u) =√
γ p/τ ,

whose characteristic fields are given by the eigenvectors

R1(u) = [1,
√

γ p/τ ,−p]T , R2(u) = [1,0, p/(γ − 1)], R3(u) = [1,−√γ p/τ ,−p]T .

R2(u) is linearly degenerate and Ri(u), i = 1, 3 are genuinely nonlinear: see [16]. On the other hand, the admissible solutions 
of (4.7) are selected by Lax entropy inequalities, which here are equivalent to:

σ(τ+ − τ−) ≥ 0, (4.9)

where τ− and τ+ are the values of τ at both sides of the discontinuity and σ its speed of propagation.

4.2.2. Simple waves
Once the family of paths has been chosen, the simple waves of this system are:

• Stationary contact discontinuities linking states ul , ur such that

ul = ur, pl = pr .
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• Rarefactions waves joining states ul , ur that satisfy

ul < ur,

and the relations given by the Riemann invariants:
– 1-rarefactions:

2
√

γ el

γ − 1
+ ul = 2

√
γ er

γ − 1
+ ur,

el

τ
γ −1
l

= er

τ
γ −1
r

.

– 2-rarefactions:

2
√

γ el

γ − 1
− ul = 2

√
γ er

γ − 1
− ur,

el

τ
γ −1
l

= er

τ
γ −1
r

.

• Shock waves joining states ul and ur that satisfy

ul > ur

and the jump conditions:

σ [τ ] = − [u] ,

σ [u] = [p] ,

σ [e] =
1ˆ

0

φp(s;ul,ur)∂sφu(s;ul,ur)ds.

If, for instance, the family of straight segments is chosen for the variables τ , u, p

φτ (s;ul,ur) = τl + s(τr − τl); φu(s;ul,ur) = ul + s(ur − ul); φp(s;ul,ur) = pl + s(pr − pl),

the jump conditions reduce to:

σ [τ ] = (ul − ur),

σ [u] = pr − pl,

σ [e] = 1

2
(pr + pl)(ur − ul).

It can be easily checked that these jump conditions are equivalent to the standard Rankine-Hugoniot conditions correspond-
ing to the conservative formulation (4.7) and thus, the weak solutions are the same.

A Roe matrix is given in this case by:

A(ul,ur) = A(ū), ū(ul,ur) = (τ̄ , ū, p̄),

with

τ̄ = τl + τr

2
, ū = ul + ur

2
, ē = p̄τ̄

γ − 1
, p̄ = pl + pr

2
,

see [21].

4.2.3. Cell-marking criterion and in-cell discontinuous reconstruction
In [11] the in-cell discontinuous reconstruction technique has been used to correct the results that are obtained with the 

standard Roe path-conservative scheme. To apply this technique, a cell is marked if

un
j−1 ≥ un

j+1.

The second strategy to select the speed, and the left and right states of the discontinuous reconstruction based on the Roe 
matrix is used here (see Subsection 3.2). More precisely:

• If un
j−1 = un

j+1 then

σ n = 0, un = un , un = un .
j j,l j−1 j,r j+1
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• If un
j−1 > un

j+1 and τn
j+1 − τn

j−1 < 0 then

σ n
j = −√γ p̄/τ̄ , un

j,l = un
j−1, un

j,r = un
j−1 + α1 R1(un

j−1,un
j+1).

• If un
j−1 > un

j+1 and τn
j+1 − τn

j−1 > 0 then

σ n
j =√

γ p̄/τ̄ , un
j,l = un

j+1 − α3 R3(un
j−1,un

j+1), un
j,r = u j+1.

Here p̄ and τ̄ represent the Roe intermediate values of p and τ , and αk , k = 1, 2, 3 the coordinates of un
j+1 − un

j−1 in the 
basis of eigenvectors of the Roe matrix, i.e. un

j+1 − un
j−1 =∑3

k=1 αk Rk(un
j−1, u

n
j+1). This method is extended here to second 

order by following the procedure described in Section 3.

4.2.4. Numerical tests
Test 1: Isolated 1-shock

Let us consider the following initial condition taken from [11]

u0(x) = [τ0(x), u0(x), p0(x)]T =
{

[2.09836065573770281,2.3046638387921279,1]T if x < 0.5,

[8,0,0.1]T otherwise.

The solution of the Riemann problem consists of a 1-shock wave joining the left and right states. Fig. 10 compares the exact 
solution with the numerical approximations at time t = 0.5 obtained with Roe method, its second order extension based 
on the standard MUSCL reconstruction, and the first- and second-order discontinuous in-cell reconstruction schemes using 
300-cell mesh and CFL = 0.5: as it can be seen Roe methods does not capture the discontinuities properly (as it was noted 
in [1]) what is not the case for the two other methods.

Test 2: 1-shock + contact discontinuity + 3-shock
Let us consider the following initial condition taken from [11]

u0(x) = [τ0(x), u0(x), p0(x)]T =
{

[5,3.323013993227,0.481481481481]T if x < 0.5,

[8,0,0.1]T otherwise.

The solution of the Riemann problem consists of a 1-shock wave with negative speed, a stationary contact discontinuity, 
and a 3-shock that coincides with the one in the first test problem. Fig. 11 shows the numerical solutions at time t = 0.5
using a mesh of 300 cells and CFL = 0.5 and the conclusions are the same: the in-cell discontinuous reconstruction methods 
of order 1 and 2 get good approximations of the exact solution while Roe method and its second-order extension based on 
the standard MUSCL reconstruction do not. Fig. 12 shows the numerical solutions obtained with O1_DisRec at time t = 0.505
using different meshes: it can be observed that the intermediate state between the shocks and the contact discontinuity are 
not exactly captured as it happens with isolated shocks. Nevertheless the numerical solutions seem to converge to the exact 
solution when �x → 0.

Test 3: 1-rarefaction + contact discontinuity + 3-shock
Let us consider now the initial condition

u0(x) = [τ0(x), u0(x), p0(x)]T =
{

[2.09836065573770281,3.323013993227,1]T if x < 0.5,

[8,4,0.1]T otherwise.

The solution of the Riemann problem consists of a 1-rarefaction wave whose head and tail have negative speeds, a stationary 
contact discontinuity, and a 3-shock with positive speed. Fig. 13 shows the numerical solutions at time t = 0.5 using a mesh 
of 300 cells and CFL = 0.5. Although all the methods capture correctly the rarefaction wave, second order methods do it 
better, as expected; concerning the stationary contact discontinuity and the shock wave, only the first- and second-order 
in-cell discontinuous reconstruction methods capture the exact solution.

Test 4: well-balanced property
In order to test the well-balanced property, let us add a gravitational source term to system (4.8):⎧⎨⎩ ∂tτ − ∂xu = 0,

∂t u + ∂x p = g,

∂te + p∂xu = 0,

(4.10)

where g is the intensity of the gravitational field.
The stationary solutions of (4.10) verify:

u = constant, p − gx = constant. (4.11)
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Fig. 10. Gas dynamics equations in Lagrangian coordinates. Test 1: exact solution and numerical solutions obtained at time t = 0.5 with 300 cells. Top: 
variable τ (left), zoom right middle state (right). Middle: variable u (left), zoom right middle state (right). Down: variable e (left), zoom right middle state 
(right).
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Fig. 11. Gas dynamics equations in Lagrangian coordinates. Test 2: exact solution and numerical solutions obtained at time t = 0.5 with 300 cells. Top: 
variable τ (left), zoom right middle state (right). Middle: variable u (left), zoom right middle state (right). Down: variable e (left), zoom right middle state 
(right).
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Fig. 12. Gas dynamics equations in Lagrangian coordinates. Test 2: variable τ . Left: exact solution and numerical solutions obtained with O1_Disrec at time 
t = 0.505 with 100, 300 and 1000 cells. Right: zoom left middle state.

Table 2
L1 errors ‖� · ‖1 at time t = 10 for the Gas dynamics equations in Lagrangian coordinates with initial conditions 
(4.12).

‖�τ‖1 (1st) ‖�u‖1 (1st) ‖�e‖1 (1st) ‖�τ‖1 (2nd) ‖�u‖1 (2nd) ‖�e‖1 (2nd)

7.40E-19 7.33E-17 0.00 7.40E-19 7.33E-17 0.00

Therefore, the curves of the family  are the straight lines of the space u, p, x defined by (4.11). Since the selected family 
of paths is linear in these variables, property (P) is satisfied and thus Roe method is well-balanced. Let us consider the 
following initial condition:

u0(x) = [τ0(x), u0(x), p0(x)]T =
{

[1,1, gx + 1]T if x < 0.5,

[2,1, gx + 1]T otherwise.
(4.12)

We observe in Fig. 14 and Table 2 that the first- and second-order in-cell discontinuous reconstruction are well-balanced.

4.3. Modified Shallow Water system

4.3.1. Equations
Let us consider the modified Shallow Water system introduced in [9]:⎧⎪⎨⎪⎩

∂th + ∂xq = 0,

∂tq + ∂x

(
q2

h

)
+ qh∂xh = 0,

(4.13)

where u = [h, q]t belongs to � = {u ∈R2| 0 < q, 0 < h < (16q)1/3}. This system can be written in the form (1.1) with

A(u) =
[

0 1
−u2 + uh2 2u

]
,

being u = q/h. The system is strictly hyperbolic over � with eigenvalues

λ1(u) = u − h
√

u, λ2(u) = u + h
√

u,

whose characteristic fields, given by the eigenvectors

R1(u) = [1, u − h
√

u]T , R2(u) = [1, u + h
√

u]T ,

are genuinely nonlinear.
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Fig. 13. Gas dynamics equations in Lagrangian coordinates. Test 3: exact solution and numerical solutions obtained at time t = 0.5 with 300 cells. Top: 
variable τ (left), zoom rarefaction (center), zoom shock (right). Middle: variable u (left), zoom rarefaction (center), zoom shock (right). Top: variable e
(left), zoom rarefaction (center), zoom shock (right).

4.3.2. Simple waves
Once the family of paths has been chosen, the simple waves of this system are:

• 1-rarefaction waves joining states ul , ur such that

hr < hl,
√

ul + hl/2 = √
ur + hr/2,

and 2-rarefaction waves joining states ul , ur such that

hl < hr,
√

ul − hl/2 = √
ur − hr/2.

• 1-shock and 2-shock waves joining states ul and ur such that hl < hr or hr < hl respectively, that satisfy the jump 
conditions:

σ [h] = [q] ,

σ [q] =
[

q2

h

]
+

1ˆ
φq(s;ul,ur)φh(s;ul,ur)∂sφh(s;ul,ur)ds.
0
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Fig. 13. (continued)

Fig. 14. Gas dynamics equations in Lagrangian coordinates. Test 4: numerical solution at t = 10.00 and the initial stationary solution. Left: variable τ . 
Center: variable u. Right: variable e.

If, for instance, the following family of path is chosen:

φ(s;ul,ur) =
[

φh(s;ul,ur)

φq(s;ul,ur)

]
=

⎧⎪⎪⎨⎪⎪⎩
[

hl + 2s(hr − hl)

ql

]
if 0 ≤ s ≤ 1

2 ,[
hr

q + (2s − 1)(q − q )

]
if 1

2 ≤ s ≤ 1,

l r l
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the jump conditions reduce to:

σ [h] = [q] ,

σ [q] =
[

q2

h

]
+ ql

[
h2

2

]
.

If this family of paths has been selected and Lax’s entropy criterion is used, the simple waves of the system are as follows:

• Given a left-hand state ul , the 1-shock S1(ul) and the 2-shock S2(ul) curves consisting of all the right-hand states that 
can be connected with ul through a 1-shock and a 2-shock wave respectively, are:

S1(ul) : u = ul −
√

ul(h + hl)

2h
(h − hl), h > hl, (4.14)

S2(ul) : u = ul −
√

ul(h + hl)

2h
(h − hl), h < hl. (4.15)

Moreover, given two states ul and ur connected by a 1-shock wave or a 2-shock wave, the speed of the shock is given 
by:

σ1(ul,ur) = ul −
√

hrul
hl + hr

2
, (4.16)

σ2(ul,ur) = ul +
√

hrul
hl + hr

2
, (4.17)

respectively.
• Given a left-hand state ul , the 1-rarefaction R1(ul) and the 2-rarefaction R2(ul) consisting of all the right-hand states 

that can be connected with ul through a 1-rarefaction and a 2-rarefaction wave, respectively, are:

R1(ul) : u =
(

hl − h

2
+ √

ul

)2

, h < hl, (4.18)

R2(ul) : u =
(

h − hl

2
+ √

ul

)2

, h > hl. (4.19)

4.3.3. Cell-marking criterion
The criterion to mark the cells is the following:

1. If hn
j+1 > hn

j−1 and

un
j−1 −

√√√√un
j−1(h

n
j+1 + hn

j−1)

2hn
j+1

(hn
j+1 − hn

j−1) < un
j+1 <

(
hn

j+1 − hn
j−1

2
+
√

un
j−1

)2

,

the solution of the Riemann problem consists of a 1-shock and a 2-rarefaction waves: the cell is marked.
2. If hn

j+1 < hn
j−1 and

un
j−1 +

√√√√un
j−1(h

n
j+1 + hn

j−1)

2hn
j+1

(hn
j+1 − hn

j−1) < un
j+1 <

(
hn

j−1 − hn
j+1

2
+
√

un
j−1

)2

,

the solution of the Riemann problem consists of a 1-rarefaction and a 2-shock waves: the cell is marked.
3. If hn

j+1 > hn
j−1 and

un
j+1 < un

j−1 −
√√√√un

j−1(h
n
j+1 + hn

j−1)

2hn
j+1

(hn
j+1 − hn

j−1),

or hn
j+1 < hn

j−1 and

un
j+1 < un

j−1 +
√√√√un

j−1(h
n
j+1 + hn

j−1)

2hn
j+1

(hn
j+1 − hn

j−1),

the solution of the Riemann problem consists of a 1-shock and a 2-shock waves: the cell is marked.
4. Otherwise the solution of the Riemann problem consists of two rarefactions and the cell is not marked.
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4.3.4. In-cell discontinuous reconstruction
A Roe matrix is given in this case by

A(ul,ur) =
[

0 1
−ū2 + qlh̄ 2ū

]
,

where

ū =
√

hlul +
√

hrur√
hl +

√
hr

, h̄ = hl + hr

2
.

The following strategy based on this Roe matrix (see Subsection 3.2) is used to select the speed, and the left and right states 
of the discontinuous reconstruction:

• If the solution of the Riemann problem consists of a 1-shock and a 2-rarefaction waves (case 1):

σ n
j = ū − hn

j−1

√
ū, un

j,l = un
j−1, un

j,r = un
j−1 + α1 R1(un

j−1,un
j+1),

where ū is the Roe average of un
j−1 and un

j+1, and αk , k = 1, 2 represent the coordinates of un
j+1 − un

j−1 in the basis of 
eigenvectors of the Roe matrix, i.e. un

j+1 − un
j−1 =∑2

k=1 αk Rk(un
j−1, u

n
j+1).

• If the solution of the Riemann problem consists of a 1-rarefaction and a 2-shock waves (case 2):

σ n
j = ū + hn

j−1

√
ū, un

j,l = un
j+1 − α2 R2(un

j−1,un
j+1), un

j,r = un
j+1.

• If the solution of the Riemann problem consists of a 1-shock and a 2-shock waves (case 3) we select one of them 
depending on the amplitude of the α1 and α2 coefficients in order to choose the ‘dominant’ one:
– If |α1| ≤ |α2| then:

σ n
j = ū + hn

j−1

√
ū, un

j,l = un
j+1 − α2 R2(un

j−1,un
j+1), un

j,r = u j+1.

– If |α1| > |α2| then:

σ n
j = ū − hn

j−1

√
ū, un

j,l = un
j−1, un

j,r = un
j−1 + α1 R1(u j−1,u j+1).

The variable h is selected in (3.4).

4.3.5. Non-isolated shocks capturing
Although, according to Theorem 3.2, the first- and second-order in-cell discontinuous reconstruction methods capture 

exactly isolated shock waves, this is not the case for non-isolated shocks, as it has been seen in Fig. 12 for the Gas dynamics 
equations in Lagrangian coordinates. Nevertheless they clearly improve the results provided by standard methods and, in 
particular, the numerical results seem to converge to the right weak solution as �x tends to 0.

This fact is also observed for the Modified Shallow Water system, specially in the case of two non-isolated shock waves 
traveling in opposite directions, as it will be seen in Test 2. In order to improve the numerical results, we have devel-
oped a more sophisticated in-cell discontinuous reconstruction based on the exact solution of the Riemann problems (see 
Subsection 3.2) that allows one to capture better the intermediate states. The key ingredients are:

• The solution of the Riemann problem with initial data un−1
j−1,r and un−1

j+1,l is used to mark the cells instead of the one 
corresponding to the initial data un

j−1 and un
j+1, where un−1

j−1,r and un−1
j+1,l are the states selected in the discontinuous 

reconstruction in the previous time step.
• The exact intermediate state is used when the solution of the Riemann problem involves two shock waves.
• If the solution of this Riemann problem involves two shock waves traveling in the same direction, a reconstruction with 

two discontinuities (one for each of the shock waves) is considered, so that the complete structure of the Riemann 
solution is imposed.

The details of the reconstruction are given in Appendix A.
The numerical methods using the first strategy for the discontinuous reconstruction (based on the Roe matrix) will be 

labeled again by Op_DisRec and those using the second one (based on the exact solutions of the Riemann problems) by 
Op_ExactDisRec.
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Fig. 15. Modified Shallow Water system. Test 1: Numerical solutions obtained withe the first- and second-order methods with and without discontinuous 
reconstruction based on the Roe matrix at time t = 0.5 with 1000 cells. Left: variable h. Right: variable q.

4.3.6. Numerical tests
Test 1: Isolated 1-shock

Let us consider the following initial condition taken from [9]

u0(x) = [h0(x),q0(x)]T =
{

[1,1]T if x < 0,

[1.8,0.530039370688997]T otherwise.

The solution of the Riemann problem consists of a 1-shock wave joining the left and right states. Fig. 15 compares the exact 
solution and the numerical approximations at time t = 0.15 obtained with Roe method, its second order extension based on 
the standard MUSCL-Hancock reconstruction, and the first- and second-order discontinuous in-cell reconstruction schemes 
based on the Roe matrix using 1000-cell mesh and CFL = 0.5: as it can be seen the standard Roe methods does not capture 
the discontinuities properly what is not the case for the in-cell discontinuous reconstruction methods based on the Roe 
structure. The results obtained with Op_ExactDisRec are similar.

Test 2: left-moving 1-shock + right-moving 2-shock
Let us consider the following initial condition

u0(x) = [h0(x),q0(x)]T =
{

[1,1]T if x < 0,

[1.5,0.1855893974385]T otherwise.
(4.20)

The solution of the Riemann problem consists of a 1-shock wave with negative speed and a 2-shock with positive speed 
with intermediate state u∗ = [1.8, 0.530039370688997]T . Fig. 16 compares the exact solution with the numerical approx-
imations at time t = 0.15 obtained with Roe method, its second order extension based on the standard MUSCL-Hancock 
reconstruction, and the first- and second-order discontinuous in-cell reconstruction schemes based on the Roe matrix using 
1000-cell mesh and CFL = 0.5: as it can be seen none of them capture the discontinuities exactly, although the ones using 
in-cell discontinuous reconstruction do it better. Fig. 17 shows the numerical solutions obtained with the first-order method 
with discontinuous reconstruction based on the Roe matrix at time t = 0.15 using different cell meshes: as we can see 
the numerical solutions seem to converge to the exact solution as �x → 0. In Fig. 18 the results given by Op_ExactDisRec, 
p = 1, 2 are shown: observe that both of them capture exactly the two shocks.

Test 3: right-moving 1-shock + right-moving 2-shock
Let us consider the following initial condition

u0(x) = [h0(x),q0(x)]T =
{

[1,1]T if x < 0,

[5,2.86423084288]T otherwise.
(4.21)

The solution of the Riemann problem consists of a 1-shock and a 2-shock waves with positive speed and intermediate state 
u∗ = [1.5, 5.96906891076]T . Fig. 19 shows the exact solution and the numerical approximations at time t = 0.06 obtained 
with Roe method, its second-order extension based on the standard MUSCL-Hancock reconstruction, and the first- and 
second-order discontinuous in-cell reconstruction schemes based on the Roe structure using 1000-cell mesh and CFL = 0.5: 
as in the previous test case, the in-cell discontinuous reconstruction captures the shocks and intermediate state much better 
29



Fig. 16. Modified Shallow Water system. Test 2: Numerical solutions obtained with the first- and second-order methods with and without discontinuous 
reconstruction based on the Roe matrix at time t = 0.15 with 1000 cells. Top: variable h (left), zoom middle state (right). Down: variable q (left), zoom 
middle state (right).

than the standard first- and second-order Roe methods. In Fig. 20 the results given by the first- and second-order in-cell 
discontinuous schemes based in the exact solution of the Riemann problems are shown: both of them capture exactly the 
exact solution.

5. Conclusions

In this paper, an extension to second-order accuracy of the in-cell discontinuous reconstruction methods introduced in 
[11] is presented: it has been compared with the first-order one using several numerical tests. We observe, as expected, an 
improvement in the smooth parts of the solutions. The isolated shock-capturing property is enunciated, proved and tested. In 
the presence of more than one shock we have used two different strategies: one based on the linearized Riemann problem 
when a Roe matrix is available, and another one based on the exact Riemann problems when the solution is explicitly 
known. We have observed that the strategy based on the Roe matrix can fail when the intermediate states appearing 
in the solution of the linearized Riemann problem do not coincide with the exact intermediate states appearing in the 
solution of the exact Riemann problem. The only important part in the in-cell reconstruction procedure is to know the exact 
intermediate states, so it is not necessary to know the entire structure of the exact Riemann problem. The well-balanced 
properties of the schemes are also studied. Future work will focus on the extension to high-order accuracy through the 
Taylor expansion and the application of the Cauchy-Kovalevski procedure and the extension of in-cell reconstruction for 
models with more waves appearing in their Riemann problems.
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Fig. 17. Modified Shallow Water system. Test 2: Numerical solutions obtained with the first-order methods with discontinuous reconstruction based on the 
Roe matrix at time t = 0.15 with different cell meshes. Top: variable h (left), zoom middle state (right). Down: variable q (left), zoom middle state (right).

Fig. 18. Modified Shallow Water system. Test 2: Numerical solutions obtained with the first- and second-order methods with discontinuous reconstruction 
based on the exact solutions of the Riemann problems at time t = 0.15 with 1000 cells. Left : variable h. Right: variable q.
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Fig. 19. Modified Shallow Water system. Test 3: Numerical solutions obtained with the first- and second-order methods with and without discontinuous 
reconstruction based on the Roe matrix at time t = 0.06 with 1000 cells. Top: variable h (left), zoom middle state (right). Down: variable q (left), zoom 
middle state (right).

Fig. 20. Modified Shallow Water system. Test 3: Numerical solutions obtained with the first- and second-order methods with discontinuous reconstruction 
based on the exact solutions of the Riemann problems at time t = 0.06 with 1000 cells. Left: variable h. Right: variable q.
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Appendix A. Non-isolated shock capturing in-cell discontinuous reconstruction for the modified Shallow Water system

In order to avoid an excess of indices the following notation will be used:

un−1
j−1,r = uL = [hL,qL]T , un−1

j+1,l = uR = [hR ,qR ]T .

The discontinuous reconstruction is then as follows:

• If the solution of the Riemann problem consists of 1-shock and a 2-rarefaction (case 1) then

σ n
j = σ1(ul,u∗), un

j,l = un
j−1, un

j,r = u∗,

where u∗ = [h∗, q∗]T is the intermediate state in the solution of the Riemann problem: h∗ is the root of the function:

f s,r(h) =
(

h − hr

2
+ √

ur

)2

− ul +
√

ul(h + hl)

2h
(h − hl),

such that hl < h∗ < hr . Once h∗ has been computed, q∗ is given by

q∗ = h∗
(

h∗ − hr

2
+ √

ur

)2

.

• If the solution of the Riemann problem consists of a 1-rarefaction and a 2-shock (case 2), then:

σ n
j = σ2(u∗,ur), un

j,l = u∗, un
j,r = un

j+1,

where u∗ = [h∗, q∗]T is the intermediate state: h∗ is the root of the function:

fr,s(h) =
(

hl − h

2
+ √

ul

)⎛⎝hl − h

2
+ √

ul +
√

hr + h

2hr
(hr − h)

⎞⎠− ur,

such that hr < h∗ < hl . Once h∗ has been computed, q∗ is given by

q∗ = h∗
(

hl − h∗
2

+ √
ul

)2

.

• If the solution of the Riemann problem consists of a 1-shock and a 2-shock (case 3), the intermediate state u∗ =
[h∗, q∗]T can be computed as follows: h∗ is the root of the function

f s,s(h) = u∗(h) +
√

u∗(h)(h + hr)

2hr
(hr − h) − ur,

where
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u∗(h) = ul −
√

ul(h + hl)

2h
(h − hl),

such that h∗ < hl and h∗ < hr . Once h∗ has been computed, q∗ is obtained by:

q∗ = h∗u∗(h∗).
Let us denote by σ1 and σ2 the speeds of the 1 and the 2 shock waves σ1(ul, u∗) and σ2(u∗, ur). The discontinuous 
reconstruction is then selected as follows:
– If σ1 < 0 < σ2: let d1 and d2 be given by

d1 = h∗ − hn
j

h∗ − hl
, d2 = hr − hn

j

hr − h∗
.

Then:
∗ If |σ1| ≤ |σ2|:

· If 0 ≤ d2 ≤ 1, then

σ n
j = σ2, un

j,l = u∗, un
j,r = un

j+1.

· Otherwise, if 0 ≤ d1 ≤ 1, then

σ n
j = σ1, un

j,l = un
j−1, un

j,r = u∗.

∗ If |σ1| > |σ2|:
· If 0 ≤ d1 ≤ 1, then

σ n
j = σ1, un

j,l = un
j−1, un

j,r = u∗.

· Otherwise, if 0 ≤ d2 ≤ 1, then

σ n
j = σ2, un

j,l = u∗, un
j,r = un

j+1.

– Otherwise (i.e. if 0 ≤ σ1 < σ2 or σ1 < σ2 ≤ 0): let d1 and d2 be such that{
d1hl + (d2 − d1)h∗ + (1 − d2)hr = hn

j ,

d1ql + (d2 − d1)q∗ + (1 − d2)qr = qn
j .

(A.1)

Then:

Pn
j (x, t) =

⎧⎪⎨⎪⎩
ul if x ≤ x j−1/2 + d1�x + σ1(t − tn),

u∗ if x j−1/2 + d1�x + σ1(t − tn) ≤ x ≤ x j−1/2 + d2�x + σ2(t − tn),

ur otherwise.

(A.2)

This in-cell discontinuous reconstruction can only be done if 0 ≤ d1, d2 ≤ 1, otherwise the cell is unmarked. Moreover, 
if d1 = d2 = 1 and the speeds of the shocks are positive (resp. if d1 = d2 = 0 and the speeds of the shocks are negative) 
the cell is unmarked and the cell I j+1 (resp. the cell I j−1) is marked if necessary.

Observe that, when the speeds of the shocks have the same sign, the discontinuous reconstruction coincides with the 
solution of the Riemann problem.

References

[1] R. Abgrall, S. Karni, A comment on the computation of non-conservative products, J. Comput. Phys. 229 (8) (2010) 2759–2763.
[2] B. Audebert, F. Coquel, Hybrid Godunov-Glimm method for a nonconservative hyperbolic system with kinetic relations, in: Numerical Mathematics and 

Advanced Applications, Springer, Berlin, Heidelberg, 2006, pp. 646–653.
[3] A. Beljadid, P.G. LeFloch, S. Mishra, C. Parés, Schemes with well-controlled dissipation. Hyperbolic systems in nonconservative form, Commun. Comput. 

Phys. 21 (4) (2017) 913–946.
[4] C. Berthon, Schéma nonlinéaire pour l’approximation numérique d’un système hyperbolique non conservatif, C. R. Math. 335 (12) (2002) 1069–1072.
[5] C. Berthon, F. Coquel, Nonlinear projection methods for multi-entropies Navier-Stokes systems, in: Innovative Methods for Numerical Solution of Partial 

Differential Equations, World Scientific, 2002, pp. 278–304.
[6] M. Castro, J.M. Gallardo, C. Parés, High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconser-

vative products. Applications to shallow-water systems, Math. Comput. 75 (255) (2006) 1103–1135.
[7] M. Castro, J. Macías, C. Parés, A Q -scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow 

water system, Modél. Math. Anal. Numér. 35 (1) (2001) 107–127.
[8] M.J. Castro, U.S. Fjordholm, S. Mishra, C. Parés, Entropy conservative and entropy stable schemes for nonconservative hyperbolic systems, SIAM J. 

Numer. Anal. 51 (3) (2013) 1371–1391.
34

http://refhub.elsevier.com/S0021-9991(22)00214-5/bibCC59A6FFA852E80978E062537ADF2C96s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bib009FE96412623E1CCB3D922DAEA238FEs1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bib009FE96412623E1CCB3D922DAEA238FEs1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bibB05FD45833FF33DAC188A0468814E987s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bibB05FD45833FF33DAC188A0468814E987s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bib0F0D5A4D1F241356AD517B9C6F4F0BBCs1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bib6259820FF9CFFAA5F0058943AF2EBBD0s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bib6259820FF9CFFAA5F0058943AF2EBBD0s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bibA7BF934087537C1AB447ACE476A465F6s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bibA7BF934087537C1AB447ACE476A465F6s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bib5CBC764DAEACD3BE7F410F42511C1EDBs1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bib5CBC764DAEACD3BE7F410F42511C1EDBs1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bibB8879DF4754136CBB4351ADB5DA4A035s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bibB8879DF4754136CBB4351ADB5DA4A035s1


E. Pimentel-García, M.J. Castro, C. Chalons et al. Journal of Computational Physics 459 (2022) 111152
[9] M.J. Castro, P.G. LeFloch, M.L. Muñoz-Ruiz, C. Parés, Why many theories of shock waves are necessary: convergence error in formally path-consistent 
schemes, J. Comput. Phys. 227 (17) (2008) 8107–8129.

[10] M.J. Castro, T. Morales de Luna, C. Parés, Well-balanced schemes and path-conservative numerical methods, in: Handbook of Numerical Analysis, in: 
Handbook of Numerical Methods for Hyperbolic Problems Applied and Modern Issues, vol. 18, Elsevier, 2017, pp. 131–175.

[11] C. Chalons, Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems, Commun. Math. Sci. 18 (1) (2020) 
1–30.

[12] C. Chalons, F. Coquel, Navier-Stokes equations with several independent pressure laws and explicit predictor-corrector schemes, Numer. Math. 101 (3) 
(2005) 451–478.

[13] C. Chalons, F. Coquel, A new comment on the computation of non-conservative products using Roe-type path conservative schemes, J. Comput. Phys. 
335 (2017) 592–604.

[14] G. Dal Maso, P.G. LeFloch, F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. 74 (6) (1995) 483–548.
[15] U.S. Fjordholm, S. Mishra, Accurate numerical discretizations of non-conservative hyperbolic systems, Modél. Math. Anal. Numér. 46 (1) (2012) 187–206.
[16] E. Godlewski, P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer, 1995.
[17] A. Harten, J.M. Hyman, Self adjusting grid methods for one-dimensional hyperbolic conservation laws, J. Comput. Phys. 50 (2) (1983) 235–269.
[18] A. Hiltebrand, S. Mishra, C. Parés, Entropy-stable space–time DG schemes for non-conservative hyperbolic systems, Modél. Math. Anal. Numér. 52 (3) 

(2018) 995–1022.
[19] P.G. LeFloch, S. Mishra, Numerical methods with controlled dissipation for small-scale dependent shocks, Acta Numer. 23 (2014) 743–816.
[20] M.L. Muñoz-Ruiz, C. Parés, Godunov method for nonconservative hyperbolic systems, Modél. Math. Anal. Numér. 41 (1) (2007) 169–185.
[21] C.D. Munz, On Godunov-type schemes for lagrangian gas dynamics, SIAM J. Numer. Anal. 31 (1) (1994) 17–42.
[22] C. Parés, Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J. Numer. Anal. 44 (1) (2006) 300–321.
[23] C. Parés, M.J. Castro-Díaz, On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems, 

Modél. Math. Anal. Numér. 38 (5) (2004) 821–852.
[24] I. Toumi, A weak formulation of Roe’s approximate Riemann solver, J. Comput. Phys. 102 (2) (1992) 360–373.
[25] B. Van Leer, Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme, J. Comput. 

Phys. 14 (4) (1974) 361–370.
[26] B. Van Leer, On the relation between the upwind-differencing schemes of Godunov, Engquist–Osher and Roe, SIAM J. Sci. Stat. Comput. 5 (1) (1984) 

1–20.
35

http://refhub.elsevier.com/S0021-9991(22)00214-5/bib2ACEFF9D5159B2FEE97AC45B2529F54Cs1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bib2ACEFF9D5159B2FEE97AC45B2529F54Cs1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bib53D13CA1BDC10A90B18A9CA77B0EB1E5s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bib53D13CA1BDC10A90B18A9CA77B0EB1E5s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bibA4DFE25351003C45E8B2706D75DA3C05s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bibA4DFE25351003C45E8B2706D75DA3C05s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bibFB7A47895D8BE0368558D2953FD8DF90s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bibFB7A47895D8BE0368558D2953FD8DF90s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bibCB8EDF2B2B3FA30F50DB231C28C550B5s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bibCB8EDF2B2B3FA30F50DB231C28C550B5s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bib99ED403A6CC7166A2F3752C0E32B01F1s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bib6DBF4E5CAA2BA6B3AA0EBEFABFF4910Es1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bib43AFBC4362C75C2BEDF931B619C8DB07s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bib28D595691F1AD3D2599024BA3B6C702Cs1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bib26908222D4D0F035A794CC7E01BBABB6s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bib26908222D4D0F035A794CC7E01BBABB6s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bibBC9E55837BF7678525114F19E9DBC229s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bib2BE7AACB6FCA0ED84FF8630F1CF3DF77s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bibCF6EC1339786D8AE7F1CAA1359113C58s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bibD927999E9CBEEBD8EE4386BA3237DA24s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bibFF6432088361DBB936648528E1D0D881s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bibFF6432088361DBB936648528E1D0D881s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bib9299ECCBE5DB5C6BAA476A4611581A4As1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bibF7C89645FBFBA960300F59748A96776Bs1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bibF7C89645FBFBA960300F59748A96776Bs1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bib71EE6425B017CC0111EA0E2A1B2BFF58s1
http://refhub.elsevier.com/S0021-9991(22)00214-5/bib71EE6425B017CC0111EA0E2A1B2BFF58s1

	In-cell discontinuous reconstruction path-conservative methods for non conservative hyperbolic systems - Second-order exten...
	1 Introduction
	2 Path-conservative methods
	3 Second-order in-cell discontinuous reconstruction path-conservative methods
	3.1 Semi-discrete method
	3.2 Choice of σnj, unj,l, unj,r
	3.3 Time step
	3.4 Fully discrete method
	3.5 Shock-capturing property
	3.6 Well-balanced property
	3.6.1 First-order in-cell well-balanced discontinuous reconstruction path-conservative methods
	3.6.2 Second-order in-cell well-balanced discontinuous reconstruction path-conservative methods
	3.6.3 Systems with source terms


	4 Numerical tests
	4.1 Coupled Burgers system
	4.1.1 Equations
	4.1.2 Simple waves
	4.1.3 Cell-marking criterion and in-cell discontinuous reconstruction
	4.1.4 Numerical tests

	4.2 Gas dynamics equations in Lagrangian coordinates
	4.2.1 Equations
	4.2.2 Simple waves
	4.2.3 Cell-marking criterion and in-cell discontinuous reconstruction
	4.2.4 Numerical tests

	4.3 Modified Shallow Water system
	4.3.1 Equations
	4.3.2 Simple waves
	4.3.3 Cell-marking criterion
	4.3.4 In-cell discontinuous reconstruction
	4.3.5 Non-isolated shocks capturing
	4.3.6 Numerical tests


	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Non-isolated shock capturing in-cell discontinuous reconstruction for the modified Shallow Water system
	References


