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Abstract

In recent years, approaches that seek to extract valuable information from
large datasets have become particularly relevant in today’s society. In this cat-
egory, we can highlight those problems that comprise data analysis distributed
across two-dimensional scenarios called spatial problems. These usually involve
processing (i) a series of features distributed across a given plane or (ii) a matrix
of values where each cell corresponds to a point on the plane. Therefore, we can
see the open-ended and complex nature of spatial problems, but it also leaves
room for imagination to be applied in the search for new solutions.

One of the main complications we encounter when dealing with spatial prob-
lems is that they are very computationally intensive, typically taking a long time
to produce the desired result. This drawback is also an opportunity to use het-
erogeneous systems to address spatial problems more efficiently. Heterogeneous
systems give the developer greater freedom to speed up suitable algorithms by
increasing the parallel programming options available, making it possible for dif-
ferent parts of a program to run on the dedicated hardware that suits them best.

Several of the spatial problems that have not been optimised for heterogeneous
systems cover very diverse areas that seem vastly different at first sight. However,
they are closely related due to common data processing requirements, making
them suitable for using dedicated hardware.

In particular, this thesis provides new parallel approaches to tackle the follow-
ing three crucial spatial problems: latent fingerprint identification, total viewshed
computation, and path planning based on maximising visibility in large regions.

Latent fingerprint identification is one of the essential identification proce-
dures in criminal investigations. Addressing this task is difficult as (i) it requires
analysing large databases in a short time, and (ii) it is commonly addressed by
combining different methods with complex data dependencies, making it chal-
lenging to exploit parallelism on heterogeneous CPU-GPU systems. Moreover,
most efforts in this context focus on improving the accuracy of the approaches and
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neglect reducing the processing time—the most accurate algorithm was designed
to process the fingerprints using a single thread.

We developed a new methodology to address the latent fingerprint identifi-
cation problem called Asynchronous processing for Latent Fingerprint Identifica-
tion (ALFI) that speeds up processing while maintaining high accuracy. ALFI
exploits all the resources of CPU-GPU systems using asynchronous processing
and fine-coarse parallelism to analyse massive fingerprint databases. We assessed
the performance of ALFI on Linux and Windows operating systems using the
well-known NIST/FVC databases. Experimental results revealed that ALFI is
on average 22x faster than the state-of-the-art identification algorithm, reaching
a speed-up of 44.7x for the best-studied case.

In terrain analysis, Digital Elevation Models (DEMs) are relevant datasets
used as input to those algorithms that typically sweep the terrain to analyse
its main topological features such as visibility, elevation, and slope. The most
challenging computation related to this topic is the total viewshed problem. It
involves computing the viewshed—the visible area of the terrain—for each of the
points in the DEM. The algorithms intended to solve this problem require many
memory accesses to 2D arrays, which, despite being regular, lead to poor data
locality in memory.

We proposed a methodology called skewed Digital Elevation Model (sSDEM)
that substantially improves the locality of memory accesses and exploits the inher-
ent parallelism of rotational sweep-based algorithms. Particularly, sSDEM applies
a data relocation technique before accessing the memory and computing the view-
shed, thus significantly reducing the execution time. Different implementations
are provided for single-core, multi-core, single-GPU, and multi-GPU platforms.
We carried out two experiments to compare sDEM with (i) the most commonly
used geographic information systems (GIS) software and (ii) the state-of-the-art
algorithm for solving the total viewshed problem. In the first experiment, sDEM
results on average 8.8x faster than current GIS software, despite considering only
a few points because of the limitations of the GIS software. In the second exper-
iment, sDEM is 827.3x faster than the state-of-the-art algorithm considering the
best case.

The use of Unmanned Aerial Vehicles (UAVs) with multiple onboard sensors
has grown enormously in tasks involving terrain coverage, such as environmental
and civil monitoring, disaster management, and forest fire fighting. Many of
these tasks require a quick and early response, which makes maximising the land
covered from the flight path an essential goal, especially when the area to be
monitored is irregular, large, and includes many blind spots. In this regard,



ABSTRACT XVII

state-of-the-art total viewshed algorithms can help analyse large areas and find
new paths providing all-round visibility.

We designed a new heuristic called Visibility-based Path Planning (VPP) to
solve the path planning problem in large areas based on a thorough visibility
analysis. VPP generates flyable paths that provide high visual coverage to moni-
tor forest regions using the onboard camera of a single UAV. For this purpose, the
hidden areas of the target territory are identified and taken into account when
generating the path. Simulation results showed that VPP covers up to 98.7% of
the Montes de Malaga Natural Park and 94.5% of the Sierra de las Nieves Na-
tional Park, both located in the province of Malaga (Spain). In addition, a real
flight test confirmed the high visibility achieved using VPP. Our methodology
and analysis can be easily applied to enhance monitoring in other large outdoor
areas.

In the end, this work has resulted in three new parallel approaches to effi-
ciently solve three relevant spatial problems, whose common link is the use of
heterogeneous systems. The scientific community can apply these approaches to
other problems with similar requirements to accelerate data processing.
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Introduction

Nowadays, we have vast datasets available in almost every conceivable field
thanks to the Internet. In particular, one of these that has experienced significant
growth is related to the analysis of data in two-dimensional scenarios, commonly
known as spatial analysis [1].

The general meaning of spatial analysis states: a general ability to manipulate
spatial data into different forms and extract additional meaning as a result [2].
More precisely, we can further restrict this definition so that spatial analysis
includes any analytical technique that aims to find (i) the spatial distribution
of a variable, (ii) the relationship between the spatial distribution of different
variables, or (iii) the associations between variables. These results are commonly
achieved by analysing every variable’s topological, geometric, or geographic prop-
erties under study.

The problems arising from this type of analysis are neither clearly defined nor
have a straightforward solution. We can start with the idea that spatial problems
usually require a specific data structure type where the values included are not
isolated, but there is usually a relationship between adjacent values.

Spatial data provide location-related information in which two types of data
structures stand out [3]:

= Vector data: it represents basic geometrical shapes that include points
(single vertices, e.g., buildings), lines (two or more vertices forming an open
shape, e.g., rivers), and polygons (three or more vertices forming a closed
shape, e.g., city districts).
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= Raster data: it consists of a matrix of cells arranged in rows and columns,
where each cell can contain a discrete or continuous value, such as popula-
tion density or elevation, respectively. This type of data is typically square
and regularly spaced.

In general, vector data is ideal for representing discrete features, such as spe-
cific locations, territories, and boundaries. In contrast, raster data is best suited
for continuous features, including elevation and precipitation, among others. The
most representative example of raster data is a Digital Elevation Model (DEM),
which is used mainly by geographic information systems. In a DEM, each cell
of the matrix includes the elevation value of the corresponding point in the ter-
rain. It is worth mentioning that a point, which might correspond to the summit
of a mountain as an example, will have adjacent cells containing similar but
slightly lower elevation values. Note that spatial data is not only restricted to
the geographical domain but has a much more open approach related to spatial
distribution.

Another characteristic of spatial problems is the repetitive nature of the op-
erations used to analyse the data. In practice, the same operations are typically
repeated on the dataset but modifying the target variable. For instance, if we
consider the visibility computation problem from a given point, the direction of
the line of sight varies between 0 and 360°. Therefore, the data used in spatial
analysis comply with the locality principle, also known as locality of reference. It
states that a processor tends to access the same memory locations over time, i.e.,
recently used data is more likely to be reused by the program in the near future.
In practice, we can distinguish two types of locality:

» Temporal locality: recently accessed data have a high probability of being
accessed soon.

= Spatial locality: data stored close together in memory have a high proba-
bility of being accessed shortly. An example of this is the sequential locality
that occurs when data is arranged in memory sequentially and accessed the
same way, e.g., the linear access to a one-dimensional array.

The principle of temporal locality may apply when analysing spatial data,
although it does not have to. However, one can take advantage of spatial locality
since data in two-dimensional environments are typically related and stored con-
tiguously in memory—Ilike in the above example of the summit of the mountain
and the surrounding points. Accordingly, this fact has allowed us to develop new
approaches to accelerate spatial data processing using modern systems.
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1.1. Motivation

Many spatial problems seem entirely different and unrelated at first sight;
however, some similarities, usually hidden, should be explored to apply to these
problems some optimisation approaches that have been already proved valid in
other areas.

Based on the broad definition of spatial analysis, two similar scenarios are the
pixels of an image and the elevation values in a DEM. The colour of a pixel has
a strong relationship with its surroundings, as does the elevation of a point with
its neighbours in a given terrain. This circumstance brings new possibilities for
finding other solutions to very complex problems, such as fingerprint identifica-
tion, total viewshed computation and path planning based on maximum visibility.
We will describe below some of the most relevant characteristics of these three
algorithms and introduce the questions this thesis will answer.

Fingerprint identification is one of the most widely used biometric identifica-
tion methods nowadays. Each fingerprint has a set of features called minutiae
that relate to the points where the ridges of the skin end or split. In practice, each
minutia is typically defined by three values within the two-dimensional image of
the fingerprint: direction, type, and x and y coordinates. Accordingly, an indi-
vidual is identified by comparing their fingerprint with each fingerprint included
in a specific database—comparing the relative characteristics of the minutiae of
both fingerprints.

The identification process is challenging due to the large number of complex
relationships defined and checked in each minutiae comparison to determine the
level of similarity. The problem is further complicated when identifying latent
fingerprints. The fingerprints belonging to this group result from unintention-
ally leaving sweat and/or oil deposits from the fingertip on a particular surface.
Thus, they have low quality and need much more processing in general.

The most advanced matching algorithms for either latent or non-latent fin-
gerprints are computationally expensive, time-consuming, and particularly inef-
ficient when working on large databases. Some fingerprint identification algo-
rithms are currently running on hardware accelerators, but there are no similar
approaches for latent fingerprint identification. Therefore, one central question
arises:

s [s it possible to develop a mew latent fingerprint identification algorithm
based on the most accurate identification method so far to run on heteroge-
neous systems?
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If so, other questions are:

» [s the resulting latent fingerprint identification algorithm fast enough?

s Does it achieve high accuracy in identification?

Afterwards, we use the experience gained in the two-dimensional problem of
fingerprint identification as a basis for finding new solutions to the second spatial
problem mentioned: total viewshed. This problem consists in obtaining the
visible area from each point in the DEM. Both spatial problems have several
similarities that we can take advantage of, such as exploiting parallelism based
on the partitioning and proximity of the data according to its two-dimensional
location.

In geographic information systems, it is common to use algorithms similar to
ray-tracing codes when working with digital terrain models. Such algorithms are
used to study any variable related to parameters whose magnitude decreases with
the square of the distance (e.g., radio signals, sound waves, and human sight).
However, these algorithms require performing array accesses that lead to poor
exploitation of the spatial locality in memory—even if the memory accesses are
regular.

The aim here is to analyse how a complete reorganisation of the data on a
per-direction basis leads to a considerable performance improvement, especially
in computationally intensive algorithms. We will address the following questions:

= [s it possible to find a new data structure for storing elevation values that
will improve the locality in memory in terrain analysis problems?

If possible, some other questions that need to be answered are:

s Will this new data structure substantially increase the performance of the
viewshed computation algorithms?

» [s it particularly efficient for the total viewshed problem?

The final part of this thesis aims to bring a new solution to a fundamental
problem: path planning for monitoring purposes. This problem tries to
find the shortest path that provides the maximum visual coverage for a given
terrain, which requires complete knowledge of the viewshed and the management
and processing of spatially distributed data. An autonomous Unmanned Aerial
Vehicle (UAV) will be the device in charge of following the path to monitor the
target area. The critical questions of this research are:
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= Can we find a new alternative to address the path planning problem based
entirely on mazximising the visibility from the path?

» [s the algorithm developed to solve the total viewshed problem wvalid in this
case?

» [s the direction of the onboard camera during the flight a critical factor to
consider?

1.2. Purposes of this work

The main objective of this thesis is to find new approaches to address some
of today’s most prominent spatial problems. This main objective can be divided
into more specific ones:

1. Bring new ideas and approaches to three different computationally intensive
algorithms of spatial analysis using strategies that have been proved valid
in other scientific areas. These approaches have not been previously tested
for spatial analysis and involve computation on heterogeneous CPU-GPU
systems and full GPU processing.

2. Review the state-of-the-art regarding latent fingerprint identification and
analyse the parts of the most accurate fingerprint identification algorithm—
among those based only on minutiae—currently in use. This algorithm will
be optimised to take advantage of the execution on multi-core and many-
core accelerators on heterogeneous systems using OpenMP and CUDA.

3. Find and analyse the most up-to-date techniques used in viewshed analy-
sis on DEMs, with a particular focus on the total viewshed problem. We
will apply a matrix restructuring technique to take advantage of the high
computational power of hardware accelerators, such as GPUs and heteroge-
neous architectures, where the most efficient system will be used. Moreover,
we will deal with the high degree of parallelism existing in the calculation
of parallel lines of vision, as well as the homogeneity of the scheduled op-
erations (improving the performance on GPUs) and the data organisation
(optimising the use of the memory hierarchy).

4. Identify the latest research in the literature regarding path planning using
drones for monitoring purposes. Here, we intend to develop a new method-
ology for path planning based on maximising visibility from the flight path
to address the monitoring of difficult areas considering forest fire prevention
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as a case study. This methodology will try to solve the path planning prob-
lem based on a careful analysis of the viewshed to obtain a near-optimal
path for a single UAV with an onboard camera. The camera’s direction
will be calculated for each waypoint within the path, thus increasing the
amount of terrain covered.

1.3. Main contributions
The contributions of this work are:

1. A new algorithm called Asynchronous processing for Latent Fingerprint
Identification (ALFT) that provides faster and accurate latent fingerprint
identification over massive databases on heterogeneous systems. ALFI
applies fine-grained parallelism at fingerprint descriptor level and asyn-
chronous processing as the basis for achieving an effective CPU-GPU pro-
cessing pipeline. ALFI reduces idle times in processing and exploits the
inherent parallelism of comparing latent fingerprints to fingerprint impres-
sions. To the best of our knowledge, there are no related algorithms in the
literature developed for latent fingerprint identification on heterogeneous
systems.

2. A new data structure called skewed Digital Elevation Model (sDEM) for
faster processing in terrain surface analysis that vastly improves data lo-
cality in memory. In particular, this approach applies a data restructuring
before processing that fully exploits the intrinsic parallelism of the total
viewshed computation, achieving maximum performance through efficient
memory accesses. We provide different implementations for single-core,
multi-core, single-GPU and multi-GPU platforms, which are compared with
the most commonly used geographic information systems and the state-of-
the-art algorithm for total viewshed computation.

3. A new heuristic called Visibility-based Path Planning (VPP) that finds a
path for a single UAV with high terrain coverage for any given territory.
VPP carries out a thorough viewshed analysis and provides the identifica-
tion of hidden areas in the case study area. Moreover, VPP calculates the
direction of the onboard camera for each waypoint within the flight path,
aiming to maximise the visual coverage but avoiding visual overlapping be-
tween adjacent locations. This methodology achieves the monitoring of the
whole region of interest to, e.g., prevent fires at relatively low cost.
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1.4. Doctoral thesis organisation

The remainder of this document is organised as follows:

= Chapter 2 addresses the fundamentals of parallel processing that lay the
groundwork for a better understanding of this research.

s Chapter 3 presents the ALFI algorithm for CPU-GPU heterogeneous sys-
tems, along with the critical aspects of the fingerprint identification problem
from the perspective of analysing latent fingerprints.

= Chapter 4 introduces the sSDEM methodology intended to address the total
viewshed problem for heterogeneous systems, together with the essential
concepts of viewshed analysis.

= Chapter 5 explains the VPP heuristic for path planning based on visibility
analysis, as well as the key points of this topic.

s Chapter 6 gathers the main conclusions drawn from the achievements of
this thesis, the published works that support it, and the future work.

In addition, the essential functions of the ALFI algorithm are described in
Appendix A. Finally, the Spanish summary of this thesis is given in Appendix B.
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2 Background

The approaches intended to find a spatial relationship by processing large
spatial datasets are often associated with very high complexity. This difficulty
lies in the wide range of possibilities available regarding tackling the problem.
Nevertheless, there is a condition almost fulfilled in any case that we can exploit:
values arranged in nearby memory locations have similar characteristics.

This chapter introduces some of the most used techniques to accelerate data
processing in computationally demanding algorithms, as with spatial analysis
problems. We will address parallel computing, general-purpose computing on
graphics processing units, and heterogeneous computing.

Section 2.1 describes the key aspects of parallel computing. Section 2.2 ex-
plains the methodology followed in the area of general-purpose computing on
GPUs, with a special focus on the NVIDIA CUDA API. Section 2.3 presents the
methodology followed in heterogeneous computing, along with a brief introduc-
tion of the three objects of study addressed in this thesis.

2.1. Parallel computing

Traditionally, software developers used to write the source code of any pro-
gram with sequential execution in mind, similar to the way a person thinks.
At the time, this proved to be the most straightforward and efficient approach.
All programs developed were intended to run on single-core CPU systems and
were therefore limited by the speed of the processor. Unfortunately, significant
improvements could not be achieved without upgrading the hardware.
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The development and subsequent growth of the Internet have enabled busi-
ness and government organisations to store large amounts of data online. This
information requires thorough processing to draw conclusions based on analysing
the relationship between variables. In practice, this process would have been
unfeasible in terms of time if processed with sequential algorithms such as those
used years ago. Nowadays, massive datasets are usually processed using high-
performance computers, also known as supercomputers, mainly designed for re-
search purposes.

Not every researcher has access to a supercomputer. Even if they do, opti-
mised code must always accompany the powerful hardware to unleash the full
potential of the system on which it runs. This last point is why parallel pro-
cessing techniques emerged, aiming to speed up the analysis of massive datasets
while making the best use of the underlying hardware.

In practice, any sequential algorithm analysed and designated as suitable can
be parallelised to run on multi-core CPU systems, but with the disadvantage of
having to write parallel programs. This type of algorithm follows the divide-and-
conquer approach that divides the main task into a series of subprocesses that
are executed simultaneously, thereby reducing the processing time. The developer
must explicitly define the synchronisation of the many subprocesses and accesses
to those code areas of shared data.

In general, parallel processing techniques fall into two different groups accord-
ing to the nature of the application involved:

= Compute-intensive: this term describes compute-bound applications,
i.e., most of the execution time is spent in computation on the Central
Processing Unit (CPU), instead of input/output (I/O) operations. As they
typically require small volumes of data, parallel processing involves paral-
lelising the most computationally demanding parts of the algorithm. In
more complex platforms, a common approach is to divide the process into
separate tasks executed in parallel on different platforms, avoiding serial
execution and optimising the available resources. It is known as task par-
allelism since multiple tasks are simultaneously performed, with each one
tackling a particular part of the problem.

= Data-intensive: this concept identifies memory-bound applications in
which a large amount of data must be processed and, therefore, the ap-
plication spends most of its execution time moving and manipulating data
instead of computing. Here, parallel processing involves dividing the data
into multiple chunks that are then processed independently by the same
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application running in parallel. At the end of the process, independent re-
sults are accumulated to produce the complete data output. This type of
application usually scale linearly according to the data size and are made
to be easily parallelised.

The above is the ideal classification of the algorithms according to their limi-
tations. Nevertheless, an algorithm may have characteristics from both groups or
may seem to belong to one group but actually belongs to the other once analysed.
This fact occurs with well-known algorithms from the research areas involving
latent fingerprint identification and viewshed computation. They have to handle
massive databases (typically divided into several chunks) but are CPU-bound
because of the high level of processing required to achieve the results. The op-
timisation task will be challenging in such cases if the parallel computation on
multi-core CPUs is the only option considered. In this regard, the inclusion of
GPUs has carried great weight in recent years for parallel computing as they are
capable of massive multi-threading in data-intensive computation, among other
advantages.

2.2. General-purpose computing on GPUs

In the last two decades, the role of GPUs has completely evolved from manag-
ing tasks related to visual processing (e.g., rendering 3D graphics in video games
and visual applications) to general data processing, commonly known as General-
Purpose Computing on GPUs (GPGPU). Such type of system typically includes
a CPU that controls one or more GPUs, achieving great success in the industry
and spreading all over the world.

2.2.1. Main GPGPU APIs

The foundations of this technological breakthrough began with the release of
OpenGL [4] in 1992. Tt was an operating system independent application pro-
gramming interface (API) capable of rendering 2D and 3D vector graphics using
the GPU. Even though OpenGL did not support general-purpose computing, it
became the standard for rendering in the industry and the first step towards this
capability.

At the beginning of the 21st century, the first developers using GPUs for
general-purpose computing needed to represent their mathematical problems us-
ing vertices and pixels to run them on GPUs. It was not until 2006 when NVIDIA
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launched the parallel computing platform and API model called Compute Uni-
fied Device Architecture (CUDA) [5]. CUDA provided general-purpose computing
capability for NVIDIA GPUs, enabling researchers and developers to take full ad-
vantage of the parallel nature of these devices with less effort and more efficiently
than in the past. CUDA is available using C, C++ or Python as programming
language.

Nowadays, NVIDIA GPUs are the first choice in the field of research. The
benefits of CUDA are [6]:

= New versions of the CUDA toolkit are frequently released.
» Highly advanced debugging and profiling tools available.

= There are many optimised libraries for various areas available, such as linear
algebra and image processing.

Conversely, the main drawbacks of CUDA are:

= Memory transfers between GPU and CPU must be managed and located
manually. Similarly, the code to run on the GPU must be explicitly pro-
grammed.

s CUDA does not support execution on GPUs other than NVIDIA graphics.
Therefore, developers can not test the performance on, for example, AMD,
Asus, and Intel GPUs. These companies have been involved in manufac-
turing GPUs for many years but to a lesser extent.

There is another API for GPU processing called OpenCL [7], initially released
in 2009, which shares some similarities with CUDA: they both provide a specific
set, of operations for GPU processing. In particular, OpenCL has great potential
since it is an open standard for low-level heterogeneous parallel programming
with stable support up to the present day by the non-profit Khronos Group.
The code developed to run on the CPU requires C/ C++ programming language,
whereas the code developed for the GPU requires special API calls. The main
advantages of OpenCL include:

» Run-time execution model, which brings abstract memory and portability.

= High portability of the developed code. It can run on very different hard-
ware: CPUs, dedicated GPUs from different vendors (e.g., NVIDIA and
AMD), integrated GPUs (the main manufacturer is Intel), and other types
of accelerators including Xeon Phi and FPGAs.
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The negative points of OpenCL involve:

= Low-level API that makes the programming task more difficult, e.g., a
higher number of lines of code for the same task and more time spent on
programming.

s Performance is not guaranteed to be maintained when changing the under-
lying hardware on which the code runs from one manufacturer to another.

The Khronos Group also launched in 2014 a new API called SYCL [8]. It
is a royalty-free cross-platform abstraction layer based on OpenCL that enables
programs to run on various heterogeneous processors by writing the source code
using the ISO C++ standard. On the positive side, it seems to offer greater ease
of programming as it is based on the ISO C++ standard, but it still has some
disadvantages related to OpenCL.

In this work, NVIDIA CUDA toolkit 10.0 with C++ has been considered based
on the following reasons:

1. OpenCL generally requires considerably more lines of code than CUDA for
the same application [9], which results in more effort for the developer.
However, the human factor also has an impact on this aspect.

2. The code generated as a result of the compilation stage using CUDA targets
the architecture of the underlying NVIDIA GPU [10]. In contrast, OpenCL
cannot achieve such fine-tuning as it is a more general cross-platform tool.

3. Regarding Internet searches, the worldwide popularity of CUDA is signifi-
cantly higher than that of OpenCL (100 vs 4 in points of interest). Similarly,
scientific publications containing the words ‘CUDA GPU’ (221,000 results)
far outnumber those with ‘OpenCL GPU’ (33,000). Both statements are
supported by the data from Google Trends and Google Scholar tools as of
01 January 2022.

4. Furthermore, from the data shown in the previous point, it can be extrap-
olated that CUDA has greater support from the scientific community. This
fact helps resolve those problems that may arise during the development of
the algorithms.

2.2.2. CUDA parallel computing platform

The NVIDIA CUDA framework for GPUs provides a high-level abstraction
for software developers to use NVIDIA GPUs for general-purpose computing
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using C/C++ and Python programming languages. This API enables applications
running on the CPU—also known as host—to perform data processing on the
NVIDIA GPU—device—following a more efficient strategy.

The areas in which GPU processing is widely used are related to emerging sci-
entific and technological areas where matrix processing is the basis of computing,
such as molecular analysis [11]|, weather prediction [12], visibility analysis [13],
and biometric recognition [14, 15, 16]. All of these have in common the need to
manage and process a massive amount of data, a task that GPUs can speed up
significantly.

2.2.2.1. Hardware and software architectures

The hardware side of the NVIDIA CUDA framework [5] (Figure 2.1) consists
of a set of Streaming Multiprocessors (SMs), whose number depends on the GPU
architecture. Each SM is composed of usually 32 cores, which can run many
threads in parallel responsible for executing the functions designed specifically

GPU (device)

Streaming Multiprocessor X)

Streaming Multiprocessor 2)

Streaming Multiprocessor 1 )
Shared memory
CPU
(hOSt) Processor 1 | Processor N
‘ Constant memory ‘
| Texture memory |
h
v h 4
Local memory
d |-
~ > Global memory

Figure 2.1: CUDA hardware model.
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for the device, commonly known as kernels. We will explain the CUDA memory
model in detail in the next section.

In the CUDA software model (Figure 2.2), threads are grouped into processing
structures called warps, each of these containing typically 32 threads. Each thread
from a particular warp should be performing Single Instruction Multiple Data
(SIMD) operations inside the kernels to achieve maximum performance. The
cause of this fact lies in avoiding the thread divergence problem, which occurs
when threads from the same warp take different paths after processing a branch
instruction, such as if-else and switch statements.

Moreover, threads are also grouped at a higher level into thread blocks, which
run on the same SM sharing its resources. These thread blocks run independently
since communication between blocks is impossible unless the global memory is
involved. Finally, thread blocks are gathered inside a grid.
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‘ Launch kernel 1 } P Grid
‘ Launch kernel N } >
Block Block Block
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Figure 2.2: CUDA software model.
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2.2.2.2. Memory hierarchy

The smallest and fastest memory units are the registers, followed by the local
memory, which is much slower as it is included in the device global memory.
Both types of memory are private for every thread, and the data stored cannot
be shared between them. The next memory level is the shared memory space,
where the data is accessible for every thread within the same block, provided that
the block runs. Finally, the largest but slowest storage space is the global memory,
which all thread blocks can access. Therefore, the global memory enables data
sharing between threads, even between those that belong to different blocks.
This last memory unit is used for communication purposes with the host unit.
Additionally, there is a level 1 cache (L1) for each SM and a level 2 cache (L2)
shared by all SMs.

Data allocations in the host memory are pageable by default, so that the
device cannot access this data directly. Therefore, when a data transfer from
pageable host memory to device memory is invoked, the CUDA driver comes into
play. It must first allocate a temporary page-locked, generally known as pinned
memory, then copy the host data to this pinned memory and, finally, transfer
the data from the pinned memory to the device memory. In order to avoid this
inefficient process, data in the host can be directly allocated in pinned memory,
improving transfer speeds by preventing the memory from being swapped out.

2.2.2.3. Concurrent model

Concurrent execution is possible using the structures available in CUDA called
streams, which are a sequence of operations executed in order on the device. De-
velopers can create and utilise non-default streams, performing multiple opera-
tions such as concurrent execution of kernels and memory transfers inside different
streams. Thus, the use of multiple streams can add new layers of parallelisation
to particular applications, offering many more opportunities for optimisation.
For example, data transfers between host and device can be overlapped with (i)
computation on the host, (ii) computation on the device, and (iii) other data
transfers between the host and device.

Note that synchronisation between different operations is necessary for suc-
cessful concurrent execution on the device, and the structures called events can
be helpful for this purpose. These events are synchronisation markers provided
by CUDA that indicate whether a particular operation has concluded inside a
specific stream. In practice, we can use an event to block the device or host until
a given task finishes inside a particular stream.
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2.3. Heterogeneous computing

Inherently-sequential algorithms (e.g., the n-body problem in physics) are im-
possible to parallelise efficiently and are therefore most suitable for being executed
on single-core CPUs running at high frequencies. Conversely, embarrassingly
parallel algorithms, such as Monte Carlo analysis, finite difference methods, and
2D /3D model rendering, take advantage of being executed on multi-core CPU
systems, or even more on hardware accelerators with many cores running at lower
frequencies. In general, most algorithms trying to solve real-world problems can
be divided into subtasks, requiring serial or parallel execution and benefiting from
concurrent execution on different devices.

2.3.1. Main devices involved

In the past, the processor was the leading actor in computing science with the
first single-core CPU systems, where increasing clock speeds maximised perfor-
mance. The clock speed of the systems progressively increased until the frequency
could not keep up, and that is when multi-core CPUs came into play. These units
achieve more performance with lower energy consumption, but with the draw-
backs of spending much power in non-computational units (logic and cache, for
example) and the need of having to write parallel code to take full advantage of
the underlying hardware.

In parallel and following a similar approach, hardware accelerators started to
gain importance in computing. These units are specialised pieces of hardware
with greater efficiency than the general-purpose CPUs to carry out computation-
ally intensive tasks. The cores are specifically designed to maximise performance
by spending much power on performing calculations. These cores have fewer
transistors running at lower frequencies, with the counterpart of sacrificing func-
tionality: the impossibility of running operating systems and performing logic
operations efficiently, among others. Some of the most commonly used accel-
erators are application-specific integrated circuits (ASICs), field-programmable
gate arrays (FPGAs) and GPUs. Each of these devices offers different trade-offs
between efficiency, configuration and development cost [17].

Things have changed since the first processors appeared, and the future of
high-performance computing seems to be heading towards processing in hetero-
geneous computers where the task of processing is carried out by the CPU in
combination with hardware accelerators to exploit all available resources.
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A heterogeneous system contains different types of computational units, in-
cluding (i) one or more general-purpose processors that run an operating system
and execute the program, in addition to distributing the data among (ii) every
available hardware accelerator that assists the processor to speed up the compu-
tation. In practice, each accelerator is best suited to a particular type of task
that runs more efficiently on it than on the CPU. Thus, execution speed improves
by introducing specialised hardware.

2.3.2. Heterogeneous CPU-GPU systems

The most common strategy in heterogeneous computing is combining gen-
eral computing on the CPU—where greater control of the implementation is
possible—with specialised fast processing on the GPU, thus reducing processing
time when analysing large datasets. We can classify heterogeneous CPU-GPU
systems into two groups, according to the layout of the units: both in the same
chip or independent pieces of hardware (dedicated hardware). The first of these
alternatives is widely used for small and everyday devices, such as smartphones,
laptops and desktop computers for office. Processors that integrate CPU and
GPU in the same chip are generally less powerful due to space and power con-
straints. On the other hand, dedicated hardware is typically installed in more
powerful desktops and computing systems (Figure 2.3).

The use of heterogeneous systems has a considerable impact on the difficulty
of the programming task, which becomes more challenging as the number of
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devices considered increases. As mentioned in Section 2.1, parallel programming
increases complexity due to the synchronisation required in the areas of code that
access shared data. This problem, usually related to multi-core CPUs, also extend
to heterogeneous systems to an even greater extent. However, the overall benefits
of heterogeneous computing, which include faster processing speed, high capacity
to handle large datasets, and lower cost, outweigh the disadvantages. Nowadays,
many applications benefit from being redesigned to run on heterogeneous systems
achieving significant reductions in time. Some tools such as OpenCL, SYCL, or
CUDA help in the task of optimising existing algorithms or developing new ones.

Heterogeneous computing with GPU has experienced major growth in three
areas that are of great importance to the scientific community: Artificial Intelli-
gence [18, 19|, Machine Learning [20], and Deep Learning [21, 22]. These three
concepts are closely related, the first being the one that encompasses the other
two concepts. Moreover, other applications, which belong to very different areas,
involve time series analysis [23, 24|, medical data processing [25, 26, 27|, extreme
learning machine [28, 29], numerical integration [30], and urban growth simula-
tion [31]. Additionally, those problems involving spatial analysis also meet the
requirements to be executed on heterogeneous systems as they are data-intensive
applications that manage large datasets.

This work focuses on exploiting the intrinsic parallelism of three spatial al-
gorithms belonging to different leading research areas: latent fingerprint iden-
tification, viewshed analysis, and path planning. These three algorithms seem
completely different at first glance, but they have to analyse large datasets of
spatially related samples. Latent fingerprint identification has to analyse a vast
amount of data that can be easily divided into chunks, with the problem of
avoiding the complex dependencies that make parallelisation impossible using in-
dependent tasks. The other two problems, related to viewshed computation and
path planning, have to analyse less data, but it is much more challenging to split
into independent chunks.

The following three sections will present different data processing solutions
to tackle these spatial analysis problems, where the inclusion of GPUs in the
processing stages is considered, either on its own or in combination with the
CPU in heterogeneous systems.
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Latent Fingerprint
Identification

One of the essential procedures used in criminal investigations is to identify
a suspect based on partial fingerprints left on the surface of an object at a crime
scene. This process is called latent fingerprint identification and addressing it is
challenging as (i) it requires analysing massive databases in reasonable periods
and (ii) suspect identification is usually achieved by combining different methods
with very complex data-dependencies [32]. These two facts make fully exploiting
heterogeneous CPU-GPU systems very complex. Most efforts in this context
focus on improving the accuracy of the approaches and neglect reducing the
processing time. As a matter of fact, the most accurate approach was designed
for one single thread [33].

This chapter introduces a new distributed and parallel computing methodol-
ogy for latent fingerprint identification called Asynchronous processing for Latent
Fingerprint Identification (ALFI). We designed it to fully exploit all the hard-
ware resources of heterogeneous systems with CPU and GPU cores working at
full capacity. This is achieved by combining an efficient asynchronous CPU-GPU
communication approach with fine-grained parallelism at fingerprint descriptor
level. In practice, ALFI can analyse large databases faster than the state-of-
the-art algorithm [33] while providing very similar precision results. Therefore,
local authorities could use ALFI to reduce processing times using the hardware
available on almost any computer today.

21
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The main contributions of this chapter are as follows:

= A new methodology called ALFI (Asynchronous processing for Latent Fin-
gerprint Identification) is designed for a faster and accurate latent finger-
print identification on heterogeneous systems.

= Fine-grained parallelism at fingerprint descriptor level is proposed as a basis
for achieving an effective CPU-GPU processing pipeline.

= There are no related algorithms of latent fingerprint identification in the
literature specifically developed for heterogeneous systems.

Section 3.1 introduces the biometric recognition concept with a particular fo-
cus on the use of fingerprints. Section 3.2 describes the state-of-the-art regarding
fingerprint identification. Section 3.3 presents the ALFI methodology for het-
erogeneous CPU-GPU systems. Section 3.4 evaluates the proposed algorithm in
terms of accuracy and computational performance, comparing it with the state-
of-the-art approaches. In addition, the essential functions used throughout this
chapter are given in Appendix A.

3.1. Introduction

The field of biometric recognition is extensive, with many researchers involved.
Here is an overview of the history highlighting the significant discoveries and all
the necessary previous knowledge.

First of all, this section introduces the biometric recognition concept and the
most relevant historical events with a particular focus on fingerprints. Secondly,
we explain how fingerprints are formed and their main characteristics. Finally,
the fingerprint recognition problem and its main difficulties are addressed.

3.1.1. Biometric recognition
3.1.1.1. Definition

With the development of new technologies such as the Internet, mobile phones,
and computers, keeping all information in a secure environment has become a
challenging task and a priority in anyone’s life. Nowadays, data is commonly
protected under the user identity so that only the corresponding individual can
access the information.
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Many different methods have been developed to protect the information of a
personal nature, where the most popular are passwords and patterns, but equally,
they can be the most insecure. Any person possessing the password or pattern
could access a hypothetical system without significant problems, pretending to be
someone else and stealing the data. This issue is one of the reasons why biometric
recognition—the use of some parts of the human body to identify the user—has
become very popular in recent years [34].

The term biometric is formed by combining the Greek words bio (life) and
metrics (to measure). Therefore, biometric recognition refers to the process of
identifying an individual based on some of the main physiological and behavioural
characteristics. These include fingerprints, the shape of the face, colour and size
of the iris, the retina, the shape of the hand, the shape of the ear, and the style
and trend of walking.

Biometric recognition is not something new as it is intrinsic to human be-
haviour as a society. Since the beginning of civilisation, faces have been used
unconsciously to distinguish relatives from strangers on a daily basis [35]. The
difficulty of this basic task has grown enormously with the increase in population
we have experienced, making manual identification mechanisms unmanageable.
Over the last decades, automated biometric systems have become available be-
cause of the significant advances in computer processing [36]. Fingerprint pro-
cessing stands out among them as it is widely used in daily identification tasks
due to its uniqueness and ease of use. This well-known problem called fingerprint
recognition has been studied since the late 19th century.

3.1.1.2. History

There are many examples of biometric recognition throughout history. The
following are some of the most relevant events in that area—mainly focused on
fingerprints.

Starting from the prehistoric period, palmprints have been found in the walls
of many caves throughout the world [37]. Similarly, fingerprints appeared on
the walls of tombs in ancient Egypt [38]. In this particular civilisation, physical
descriptions were also used to differentiate trusted traders of known reputation
from those new in the local market. In ancient China, there is strong evidence
that fingerprints were used as a signature in Babylonian business transactions,
recorded on clay tablets dating back to 300 B.C. [39]. The Chinese were the first
culture to use friction ridge impressions for identification. Another example of
biometric recognition is given in the Persian book Jaamehol- Tawarikh from the
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14th century, which contains some comments about the practice of identifying
individuals based on their fingerprints [40].

In the 19th century, the first appearance of fingerprints on official documents
was in the records of the Civil Service of India in 1858 [41]. Sir William James
Herschel (January 9, 1833; Slough, England) recorded captures of hand images,
also known as palmprints, on the back of each contract with local workers, aiming
to identify them in the future. Initially, palmprints were required, but the prints
of the right index and middle finger were only used over time. This event is
considered the first system that involved the capture of hand and finger images
uniformly taken for identification purposes.

The palms of the hands were the commercial signature of the local business-
man Rajyadhar Konai, which he used to sign Herschel’s contracts (Figure 3.1)
when working together on a road construction project. They both had a common
interest in using this form of signature as Herschel came to claim: “To frighten
Konai out of all thought of repudiating his signature hereafter.” The conviction
lied in the fact that through increasing personal contact with the document, this
one was seen as a more binding contract than if the locals had simply signed it.

Nevertheless, the relevant finding came as Herschel’s collection grew. He
realised that those fingerprint impressions could also be used for identification
purposes as they were discriminatory. After this and throughout his life, Her-

"o

Figure 3.1: Famous Herschel’s contract signed by the local businessman Rajyadhar
Konai using the palm of the hand [41].
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schel claimed that fingerprints were unique and permanent and, to support this
statement, he documented his fingerprints over his lifetime to prove permanence.
All these findings were reflected in his book The Origin of Finger-Printing pub-
lished in 1916 [41]. Herschel is considered one of the first Europeans to recognise
fingerprints as a valuable identification source.

During the last years of the 19th century, criminal investigation, as we know
it, emerged with the first system of criminal investigation, developed in 1883 by
Alphonse Bertillon (April 22, 1853; Paris, France) [42]. This system, commonly
known as Bertillonage, was based on anthropometry, which studies the measure-
ment and proportions of specific human body parts. In practice, the information
of an individual included in criminal records was organised as follows: (i) descrip-
tive data such as weight, height, and eye colour; (ii) body marks such as tattoos,
scars and deformities; and (iii) body measurements. The more police institu-
tions adopted this system, the more apparent its problems became. The main
problem was related to measurements taken by different officers: they could be
different enough when identifying the same person or similar enough to identify
two individuals as the same person.

During the same period, the celebrated English scientist Sir Francis Galton
(February 16, 1822; Birmingham, England), cousin of Charles Darwin, stated that
through using Bertillonage as a method of criminal identification, the rate of false
identifications would rise to unacceptable values worldwide [39]. As a result of
his dislike of anthropometry, Galton researched personal individualisation using
fingerprints, which culminated in the creation of the first fingerprint classification
system [42], included in his famous book Finger Prints published in 1892 [43].
In this book, Galton claimed that fingerprints were unique and permanent and
described a new classification system that used the alphabet to enumerate the
three main fingerprint patterns: L for a loop, W for a whorl, and A for an arch.
An example of this classification method using every finger in both hands of an
individual is as follows: AWLWLLWLWL. Therefore, Galton is considered one
of the pioneers in fingerprint identification and the first to provide a functional
classification of fingerprint patterns.

On the other hand, Sir Edward Richard Henry (July 26, 1850; Shadwell, Eng-
land) developed in the early 1890s a more comprehensive classification method
with the help of Galton, in which fingerprints are classified based on their phys-
iological characteristics [39]. By 1900, this classification method became very
popular throughout the world, and such was its success that Scotland Yard de-
cided to adopt it and abandon the Bertillonage system.
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The Henry Classification System, as it came to be known, also served as a
basis for the classification system used for many years by the Federal Bureau of
Investigation (FBI) in the US. An example of this classification method is shown
in Table 3.1 and Equation 3.1. It should be noted that this classification can only
be applied in the case of having available all the fingerprints from both hands.
It works as follows: a primary number (from 1 to 10) is assigned to each finger
according to its position considering both hands, beginning from the right thumb
and ending with the left little finger. Afterwards, a secondary number (power
of two up to 16) is assigned only to those fingers that contain a whorl pattern
(circular or spiral). In contrast, a zero value is assigned to those fingers with a
non-whorl pattern. Not every finger with a whorl pattern has the same value as
it is a function of the position. Finally, the result is a fraction where the sum
of each even-numbered finger value is in the numerator, and the sum of each
odd-numbered finger value is in the denominator, considering that a value of 1 is
added to each sum with the maximum value of 32 on either side of the fraction.

Table 3.1: Ezample of the Henry fingerprint classification system [39]. Fingerprint
patterns are denoted as L for a loop, W for a whorl, and A for an arch.

Right hand Left hand
Thumb Index Middle Ring Pinky | Thumb Index Middle Ring Pinky

Primary No. 1 2 3 4 5 6 7 8 9 10
Secondary No. | 16 16 8 8 4 4 2 2 1 1
Pattern L L W A L W L W L L
Class (C) - - 8 - - 4 - ) - -

O 1 + (sumof eacheven fingervalue) 1+ (442) 7 3.1)

1+ (sumof each odd finger value) 1+ (8) 9

In the early years of the 20th century, the use of fingerprints for identification
purposes began to grow. In 1924, the FBI created the first Identification Division
to establish a public database of fingerprints obtained from police agencies all over
the US to be used in searches for criminal investigations [44]. The fingerprint
records, which initially included 810,188 files, formed the central repository of
the FBI in the following years. As fingerprint records continued to grow, the task
of manual searching became increasingly difficult and time-consuming.

In 1934, the FBI intended to develop the automation of known fingerprints
involving sorting machines and punch cards. Each punch card contained the in-
formation of the class of a known fingerprint so that they could be sorted by
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the machine—which previously contained punched cards related to the differ-
ent classifications. Then, the card-sorting machine could extract the resulting
cards matching the target classification with the aim that examiners could check
them manually. Even though this method was revolutionary for the time, it was
determined unsuccessful by the FBI and abandoned soon after it began [45].

In the 1950s, everything changed with the invention of the computer, so law
enforcement took up research in the field of automating the identification pro-
cess [42]. After creating the original fingerprint collection of 810,188 samples,
hundreds of thousands of new records were added every year. Continuing this
progression, the FBI’s criminal database came to include approximately the data
from 15 million individuals, which amounts to a total of 150 million fingerprints
by the early 1960s. Even though the systems based on punch cards reduced the
number of fingerprints to examine, human work was still necessary to analyse
each fingerprint from the candidate list, reaching the point of being unable to
cope with the daily work. In 1963, the FBI resumed the automation task of the
criminal fingerprint database after initial research had shown it to be feasible.

In 1965, in parallel with the development of the automatic system for finger-
print processing that started a few years earlier, the New York State Information
and Identification System researched the classification of fingerprints using local
structures such as minutiae [42]. These local structures correspond to singular
points located at the endings and bifurcations of the fingerprint ridges [44]. Thus,
the classification task involved the manual recording of fingerprint minutiae on
different overlays so that this data could be used to develop a novel minutiae ex-
traction software. Unfortunately, budgetary restrictions caused the cancellation
of the program shortly after the state hired a company to develop the minutiae
coding system. Nevertheless, the results of this research were used later.

By the late 1960s, the FBI hired the National Institute of Standards and
Technology (NIST) to build a prototype for reading and matching fingerprints,
considered the first attempt to develop an Automated Fingerprint Identification
System (AFIS) [46]. This prototype was finally delivered to the Identification
Division of the FBI in 1972. Engineers first studied Henry’s system to classify
fingerprints, but it proved very time-consuming. Therefore, Henry’s system was
replaced by the new classification code developed by the National Crime Informa-
tion Center (NCIC). This NCIC alphanumeric classification system (Table 3.2),
which takes the same name as the centre, is pattern-specific to each fingerprint
without considering the combination of fingers, thus differing from Henry’s sys-
tem and making the computational load lighter in processing. A typical NCIC
fingerprint classification (NCIC-FPC) might appear as follows: FPC/ 20 dI PO
PM 08 PO 17 19 PM CIL.
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Table 3.2: NCIC fingerprint classification system [47].

Pattern type ‘ Pattern subgroup ‘ NCIC symbols ‘
Arch Plain AA
Tented TT
Loop Ulnar 0 ~ 49 (ridge count)
Radial 51 ~ 99 (ridge count + 50)
Inner PI
Plain whorl Meet PM
Outer PO
Inner CI
Central pocket loop whorl | Meet CM
Outer CO
Inner dI
Double loop whorl Meet dM
Outer do
Inner XI
Accidental whorl Meet XM
Outer X0
Completely scarred or mutilated pattern SR
Missing or amputated XX

Eventually, after thoroughly studying the manual methods used by human
examiners, NIST engineers discovered that minutiae were crucial for achieving
a proper identification method. Based on that, the last phase of the prototype
development program focused on designing a new approach to automatically mea-
suring, extracting, and matching minutiae from two different fingerprints to look
for similarities. It was based on the conclusion that if two fingerprints had similar
minutiae, they were determined to be identical.

The final identification system was called Finder, which was delivered to the
FBI in the mid-1970s giving rise to many other similar systems. AFIS has spread
worldwide since the 1980s until today, not only being used in law enforcement
agencies but also in most of the current devices that we use daily, such as com-
puters and smartphones.
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3.1.2. Fingerprints
3.1.2.1. Formation

A fingerprint, as defined by the dictionary, is the pattern of curved lines on
the end of a finger or thumb that is different in every person, or a mark left by
this pattern. Fingerprints are entirely formed around the seventh month of fe-
tal development, and the distribution of ridges does not change over time unless
the individual suffers accidents such as cuts or burns on the fingertips (Fig-
ure 3.2) [48]. Both uniqueness and permanence make fingerprints widely used in
current biometric recognition systems.

(a) Primary formation (b) Development (c) Complete formation

Figure 3.2: Stages of fingerprint formation [49].

Fingerprints are part of an individual’s phenotype resulting from the interac-
tion between a specific genotype (determined by the genes) and the environment.
In particular, the relief of the fingertip appears when the skin begins to differen-
tiate, which takes place with the growth of the volar pads of the fetal limbs. The
cell differentiation process is greatly affected by changes in the fetus’s position
within the uterus and the flow of the amniotic fluid around it, even though these
changes are minor. Hence, slightly different microenvironments are created from
one individual to another where the cells on the fingertip grow.

The innumerable variables that affect cellular differentiation make it virtually
impossible for two fingerprints from two different individuals to be the same. This
is particularly the case with twins, where most of the physical characteristics are
the same, but not the minutiae that form their fingerprints [50]. In addition, one
might think from all these facts that fingerprints from twins are only a product
of chance. However, it is not the case as the cell differentiation process is based
on the same genes and, therefore, do not follow random but similar patterns.
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3.1.2.2. Different patterns

When different scales are used to analyse a target fingerprint (Figure 3.3a),
the main fingerprint patterns can be classified into two different levels [48]:

= Global level: the distribution of the ridges and valleys forms different
patterns, where the important elements are called singular points and in-
clude cores and deltas (Figure 3.3b). The core is the structure located at
the centre of several curved ridges. For example, in whorl fingerprints, the
core is found in the middle of the spiral; in loop patterns, the core is in the
top area of the innermost loop. On the other hand, the delta is the point
that lies within a triangular structure formed by several ridges, where two
parallel lines diverge around the loop or whorl. One delta can be found
in loop patterns, whereas whorls have two or more. Singular points are
useful in fingerprint classification and indexing problems, but they are not
good enough to achieve accurate identification. Fingerprint shape, ridges
frequency, and orientation field are other known patterns.

s Local level: there are many different types of local ridge characteris-
tics, called minutiae, non-uniformly distributed across the fingerprint (Fig-
ure 3.3c). There are approximately 150 different types, such as islands,
dots, terminations, crossovers, and spurs. However, the extraction of these
structures greatly depends on the acquisition conditions of the images and
the type of fingerprint; therefore, most of them cannot be observed clearly

(a) Baseline fingerprint (b) Cores and deltas (¢) Minutiae

Figure 3.3: Baseline fingerprint and the two most widely used fingerprint representa-
tions. In (b), the cores and deltas structures belonging to the global level are marked with
green squares and blue triangles, respectively. In (c), the minutiae structures belonging
to the local level are marked with red rings.
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enough. In practice, the most commonly used minutia types are ridge end-
ings and bifurcations. The ridge ending corresponds to the point of the ridge
where it abruptly terminates. Conversely, the ridge bifurcation refers to the
point where a single ridge diverges into two different branches. Minutiae-
based representation and matching are known to be generally robust for use
in identification; nevertheless, reliable automatic minutiae extraction can
be problematic in extremely low-quality images, such as the ones obtained
from latent fingerprints.

From a larger scale, Galton grouped fingerprints into three categories accord-
ing to the different global patterns. Later, Henry included two more to form the
five-class system still used by most authors in the literature (Figure 3.4) [52].
There are many more than these five classes, but the variations are usually gen-
erated from these. The five classes of fingerprints and their frequencies within
the population are as follows:

» Arch (3.7%): the lines of the pattern form arches that flow smoothly from
one side of the fingertip to the other, along with a slight upward twist near
the centre of the pattern. This type is also known as plain arch. This class
has no singular points.

s Left loop (33.8%): at least one ridge of the loop enters from the left side
of the pattern towards its centre (core), then this ridge returns to the left
side. There is usually more than one ridge forming the loop. This class has
one core and one delta, where the core is located to the left of the delta.

» Right loop (31.7%): this is similar to the left loop class, but the ridges
enter from the right side of the pattern. This type has one core and one
delta, where the core is located to the right of the delta.

(a) Arch (b) Tented arch  (¢) Left loop (d) Right loop (e) Whorl

Figure 3.4: Main five classes of fingerprint patterns defined by Sir Edward Henry in
the early 20th century and still used in most biometric classification researches [51].



32 Chapter 3. Latent Fingerprint Identification

» Tented arch (2.9%): this is similar to the plain arch class but with the
difference of having raised ridges flowing in the same direction across the
pattern. This class has one core and one delta.

= Whorl (27.9%): at least one ridge forms a circle, oval, or spiral (typically in
the centre of the pattern), and there must be at least two deltas. Therefore,
this class has one or two cores and two deltas.

3.1.2.3. Types of fingerprints

The type of fingerprint is another aspect to consider when developing a match-
ing algorithm. As shown in Figure 3.5, fingerprints can be classified into three
different types according to the conditions under which they are acquired [48]:

= Rolled: fingerprints obtained by rolling the finger from one side to the
other, hence getting more information, but also introducing deformations
in the resulting image. This type is characterised by good image quality due
to a voluntary acquisition process performed under controlled conditions.

= Plain: fingerprints produced just by pressing the finger onto a surface.
This type is also characterised by having a good image quality.

= Latent: fingerprints unintentionally left on a specific surface by deposits
of sweat and/or oil from the fingertip. This type of fingerprint is usu-
ally not visible to the naked eye and requires additional processing to be
detected. Most common acquisition techniques include dusting with fine

(a) Rolled (b) Plain (c) Latent

Figure 3.5: Types of fingerprint images according to different acquisition pro-
cesses [53].
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powder and using chemicals. Fingerprints obtained by any of these proce-
dures may result in incomplete and inaccurate information per fingerprint,
which introduces errors to the matching process [54]. However, their util-
ity in criminal investigations and the inherent challenge of processing lower
quality and deformed images are just a few of the compelling reasons to
process them [55].

3.1.3. Fingerprint recognition problem

Fingerprint recognition is the automated process of identifying or verifying
an individual’s identity using fingerprints. This problem can be divided into two
groups according to the number of comparisons needed to get a match [48]:

s Verification: it only requires one comparison to check if the target fin-
gerprint matches with another stored previously; this is a 1:1 comparison,
also known as fingerprint authentication. Typically, the user provides a
username or card before using the fingerprint scanner. Then, the system
analyses the input data and compares it with those associated with the
user. If both fingerprints match, the individual is allowed to access the
system.

s Identification: it is related to the problem of identifying an individual
among those whose data is included in a specific database; this is a 1: N
comparison, where IV is the number of samples in the database. This num-
ber also coincides with the number of comparisons performed in a procedure
commonly known as the matching process. Thus, in this type of problem,
the system needs to search the entire fingerprint database until a match is
found.

The second problem is the most challenging one in terms of computational
cost and complexity [56]. In the literature, four approaches deal with large-scale
databases containing plain/rolled fingerprints: classification, indexing, hardware
improvement, and distributed and parallel computing.

Classification reduces the number of fingerprints to match by only comparing
similar types. Indexing involves characterising and comparing each fingerprint
according to a numerical vector that summarises its main features. Hardware
improvement addresses the upgrade of existing hardware for faster processing.
Finally, distributed and parallel computing aims to balance the computational
load in processing between all available resources. In practice, processing latent
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fingerprints requires handling partially or poorly data so that only the distribu-
tion technique is suitable.

Focusing on latent fingerprints, the difficulty in processing this type of finger-
print remains very high nowadays. The current trend seems to be in the direction
of developing specific algorithms for latent fingerprint matching so that they are
suited to their particular processing needs [54, 57]. Since there is very little in-
formation available per latent fingerprint, the focus is on finding and assessing
relationships among the fingerprint descriptors. This fact creates data dependen-
cies between different processing stages, and complex methodologies are required
to manage them, making the use of parallel techniques difficult.

Another main disadvantage related to latent fingerprint identification algo-
rithms lies in their inability to handle massive databases, in the order of millions
of fingerprints, in the time required by law enforcement authorities. The latent
fingerprint identification algorithm that provides the best trade-off between com-
putational cost and precision is based on the Deformable Minutiae Clustering
(DMC) method [33]; however, this algorithm was designed for one single thread.

3.2. Related work

Relevant research in fingerprint recognition falls into five categories related
to (i) data enhancement, (ii) data preprocessing, (iii) acceleration of fingerprint
matching, (iv) fingerprint representation, and (v) latent fingerprint identification.

3.2.1. Data enhancement

Most works in fingerprint data enhancement focus on designing new prepro-
cessing techniques to improve the data acquired from a fingerprint or verify its au-
thenticity. For instance, the orientation of the sample can produce bad accuracy
results, so most relevant approaches find a correct orientation field model [58].
This parameter can be built even in the presence of noise and distortion [59] or
using a trained convolutional neural network [60].

On the other hand, security and fault tolerance in current identification sys-
tems are essential issues to prevent attacks. This problem is usually addressed
by analysing whether a particular fingerprint sample stems from a live subject or
an artificial replica [61]. Although this problem remains difficult in terms of ro-
bustness, effectiveness, and efficiency, several studies are still proposing hardware
and software-based approaches [62, 63].
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3.2.2. Data preprocessing

Real-world fingerprint databases typically contain in the order of millions
of fingerprints. Several studies reduce the computational cost by performing
classification, indexing, hardware improvement, or parallel computing [48].

The most studied is classification, which filters large-scale databases by sep-
arating fingerprints into different categories based on their shapes. Only those
belonging to the same class as the input sample will be processed in the fol-
lowing steps. It increases processing speed and allows massive databases to be
handled [64, 52]. However, latent fingerprints usually correspond to partially or
poorly acquired data, making these preprocessing tasks almost impossible.

3.2.3. Acceleration of fingerprint matching

The use of Graphics Processing Units (GPUs) in biometric recognition al-
gorithms has increased in recent years. Several studies focus on this particular
approach for databases with good quality fingerprints.

The authors in [14] proposed an optimised GPU fingerprint matching system
based on MCC, which accelerates the comparison method up to 100.8x over
the sequential CPU implementation. The proposal presented in [15] yields a
speed-up of 1946x and 207x, considering the ratio between the kilo matches per
second (KMPS) values and with respect to the non-optimised baseline and the one
optimised with SIMD sequential CPU implementations, respectively. The work
described in [16] accelerates a well-known fingerprint matching algorithm [65],
achieving superior performance results in contrast to the multi-threaded CPU
implementations [56]. The proposal in [66] speeds up the comparison method
and implements a novel strategy in the consolidation stage that is shown to
enhance accuracy.

All mentioned works that are specifically developed to be executed on GPUs
share a common objective: speeding up the evaluation of massive databases by
increasing the number of fingerprints processed per second (throughput). Never-
theless, these implementations need to be developed considering the underlying
architecture and must be relatively simple to run effectively on GPUs [67], thereby
reducing accuracy in most cases. Furthermore, state-of-the-art GPU-based algo-
rithms do not exploit the power of the CPU in processing, which would lead to
better run-time results.
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3.2.4. Fingerprint representation: MCC as the standard

There exists a large number of studies on the representation of fingerprints.
Early works analyse fingerprints considering core and delta parameters or ridge
flow methods [68, 69], whereas current approaches consider minutiae [32]. These
structures are the basis of the well-known Minutia Cylinder-Code (MCC) de-
scriptor [70], widely used in the recent literature because of its high accuracy at
relatively low computational cost [32, 71].

As introduced in Section 3.1.2.2, minutiae are local structures related to spe-
cific points in the discontinuities of the fingerprint ridges, such as endings and
bifurcations. As a rule, each minutia is typically characterised by « and y coordi-
nates, 6 direction ([0, 27]), type, and quality. One of the novelties introduced by
Cappelli et al. [70] regarding the MCC descriptor is the use of coordinates and
directions to represent minutiae in processing.

In MCC, each minutia m is associated with a 3D local structure called cylinder
defined by radius R and height 27 ([—m,7]) and whose base is centred at the
minutia location (Figure 3.6). Each cylinder is in charge of holding the spatial

Figure 3.6: Cylinder associated with a random minutia. The cylinder and the cuboid
enclosing it are drawn on the left, together with the resulting discretization of the cylinder
on the right [70].
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and directional relationship between the reference minutia and the ones within
its neighbourhood, considering it a fixed-radius circumference. The cylinder is
enclosed inside a cuboid whose base is aligned following the minutia direction 6;
likewise, the cuboid is discretised into cells. Each cell, whose position inside the
cylinder can be uniquely identified by three indices (7, j, k), contains a numerical
value corresponding to the likelihood of finding minutiae near the cell with a
directional difference, with respect to minutia m, below a previously established
threshold. This value is obtained by adding the contributions of all the minutiae
close to the cell. Each contribution depends on the Euclidean distance between
the target minutia and minutia m following a Gaussian distribution (Figure 3.7).
The cylinder structure has the following characteristics:

» Invariant for translation and rotation because it uses differences in distance
and angle between minutiae instead of specific values.

= Robust against skin distortion, which is small at local level.

= Minor errors during the feature extraction process since the contribution of
each minutia is based on the Gaussian function.

» Fixed-size structure given by the number of cells.

All these advantages, added to the use of statistical variables to obtain the
value of each cell, make MCC suitable for a bit-based implementation where each

v

Figure 3.7: Example of a cylinder section associated with a random minutia m [70].
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Figure 3.8: Bit-based implementation of the cylinder associated with a random minutia
where siz sections are shown, each of these corresponds to a specific angular value in
the range [—m, 7]. Black is related to the binary value 0, white is 1, and grey is invalid.
The white cells represent the presence of minutiae, in that location, with an angular

difference similar to the angular value of the cylinder section [70].

cell has one of the following three states: 1, 0, or invalid (Figure 3.8). The binary
value 1 is given if the likelihood is above a preset threshold, 0 otherwise, and
invalid if the target cell lies outside the cylinder region. With this approach, the
process of matching two fingerprints is reduced to matching only their cylinders
using MCC, in a much less computationally expensive process.

3.2.5. Latent fingerprint identification

Many studies analyse the performance of general identification algorithms
in processing latent fingerprint databases. The achieved results revealed poor
performance owing to the low quality of the input data [72], thus opening the
way to the development of new algorithms designed to this aim.

Early works proposed several solutions for handling typical deformations that
affect the matching procedure in latent fingerprint identification. For instance,
regarding the minutiae matching process, several approaches are usually consid-
ered: the use of a minutia-based descriptor [73] or a combination of this structure
and an orientation field descriptor of the fingerprint [53]. In the latter case, a
global matching operation is performed by selecting the five best minutiae pairs
to find new sets. For each found cluster, a matching score is computed, and after
that the maximum value is chosen as the similarity score between the latent and
rolled fingerprints. On the other hand, the proposal presented in [74] uses a differ-
ent approach that combines local minutiae descriptors and fingerprint alignment
through the Hough Transform to improve the fingerprint matching performance.
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Another main characteristic of latent fingerprints lies in the presence of noise
after the feature extraction. For this reason, researchers in [75] developed a
method to improve the latent matching accuracy by incorporating feedback from
some exemplars—rolled or plain fingerprints—to refine the feature extraction.

The most complete and accurate latent fingerprint identification algorithm,
among those which are based solely on minutiae structures, finds deformable
clusters of matching minutiae pairs in local regions by performing multiple align-
ments [33]. Overlapped clusters are merged to find consolidated matching minu-
tiae pairs that are after that used to build a Thin Plate Spline (TPS) model [76].
Through this last step, new minutiae pairs, which might not have been found due
to deformations in previous steps, can contribute to the global score.

3.2.5.1. DMC: the state-of-the-art approach

The Deformable Minutiae Clustering algorithm using the MCC descriptor
(DMC-CC) [33] was developed by merging the following four well-known inde-
pendent methods along with a final similarity computation stage:

= The MCC descriptor is used as input data of the local matching processing
to find the first group of minutiae pairs. As described in Section 3.2.4, this
descriptor is based on 3D data structures built from minutiae positions and
angles after merging local structures [65].

» The Minutiae Discrimination method [77] calculates the quality value of
each minutia in the latent fingerprint and fingerprint impression based on
the neighbouring minutiae.

» The DMC method [33, 78] finds clusters of minutiae pairs, along with a
weight value for each one, from the initial set of matching minutiae pairs.
After merging the clusters, a final set of minutiae pairs is obtained and used
to compute an initial similarity score between fingerprints.

» The Thin Plate Spline (TPS) method [76] is applied to avoid data loss due
to fingerprint deformation and find new matching minutiae pairs. These
pairs could have been discarded in previous steps due to the deformation
effects and may improve the previously calculated similarity value.

s The last step is called Similarity Computation, where different statistical
outcomes are obtained.

Given the above, the specific steps required by the DMC-CC algorithm (Fig-
ure 3.9) are described in detail below:
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1. MCC processing. Let L and T be the minutiae sets of the latent fingerprint

and a particular fingerprint impression from a database, respectively. Each
minutia ¢ € L is compared with all minutiae p € T" based on their minutiae
descriptors. Similar minutiae are selected as matched minutiae pairs (g, p)
and included inside a new set A, which is after that, sorted in descending
order according to their similarity values. Then, a new array M is filled
with no more than max{|L|,|T|} local matching minutiae pairs from A so
that the repetition of minutiae within different pairs is reduced.

Minutiae Discrimination. The quality value is computed for each minutia
q € L and p € T relying on the neighbouring minutiae. This method is
based on the fact that the less the minutia quality, the more minutiae there
are around it [77]. Therefore, two sets containing all minutiae quality values
from both fingerprints are obtained.
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Figure 3.9: Flowchart of the state-of-the-art DMC-CC algorithm [33].



3.2. Related work 41

3. Deformable Minutiae Clustering.

a)

Each minutiae pair (¢,p) € M is used to align fingerprints and find a
cluster of matching minutiae pairs. Let Cs be the set of found clusters
of matching minutiae pairs. Each (gn,pn) € M,h = 1...|M] is used
in this step to work as the centroid of its cluster, denoted as By,. For
each (qq,py) € M,g = 1...|M| compute if g, matches with p, when
aligning using current (gn,pn) and if this condition is fulfilled, update

By, =B, U (ngpg)-

Sort By, in descending order according to their new similarity values
obtained in the previous step. Let Cj be defined as the cluster that
will contain a reduced number of minutiae pairs from sorted Bj to
decrease the repetition of minutiae within different pairs. A weight
wir for each minutiae pair is computed depending on the number
of minutiae pairs inside its respective cluster C} and the number of
minutiae in the latent and fingerprint impressions. Every admissible
cluster is then added to the actual set C; = Cs U{C}} that will be used
in the following steps.

The final weight we, for each cluster Cj, € Cs, h = 1...|Cs| is obtained
by accumulating every weight wi* of the minutiae pairs (qx,pr) €
Ch,k =1...|Ch|. Then, C; is sorted in descending order based on their
cluster weights and, thereafter, all clusters are merged according to
several design parameters to find a preliminary set of global matching
minutiae pairs (M').

4. Thin Plate Spline. From the previous set of minutiae pairs, a TPS model is
built in order to correct any deformations the fingerprint image may have.
By using this method, new minutiae pairs are found and included in a set
called M*. The weights of these minutiae pairs found with this method are
calculated in a similar way as the one presented in Steps 3a-3c.

5. Similarity Computation. The matching score between the latent fingerprint
and the fingerprint impression is obtained by accumulating the weights of
every minutiae pair inside both M’ and M* sets.

The DMC-CC algorithm presents several unavoidable and complex dependen-
cies that force it to execute its steps sequentially. This fact causes a significant
performance loss when computing on multi-core and heterogeneous systems.
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3.3. ALFI: Asynchronous processing for Latent
Fingerprint Identification

This section describes the new methodology specifically designed to address
the latent fingerprint identification problem. The proposal is called Asynchronous
processing for Latent Fingerprint Identification (ALFI) and exploits the intrin-
sic parallelism of the latent fingerprint identification procedure, which has not
been addressed in recent literature. This methodology is developed considering
the technical features of CPU (host) and GPU (device) to take the maximum
advantage of these high-performance devices.

First, the fundamentals of ALFI with regards to the asynchronous processing
method are described in this section. This is followed by an explanation of
the fine-grained parallelism used. Then, the data structures used in ALFI are
introduced. Lastly, different pseudo-codes are presented, which are related to (i)
the host function in control of the device, (ii) the different kernels running on the
device, and (iii) the host function in charge of the final evaluation stage.

3.3.1. Asynchronous data processing

ALFT is inspired by the DMC-CC algorithm (previously described in Sec-
tion 3.2.5.1) but based on a complete redesign to achieve faster processing and
correct performance on heterogeneous systems. We developed new methods for
Steps 1-3a to be executed through different kernels because of their suitability to
be processed on the device. Steps 3b-5 are modified to take the device results as
input so that the host can execute them to balance the computational load be-
tween the host and device. These last steps computed on the host will be referred
to as the multi-threaded final evaluation stage (FES) from now on. The host also
coordinates the launch of all the operations to be executed on the device.

Let L and Tpp be the latent fingerprint used as a case study and the large-
scale fingerprint database of impressions, respectively. First, since the data from
the database cannot be entirely stored in the device memory at one stroke, this
must be divided into several batches of equal size if possible. Each impression fin-
gerprint from a particular batch T' € Tpp is compared with the latent fingerprint
L on the host after several steps are completed first on the device. These steps
include host-to-device data transfer H2D, processing kernels K and device-to-
host data transfer D2H operations. ALFT efficiently overlaps and synchronises
these operations and the ones performed on the host by using synchronisation
events, forming an effective CPU-GPU processing pipeline avoiding idle times.



3.3. ALFI: Asynchronous processing for Latent Fingerprint Identification 43

The behaviour of ALFT is shown in Figure 3.10 for the particular case of
Tpp divided into four batches of fingerprints 7; € Tpg,i = 1...4, for the sake
of simplicity. First, the allocation of the latent fingerprint A(|L|) and the entire
database A(|Tpg|) are performed in the host H. Allocating the database is pos-
sible in the host but not in the device since the memory space typically available
in the first one is far larger than the available space in the second.

Pinned memory is used in the host memory since this method prevents the
memory space from being swapped out, improving the speed of data transfers
between host and device units. Regarding the memory management in the device
D, the allocation of the latent fingerprint A(|L|) is carried out at start-up. The
rest of the available memory space is divided into two large spaces. Both areas,
denoted as A(n,,) each, will be filled in with two different batches of fingerprints
to overlap data transfer and computation. Likewise, each area (including the
batch within it) is managed by one of the two non-default CUDA streams strg
and str; from the device.

An example of the flow of operations of ALFI could be the following: the two
memory areas will be filled in with 77 and T5 batches at start-up and managed
by stro and stri, respectively. In the following iterations, T35 will be stored in

Loop
H ‘A(/L/)‘ 15 A(To5) | rmes || EES || FES ||  FES
D-stro Afnn) | H2D HKH D2H. mep |k | D2H
A(/L/) ] E0 E0
Dostro ||| ) 10 | oo m ¢ BBH | [k | D2H]
= E1 7
Eo E1 E0 E1

—>» Time

Figure 3.10: The operations carried out by ALFI on the host (H) and the device
using two CUDA streams (D-stro, D-stri) over time for the particular case of one
latent fingerprint L and four batches Ti_4, resulting from splitting the database Tpp.
These batches are allocated (A) in both device and host memory spaces where Ny, is
the number of fingerprints per stream in the device memory. FEach operation, either on
the host or device, is performed over a particular batch of fingerprints specified by the
colour displayed. CUDA streams strg and str1 and their corresponding synchronisation
events Ey and E1 coordinate the requested operations. The operations performed on the
device involve host-to-device (H2D) and device-to-host (D2H ) data transfers and the
computation carried out in kernels (K). These are overlapped with the multi-threaded
final evaluation stage (FES) performed on the host so that while the host is processing
a particular batch, the device is processing the next batch in the task queue.
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the first memory space for the stream stry while the processing of T5 is taking
place in the stream str; and after the D2H operation containing the results of
processing Ty is finished (Ey event). Similarly, Ty will be stored in the second
memory space for stry while the processing of T3 is taking place in strg and after
the D2H operation containing 75 results is finished (E; event). This way, the
data is always stored in the device and available before processing, reducing idle
times. All these operations happen while the host is executing the FES function
over its corresponding batch in the task queue.

3.3.2. Fine-grained parallelism in processing

Once the data is correctly allocated in the device memory, four different ker-
nels K are launched to process batches of fingerprints on the device. Local
minutiae matching is performed in K; » with a fixed number of found matching
minutiae pairs—where K is only executed once at the beginning of the process.
The quality score for each minutia inside the latent fingerprint and the batch
of fingerprints is related to two executions of K3, with slight variations for the
latent fingerprint. Finally, the alignment of the minutiae pairs to find clusters of
these structures, which will add up to the overall total, is carried out in K4 for a
specific batch of fingerprints.

The computation performed in the previously mentioned kernels follows a
similar strategy, except for K since it implements a modified version of the algo-
rithm described in [15]. Detailed descriptions of these kernels will be presented
in Section 3.3.4.

Inside each kernel, ALFI states that each thread is in charge of processing a
specific minutia from a batch of fingerprints, according to its thread identification
number tid (Figure 3.11). For instance, considering a batch of fingerprints T
containing m minutiae and a kernel K, the thread with tid = s will pick and
analyse the similarity of the minutia with index s with the ones in the latent
fingerprint. This thread will carry out all the requested operations considering
the fingerprint limits—starting s and ending e minutia indexes—to which the
chosen minutia belongs.

After processing the four kernels on the device, a set of partial outcomes
(vT) will be generated for each processed batch of fingerprints. This result is
then transferred to the host and used as input to perform the multi-threaded
FES step, obtaining the similarity scores between the latent fingerprint and the
fingerprint impressions.
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Fo Fi Fn

tid = s tid = s+1 tid = e

T 0 1 2 5 s+1 e m-1 m

oo

Figure 3.11: Proposed method for processing fingerprint impressions in a CUDA
stream on the device. Fach thread tid performs all the required operations in a kernel K
over its corresponding minutia from a fingerprint F; inside the T batch of fingerprints.
Parameter descriptions are shown in Table 3.3.

3.3.3. Data configuration

ALFI needs several data structures to efficiently handle fingerprint processing.
Every structure and parameter required by the ALFI methodology is given in
Tables 3.3 and 3.4. Their descriptions follow:

s ClusterCount is a vector that contains the number of minutiae pairs inside
the corresponding cluster from the Cluster Mtia K matrix.

s Cluster MtiaK is a matrix that contains the latent minutiae indexes found
while performing alignments for each minutiae pair, which is formed by the
one in T and its partner stored in MaxMtiaL, working as the centroid of
the clusters.

» L is a structure of arrays (SoA) that includes the information related to
the latent fingerprint. It is built in a similar way as the Tpp structure, but
without the use of the index parameter since only one fingerprint is stored.

s LUTp is a look-up table that includes all allowed latent minutiae indexes for
any quantized angle 4 = 0...z so that LUTp[3] = {qn € L[dg(0n,7) < A},
where dy, in this particular case, represents the minimum angular difference
between two quantized angles (Equation A.1 in Appendix).

s LUTg is a look-up table that contains the first minutia index for each
fingerprint in the database.
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s MatchingValue is a vector that includes the similarity value between each
minutia in 7" and its found partner stored in MaxMtiaL.

s MaxMtiaL is a vector used to store the most similar latent minutiae in-

dexes from L for each minutia in 7.

s QualityL and QualityT are vectors that include the quality value for each
minutia in L and T, respectively.

s Similarity is a vector that includes the final matching score between latent
and fingerprint impressions.

Table 3.3: Parameter descriptions and values used by ALFI. The values replaced by
hyphen symbols indicate that they are either dependent on the database used in the
experiments or design choices specified in the results section.

Parameter | Description ‘ Value ‘

« The highest number of minutiae in a -
fingerprint from the database

A Max. angular difference between minutiae /4

& Special value used to point the end of an array -1

b Bit-vector length of each minutia cylinder 1280

Cy The number of blocks in the device unit 32-Cs

Cs The number of SMs available in the device unit -

Ct The number of threads per block in the device unit 1024

Hy Threshold for angular minutiae similarity /6

H, Threshold for distance minutiae similarity 16

Hp, The number of minutiae inside the neighbourhood 3

Hy1,42 Thresholds used for computing minutiae quality 18,42

l The number of minutiae in the latent fingerprint -

mq The number of minutiae in the fingerprint database |-

m The number of minutiae in the i-th batch of fps. -

Np. s Sections and cells in every minutia cylinder 5,16

ng Total number of fps. in the fingerprint database -

Nm The number of fps. per stream in the device memory | -

n The number of fps. in the batch of fingerprints -

tid Thread identification number -

z Total number of quantized angles 256
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Table 3.4: Data structures used by ALFI during execution on the host and device units.
Parameter descriptions and their values are shown in Table 3.3.

Name ‘ Layout ‘ Memory transfer | Device access
ClusterCount | Array|m]| D2H w
Cluster MtiaK | Matrix|m - o] D2H W

L SoA[l] H2D R
LUTp Matrix|z - (I + 1)] | - R/W
LUTs Array[n + 1] H2D R
MatchingV alue | Array|m] D2H R/W
MaxMtiaL Array|m]| D2H R/W
QualityL Arrayl|l] D2H W
QualityT Array|[m] D2H W
Similarity Array[ng] - -
Tps SoA[myg| - -

T SoA[m] H2D R

= Tpp is a SoA that contains the data of the fingerprint database in an
optimal way for processing. In particular, every minutia data inside the
fingerprint database is distributed across several vectors according to its
different attributes, along with the k index of the fingerprint to which it
belongs. In addition, Tpp will be split into several batches T for processing
and the content of each one can be accessed on the device just by indexing
with pointers.

3.3.4. Pseudo-codes
3.3.4.1. Control function (host): scheduling

At the beginning of the process, the tasks of the host involve launching, con-
trolling, and coordinating all further operations to be executed on the device, as
presented in Algorithm 3.1. In this code, the parameter r represents the ratio
between the number of fingerprints in the database and the size of the fingerprint
batches, indicating how many times the loop is performed. i and k are auxiliary
variables used as indexes for the execution of operations and coordination events.
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Algorithm 3.1 Host function that controls the device. A coordination event E is set if
the call appears to the right of the operation. thp is threads per block, and B is block;
any other parameter is given in Table 3.3. The comments indicate the queued operations

for the case of a single iteration of the main loop.

1: r=mng/n
t=2and k=1
A(|L]) and A(|Tppg|) in pinned host memory
Split Tpp into Th, h = 1...r

A(]L|) and A(2 - ny,) in device memory

str1 < do H2D(L)

str1 < launch Ki(z thp, 1 B)

str1 < launch K3(128 thg, 1 B)

str1 < do D2H (QualityL)

stro < do H2D(T1)

¢ strg « launch K3(C./2 ths, Cy Bs)

stro < launch K34(C: thg, Cy Bs)

: stro < do D2H (vTi) : Ey

: strq < do H2D(T>)

: strq < launch K2(C¢/2 thg, C, Bs)

str1 < launch K3 4(Ct thg, Cy Bs)

L T e T S S S e e
U A e

for iter =1, r — 2 do
stry < do D2H (vT;) : Ej
Updatei=i+land k=1—-k
stry < do H2D(T3)

NN = =
e v ®

stry < launch K> 3.4
Perform if Ey, : FES(T;—2,vT;—2)

N
N

end for

stri < do D2H (vT;) : Ey
Update k =1—k

Perform if Ey : FES(Ti—1,vT;-1)
Update k =1—k

Perform if Ey, : FES(T;,vT3)

NN N NN

> fingerprints in database / fingerprints in batch

> reserve memory space in host

> database divided into r batches
> reserve memory space in device
> latent to device

> latent preprocessing

> quality of latent

> quality of latent to host

> batch-1 to device

> local matching

> quality and clusters

> partial results of batch-1 to host
> batch-2 to device

> local matching

> quality and clusters

> partial results of batch-2 and then 3 to host

> batch-3 and then 4 to device

> kernels with same previous config. each

> batch-1 and then 2 processing on host

> partial results of batch-4 to host

> batch-3 processing on host

> batch-4 processing on host
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The operations intended to be executed on the device unit are queued and
dispatched sequentially inside each stream str, but operations in different streams
can be overlapped. On the other hand, the functions intended to run on the host
unit are executed after checking the status of the corresponding coordination
event—which indicates the availability of the input data. Once all the intended
operations are queued, and data is successfully transferred to the device, the fol-
lowing four kernels are launched sequentially. We set the execution configurations
of these kernels after carrying out several tests to obtain the optimal combination
that minimises processing time [79].

3.3.4.2. Kernel-1 (device): preprocessing angular differences

This kernel filters out the least similar minutiae according to the similarity
of the angular direction, as presented in Algorithm 3.2. This idea lies in the
fact that if, for example, a minutia is chosen in the fingerprint impression with
x-direction, we will only have to match it against those minutiae from the latent
fingerprint with a direction close to x. Therefore, the preprocessing of the latent
fingerprint involves grouping its minutiae according to their directions to be used
consequently in Kernel-2, avoiding checking the condition in processing, hence
saving time. To this purpose, the LUTp look-up table is used, where each row
corresponds to a quantized angle 4 = 0...z that coincides with the range [0, 27]
and will contain all the minutiae indexes from the latent fingerprint that meet
the condition [15]. That is, if the minimal angular difference (Equation A.1 in

Algorithm 3.2 Kernel-1 in charge of the LUTp computation.

1A= (z-\)/(2n) > quantized angular difference threshold.
2: 4 = tid > each thread handles a quantized angle
3:1=0
4: for each ¢, € L,h =0...|L| do > iteration over latent minutiae
5: 0n = (z-01)/(2n) > quantized minutia direction
6: if do(éh, q) < A then > check quantized angular difference
7: LUTp[H[i] = h > include latent minutia index
8: Update i =i+ 1
9: end if

10: end for

11: LUTp[At] =& > indicate end of array
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Appendix A) between the minutia direction and the corresponding 4 = tid is
below the quantized A threshold. Regarding the execution of this kernel, only
one block of threads with z threads is launched—one thread per quantized angle.

3.3.4.3. Kernel-2 (device): matching minutiae descriptors

This kernel finds a first set of matching minutiae pairs using the operations
shown in Algorithm 3.3. Each thread manages a particular minutia from the
fingerprint impression p; € T,t = tid with a quantized direction 6; (Definitions

Algorithm 3.3 Kernel-2 in charge of the local matching process.
1: for each ¢, € L,h =0...|L| do

2: Store v, in shared memory > latent minutiae cylinders in shared memory
3: end for

4: while tid < m do > prevent segmentation fault
5: Set maxSim to maz{float} > store max. similarity value
6 maxler =§ > empty latent minutia index
7: Ttid] < p¢ > impression minutia
8 Store v in local memory > impression minutia cylinder in local memory
9 0, = (z-0:)/(2n) > quantized angle of impression minutia
10: =0

11: while LUTp[0:][i] # € do > go through the (6;)-th row of the look-up table

12: k= LUTp|04][4] > minutia index in latent
13: sim = o(qk, pt) > similarity function
14: if sim > maxzSim then

15: mazxSim = sim > local storage of max. similarity value
16: mazlr =k > local storage of minutia index in latent
17: Update i =i+ 1

18: end if

19: end while

20: MatchingV alue[tid] = mazSim > save similarity value
21: MaxMtiaL[tid] = maxlx > save latent minutia index
22: Update tid = tid + Ct - Cy

23: end while
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1 and 2 in Appendix A) and compares it with each minutia similar in direction
from the latent fingerprint g5, € LUTp [ét] (resulting from the execution of Kernel-
1). Finally, the index and the matching value of the most similar minutia from
the latent fingerprint are stored in two global arrays inside the particular cell
corresponding to each minutia from the database of fingerprint impressions. This
selection is based on the function described in Equation A.4 in Appendix A.

The cylinders within the latent fingerprint are stored in shared memory per
block to be loaded faster in processing, the same way the target minutia cylinder
handled by the thread is stored in thread-local memory. Regarding the execution
configuration, this kernel is launched using C}/2 threads per block not to exceed
the maximum register size and optimise the available resources.

3.3.4.4. Kernel-3 (device): minutia quality computation

This kernel computes a quality value for each processed minutia as given in
Algorithm 3.4. In practice, each thread takes a particular minutia p, € T',t = tid
and obtains a quality value as a function of the distance between this one and
the surrounding minutiae that form its neighbourhood [77]. First, nearest H,,

Algorithm 3.4 Kernel-8 in charge of computing the minutia quality.

1: while tid < m do > prevent segmentation fault
2: Set array of Hy, length D = {0} > initialise array of distances
3: Ttid] < p¢ > impression minutia
4: s = LUTs|t] > starting position of the ¢-th impression
5: e=LUTst+1]—1 > ending position of the ¢-th impression
6: for each p, € T, h = s...e do > iteration over all minutiae from s to e
7 d = de(ph,pt) > Euclidean distance
8: if (h#1t)A(d < distance) then
9: Update D with d > include d in sorted D
10: end if
11: end for
12: Compute d from the values in D > average FEuclidean distance
13: QualityT[tid) = p (d) > save minutia quality

14: Update tid = tid + Cy - Cy
15: end while
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minutiae are found using the Euclidean distance and included in the D array,
which holds the distance values in ascending order. Then, the average distance
value (d) is used to obtain the final quality score for each minutia according to the
piecewise function p, which depends on the Hy; and Hgy thresholds determined

by experience (Equations A.3 and A.5 in Appendix A).

Likewise, this kernel also computes a quality value for each minutia in the
latent fingerprint. In this case, the kernel is launched once at the beginning of
execution using C} threads per block to optimise available resources.

Algorithm 3.5 Kernel-4 in charge of finding clusters of matching minutiae pairs. Fig-
ure 8.12b can be helpful for the correct understanding of this kernel.

1: while tid < m do > prevent segmentation fault
2: s = LUTs][t] > starting position of the ¢-th impression
3: e=LUTs[t+1] -1 > ending position of the ¢-th impression
4: Ttid] < p¢ > impression minutia
5: h = maxMtiaL[t] > read similar minutia from latent
6: if h#¢then fi=1else fi=0and h =0 > avoid divergence
7: Cluster MtiaK[t][0] = ¢
8: =1
9: for each p, € T,k = s...e do > iterate over known minutiae pairs
10: r = maxMtiaL[k] > read similar minutia from latent
11: if r #¢ then fo =1else fo=0and r=0 > avoid divergence
12: q = ¥(qr, qn, pt) > new projected minutia
13: sim = oc(qr, pr) - 00(q), Px) - o1 (q, k) > check new similarity
14: if (f1-f2-sim) >0 then > avoid divergence
15: Cluster MtiaK[t][i] = k > save impression minutia index
16: Update i =i+ 1
17: end if
18: end for
19: ClusterCountltid] =1 > save number of minutiae pairs in cluster

20: Update tid = tid + Ct - Cp
21: end while
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3.3.4.5. Kernel-4 (device): finding clusters of similar minutiae pairs

This kernel finds clusters of similar minutiae pairs after checking for align-
ments using the initial set of found minutiae pairs (Algorithm 3.5 and Fig-
ure 3.12). First, each thread takes a minutia p; € T,¢t = tid and reads the
most similar minutia from the latent fingerprint previously found through the
execution of Kernel-2. Therefore, two scenarios are possible: (i) every minutia in
T has a match in L, or (ii) not every minutia in 7" has a similar one in L. In the
first case, the workload is balanced between all the threads, so there is no per-

(b) Clustering of similar minutiae pairs (Kernel-4)

Figure 3.12: Difference between the local matching and clustering stages using the
rolled (left) and latent (right) fingerprints. In (a), similar minutiae pairs are found
according to their minutiae descriptors. In (b), minutiae pairs—previously found in the
first stage—are processed again to check whether they still match based on the distance
and angular relationship with another minutia pair as the cluster’s centre. Minutiae
in blue have no relevant role, minutiae in red are the centre of the particular cluster
represented by the greem wrap-around line, and minutiae in purple are projected ones
taking the centre of the cluster as reference.
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formance degradation. Conversely, the second suffers from the thread divergence
problem as a few threads carry on with the processing whereas others are idle.
To address this problem, the first minutia from the latent fingerprint is selected
as a dummy structure for those minutiae in T' that do not have a similar one in L.
Thus, the thread divergence problem is minimised since broad if-else statements
are avoided.

Once we have solved the thread divergence problem, clusters of minutiae
pairs are obtained by performing several alignments to test the consistency of
the minutiae pairs found so far following the expressions from Equations A.6-A.9
in Appendix A. Finally, a set of minutiae indexes from the impression fingerprints
is obtained and stored in the Cluster MtiaK vector, along with the number of
minutiae in ClusterCount. The host unit then reads the Cluster Mtia K vector
directly to speed up the process of building the clusters of minutiae pairs in the
FES function, which is addressed in the next section. Regarding the execution
of Kernel-4, it is launched using the same configuration as Kernel-3.

3.3.4.6. FES function (host): final evaluation stage

As above explained, the partial results obtained from the processing of a par-
ticular batch of impressions on the device are used as input to the final evaluation
stage (FES) function executed on the host (Algorithm 3.6). This function carries
out the final part of the fingerprint matching process—executed in parallel at the
fingerprint matching level. In every fingerprint comparison, the minutiae pairs
found through the execution of Kernel-2 and formed by each impression minutia
and the most similar one from the latent fingerprint (stored in the MaxMtiaL
vector) will be placed as the centroid of the corresponding cluster.

The clusters of minutiae pairs are built by reading the impression minutiae in-
dexes previously stored in the Cluster Mtia K vector and considering the number
of minutiae included in the cluster and stored in ClusterCount for each minutia
inside the impression fingerprint. Afterwards, a weight value is obtained for each
cluster. Then, those containing similar minutiae pairs will be merged to obtain a
consolidated set of matching minutiae pairs, contributing to the final similarity
score between fingerprints.

Finally, a TPS model is built from the consolidated set of minutiae pairs to
correct any deformation affecting the latent fingerprint image, making it possible
to find new minutiae pairs. These new minutiae pairs will also contribute to
the final similarity value between fingerprints. It should be pointed out that the
computational load in the host is reduced, as finding the minutiae pairs belonging
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to each cluster is one of the most time-consuming tasks of the algorithm and is
carried out beforehand on the device unit. In fact, while the FES function is
being executed on the host over a particular batch of impressions, the device will
have finished processing the next one and delivered the results to the host so that
idle times are removed.

Algorithm 3.6 Host function in charge of the final evaluation stage (FES).

1: for each fp € T in parallel do > iterate over fingerprint impressions
2 s = LUTs[fp] > starting position of the fp-th impression
3 e=LUTs[fp+1] -1 > ending position of the fp-th impression
4 for each p, € T,k = s...e do > iterate over impression minutiae
5 h = maxMtiaL[k] > read similar minutia from latent
6: if h # £ then
7 M = M U (qn, pr) > include minutiae pair in vector
8 end if
9 end for
10: for each p, € T,k = s...e do > iterate over impression minutiae
11: for i = 0, ClusterCount[k] do > iterate over k-th row of Cluster Mtia K
12: r = Cluster Mtia K [k][i] > read impression minutia in cluster
13: h = maxMtiaL[r] > read similar minutia from latent
14: YV (qn,pr) € M : B, = B U (qn,pr) > build cluster vector
15: end for
16: Perform Step 3b from Section 3.2.5.1 > sort minutiae in clusters

17: end for

18: Perform Steps 3c¢-5 > weigh and merge clusters, build TPS and evaluate
19: Update Similarity[fp] > final similarity value
20: end for

3.4. Experiments and results

This section analyses and compares ALFI with the most similar approaches
reported in the literature in terms of accuracy and computational performance
on widely used databases.
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Firstly, the experimental setup and the different databases used in the ex-
periments are presented at the beginning of this section. Then, the accuracy of
ALFI is assessed considering the latent fingerprint identification task and, ad-
ditionally, the verification task. Afterwards, the computational performance of
ALFT is measured in terms of execution time and speed-up on Linux and Win-
dows operating systems. Finally, we present the timeline of the application and
discuss the results accomplished.

3.4.1. Experimental setup

This research focuses on the design of a new methodology for latent fingerprint
identification specifically designed for heterogeneous CPU-GPU systems. With
this in mind and after considering the published works in this area so far, we can
conclude that:

= DMC [33] is the latent fingerprint identification algorithm that has demon-
strated the best results when working with every combination of available
fingerprint databases, even in the case of considering a background database
of more than 1.1 million impressions [33].

= Apart from its excellent performance in identifying fingerprints, DMC is the
algorithm with the second-best performance in the field of fingerprint ver-
ification in the FMISO-HARD-1.0 competition of the FVC-onGoing plat-
form [80, 81]—among those developed by academic groups. The algorithm
with the best performance in this competition is the MntModel [77]; how-
ever, we cannot replicate it since the article omits several steps of the de-
velopment of the algorithm. Furthermore, this algorithm was not tested
on latent fingerprint identification, and its performance in carrying out this
particular task is unknown.

= Only the works described in [70] and [33] provide the source code or program
that allows researchers to replicate the results with different databases, and
therefore the proposal of this work can only be compared with the numbers
reported in their articles.

s The DMC-CC version uses the MCC descriptor, which is shown in a re-
cent study to be the best minutiae descriptor for identifying latent finger-
prints [32].

To carry out a thorough analysis, we used three heterogeneous CPU-GPU
systems (S1_3), whose specifications are given in Tables 3.5 and 3.6.
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Table 3.5: Specifications of the host units used in the experiments.

Parameter

|S1 (Linux) | S (Both) | S5 (Windows)

Processor Type
Processor Model
Number of cores
Number of threads
Frequency (GHz)
Memory RAM (GB)
Cache L1 (kB)
Cache L2 (kB)
Cache L3 (MB)

Intel Xeon
E5-2698 v3
16

32

2.3

256

8x64

8x256

1x40

Intel Core
i5-8600K
6

6

3.6

8

6x64
6x256

1x9

AMD Ryzen
7-1700x

8

16

3.4

16

8x96

8x512

2x8

Table 3.6: Specifications of the device units used in the experiments.

Parameter ‘Sl (Linux) | Sz (Both) | S3 (Windows)
Model GTX 980 GT 1030 GTX 1050-Ti
Architecture Maxwell Pascal Pascal
Number of CUDA cores 2048 384 768

Number of SMs 16 3 6

Base clock (MHz) 1.12 1.22 1.12

Global memory (GB) 4 2 4

Memory per block (kB) 48 48 48

Max. threads per block 1024 1024 1024

Threads per warp 32 32 32

Memory bandwidth (GB/s) | 224 48 112
Performance (TFLOPs) 4.6 1.13 2.14

Regarding the implementation details, we developed ALFI using C++ and
CUDA C++. These are compiled programming languages, i.e., they are translated
into machine language before being executed. This fact makes it possible to test
the performance of ALFI on both Linux and Windows operating systems using
the same implementation. In addition, according to a previous study presented
in [82], using C++ significantly improves the computational performance of the

latent identification task.
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Host codes are compiled with -O2 optimisation flag using the g++ 5.4 and
MSVC 14.16.27023 compilers for Linux (Ubuntu 16.04.5 LTS) and Windows 10,
respectively. Device codes make use of the NVIDIA NVCC compiler from the
CUDA compilation tools V10.0.130. The OpenMP C/C++ version 2.0 is used
inside the FES function to enable the multi-threaded execution at the fingerprint
matching level. The Armadillo C++ library version 7.800.2 [83, 84] with Open-
BLAS 0.2.14.1 is also used to carry out the necessary linear algebra operations.

3.4.2. Databases

We used the popular NIST SD27 [85] database, which includes fingerprints
and minutiae, to test the identification performance of ALFI. This widely used
database holds 258 latent fingerprints collected from real cases with the images
available at 500 dpi. Every case includes the image of the latent fingerprint and its
rolled fingerprint mate, where experts have validated all the minutiae. Moreover,
six background databases have been designed according to different combina-
tions of fingerprints, as shown in Table 3.7. The NIST SD27 database is further
extended with rolled fingerprints from the NIST SD4 [86] and NIST SD14 [87]
databases to obtain small (B;_3) and medium (B4_5) sized databases.

In order to obtain a more extensive background database, synthetic plain
fingerprints generated using the SFinGe Version 4.1 (build 1746) Demo soft-
ware were included in Bg. The fingerprints generated with this last software
have been used in several fingerprint verification competitions, proving that the
results achieved with these features are similar to the ones achieved on real

Table 3.7: Background databases used in the experiments with their number of finger-
prints included. The two right-most columns show the total number of fingerprints and
the average number of minutiae extracted per fingerprint, respectively.

NIST | NIST | NIST
Database Synthetic | N° fps. | N° mtiae./fp.
SD27 |SD4 |SD14

By 258 - - - 258 21

B> 258 - 2,000 |- 2,258 149
B3 258 2,000 |- - 2,258 101
By 258 - 27,000 | - 27,258 | 163
Bs 258 2,000 | 27,000 |- 29,258 | 159

Bsg 258 2,000 | 27,000 | 357,985 387,243 | 38




3.4. Experiments and results 59

databases [88]. However, plain fingerprints contain less information than rolled
ones, which can affect the accuracy and computational performance of the ex-
periments. Regarding minutiae per fingerprint, they are extracted using the
VeriFinger SDK [89] for the impression fingerprints.

Even though ALFTI is designed for fingerprint identification, we also tested its
accuracy on verification databases as well to check whether it is suitable for this
particular task. The FVC 2002 [90], FVC 2004 [91] and FVC 2006 [92] databases
are used in the verification experiment, where the DB1 A dataset from FVC 2006
was discarded due to the low resolution of the images.

We assessed the computational performance of ALFI under conditions that
are as close as possible to a real case. In particular, several of the six background
databases (from Table 3.7) have a similar number of fingerprints; hence, some of
them can be dismissed to eliminate redundancy. Therefore, medium and large-
sized background databases related to Bz, Bs and Bg are considered since they
have a representative number of fingerprints.

3.4.3. Accuracy analysis

This experiment presents the accuracy results of ALFI using identification
and, additionally, verification databases. ALFI is compared with the state-of-the-
art DMC algorithm using the following descriptors: MCC (DMC-CC), M-Triplets
(DMC-MT), and Neighboring Minutiae-based Descriptor (DMC-NMD).

3.4.3.1. Identification databases

Cumulative Match Characteristic (CMC) curves, described in [53], are the
standard methods used to assess the accuracy of identification algorithms that
produce an ordered list of possible matches. This type of result plots the proba-
bility that a correct identification takes place (rank-k identification rate) within
a group of k returned candidates, where k = 1...20. In practice, latent fingerprint
examiners may request (i) all returned candidates with a match score above a
certain threshold or (ii) a specific number of highest-ranked candidates instead.
In any case, examiners normally begin the analysis with the candidate that has
the highest rank (rank-1) and continue through the remaining ones if they do
not succeed [93]. The search ends when the fingerprint mate is found or after all
candidates are analysed. Therefore, not only the rank-1 accuracy is crucial for
the identification evaluation, but also the rank-20 and the complete CMC curve
to make the experiment as close as possible to a real case.
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In this experiment, each latent fingerprint from the NIST SD27 is compared
with all impression fingerprints in the background database generating the CMC
curves shown in Figure 3.13. These results are complemented by the correspond-
ing rank-1 and rank-20 values presented in Tables 3.8 and 3.9. From these results,
we can make the following observations:

= In most cases, the DMC-CC algorithm is the best ranked; however, the
difference in accuracy between this version and ALFT is negligible.

= Compared to the DMC-MT algorithm, ALFI outperforms it by approxi-
mately 1.6%, 1.6%, and 1.2% on databases By, Bs, and Bs, respectively,
considering rank-1 accuracy. For rank-20 accuracy, ALFI outperforms the
same algorithm by approximately 2.7%, 0.8%, 3.9%, and 3.9% on databases
Bs, Bs, By, and Bs, respectively.

s Compared to the DMC-NMD algorithm, ALFI outperforms it by approx-
imately 0.8%, 1.2%, 1.2%, and 0.8% on databases By, Ba, B4, and Bs,
respectively, considering rank-1 accuracy. For rank-20 accuracy, ALFI out-
performs the same algorithm by approximately 0.4%, 2.3%, 0.4%, 1.9%,
and 2.3% on databases By, Ba, B3, B4, and Bs, respectively.

Table 3.8: Rank-1 accuracy of ALFI and DMC' given in percentages (CMC curves
shown in Figure 3.183).

| Algorithm |B; [B2 [Bs [Bs [Bs |Bs |

DMC-CC 87.21|81.01|80.62 | 70.16 | 69.77 | 62.79
DMC-MT | 82.95|76.74|76.36 | 69.38 | 69.38 | 66.67
DMC-NMD | 83.72 | 77.13 | 79.46 | 66.67 | 66.67 | 62.79
ALFI 84.50 | 78.29 | 77.52 | 67.83 | 67.44 | 61.24

Table 3.9: Rank-20 accuracy of ALFI and DMC given in percentages (CMC curves
shown in Figure 8.183).

| Algorithm |[B;  |B2 [Bs |Ba [Bs |Bs |

DMC-CC 94.57191.47 | 91.09 | 85.27 | 84.50 | 78.68
DMC-MT | 93.41|87.60|89.15|79.84|79.84 | 77.13
DMC-NMD | 92.25 | 87.98 | 89.53 | 81.78 | 81.40 | 78.29
ALFI 92.64|90.31 | 89.92 | 83.72 | 83.72 | 75.58
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Figure 3.13: Cumulative Match Characteristic (CMC) curves of ALFI and DMC
using the NIST SD27 database as reference and sixz different background databases Bi_¢

described in Table 3.7.
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3.4.3.2. Verification databases

Although ALFT is a methodology developed specifically for latent identifica-
tion, its accuracy on fingerprint verification databases is also evaluated. The
FVC 2002, FVC 2004, and FVC 2006 databases are used for this purpose, along
with the performance evaluation proposed by Cappelli et al. [88] based on EER,
FMR100, FMR1000, and ZeroFMR indicators, where lower values are related to
better performance. The results of this experiment are given in Tables 3.10-3.12.
From them, the following observations may be made:

= Compared to the DMC-CC algorithm, ALFI performs equal to or better
than it for 5 accuracy measurements.

= Compared to the DMC-MT algorithm, ALFI performs equal to or better
than it for 15 accuracy measurements.

= Compared to the DMC-NMD algorithm, ALFI performs equal to or better
than it for 21 accuracy measurements.

Table 3.10: Accuracy results of ALFI and DMC on the FVC 2002 databases [90].

Database | Algorithm ‘ EER (%) ‘ FMR100 (%) | FMR1000 (%) | ZeroFMR. (%) ‘

DB1 A DMC-CC 0.55 0.64 0.79 1.18
DMC-MT | 0.65 0.79 1.11 1.25
DMC-NMD | 0.50 0.61 0.79 1.14
ALFI 0.55 0.79 1.00 1.54

DB2 A DMC-CC 0.50 0.50 0.71 1.00
DMC-MT |0.43 0.61 0.75 0.79
DMC-NMD | 0.60 0.61 0.86 1.04
ALFI 0.59 0.68 1.00 1.36

DB3 A DMC-CC 2.27 2.43 3.71 4.82
DMC-MT |2.54 3.18 4.07 5.18
DMC-NMD | 2.39 3.11 4.32 4.64
ALFI 2.67 3.21 4.14 6.00

DB4 A DMC-CC 1.08 1.18 1.89 2.18
DMC-MT |1.51 1.86 2.68 3.79
DMC-NMD | 1.58 1.79 2.50 2.75
ALFI 1.28 1.43 2.36 3.21
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Table 3.11: Accuracy results of ALFI and DMC on the FVC 2004 databases [91].

Database | Algorithm ‘ EER (%) ‘FMRlOO (%) | FMR1000 (%) | ZeroFMR (%) ‘

DB1 A DMC-CC 3.24 5.39 9.79 17.39
DMC-MT | 3.76 6.36 10.25 15.46
DMC-NMD | 3.62 6.04 12.14 17.75
ALFI 3.41 5.18 11.39 16.21

DB2 A DMC-CC 4.18 5.96 9.00 10.68
DMC-MT |4.23 5.68 8.21 10.04
DMC-NMD | 4.52 6.11 8.96 13.21
ALFI 4.52 6.86 9.89 11.46

DB3 A DMC-CC 2.74 4.07 5.96 9.54
DMC-MT |3.38 4.79 8.32 12.46
DMC-NMD | 2.78 4.79 10.14 15.89
ALFI 2.77 3.93 6.36 7.82

DB4 A DMC-CC 2.15 2.82 3.89 4.46
DMC-MT |2.91 3.25 3.96 4.89
DMC-NMD | 2.80 3.32 4.36 4.86
ALFI 2.91 3.50 4.46 5.75

Table 3.12: Accuracy results of ALFI and DMC on the FVC 2006 databases [92].

Database | Algorithm | EER (%)

FMR100 (%) | FMR1000 (%) | ZeroFMR (%) |

DB2 A DMC-CC 0.42 0.35 0.50 1.18
DMC-MT |0.36 0.37 0.50 1.31
DMC-NMD | 0.51 0.42 0.78 1.88
ALFI 0.48 0.42 0.60 1.39

DB3 A DMC-CC 3.36 4.46 6.76 10.69
DMC-MT |3.51 4.95 7.80 12.44
DMC-NMD | 3.39 4.64 8.12 14.13
ALFI 3.70 5.25 7.96 11.76

DB4 A DMC-CC 2.52 3.13 5.91 8.17
DMC-MT |2.75 3.51 5.07 11.13
DMC-NMD | 2.57 3.32 6.30 8.83
ALFI 3.10 3.79 7.66 10.43
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Considering the high variability in the above accuracy results, it could be
pointed out that the accuracy of ALFI in verification is within the same range as
that obtained by the DMC algorithm, even though ALFI is intended for latent
identification.

3.4.4. Computational performance analysis

This section aims to compare the computational performance of ALFI with
the results obtained by the state-of-the-art algorithm. The DMC-CC algorithm is
chosen for this comparison due to its better performance compared to DMC-MT
and DMC-NMD, as stated in [33].

In this experiment, a random latent fingerprint from the NIST SD27 database
is matched against the Bs, Bj, and Bg background databases (described in Sec-
tion 3.4.2) using the S;_3 systems (Section 3.4.1). We measured the time required
to complete this task and the average throughput in processing. The latter pa-
rameter is measured in KMPS, which stands for Kilo Matches Per Second. The
results of this experiment are presented according to the operating system, either
Linux or Windows, on which the computational performance is measured.

3.4.4.1. Linux

The results of this experiment are shown in Table 3.13 and Figure 3.14 in
terms of execution time and throughput, respectively. The baseline DMC-CC
algorithm has been ported from C# to C++ to ensure a fair comparison on Linux.
The reason for this choice is that the original C# code could not run efficiently
on Linux, making it impossible to fairly compare ALFI with the one presented
by the authors in [33]. The best results in each system are as follows:

= On S;: ALFI is on average 28.9x faster than the DMC-CC algorithm on
database Bs. The maximum throughput value is 31.13 KMPS, which is
achieved by ALFI on database Bg.

= On S3: ALFI is on average 20.6x faster than the DMC-CC algorithm on
database Bg. The maximum throughput value is 43.66 KMPS, which is
achieved by ALFI on the same database.
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Table 3.13: Average run-time and speed-up results of ALFI and DMC-CC (baseline
algorithm) on Linuz. A random latent fingerprint from the NIST SD27 [85] is matched
against three background databases using two systems with Linuz OS.

Sl SZ
Database‘Algorithm Time (s) Speed-up | Time (s) Speed-up
Bs DMC-CC 4.36 - 2.63 -
ALFI 0.66 6.6 0.36 7.3
Bs DMC-CC 91.69 - 57.37 -
ALFI 3.17 28.9 3.57 16.1
Bg DMC-CC 292.85 - 183.08 -
ALFI 12.44 23.5 8.87 20.6
43.66
. By 31.13
s Bs
z ”
= 10" 4 9.23 <30
<
-
= 342
=
= 212
=
S 1.32
g 104 0.86
0.52 0.51
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Algorithms

Figure 3.14: Throughput results of ALFI and DMC-CC on Linuz. A random latent
fingerprint from the NIST SD27 [85] is matched against three background databases
using two systems with Linux OS.

3.4.4.2. Windows

The results of this experiment are shown in Table 3.14 and Figure 3.15. The
reference DMC-CC algorithm for Windows is the C# implementation presented
by their authors. The best results in each system follow:
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= On S3: ALFI is on average 29.2x faster than the DMC-CC algorithm on
database Bg. The maximum throughput value is 23.89 KMPS, which is
achieved by ALFT on the same database.

» On S3: ALFI is on average 44.7x faster than the DMC-CC algorithm on
database Bg. The maximum throughput value is 24.29 KMPS, which is
achieved by ALFI on the same database.

Table 3.14: Average run-time and speed-up results of ALFI and DMC-CC (baseline al-
gorithm) on Windows. A random latent fingerprint from the NIST SD27 [85] is matched
against three background databases using two systems with Windows OS.

S2 S3
Database | Algorithm | Time (s) Speed-up | Time (s) Speed-up
B3 DMC-CC 6.61 - 9.48 -
ALFI 0.61 10.8 0.66 14.4
Bs DMC-CC 146.98 - 209.22 -
ALFI 6.71 21.9 5.46 38.3
Bg DMC-CC 472.66 - 712.78 -
ALFI 16.21 29.2 15.94 44.7
- 23.89 24.29
B
o 10 By
& 136 5.36
< i 3.42
=
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e 10°3 0.82
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Figure 3.15: Throughput results of ALFI and DMC-CC on Windows. A random latent
fingerprint from the NIST SD27 [85] is matched against three background databases using
two systems with Windows OS.
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3.4.5. Application timeline

Here, we used the NVIDIA Visual Profiler (NVVP) to generate the ALFIT
timeline regarding the identification process. As an example, this experiment
considers the Bs background database, Se with Linux OS, and 1,200 fingerprints
processed in each CUDA stream on the device.

Figure 3.16 displays the first second of execution of the ALFI timeline. It
visually demonstrates how the host successfully executes the FES function of
ALFT on a particular batch of fingerprints while the device is busy processing and
transferring the next two batches. On the device, the operations are executed in
two non-default streams.

Figure 3.17 best illustrates this asynchronous process by showing two enlarged
images of the ALFI timeline. Three kernels (K_4)! are executed in one stream
while the other stream transfers to the host the partial results obtained in the
previous iteration (Figure 3.17a). In the next iteration, the streams exchange
tasks with each other (Figure 3.17b) in a process that repeats until the execution
is complete.

The proposed method reduces the CPU load by sharing it among the resources
available on almost any current computer.

0s 0.25s 0.5s 0.75s 15
[=] Process "Impressions29k...
[=| Thread 2093111232
* Runtime API ] | | | |
Markers and Ranges FE5-1 FES-2 FES-3 FES-4 FES-5
L Profiling Overhead I
[=I [0] GeForce GT 1030
|=| Context 1 (CUDA)

|=| Streams
" Stream 14 HI. il . [ | [}
* Stream 15 i . [ ] [ | [ [

Figure 3.16: First second of execution of the ALFI timeline. The host execution
overlaps with the execution in two CUDA streams on the device. FES-n stands for the
final evaluation stage function over the n-th batch of fingerprints, K for kernel, and D2H
and H2D for device-to-host and host-to-device data transfers. This image is zoomed in
on Figure 3.17.

1K is only launched once at the beginning of execution.
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Figure 3.17: Enlarged images of the ALFI timeline given by intervals (Figure 3.16).
FES-n stands for the final evaluation stage function over the n-th batch of fingerprints,
K for kernel, and D2H and H2D for device-to-host and host-to-device data transfers.
The time intervals given are approrimate.

3.4.6. Analysis of the results

The primary goal of the development of ALFI was to obtain the best pos-
sible computational performance in latent identification without compromising
accuracy. Accordingly, ALFI has accomplished significant results in both terms.

3.4.6.1. Accuracy

Regarding the latent fingerprint identification problem, the accuracy values
of ALFI are within the same range as the ones obtained by the state-of-the-art
algorithms, as given in Tables 3.15 and 3.16. However, the inclusion of the GPU in
processing results in a slight accuracy reduction for some background databases
and k-ranks compared to the reference algorithm in latent identification. The
reason for this lies in the impossibility of developing a dynamic algorithm for
GPU processing, which profoundly affects the early stage of the processing where
the first matching minutiae pairs must be found.
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In the host code, it is possible to accept very different numbers of minu-
tiae pairs—using dynamic memory allocation—from one fingerprint comparison
to another without compromising performance. However, in the device code, a
maximum number of minutiae pairs must be imposed to improve performance—
static memory allocation—resulting in losing some possible matching minutiae
pairs. This fact is more noticeable when the number of minutiae per fingerprint
is reduced, as is the case with the Bg background database in which something
unusual happens as it contains more plain fingerprints than rolled. Nevertheless,
this drawback is balanced with the significant improvement achieved in compu-
tational performance.

Table 3.15: Accuracy differences in the identification experiment obtained from
analysing the rank-1 accuracy values given in Table 3.8. The lowest accuracy value
of the four algorithms is taken as a reference for each background database. These
algorithms are those with the (-) symbol.

Algorithm [B; [B2 [Bs [Ba |Bs |Bs |

DMC-CC 4.3% | 4.3% | 4.3% | 3.5% | 3.1% | 1.6%
DMC-MT |- - - 2.7% 1 2.7% | 5.4%
DMC-NMD | 0.8% | 0.4% | 3.1% | - - 1.6%
ALFI 1.6% [1.6% | 1.2% | 1.2% | 0.8% | -

Table 3.16: Accuracy differences in the identification experiment obtained from
analysing the rank-20 accuracy values given in Table 3.9. The lowest accuracy value
of the four algorithms is taken as a reference for each background database. These
algorithms are those with the (-) symbol.

Algorithm |B; B2 [Bs |[Ba [Bs [Bs |

DMC-CC 2.3% (3.9% [1.9% | 5.4% | 4.7% | 3.1%
DMC-MT |[1.2% |- - - - 1.6%
DMC-NMD | - 0.4%(0.4% | 1.9% | 1.6% | 2.7%
ALFI 0.4% | 2.7% [ 0.8% | 3.9% | 3.9% | -
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3.4.6.2. Computational performance

Considering execution time, ALFT has proved to outperform the state-of-the-
art algorithm for every studied database and operating system in latent identifi-
cation. This achievement lies in the fact that the workload is balanced between
the CPU and GPU using asynchronous processing and fine-grained parallelism
so that idle times are drastically reduced. By contrast, the state-of-the-art algo-
rithm is designed for single-threaded execution and neglects the use of GPUs to
accelerate the processing.

The throughput experiment revealed that this parameter increases with the
size of the database for the ALFI methodology. Conversely, the throughput of
the DMC-CC algorithm decreases between databases Bs and By, but increases
with Bg. The explanation lies in the difference in the nature of the fingerprints
included in the databases and the non-linearity of their processing. In particular,
Bg only contains 7.6% of rolled fingerprints, and the rest are plain fingerprints,
each of which includes less information and is therefore processed faster than
the rolled fingerprints. Database Bg has in average 38 minutiae per fingerprint,
whereas databases B3 and Bjs have 101 and 159, respectively, as given previously
in Table 3.7.



Total Viewshed
Computation

Viewshed analysis is the process of finding the area of terrain visible from a
specific observer’s location. This information is of great interest in environmental
planning [94] and fire fighting [95] to obtain the best locations for settlements
and watchtowers, as is the case in both examples. These types of problems are
addressed using arrays of regularly spaced elevation values called Digital Elevation
Models (DEMs). Algorithms working with this type of data require large numbers
of memory accesses to 2D arrays, which, despite being regular, result in poor data
locality in memory. This issue also affects any algorithm intended to solve one of
the most computational demanding viewshed problems, called total viewshed. It
comprises the computation of the viewshed for each point in the DEM, i.e., each
point in the DEM will eventually work as an observer during processing—where
a DEM typically contains more than several millions of points.

In this chapter, a new methodology called skewed Digital Elevation Model
(sDEM) is presented, considering the total viewshed problem as a case study.
sDEM applies a complete restructuring of the DEM data in memory before the
total viewshed computation. In practice, we transform the DEM into a new
structure called skwDEM in which data is aligned in memory to improve data
locality in accessing the memory, hence increasing the speed of processing. This
approach makes it unnecessary to use standard techniques that reduce compu-
tational cost in total viewshed problems, e.g., considering a maximum visibility
distance within a circular area around each target location. In addition, sDEM
could also enhance the performance of other algorithms that analyse relevant
topographic features such as slope and elevation.

71
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The contributions of this chapter are:

= We propose a new methodology called sDEM (skewed Digital Elevation
Model) to achieve faster processing of terrain surface, which substantially
improves data locality in memory. In particular, this approach fully exploits
the intrinsic parallelism of the total viewshed computation, achieving max-
imum performance through efficient memory access.

= We present different implementations for single-core, multi-core, single-
GPU, and multi-GPU platforms that are compared with the state-of-the-art
tools and algorithms.

Section 4.1 presents an introduction on viewshed analysis. Section 4.2 ad-
dresses the state-of-the-art regarding the three main visibility problems. Sec-
tion 4.3 presents the sDEM methodology specifically designed for solving the
total viewshed problem on multi-GPU platforms. Finally, Section 4.4 assesses
the sDEM proposal in terms of running time, speed-up, and throughput com-
pared with the most commonly used geographic information systems and the
state-of-the-art algorithm.

4.1. Introduction

This section will describe the necessary background knowledge related to view-
shed analysis, with a particular focus on the total viewshed problem.

First of all, the current techniques used to represent the Earth’s surface are
introduced in this section. Secondly, the beginnings of geospatial analysis as a
subject of research are described. Afterwards, we explain the history and def-
inition of the Geographic Information System (GIS) software used to analyse
geographic data, followed by the different types of digital terrain modelling used
by the GIS software. Then, the visibility concept and its formulation are in-
troduced so that the concept of viewshed can be explained later on, as well as
the types described in the literature and key computational aspects. Finally, an
overview of the most important concepts is presented.

4.1.1. Earth representation

The cartographic representation of the terrestrial globe is a challenging prob-
lem due to the impossibility of representing the entire Earth’s surface without
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deforming it. Throughout history, several different map projection methods have
been developed to transform the Earth from its spherical shape (3D) to a planar
one (2D). Furthermore, the relationship between a point on this two-dimensional
projected map and the real location on the Earth’s surface has to be found using
a proper Coordinate Reference System (CRS) from those available. The decision
to select a proper map projection method and CRS depends on the extent of the
target area, the type of research to be carried out, and also on the availability of
data, which can be sparse for specific areas.

4.1.1.1. Map projections

A straightforward solution would be representing the Earth’s spherical surface
as it is by using globes. Although this approach preserves the Earth’s shape and
the original size of every continent, using globes have several drawbacks, such
as (i) serious difficulty in carrying them with you anywhere and (ii) small scales
(e.g., 1:100 million) affects both measurement and accuracy.

Current datasets usually work with scales of around 1:250000 or more de-
pending on the level of detail required by the target analysis. This scale value is
impossible to achieve without deforming the Earth’s shape. Thus, cartographers
have designed several techniques called map projections, each with its advantages
and disadvantages, to represent the Earth’s spherical surface in two dimensions.
This decision depends on the map’s purpose, which affects the required scale.
For instance, a map projection suitable for studying a country may not be for an
entire continent due to the distortions. This fact shows how important it is to
choose a proper map projection according to the needs of the study.

We can classify map projections according to (i) the shape onto which the
Earth is projected and (ii) the characteristics preserved in the resulting map.

- Classification based on shapes

Each map projection is developed using different shapes over the Earth’s
surface, where the most common ones are cylinders, cones, and planes. The
result from each of these methods is called a map projection family (Figure 4.1).

When developing a map projection, it is impossible to simultaneously preserve
all characteristics such as distance, area, and angular conformity. In practice,
every resulting map has to deal with distortions that may affect all or only some
characteristics. For the case where all characteristics are affected, this always
happens within some acceptable limits. Examples of this type are the Robinson
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(¢) Planar projection

Figure 4.1: Map projection families according to the solid used for the projection [96].

and Winkel Tripel projections typically used to visualise world maps. This aspect
causes that the selection of a map projection should be related to the variable
of the study: if the purpose of our analysis is calculating the distance between
two locations, we will use the map projection with higher accuracy for distances.
The following are examples of map projections from each family:

= Cylindrical: Mercator, Transverse Mercator, Cylindrical equal-area, and
Lambert Cylindrical Equal-Area.

= Conical: Lambert Conformal Conic and Equidistant Conic.

s Planar: Azimuthal Equidistant and Lambert Azimuthal Equal-Area.
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- Classification based on the preservation of characteristics

As mentioned above, each map projection technique preserves some or none
of the characteristics in the resulting map. Thus, map projections can also be
classified based on the characteristics they preserve, where we can distinguish
several types:

= Angular preservation: this type of map projection is called conformal,
orthomorphic, or orthogonal projection and retains the angular conformity.
It is typically used when the angular relationships are the target of the
analysis, such as in navigation and meteorology. Moreover, orthomorphic
map projections are recommended for small areas since preserving angles
in large areas is difficult. On the other hand, these map projections have
the downside of deforming areas. The difference in the accuracy of the
results becomes more significant as the target area increases, so they are not
suitable for this type of analysis. The Mercator, Transverse Mercator, and
Lambert Conformal Conic are some examples of map projections aiming to
retain angular properties.

» Distance preservation: equidistant projections are suitable for those
analyses where the purpose is to measure the distance between locations,
such as in seismic mapping and navigation. Distances are maintained accu-
rately from any place on the map to the centre of the projection. Examples
of this type of map projection are the Azimuthal Equidistant, Equirectan-
gular, and Plate Carree Equidistant Cylindrical projections.

= Area preservation: equal-area maps maintain the proportional relation-
ships between the mapped areas. It is used when the area computation is
required, e.g., urban planning in large areas. On the other hand, this map
projection suffers from angular distortions that increase with the size of the
area. Examples of this type are the Lambert, Albers, and Mollweide Equal
Area projections.

To summarise, there is a wide range of possibilities regarding map projections,
and all of them try to represent the Earth’s surface as accurate as possible.
Selecting one or the other is based on the fact that the map projection should be
suitable for the type of analysis required. Unfortunately, this is not an option in
many cases since data is scarce and typically only available using one technique.
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4.1.1.2. Coordinate reference systems

Every point on the Earth’s surface can be located by using a set of values
called coordinate reference system (CRS). As a rule, CRSs are divided into two
groups: geographic coordinate reference systems and projected coordinate refer-
ence systems (also known as Cartesian or Rectangular) that fall out of the scope
of this work.

- Geographic coordinate systems

This type of reference system is widespread these days, where WGS84 is
the most popular (Figure 4.2). They typically have two coordinate values called
latitude and longitude (an additional third coordinate related to height is included

B

Figure 4.2: Geographic coordinate system representation using WGS84 CRS [97]. The
latitude value of the reference point is measured using the corresponding parallel from the
FEquator. In contrast, the longitude value is obtained using the corresponding meridian
from the Prime Meridian at Greenwich (England).
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in exceptional cases), measured in decimal degrees (°), minutes (), and seconds
(") to increase the accuracy of measurements. Their definition follows:

= Latitude: the angle formed by the intersection of the plane of the Equator
and the line perpendicular to the Earth’s surface that passes through the
target point. Lines of latitude, also known as parallels, are parallel to the
Ecuador reference line, dividing the Earth into two hemispheres of 90 de-
grees each (one to north and another to south) with equally spaced sections
of one degree of latitude. Points north of the Equator have positive latitude
values, whereas points south have negative values.

= Longitude: the angle between the corresponding meridian that passes
through the target point and the reference line called Prime Meridian
through Greenwich (England). In particular, a line of longitude (also known
as meridian) runs perpendicular to the Equator between the North and
South Poles. It takes values from 0° to 180° east or west of the Prime
Meridian, where west meridians are represented using negative values.

Nowadays, one of the most used CRS is the Universal Transverse Mercator
(UTM). It is a horizontal position representation, meaning that it ignores altitude
values and considers the Earth as a perfect ellipsoid divided into 60 zones of 6
degrees wide in longitude each from east to west (Figure 4.3). The UTM zone 1
is located at 180 degrees west longitude, whereas the UTM zone 60 is located at
180 degrees east longitude. In practice, the UTM zone number is also followed
by the easting and northing planar coordinate pair measured in metres. Their
definitions follow:

= The easting coordinate represents the distance from the central meridian
(longitude) corresponding to the used UTM zone.

= The northing coordinate represents the distance from the Equator.

It has to be taken into account that the hemisphere has to be specified in
some way as the UTM CRS does not consider the use of negative values. There
are two known conventions, and it is best to indicate which one is being used:
the zone number followed by the N or S hemisphere designator or the zone
number followed by the grid zone—the latitude band designator appended to the
zone number. This issue makes a designation such as 32S unclear and error-
prone because it could mean South or the grid zone S, leading to unintended
misunderstandings if the convention was not previously specified.
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Figure 4.3: Universal Transverse Mercator CRS [98]. As an example, the UTM zone
17T, which covers the area of the city of Toronto (Ontario, Canada), is shown on the
map marked with yellow arrows. The complete UTM coordinates of the city of Toronto
are 17T 630380.21 mE 4834628.61 mN.

4.1.2. Geospatial analysis

The terrain surface has been widely studied for many years, being a specific
case of significant importance nowadays. The first appearance of this concept
dated from 1832 when Charles Picquet designed a map representing cholera out-
breaks across different districts of Paris (Figure 4.4a) [99]. This map was an early
version of a heat map, which would later revolutionise several industries. Inspired
by Picquet, John Snow followed the same principle to represent cholera deaths
in London in 1854 (Figure 4.4b) using bars located at the specified households.
This map is one of the earliest analyses of geographic inquiry in epidemiology.

In the mid-19th century, a new printing technique called photozincography
appeared to differentiate the many layers that can form a map [100]. Vegetation,
buildings, water areas, and land could be visualised as separate layers. It was
revolutionary for its time, although there is no opportunity to analyse the mapped
data using this technique—as it is possible with current geographic information
frameworks. Nevertheless, the photozincography technique gave rise to modern
geographic information systems development.
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(a) Charles Picquet’s map of cholera out- (b) John Snow’s map of cholera deaths in
breaks across Paris in 1832 London in 185}

Figure 4.4: First geospatial analyses from the 19th century [99].

4.1.3. Geographic Information Systems

A Geographic Information System (GIS) is a framework for holding, process-
ing, and analysing data mainly related to the science of geography. These tools
allow customers to analyse spatial information, edit data in maps, and obtain the
results of all requested operations, having access to a vast amount of information
of a specific territory. Many types of data can be queried for a given terrain:
elevation, boundaries, soils, hydrography, and population density maps, among
others. In addition, maps and 3D scenes can be obtained by analysing spatial
locations and organising layers of information into visualisations.

4.1.3.1. History

The concept of GIS was first introduced in the early 1960s when hardware
and mapping applications were on the rise for the nuclear weapons program. The
first operational GIS was launched in Ottawa (Canada) by Roger Tomlinson to
store, collate, and analyse data regarding land usage in Canada. Throughout the
1970s and 1980s, researchers enhanced the system until the mid-nineties, when
the software contained datasets of the entire country of Canada.

At the same time, research in spatial analysis and spatial data management
started to grow at academic centres of renowned prestige, such as Harvard and
Esri. In particular, Esri was one of the largest GIS software development com-
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panies of the 1990s, and, at that time, it was working on a desktop solution for
developing mapping systems via a Windows-based interface.

In 1999, Esri released ArcGIS (Figure 4.5), which despite starting as a sim-
ple extension for data visualisation from a previous program, it ended up as an
independent and very popular GIS software worldwide offered for both Unix and
Windows systems. Since this application was the first GIS software to use a
graphical user interface (GUI), many governments, businesses, defence, and non-
governmental organisations started to adopt the ArcGIS standard—considered
to be more user-friendly. Moreover, at that time, two of the world’s most fa-
mous programs appeared: QGIS (2002) and gvSIG (2004), which have grown
enormously in capacity and users until today.

Figure 4.5: Screenshot of the ArcView extension from ArcGIS, the program considered
one of the most relevant GIS desktop software in history.

During the next decade, the Internet eased the adoption of GIS software to
provide services to cities, municipalities, and private organisations based on the
reduction in costs. It also allowed organisations to add datasets to the maps
already online, expanding the information available to users.

The first revolutionary event of the 21st century was the appearance of Google
Earth, initially developed by Keyhole, Inc (founded in 2001 and acquired by
Google in 2004). At first, this software only had a paid version called EarthViewer
3D (Figure 4.6a) until the year 2005, after its purchase by Google, when it became
the well-known open-source software called Google Earth (Figure 4.6b). This
program allowed the visualisation of Earth satellite images obtained from different
sources. The map resolution has increased over the years, along with the data
displayed: it can currently display barometric, astronomical, and historical data.
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(a) EarthViewer 3D (b) Google Earth

Figure 4.6: Screenshots of EarthViewer 8D and its successor Google Earth GIS soft-
ware pointing to the same location in San Francisco (California, United States).

4.1.3.2. GIS applications

GIS software is increasingly providing more analytical tools used in many
fields of research: slope computation; data analysis; topological, hydrological,
and cartographic modelling; map overlay; and visibility computation. This last
is a widespread tool provided by these programs, which is of great interest in
telecommunications, environmental planning, ecology, tourism, and archaeol-
ogy [101, 13, 102].

In these diverse fields, knowing the visibility in terrain is almost a requirement
to achieve optimal results. However, we must first introduce every possible way
of modelling the terrain (e.g., DEM and TIN) before explaining the key aspects
of the visibility computation.

4.1.4. Digital Elevation Models

A Digital Elevation Model (DEM) is a digital representation of a terrain’s
surface based on elevation data, usually referencing the surface of the earth. Be-
fore the inclusion of the DEM structures, country-wide elevation data was stored
using contour lines in paper maps. This last is still a valid method in topography,
but from the perspective of data storage, it has the following deficiencies:

= As contour maps are non-continuous representations of the terrain, the
surface forms between the selected contour intervals are unknown.
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= The generation of contours depends on visualisation, which enforces car-
tographic generalisation rules. It removes some details of the topography
while overemphasising other forms.

Fortunately, new data structures have appeared to represent the terrain, solv-
ing the aforementioned drawbacks.

4.1.4.1. Types

Nowadays, DEM data structures fall into two main groups (Figure 4.7) [103]:
raster-based and vector-based. This classification distinguishes whether the ele-
vation data is stored using a regular grid (also known as heightmap) or a trian-
gulated irregular network (TIN), respectively. The raster-based approach uses a
matrix of cells organised into rows and columns (grid), where each cell contains
the corresponding elevation value. The TIN representation is a vector-based
approach for the land surface that uses irregularly distributed nodes and lines
arranged in a network of non-overlapping triangles.

Both structures are similar as they include three-dimensional data (x, y, and
z) of the shape of the surface without considering vegetation and other structures.
However, they differ in how each grid of nodes is defined and in the nature of
the data involved. Raster-based DEMs suffer from data redundancy in areas of

(a) Raster-based DEM (b) Vector-based TIN

Figure 4.7: Main types of Digital Elevation Models (DEMs) according to the data
structure used [104].
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uniform terrain, inability to adapt the grid to areas of differing relief complexity,
and excessive emphasis along the axis of the grid. In contrast, vector-based TINs
have little data redundancy, which means that extra data is included in complex
areas whereas less data in non-complex areas. The disadvantages include large
datasets, minor changes in the data size leading to changes in data resolution,
and complex coordinate transformations.

In both cases, the accuracy of the data depends on the resolution, i.e., the
distance between sample points. Other factors affecting this variable are data
type resolution (integer or floating point), and the actual sampling of the surface.

4.1.4.2. DEM generation and applications

The generation of DEMs plays a major role in topography research [105]. They
can be derived through different techniques such as digitising contours from ex-
isting topographic maps, topographic levelling, electronic distance measurement,
differential GPS measurements, digital photogrammetry, and Radar remote sens-
ing and Light Detection and Ranging (LiDAR). Nowadays, we can use a wide
range of data sources to generate DEMs, whose selection depends on the data
availability for the target area, the cost, and the requirements.

DEMs are very significant geospatial datasets because of the wide variety
of fields in which they are used: ortho-rectification of aerial photographs; carto-
graphic representations; geophysical, biogeographical, hydrological, and hydraulic
analyses and models; water management; landscape dynamics and climate im-
pact studies; geological, agriculture, and forestry applications; visibility analyses;
road and telecommunication networks planning; flood risk analysis; among many
other uses and applications.

4.1.5. Visibility

The term visibility has several meanings, where the one that most relates to
the field of geospatial analysis reads: degree to which objects that are far away
can be seen outside, as influenced by weather condition. There are many factors
to consider when visibility is the variable of the study. However, the main factor
that affects the visibility is the planet’s relief, which in the particular case of
the Earth usually includes a wide range of landforms such as mountains, valleys,
ravines, rivers, and plateaus.

Other factors can affect the capacity for visibility, e.g., weather conditions in
the territory—scenarios with pollution, fog, rain, or snow can make the object less
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visible from the observer’s position. Additionally, visibility situations in daylight
show better results than at night when specific equipment is required.

Between the observer’s location, which is usually called Point of View (POV),
and the target location, other elements can be found between these two points
blocking the line of sight. Whether natural or attributable to human activities,
these elements include trees, buildings, bridges, and towers, among others. The
points behind these structures are nearly impossible to be visible from the POV.
All the factors above increase the complexity of the visibility problem.

In the field of computational research, the definition of the term wvisibility
given above can be slightly changed to ease its implementation. For example,
we can specify the visibility between an observer and a target object separated
by a certain distance using a Boolean variable, which takes 1 when the object is
visible to the observer and 0 otherwise. This value set to 1 means that no object
stands between the target object and the observer. Likewise, this definition
can be extended to the case of having many target objects, as is the case in a
common DEM of millions of points. However, first, the simplest example must
be expressed mathematically, which is related to the calculation of the visibility
between two points:

Let A and B be two locations with (x4, h(z,)) and (2, h(zp)) coordinates in
a two-dimensional terrain T'(z, h(z)), where h(x) is the function that returns the
height of every point in T". For the sake of simplicity, the heights of both target
points are h(xz,) = hy and h(z;) = hy. In this case, B (the target point) is visible
from A (POV) and vice versa if the height of every intermediate point is below
the straight line that joins them, i.e., there is no obstacle blocking the line of
sight. This condition can be expressed as:

hy — he

h(z) < z+h, Vxe (A B) (4.1)

Tp

which can be simplified as follows:
h(z) <y(z) Vze (A, B) (4.2)

where y(z) is the function that returns the height value of the imaginary straight
line that joins A and B according to the z variable. This mathematical expression
is represented in Figure 4.8 where the height functions hq(z) and hg(z) represent
two models of terrain with different height values between the locations A and B.
The first height function h(z) blocks the line of sight y(z) on the section whose
height exceeds that of the line of sight, preventing the A and B points from being
visible to each other. Conversely, this fact does not apply when considering the
second height function hg(x).
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(o — ha)

Figure 4.8: First example of the wvisibility problem between two locations: A (POV at
ground level) and B (target point). Two height functions h1(z) and ha(z) are presented
for the terrain in red and green, respectively. The line of sight y(x) (represented in blue)
is blocked when considering the first height function hi(z) for the terrain, whereas this
is not the case with the second height function ha(x).

In the above case, the observers are considered lying on the ground at A and
B points, which is not the typical approach. Figure 4.9 shows a similar example
but considering the observer at A with a height above the ground of h (measured
from the eyes to the plane of the ground). The mathematical expression is as
follows:

hy — ha
h(z) < bT x4 he+h Vae(AB) (4.3)
b

This modification highly affects the visibility calculation as the line of sight is
not blocked for any of the height functions, with A and B visible. This particular
example can be extrapolated to other cases where watchtowers or drones are used
for monitoring purposes. We can overcome possible obstacles by increasing the
observer’s height, which increases the maximum visual distance.
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(o — ha)

Figure 4.9: Second example of the visibility problem between two locations: A (POV at
height h) and B (target point). In this case, it is considered that the observer located at
A has a height different from ground level. The same height functions hi(z) and ha(x)
from Figure 4.8 are shown for the terrain. The line of sight y(x) (represented in blue)
is free of obstacles; hence point B is visible from A and vice versa.

In addition to the observer’s height, another vital consideration is the ob-
server’s maximum range of vision. On a flat surface, the maximum observable
distance will always be limited by the horizon, taking this as the imaginary line
where the sky seems to join either the land or sea. In that case, the distance is
approximately 5 km due to the Earth’s curvature assuming favourable weather
conditions. However, this statement does not apply when observing non-uniform
terrain from an elevated position, where the maximum range of vision is reduced.

Moreover, every observer does not have to present the same visual range as it
depends on the individual ability. This condition is relevant since one observer
could see another, but the opposite may not be the case. A representative ex-
ample could be when two observers are far apart, and one of them has a pair of
binoculars, giving them an advantage. This fact leaves space for using instru-
ments specifically designed for this purpose, rather than human observers with
limited capacities.

Once we have addressed the visibility concept for two points, we can move on
to the case of having a single observer in the terrain to analyse the surrounding
points. In this case, we seek to obtain (i) the visible area from the observer’s
location or (ii) the area from which the observer is seen. The results obtained
in both cases will be similar if we consider homogeneous visibility conditions
throughout the terrain.
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4.1.6. Viewshed

Many problems of terrain surface analysis require the evaluation of the data
around a reference point. It is the case of the calculation of the viewshed (VS),
which represents the geographical area that is visible from a POV in a given
DEM. This computation is included in some visibility modules from commonly
used GIS software such as ArcGIS [106], QGIS [107], and Google Earth. The
importance of this calculation stems from the fact that knowing visibility is almost
a requirement in many fields of study such as surveillance, telecommunications,
and environmental planning.

The viewshed computation has been thoroughly studied in the recent lit-
erature [102, 108|, being usually addressed using rotational plane sweep-based
algorithms; or only rotational sweep [109]. In this method, a line is traced from
the POV, which works as a vertex in the plane. This line rotates by 27 radians,
and all the points crossed by that line are analysed with respect to the vertex.

Another related approach involves the discretisation of the plane in azimuthal
sectors radiating from the reference point [110] (Figure 4.10). This division is car-
ried out by splitting the area that surrounds the POV into ns azimuthal sectors
(commonly 360 sectors of 1° degree each). An axis represents each azimuthal
sector at its centre, and points close to the axis are compared with the reference
location. Here, the statistical representativeness of every axis progressively de-
creases as we move away from the vertex since the width of the sector increases

Figure 4.10: Example of the azimuthal discretization of a given DEM. For the sake of
clarity, only one azimuth is shown.
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linearly with the radius. However, the required accuracy is also reduced to the
same extent in most cases. This issue is exploited in some situations where the
reference location works as the transmitter or receiver of specific signals whose
strength decreases with the square of the distance, such as radio signals, sound
waves, and line of sight.

The literature distinguishes three types of viewshed problems according to the
number of observers considered in the computation: (i) singular, (ii) multiple, and
(iii) total viewsheds.

4.1.6.1. Singular and multiple viewshed

The singular viewshed is the simplest visibility problem: it involves computing
the viewshed from a single observer at a specific elevation. As a starting point,
most viewshed computation algorithms perform the azimuthal partition of the
area. Then, different lines of sight (LOS), which correspond to the axis of each
sector, start from the POV and are radially distributed towards the most distant
areas (Figure 4.11a). Every target point crossed over by this line is sequentially
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(a) DEM with a single POV (b) Boolean viewshed map

Figure 4.11: Illustration of the singular viewshed problem. (a) presents a discretized
DEM with a single POV where only one sector is shown for the sake of clarity, although
all sectors are considered in practice. Low elevation values are shown in blue, whereas
red cells represent mazimum values. (b) shows the Boolean viewshed map result where
the areas visible from the POV are shown in green.
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compared to the POV based on the elevation values to compute its visibility.
Finally, the result is a Boolean raster map containing visible and non-visible
points from the POV in the terrain (Figure 4.11b).

Algorithm 4.1 presents an example of the general approach for the calculation
of the singular viewshed using a regular Cartesian grid, taking a single POV
and DEM as inputs. The initial coordinates of the observer’s location are (ig,
Jos ho), where the last coordinate is the height of the observer measured from
the eyes to the plane of the ground. The coordinates of the POV structure
used for the calculations are (i, j, h), where the last initially corresponds to the
elevation of the point in the terrain. V.S is the variable that will accumulate the
viewshed value, axis is the set of points included in a particular sector (s), and
select AzisPointSet adds candidate points within the sector, which will be used
to compute the viewshed.

If we consider that all points are aligned, then the viewshed for each sector can
be analysed using the linear viewshed function (Algorithm 4.2). It computes
the visible area in the input sector with respect to the POV located on the axis
of that sector. The visibility of each point within the linearised set of points axis
is checked following the direction from the nearest point to the furthest.!

Algorithm 4.1 General approach for solving the singular viewshed problem.

1: function SINGULAR _VIEWSHED(DEM, ig, jo, ho)

2: point POV, ; » = DEM{io][jo] > observer’s location
3: POV}, += hg > add observer’s height
4: float VS =0 > accumulated viewshed
5: for s = 0,ns do > sector loop
6: pointSet azis = select AzrisPointSet(DEM, POV, s)
7 VS 4= LINEAR _ VIEWSHED(POV, axis, true) > forward direction
8: VS 4= LINEAR_ VIEWSHED(POV/, axis, false) > backward direction
9: end for
10: VS x= (7/ns) > Papus theorem scaling

11: end function

INote that opposing sectors are shown interlinked in the sector loop because many viewshed
algorithms exploit the alignment of the corresponding data.
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Algorithm 4.2 Function that computes the viewshed given the set of points within the
structure azis.

1: function LINEAR _VIEWSHED(POV, azis, forward)

2: global bool visible = true > visibility status
3: global float maxf = —oo > max. angle
4: global pointSet visibleSet = {} > set of visible points
5: do > point loop
6: point T = azis.next() > current point
7 POINT _VIEWSHED(POV, T')

8: while T = azis.last()

9: return visibleSet.measure() > summation of visible areas

10: end function

A target point T is visible from the POV if its angular altitude @ is higher than
all the previous ones considered in the azis (maxzf), as shown in Algorithm 4.3.
The visible points from the axis are included in a set of points called wvisibleSet.
In order to improve efficiency, only the starting and ending points of a segment
are measured (visibleSet.add) and considered in processing. startRS and endRS
indicate whether a sequence of visible points has been found. First, the distance
between the POV and the first point found belonging to a visible section is stored
in disty. Afterwards, when the final visible point of this visible segment is found,
its distance with respect to the POV is measured and stored in dist. This process
is repeated until all points on the axis are analysed, as shown in the side view in
Figure 4.12. The projection of all visible segments throughout the sector results
in the generation of visible sections, commonly known as ring-sectors. The area
of each visible section (A,s), considering sectors of one degree of opening, is
computed as follows:

Ays = (1/360) - (R? — r?)

where R and r are the radius of the visible ring-sector related to the endRS and
startRS values, respectively, with respect to a particular POV.

Considering all of the above, the viewshed for a location is the summation
of the areas of every visible section (visibleSet.measure). This approach can
be seen as a vectorisation of the viewshed raster model, which reduces memory
accesses and mathematical calculations as proved in [110] and can be combined
with other methods.
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Algorithm 4.3 Function that computes the visibility of an input point T. Figure /.12
shows the procedure followed.

1: function POINT VIEWSHED(POV, T)

R e T =
AN R e

16:
17:

float dist = /(T; — POV;)2 + (T; — POV})? > current distance
float § = (POV}), — Ty) / dist > angular difference
bool prevVisible = visible
if (6 > maxh) then

visible = true > current point visible
else

visible = false
end if
bool startRS =prevVisible & visible

if (startRS) then > ring-sector begins
distg = dist > initial distance

end if

bool endRS = prevVisible & lvisible

if (endRS) then > ring-sector ends
visibleSet.add(disto, dist) > difference of distances

end if

18: end function

Side view:

Zenithal view: 4_- \ r/ >
|

—— |
startRS endRS startRS endRS

Figure 4.12: Side and zenithal views for a single POV, with a specific height ho,
from which two segments are visible (represented both by thick green segments). The

corresponding visible Ting-sectors are obtained for each one considering their starting
points (startRS) and ending points (endRS).
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A lot of research effort has been invested in reducing the number of operations
required to compute the singular viewshed problem, hence reducing the complex-
ity to the same extent. This computational complexity is initially O(N?) using a
non-optimised approach and considering an input DEM containing N points. For
example, the complexity to obtain the viewshed using point-to-point algorithms
such as R3 is O(N?/?), whereas it is reduced up to O(s - N'/2) using rotational
sweep.

Furthermore, the number of target points to analyse from a POV in the singu-
lar viewshed problem is significantly reduced from N to s- N'/2 by implementing
rotational sweep based algorithms [109]. Considering that a typical DEM ex-
ceeds several millions of points and the discretisation of the sector is rarely above
the required accuracy, the accomplished reduction using this type of algorithm is
between one and three orders of magnitude [111].

Likewise, the viewshed problem for several POVs can be raised (Figure 4.13a)
and will be addressed in depth in Chapter 5. This problem is usually tackled by
repeating the procedure applied to the singular viewshed problem for each POV
and combining the viewshed results (Figure 4.13b).

(a) DEM with multiple POVs (b) Boolean viewshed map

Figure 4.13: Illustration of the multiple viewshed problem. (a) presents a discretized
DEM with multiple POVs where only one sector per POV is shown for the sake of
clarity, although all sectors are considered in practice. Low elevation values are shown
in blue, whereas red cells represent mazimum values. (b) shows the Boolean viewshed
map result where the areas visible from the POV are shown in green.
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However, taking into account that the viewshed computation for a single POV
was already very time-consuming, the inclusion of new POVs has an adverse
effect on performance as the number of required operations increases. This issue
makes parallelism and supercomputing highly recommended for these sorts of
approaches and even more so when the aim is to compute the viewshed for each
point in the terrain, in a process commonly known as total viewshed computation.

4.1.6.2. Total viewshed

A complete visibility study in a particular area involves knowing the viewshed
from each point and every direction. This problem, known as total viewshed, is
one of the most challenging visibility calculations due to its high complexity and
computational cost. It involves obtaining the viewshed from each point in the
DEM as a POV (Figure 4.14a), and then accumulating their visibility results in a
new ‘heat’ map where each cell contains the viewshed value of the corresponding
location measured, e.g., in km? (Figure 4.14b).

(a) DEM with each point as POV (b) ‘Heat’ viewshed map

Figure 4.14: Illustration of the total viewshed problem. (a) presents a discretized
DEM with each point as POV where no sector per POV is drawn for the sake of clarity,
although all sectors are considered in practice for each POV. Minimum elevation values
are shown in blue, whereas red cells represent mazimum values. (b) shows the ‘heat’
viewshed map result, which uses a colour scale showing the points with greater visibility
in red and those with lower visibility in blue.
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The total viewshed problem was almost impossible to tackle not long ago
because (i) a typical DEM greatly exceeds several millions of points and (ii) the
singular viewshed computation is computationally demanding; hence repeating
this procedure N times would have been incredibly time-consuming on CPU.
The inherent complexity of the total viewshed problem is up to O(N?) if a non-
optimised approach is applied N times over a problem of O(N?) complexity.
However, using rotational sweep, the complexity can be reduced up to O(s-N 3/ ).

Algorithm 4.4 shows the steps required to address the total viewshed problem,
considering a DEM represented by a Cartesian grid with dimy x dima points. The
viewshed value, i.e., the visible terrain area for each point in the DEM is stored
in the total viewshed matrix (T s). This matrix has the same dimensions as the
DEM, and each cell contains a specific viewshed value obtained after performing
the corresponding singular viewshed computation (Algorithm 4.1). Some authors
have observed that swapping the loops of Algorithm 4.4 and Algorithm 4.1 can
significantly improve data locality in memory [111, 110]. This operation is one
of the pillars of the algorithm presented in this chapter.

Algorithm 4.4 General approach for solving the total viewshed problem.

1: function TOTAL VIEWSHED(DEM, ho)
2 for i =0, dimy do

3 for j =0, dimz do

4 Tvs[i][j] = SINGULAR_VIEWSHED(DEM, i, j, ho)
5: end for

6 end for

7

end function

Nowadays, most GIS software packages include specific modules for singular
viewshed computation; few provide multiple viewshed calculations and, when
they do, they use task queues showing poor computational performance—the
singular viewshed computation is repeated for each of the considered POVs. None
of these can solve the total viewshed problem, even though this information could
be of value to address well-known problems such as siting multiple observers [112]
and path planning with surveillance aims [113]. The first problem is related to
finding the fewest possible number of POVs providing maximum viewshed for a
specific area. The second involves designing a near-optimal path aiming to achieve
maximum terrain coverage. Both problems would be substantially simplified if
the viewshed from each point in the area is known beforehand [114].
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4.1.7. Summary of the main concepts

Since the next section presents our proposal to accelerate the visibility com-
putation considering the total viewshed problem, all previous concepts must be
clear before going into detail. To summarise:

= POV: stands for Point of View. It is the reference point where the observer
is located and from which the viewshed is calculated.

» Viewshed: area of the terrain visible from a single POV (the simplest
case) and involves a set of points visible from it.

= Visibility: status of a target point that indicates whether that point is
seen from another point.

On the other hand, the different viewshed problems described so far can be
summarised as follows (Figure 4.15):

= Singular viewshed: takes a single point in the DEM as POV. The result
is a Boolean viewshed map of visible and non-visible points.

= Multiple viewshed: takes a few points in the DEM as POVs. The result
is an accumulated Boolean viewshed map of visible and non-visible points.

= Total viewshed: takes each point in the DEM as POV. The result is a
‘heat’ viewshed map where each cell contains the measured viewshed value
of the corresponding location in the terrain.

As previously mentioned, the total viewshed computation is the most com-
putational demanding problem among visibility-related ones. This is the main
reason why it has been considered for this chapter.
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N = dimy - dimx

> Singular
e <2 j‘ viewshed
4 | dimy
L F h POV in L Boolean viewshed maps
or eac in
DEM
»  Considering sectors from 0° to 360° Multiple
- viewshed
Viewshed
computation
n—=N Total
viewshed

DEM | Digital Elevation Model -
N | Total number of points in DEM “Heat” viewshed map
L | List of target POVs in DEM
POV | Point of view in DEM
n | Total number of POVs in L

Figure 4.15: Diagram showing the different viewshed problems: singular, multiple,
and total viewsheds. This classification is based on the number of target points of view
(POVs) chosen for the DEM, each of which produces different outputs.

4.2. Related work

The most relevant problems of visibility analysis, with a particular focus on
the viewshed computation, fall into two large groups related to (i) singular and
multiple viewsheds and (ii) total viewshed.

4.2.1. Singular and multiple viewsheds

The viewshed analysis problem has been widely studied for many years given
the mass of interpolation computations required to produce precise results [115,
116, 117, 114, 118]. Authors usually use line-of-sight-based algorithms such as R3,
R2, or DDA [119, 120]. These methods project rays starting from the observer
towards the boundary of the DEM to obtain the points included in processing.
Another related strategy is XDraw [119], which computes the LOS function in
stages arranged as concentric squares centred on the position of the observer.

Many algorithms calculate the viewshed from a single POV, or a small num-
ber of POVs at best. In [121] a singular viewshed implementation was developed
for built-in GPU systems based on the LOS method and texture memory with
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bilinear interpolation. They achieve a speed-up up to 70x with respect to the
sequential CPU implementation. The GPU implementation proposed in [122]
achieves remarkable results in obtaining a Boolean raster map instead of a map
containing viewshed values. A novel reconfiguration of the XDraw algorithm
for GPU context is described in [101], which outperforms CPU and GPU im-
plementations of well-known viewshed analysis algorithms such as R3, R2 and
XDraw. Furthermore, an efficient implementation of the R2 viewshed algorithm
is carried out in [123] with a particular focus on input/output efficiency and
obtaining significant results in contrast to the R3 and R2 sequential CPU im-
plementations. The algorithm described in [124] focuses on a two-level spatial
domain decomposition method to speed-up data transfers, performing better than
other well-known sequential algorithms. Other extended approaches are focused
on obtaining the viewshed for multiple points [125, 126]. More recent research
is presented in [102] where fast candidate viewpoints are obtained for multiple
viewshed planning. These authors have also conducted a parallel XDraw analy-
sis [127, 108] to improve the results obtained by previous XDraw algorithms.

4.2.2. Total viewshed

Few studies addressed the total viewshed problem, and most of these focused
on a simplified version, e.g., the total viewshed in [128] is obtained by drastically
reducing the number of points to be processed. Likewise, the approach used
in [129] computes the visibility of small areas and not for specific points.

So far, the only algorithm that addressed the total viewshed problem using
high resolution DEMs is the TVS algorithm proposed in [130, 110]. It considers
the closest points to the line of sight as a sample set of points stored in a structure
called Band of Sight (BoS). In this approach, the distance to the axis determines
the number of points in the BoS [118]. Maximum memory utilisation was achieved
by reusing the points contained in the list and obtaining the viewshed for every
aligned point in the particular sector. However, TVS has important limitations:

= For a given POV, the analysis of the points inside the BoS is performed
sequentially because it is impossible to know whether a target point is
visible without knowing the state of the previous one.

s The implementation of the data reuse of the BoS produces a significant
overhead caused by the selection of the points included for each direction.

= [t is not appropriate for high-throughput systems, such as GPUs and many-
core architectures, because parallelism is limited to the sector level.
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4.3. sDEM: skewed Digital Elevation Model

This section describes the proposed methodology called skewed Digital Ele-
vation Model (SDEM) designed to improve data locality in memory for terrain
surface analysis using the total viewshed computation problem as a case study.
This approach takes into account the technical features of the CPU (host) and
GPU (device) processing units to take full advantage of the intrinsic parallelism
of the total viewshed computation. For the sake of simplicity, in the rest of
this chapter, the input DEM is called DEM and the proposed modification is
skwDEM.

First, the critical considerations of the data reuse method of SDEM are de-
scribed in this section. It is followed by the data relocation method used in the
same methodology. Then, the different steps required by sDEM are described.
Lastly, the different parts of the sSDEM implementation for multi-GPU systems
are presented, which are related to (i) Kernel-1 for the data restructuring, (ii)
Kernel-2 for computing partial viewshed results, (iii) Kernel-3 for obtaining the
final viewshed, and (iv) the host function managing the scheduling process.

4.3.1. Data reuse

Data reuse is key to optimising the total viewshed computation, so first, we
will introduce the structure that will manage this process. This structure is also
called Band of Sight (BoS) and serves as the basis for the process of restructuring
the DEM for each POV and sector. In this case, the BoS is used to find the closest
points to the line of sight for any reference POV and given sector. Thus, choosing
the right width for this structure is vital to improve data locality in accessing the
memory.

Figures 4.16a and 4.16b show two BoS widths of 2.5 v/N and v/ N—considering
the sector s = 45° for the sake of simplicity. The extensive statistical study
conducted in [110] proves that the width of this structure is not a determining
factor, as long as it is of the order of v/N. Therefore, sDEM uses this BoS width
to address the data repetition problem.

4.3.2. Data relocation

Once the BoS width has been set, the complete data relocation is performed to
transform the DEM (Figure 4.16b) into the skwDEM (Figure 4.16¢). The latter
is a new DEM skewed in shape as a function of the BoS width. The use of this
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(a) DEM; 2.5v/N BoS (b) DEM; VN BoS (¢) skwDEM; VN BoS

Figure 4.16: Three examples of Band of Sight (BoS) structures on the plane, con-
sidering a sector s = 45° for simplicity. The dark grid cells are not considered in the
visibility computation. (a) and (b) show two different BoS widths of 2.5/ N and VN,
respectively, with the same layout on the dimy z dimx DEM, whereas (c) presents the
restructuring of the 2 - dimy x dima skwDEM considering a BoS width of vV N. For
the sake of clarity, A-D labels are placed in the corner points of the DEM so that the
restructuring approach can be easily visualised. Note that only one BoS is shown.

structure enables the exploitation of the existing parallelism without adversely
affecting the accuracy of the results based on the following:

» The Stewart sweep method [111] is applied, which states that an outer loop
iterates over the sectors and an inner loop over the points in the DEM. It is
the only model that guarantees the reuse of data aligned in each direction.

= Given a sector, all the possible parallel bands of sight that cross the DEM
are built simultaneously. We apply the interpolation method based on a
simplified version of Bresenham’s line algorithm [131], which is commonly
used for line rasterisation. This algorithm was chosen for its high speed
while maintaining sufficient fidelity to the problem under consideration.

= For each sector, we apply the relocation method to the entire DEM only
once. For example, in the particular case of considering 180 sectors, the
data relocation takes place 180 times and always before starting the view-
shed computation. Thus, the relocation only depends on the chosen sector.
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Another advantage is that this method is particularly appropriate for pro-
cessing on the GPU: conditional structures are reduced to the maximum,
avoiding the well-known thread divergence penalty.

Regarding the relocation method, we initially considered three different pos-
sible layouts of rows and columns to build the skwDEM structure, as shown in
Figure 4.17. In practice, the elevation values of the same latitudes are stored con-
tiguously in memory in the DEM (Figure 4.17a); that is, the outer loop iterates
from north to south, whereas the inner loop iterates from west to east. Using
the interpolation method, all parallel segments from the DEM (Figure 4.17a)

= F

(a) DEM (b) Reorganised skwDEM

(c) Compacted; skwDEM (d) Compacted, skwDEM

Figure 4.17: The DEM and three possible results from the data relocation process
considering sector s = 45°, for the sake of simplicity. The DEM corresponds to the area
of the Montes de Malaga Natural Park (Malaga, Spain). (a) presents the input DEM,
(b) shows the skwDEM used in this work, and (c) and (d) introduce two possible ways
of compacting the data.
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are projected into the skwDEM structure (Figure 4.17b) so that the number of
non-null elements of both structures matches. Unlike the original, all the points
crossed by a given sector are placed in the same row in this reorganised dataset.
Therefore, memory accesses are sequentially performed, increasing locality and
performance.

The reorganised matrix shown in Figure 4.17b could later be compacted by
aligning all data to the left of the structure (Figure 4.17¢) or relocating the data
within the upper light colour triangle to the lower right area of the structure, thus
forming a dimy x dimx square structure (Figure 4.17d). The second method aims
to compact the information further to make memory access as regular as possi-
ble at the cost of increasing complexity and, therefore, building time. Although
both approaches seem to fit better for GPU processing, they have not revealed
significant differences in practice. Therefore, only the simplest and fastest ap-
proach shown in Figure 4.17b is used to build the skwDEM structure in every
implementation of sSDEM.

4.3.3. Proposed methodology

Given the specifics of the main structures related to BoS and skwDEM, the
sDEM methodology can be divided into the following steps (Figure 4.18):

1. For each sector s € [0,ns/2], do:

a) Create the skwDEM (2-dimy x dimz), which is unique for each sector,
from the DEM (dimy x dimx) and s.

b) Calculate the horizontal (A, D) and vertical (B, C) limits of the skw-
DEM structure, which depend on the sector s.

¢) Let POV, ; be the chosen point of view with ¢ and j coordinates. For
each point POV, ; € skwDEM with ¢ € [A, D] and j € [B, (], do:

1) Compute the linear viewshed considering the sectors s and s +
180°, i.e., analyse to the right and left the points in the row to
which POV, ; belongs in the skwDEM.

2) Accumulate the viewshed result in a new structure called skwVS,
which is similar in shape to the skwDFEM structure.

d) Transform skwVS into VS (viewshed in the DEM) by undoing the
operations performed in Step la. This procedure includes Pappus’s
theorem and also corrects the deformation introduced by the skwDEM.

e) Accumulate the results in VS.
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For each sector s € [0,ns/2] Iteration s = 38

Input Output

Skew method
skwDEM

For each point in skwDEM

’ Linear viewshed computation ‘

+

v
/ skwVS ;

Undo skew

+

A 4

[V 7

(a) Main loop (b) Single iteration

Figure 4.18: Flowchart of sSDEM for total viewshed computation. (a) shows the steps
inside the main loop, which runs through all the sectors, and (b) presents the outputs
obtained in a single iteration of the same loop. In the latter, null and low values are
shown in blue, whereas red cells represent mazimum values. The mathematical symbol
(+) represents the accumulation process.

Computing the viewshed for each sector is an embarrassingly parallel task, as
each process is independent. This fact reduces the total viewshed problem to the
analysis of ns/2 sectors considering every point in the skwDEM.

By skewing before computing the viewshed for a given sector, SDEM ensures
that each BoS—needed by each point as a POV—has been previously built and
included in the skwDFEM. Each row of the skwDEM corresponds to the static BoS
of each point included in it for a given sector; that is, if a point is a POV, the
rest of the points in its row will form the BoS for that point and sector. As the
skwDEM depends on the sector, it has to be reconstructed only ns/2 times. In
contrast, the BoS structure used in [110] must be reconstructed for each point
and sector, which corresponds to N - ns times.
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4.3.4. Multi-GPU implementation

The single-core and multi-core implementations achieved excellent results in
the different scenarios, as shown below in Section 4.4. Nevertheless, we believed
that the solution to the embarrassingly parallel problem at hand could be found
in significantly less time if sSDEM could run on single or multi-GPU systems.
Here, we will explain the proposed methodology with a particular focus on the
implementation designed for multi-GPU platforms.

Since the total view problem bears some resemblance to matrix processing, the
proposal to accelerate the calculation of the total viewshed focuses on exploiting
the intrinsic parallelism. In practice, we distribute the ns/2 sectors among all
available devices so that each device is in charge of processing a similar number
of sectors given by the chosen scheduling.

Each device sequentially launches three kernels, which we will describe below,
to process the viewshed from each point in the DEM and corresponding sectors.
For the sake of clarity, the kernels shown below are particularised for the sectors
from 0 to 45°, although this process is carried out up to 180°—only changing
the trigonometric function. After the processing stage, each device will contain
partial viewshed results that the host will accumulate in the final stage to obtain
the total viewshed. This accumulation method is executed on the host to avoid
dependencies between threads while performing the viewshed computation.

In the following sections, the block and thread identification numbers are
denoted as b;q and t;4, respectively, and the thread block dimension as bg;m, .

4.3.4.1. Kernel-1: obtaining the skwDEM structure

This kernel is in charge of transforming the DEM into the skwDEM structure
for a given sector. In this new model and for the chosen sector, points located
consecutively in the terrain are also stored sequentially in memory, improving
memory access performance. We used the interpolation method based on Bre-
senham’s algorithm to soften the projection of each point.

As shown in Algorithm 4.5, each thread interpolates the corresponding point
in the DEM according to its 2D thread identification number defined by 7 and j
variables. y and dest are used to obtain the target row of the skwDEM, which is
stored in p. That value is then used to index the skwDEM, which is filled in with
the corresponding elevation values as a function of r.
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Algorithm 4.5 Kernel-1 in charge of generating the skwDEM structure from the DEM
(0° < s < 45°).

1: int @ = bigy - baim + tidy > thread id,
2: int j = bids - bdim + tida > thread id,
3: float y = tan(s) - j > projection based on the sector (whole value)
4: int dest =y > integer part