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Abstract. Labeled medical datasets may include a limited number of
observations for each class, while unlabeled datasets may include obser-
vations from patients with pathologies other than those observed in the
labeled dataset. This negatively influences the performance of the pre-
diction algorithms. Including out-of-distribution data in the unlabeled
dataset can lead to varying degrees of performance degradation, or even
improvement, by using a distance to measure how out-of-distribution a
piece of data is. This work aims to propose an approach that allows es-
timating the predictive uncertainty of supervised algorithms, improving
the behaviour when atypical samples are presented to the distribution
of the dataset. In particular, we have used this approach to mammo-
grams X-ray images applied to binary classification tasks. The proposal
makes use of Feature Density, which consists of estimating the density
of features from the calculation of a histogram. The obtained results re-
port slight differences when different neural network architectures and
uncertainty estimators are used.

Keywords: Feature Density, Mahalanobis distance, Jensen-Shannon dis-
tance, Uncertainty, Deep Learning

1 Introduction

Machine Learning (ML) approaches are trying to be applied in the field of
medicine as a tool to help in classification and diagnosis tasks of diseases like
cancer and more recently COVID-19 by using medical images [1,2]. Cancer is
the first or second leading cause of premature death and breast cancer remains
the leading cause of death in women worldwide, although it can also be diag-
nosed in men [3]. In 2019, it was estimated that 268,600 new cases of invasive
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breast cancer were diagnosed among women and approximately 2,670 cases di-
agnosed in men [4]. To mitigate these numbers, it is necessary an early and
accurate diagnosis. The analysis of imaging evaluation such as mammography
or histopathological [5,6] images may supply that diagnosis. Due to this, ap-
proaches like ML have been extensively studied to improve classification tasks
and apply them to medical diagnosis.

In areas such as medicine, the main problem is the limited data set, its quality
and the acquisition process, and it causes that not all approaches are suitable
and not all methods provide optimal performance. ML algorithms usually face
many problems in real-world deployment environments and several examples
of this can be found [7—10]. According to [7] and [8] the labelled dataset can
include a limited number of observations for each class, in the context of breast
cancer, a more significant number of samples without cancer can be observed
than with cancer, which can cause a tendency of the models to classify better (or
recognize) the samples of the majority class, this is known as Data Imbalance.
Also in [9] mentioned that the test dataset can include observations of patients
with other types of pathologies than those observed in the training dataset, this
is known as Out-Of-Distribution (OOD) data, and it can be potentially harmful
to classifications models performance and cause a degradation in its accuracy.
Another well-studied problem [10] is the mismatch distribution of the data. This
usually happens when deploying the algorithms to a real-world environment.
Training models with a specific dataset does not guarantee that testing the model
in another setting (another hospital or clinic, usually called target dataset) will
give the same performance results.

Experimental evidence shows that despite accuracy being harmed by the
problems mentioned above and in [11] mentions that obtaining models that
can generalize the characteristics of breast cancer is complicated since there
is significant variability of anomalies which will always limit the efficiency of
the algorithms, the ML techniques they remain an attractive approach for the
detection, classification or segmentation of different types of anomalies. Hence,
it is essential to continue their improvement and investigation.

In ML, uncertainty measures how reliable or accurate a model is in classi-
fying the images in a test data set based on the supervised training that the
model has performed. In this work, we evaluate feature density as a measure of
uncertainty and compare this method with others proposed in state-of-the-art
like Mahalanobis distances. To perform this investigation, we offer the following
question: is it possible to obtain a statistically significant improvement between
using Feature Histogram to improve the estimation of predictive uncertainty
concerning other techniques that assume a Gaussian distribution of the data
set?

2 State of the Art

In [12] they propose to combine two uncertainty measurements. The first one,
based on subjective logic [13], u(p) : p — R, based on the information contained
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from the probabilistic predictions, while the second, a data closeness measure-
ment D,,(z) : z — R following a Mahalanobis approach [14] that measures the
distance D,, of a sample to the training distribution cluster. They have observed
that the Mahalanobis distance brings a complementary aspect, especially related
to out-of-distribution cases [14]. For instance, when a classifier trained on breast
images (ID) is fed with outliers from a flower dataset (OOD), the authors saw
that the rejection criterion based on the Mahalanobis distance is quite effec-
tive. Despite the effectiveness of the combination, further research is required on
automatic ways to find the optimal thresholds.

On the other hand, [15] their focus is on uncertainty estimation methods
that are practical and straightforward to implement. Specifically, the Softmax
and Monte Carlo Dropout (MCD) approaches were tested. The usage of a Soft-
max activation function in the output layer of a deep learning model can serve as
a basic method for uncertainty estimation. The complete set of values for a Soft-
max output given an input x; can also be used for uncertainty estimation. This
is done by calculating the entropy over the corresponding output distribution
p of Softmax. Softmax method alone can lead to poor representations of model
uncertainty due to typical overconfidence in neural networks’ predictions. The
MCD approach aims at having more robust estimations while still being sim-
ple to implement [16], when compared to the usage of Softmax for uncertainty
estimation. MCD is based on a Bayesian interpretation of the model’s parame-
ters. According to their results, an improvement with statistical significance was
observed for SSDL models over supervised models.

To deal with data imbalance, [8] propose to use the transfer learning ap-
proach. Multiple models were trained under different training configurations to
evaluate the impact of SSDL on their Transfer learning (a simple Domain adap-
tation method) and loss function based class-imbalance correction were also
tested. Deep learning models were first trained in a supervised manner with
complete mammography datasets D% ;nycqq and DL gy, in order to obtain
source-trained models which were further fine-tuned on their target Costa Rican
dataset in a Supervised manner, with limited amounts of labelled observations.
In summary, models that were subject to do main adaptation from a source
mammography dataset showed improved classification performance results in
comparison to other experimental configurations tested there. nd

3 Methods

3.1 Mammography Datasets

Three different mammography datasets were used to carry out the experiments.
The characteristics of those datasets are summarized in Table 1 and some sam-
ples of X-Ray images are illustrated in Figure 1.

INbreast The INbreast dataset introduced in [17] is a dataset containing a
wide variety of breast anomalies such as masses, calcifications, architectural dis-
tortions, asymmetries and images with multiple anomalies at the same time, and
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Table 1: Summary of characteristics of the datasets.

INbreast [17]|CBIS-DDSM [18]|CR-Chavarria 2020 [8]
Origin Portugal United States Costa Rica
Year 2011 1997-2016 2020
Cases 115 1522 87
Images 410 3103 282

(a) Benign sample of IN- (b) Benign sample of (c¢) Benign sample of CR-
breast CBIS-DDSM Chavarria

(d) Malignant sample of (¢) Malignant sample of (f) Malignant sample of
INbreast CBIS-DDSM CR-Chavarria

Fig. 1: Mammogram samples from each dataset used according to a binary clas-
sification from a CC view (top-down view of the breast).

usual patient samples. This dataset was built from 115 cases of X-ray images
originating at Centro Hospitalar de Sao Joao at Porto, Portugal. Of the 115
cases, 90 cases have associated two images for each breast, belonging to each of
the views (Craniocaudal (CC): which is a top to bottom view of the breast; and
Mediolateral oblique (MLO): which is a side view of the breast); that is, 4 images
associated with each patient; the remaining 25 cases only have related images
for each of the views; giving a total of 410 X-ray images. The resolution of the
images varies depending on the size of the patient’s breast. In addition, these
images were evaluated and classified according to the categories of BI-RADS and
according to their density measurement. For this case, the images were acquired
digitally (Full-Field Digital Mammography) and stored in a DICOM (Digital

Imaging and Communications in Medicine) format.
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CBIS-DDSM The Curated Breast Imaging Subset of Digital Database of
Screening Mammography (CBIS-DDSM) [18] is an improved version of the Dig-
ital Database of Screening Mammography, which contained 2620 cases from dif-
ferent sources. This dataset has X-Ray images with standard samples, benign and
malignant cases of breast cancer. The main problem with the original database
was that some of the information attached to each case was limited or difficult
to access. Due to this, a new dataset is created to improve the quality; to do
this, inaccurate images or images that did not meet confidentiality standards are
discarded. In [8] it is detailed that CBIS-DDSM contains a total of 3103 digitized
images (scanned) belonging to 1566 cases, separated according to the anomaly
presented in the X-Ray images (masses or calcifications) and classify according
to the category of the BI-RADS system and according to its density measure.
By classifying the dataset in a binary way, a total of 1728 images with benign
cases were obtained and 1375 images with malignant cases.

CR-Chavarria-2020 Introduced in [8] the dataset from the Dr. Chavarria
Estrada Medical Imaging private clinic located in Costa Rica. In [8] this dataset
is used as out-of-distribution data as it comes to represent the conditions of a
real-world deployment environment for the Machine Learning algorithms. The
dataset was built from 87 cases, whose patients have an age range of 40 to 90
years. It contains 341 images, of which only 282 images are used, because in
some cases the image does not have optimal quality or the patients have breast
implants, which could produce noise in the classification models. When perform-
ing the classification in a binary way, the result is that 268 images are negative
samples and 14 images are positive samples of cancer, showing a clear data im-
balance in its classes. The images belonging to CR-Chavarria-2020 dataset were
evaluated and classified according to the BI-RADS categories. Also, the images
were acquired digitally form(FFDM).

3.2 Data Preprocessing

As part of the X-Ray image preprocessing from all three datasets described
above, it was necessary to perform three operations on the datasets:

— A readjustment of the resolution of each image was performed, resulting in
images of 224x224 pixels, dimensions also used in the state-of-the-art litera-
ture in previous experiments, in order to reduce execution time, processing
load and amount of disk space used.

— It was also necessary to change the file extension (image format) from DI-
COM to BMP (Windows Bitmap).

— This work was focused on the binary classification of the samples, because
of this it was necessary a reclassification of the available datasets, similar
to [8], where mammograms labelled with BI-RADS categories 4, 5 and 6
are defined as positive cases of breast cancer, while mammograms labelled
with categories 1 and 2 are defined as negative cases of breast cancer. Image
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samples labelled with categories 0 and 3 were discarded due to the peculiarity
of their characteristics.

It was necessary to perform a second preprocessing stage on the dataset
CBIS-DDSM since the X-ray images belonging to this set were digitized (scanned),
thus their images were noisy. The anomalies observed are the following:

— In the pixels surrounding the breast it is observed as a blur (pixels in different
shades of grey) similar to a shadow, which could cause the classification
algorithms to take those areas as part of the image’s characteristics and
cause a classification deficiency. To clean up noise, it was used the procedure
described in [19].

— Despite the preprocessing that was given to the images described in the
previous point, after a visual inspection it was found that in some images
there were still remains of annotations of the type of view or data belonging
to the X-ray, which could generate a bias within the classification model. To
eliminate the remaining noise, it was necessary to make manual annotations
of the area with noise and treat them using an algorithm.

After a second visual inspection of the images in the CBIS-DDSM dataset,
it was possible to observe that in some exceptions the algorithm removed a
considerable part of the breast. For these cases, manual cleaning of the image
was carried out, similar to item two described above.

3.3 Training Process

For this work, the FastAI implementations of AlexNet and DenseNet architec-
tures were chosen as classification models, were used a pre-trained version of
the same and subsequently a Fine-Tuning process was performed on the dataset
INbreast and CBIS-DDSM.

Initially, the configuration of hyperparameters used is the default configu-
ration by the FastAl library, i.e. no modification was made to the algorithm
to improve its accuracy when classifying images, with that a maximum of 70%
accuracy was obtained on classification tasks, to improve that and achieve the
accuracy reported in the state-of-art was resorted to using of Adam optimiza-
tion function and data augmentation technique but was not obtain a statistical
improvement.

Since the purpose of this work is not focused on obtaining models with the
best possible accuracy in classification tasks, but to try uncertainty techniques,
no further modifications were made to the classification models and left the
default settings. To a certain extent, it is sought that the models are not per-
fect and that they make errors, in order to be able to evaluate the uncertainty
estimators.

Initially, the models were trained from 857 X-ray images as shown in Table 2
for a maximum of 50 epochs. The selection of these images was done randomly.
In order to improve the accuracy of the models, it was also experimented the
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Table 2: Composition of images from the training dataset

Number of| Class
Dataset .
images |Balance

INbreast BI-RADS-1 47 949
INbreast BI-RADS-2 195
INbreast BI-RADS-4 34

INbreast BI-RADS-5 39 7
INbreast BI-RADS-6 4

CBIS-DDSM Benign Calcifications 140 399
CBIS-DDSM Benign Masses 189

CBIS-DDSM Malignant Calcifications 92 909
CBIS-DDSM Malignant Masses 117

training of the models with more epochs (e.g. 200 epochs) and tried to use a more
balanced training set, but it did not obtain an improvement of the performance.

From the training process, the feature extractor was obtained, which in simple
words are all those operations or mathematical processes that the network has
used to extract the features of images. The feature extractor is used as part of
the uncertainty estimators. The aim is to obtain the features of the correct and
incorrect estimations and compare them with the features of the training images.

3.4 Uncertainty Estimation Process

Once the training of the models is finished, the uncertainty estimators were
evaluated. For this, 10 test sets were used. Once the network has classified the
test images, the confusion matrix and the network’s predictions were used to
find out the number of correct and incorrect estimations. From this information,
representative subsets were created, these sets (correct and incorrect estimations)
were subsequently processed by the uncertainty estimator models, together with
the other necessary parameters. (similar to data flow shown in Figure 2).

For the Mahalanobis Distance method, it was necessary to calculate the co-
variance matrix and the vector of means, from the training dataset, these ele-
ments are the basis that was used to estimate the uncertainty of the previously
built image sets. For each image within the subsets mentioned above, an uncer-
tainty measurement was obtained, thus creating two vectors of uncertainty, i.e. a
vector with uncertainties of correct estimations and the other with uncertainties
of incorrect estimations. Once this information was obtained, a PDF (Proba-
bility Density Function) was created for each of the uncertainty vectors, and it
proceeded to calculate the distance between them (Jensen-Shannon Distance).
The distance will be compared subsequently with the other estimator method.

For the Feature Density method, it was first necessary to estimate the feature
histogram of the training dataset, this histogram is the basis for estimating
the uncertainty of the previously constructed image subsets. As in the previous
method, for each subset (correct and incorrect estimations) a vector was obtained
that contains each one of the uncertainty measurements corresponding to each
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Fig. 2: Schema of the estimation of uncertainty

image. Again, another PDF was created for each of the uncertainty vectors and
the distance between them was calculated.

Once the Jensen-Shannon distance of the uncertainty vectors has been mea-
sured using each of the methods, a direct comparison was made as to which
method is more accurate. As mentioned above, the Jensen-Shannon distance of
the uncertainty distribution is intended to be as large as possible.

4 Experiment results

To evaluate the performance of the uncertainty estimator models, 10 experiments
(batches) were used, each of the test sets had 60 randomly selected X-ray images,
covering each of the types of images available. It is important to mention that
the network had never seen the images of test sets previously. In the first five
experiments were used in-of-distribution images, i.e. images that belonged to
the INbreast and CBIS-DDSM datasets with which the network was trained.
In the remaining five experiments, different degrees of out-of-distribution data
contamination were used, as shown in Table 3, belonging to the CR-Chavarria-
2020 dataset.

The first experimental stage it was necessary to train the AlexNet architec-
ture with the INbreast and CBIS-DDSM dataset with the number of images
detailed in Table 2, 20% of the total images were used as a validation set. The
neuronal network was trained for 50 epochs. The maximum accuracy obtained
in the train validation was 70%.
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Table 3: Evaluation experiments for the uncertainty estimation methods

Experiments without Experiments with
contamination contamination
N° of Number Distribution|N° of] Number Distribution
of of
Exp.| . Percentage | Exp. | . Percentage
images images
75% 10D
1 60 100% 10D 6 60 95% OOD
50% 10D
2 60 100% 10D 7 60 50% OOD
50% 10D
3 60 100% 10D 8 60 50% OOD
25% 10D
4 60 100% IOD 9 60 75% OOD
5 60 100% IOD 10 60 100% OOD

Table 4: Number of correctly and incorrectly classified images, using INbreast
and CBIS-DDSM as IOD data and CR-Chavarria as OOD data, with an Alexnet
architecture for classification.

Experiments without Experiments with
contamination contamination
N° of] Correct. Incorrect. Acc N° of| Correct. Incorrect. Ace
Exp. |Estimations|Estimations Exp. |Estimations|Estimations
1 33 27 0,5500| 6 31 28 0,5254
2 31 29 0,5167| 7 31 29 0,5167
3 32 28 0,5333| 8 33 27 0,5500
4 33 27 0,5500{ 9 40 20 0,6667
5 28 32 0,4647| 10 45 15 0,7500

Despite not obtaining high accuracy in the classification tasks, it was not
taken as an impediment to continue with the experiments, since a perfect classi-
fication model was not sought. Table 4shows the number of correct and incorrect
estimations made by the neural network over the test dataset, as well as the ac-
curacy with which it was made.

Not in all experiments can the capacity of the neural network to classify OOD
data be determined with such precision, although experiment 10 of Table 4 can
be taken as a basis, where there is 100% of OOD data and the model adequately
classified 75% of the samples. In Table 5 and 6 the averages of the uncertainty
measurements were compiled for the ten experiments carried out in this stage.

Despite being hardly noticeable, when analyzing the averages of the uncer-
tainty values, there are two tendencies:

— The difference between the uncertainty measurements for the correct and
incorrect estimations is minimal in the case of the Mahalanobis Distance,
whereas with the Feature Density method the uncertainty measurements for
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Table 5: Average of uncertainty measurements over the correct and incorrect
estimations, using INbreast and CBIS-DDSM as I0D data.

N° of Mahalanobis FD Method
Exp. Distance
Correct. Incorrect. Correct. Incorrect.
Estimations|Estimations|Estimations|Estimations
1 9,7627 7,6000 388,2441 386,3513
2 7,9117 6,3012 384,3943 394,4933
3 8,9966 7,2569 336,9922 381,4414
4 7,6128 8,4158 385,8245 395,2873
5 9,4562 7,2151 385,8129 394,8537

Table 6: Average of uncertainty measurements over the correct and incorrect
estimations, using INbreast and CBIS-DDSM as IOD data and CR-Chavarria
as OOD data.

N° of Mahalanobis FD Method
Exp. Distance
Correct. Incorrect. Correct. Incorrect.
Estimations|Estimations|Estimations|Estimations
6 9,0266 5,7338 416,1937 423,9887
7 8,6063 8,1578 491,3473 465,5490
8 8,0021 7,0746 459,0135 478,2890
9 9,2823 6,6258 520,9386 505,8273
10 11,5599 6,6558 548,6212 554,1428

the incorrect estimations are a little greater than the uncertainty measure-
ments for the correct estimations.

— The uncertainty measurements for the experiments with OOD data are a
little greater than the uncertainty measurements for the experiments without
OOD data, the most noticeable difference could be seen with the Feature
Density method.

The observations above are not always met, especially using the Maha-
lanobis Distance method. Thus, it is necessary more experiments to determine
the causes. All information about the comparison between both methods are
showed in Table 7.

One aspect in which there is a big difference between both estimating meth-
ods is in the execution time and computational cost. With a convolutional layer
belonging to the AlexNet architecture, the Mahalanobis Distance method takes
an average of 0.3 milliseconds to process an experimental batch, while with the
Feature Density method it takes an average of 41 seconds. The big difference
between the execution times is due to the calculation of the Feature Histogram
for each one of the dimensions of the training set when it is processed by the
Feature Extractor. To calculate the execution time using the Mahalanobis Dis-
tance method, the computation time of the covariance matrix and the vector of
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Table 7: Jensen-Shannon distance between the uncertainties of correct and in-
correct estimations, using INbreast and CBIS-DDSM as IOD data and CR-
Chavarria as OOD data. Classification architecture: AlexNet.

Experiments without Experiments with
contamination contamination
IS Plstance JS Distance JS Plstance JS Distance
N° of] with the . N° of] with the .
Exp.|Mahalanobis with the Exp |Mahalanobis with the
Method FD Method Method FD Method
1 0,3639 0,3579 6 0,3865 0,3011
2 0,3883 0,3409 7 0,3639 0,3480
3 0,3573 0,3158 8 0,3469 0,4000
4 0,4419 0,3069 9 0,3666 0,3079
5 0,2932 0,4647 10 0,3896 0,5324
Avg 0,3689 0,3573 0,3707 0,3779
Std 0,0481 0,0566 0,0157 0,0849

means plus the batch processing time are added. In the case of Feature Density,
the time it takes to calculate the Feature Histogram of the training set is added
plus the batch processing time.

As a second experimental stage, a DenseNet architecture was used, the pro-
cess of both training, validation and testing was similar to that used with the
AlexNet architecture.

The results obtained for the Jensen-Shannon distance are shown in Table
8. As can be seen when using a feature extractor belonging to the DenseNet
network, there is a more notable difference between both estimating methods;
In this case, the Feature Density method is the one with the highest value for
both the IOD and the OOD samples. This would indicate that the performance
of the method is related to the type of Feature Extractor that is used.

When using a more complex Feature Extractor, the execution time and
the computational cost increased significantly for both methods. For the Ma-
halanobis method the average time in the execution of the experiments was
3.6047 seconds, while for the Feature Density estimator it was 1763.3704 sec-
onds (approximately 30 minutes), this difference between the times is due to the
fact that with the Feature Extractor produced from the DenseNet architecture,
1024 dimensions are obtained as a result, at which The Feature Histogram must
be calculated from the training data set. Therefore, the little gain obtained by
estimating the uncertainty is overshadowed by the execution time invested.

5 Conclusions and recommendations

This research was carried out to evaluate the feature density method as an un-
certainty estimator, applied to the binary classification of X-ray images (mam-
mograms), using the AlexNet and DenseNet neural network architectures.
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Table 8: Jensen-Shannon distance between the uncertainties of the correct and
incorrect estimations, using INbreast and CBIS-DDSM as 10D data and CR-
Chavarria as OOD data. Classification architecture: DenseNet.

Experiments without Experiments with
contamination contamination
I8 F)lstance JS Distance I8 Plstance JS Distance
N° of] with the . N° de| with the .
Exp. [Mahalanobis with the Exp |[Mahalanobis with the
Method FD Method Method FD Method
1 0,2934 0,3479 6 0,1076 0,4151
2 0,2722 0,4098 7 0,3647 0,3779
3 0,2234 0,3988 8 0,3710 0,4193
4 0,3476 0,5553 9 0,4280 0,4163
5 0,3105 0,5180 10 0,3798 0,4209
Avg 0,2894 0,4460 0,3296 0,4099
Std 0,0412 0,0778 0,1135 0,0161

Based on the results of this work, no statistically significant improvement was
found between the feature density method concerning the Mahalanobis Distance
as an uncertainty estimator method when using an AlexNet architecture. In the
case of the DenseNet architecture, a more notable difference can be observed, but
the results are not entirely conclusive. This way, more experiments are needed
to reach a more accurate answer.

If the execution time and the computational cost invested in estimating the
uncertainty using both methods are taken into consideration, it can even be
thought that the Mahalanobis Distance has some advantage from that perspec-
tive. It is necessary to emphasize that the execution time and computational
cost is closely related to the type of architecture selected for the experiments.

Despite the conclusions reached in this research, this does not mean that
the feature density method should be discarded entirely as an estimator of un-
certainty. Like everything in Artificial Intelligence, more experiments must be
carried out to reach an accurate conclusion about which method has a better
performance.

As recommendations to continue with the work raised in this research, it
proposes:

— Perform more experiments, with a more significant number of images for
both training and testing. As there are few images and tests, no conclusive
trend regarding improvement can be observed. Another recommendation
is to experiment with data augmentation approaches and find the optimal
combination of transformations on the images.

— Use other convolutional network architectures to investigate if there are ar-
chitectures (and thus their feature extractor) where the performance of the
feature density method might be better.
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— Experiment with the hyperparameters of the architectures until finding an
optimal configuration, which can reach the accuracy proposed in [15] and
experiment if there is a variation in the estimation of the uncertainty.

— Experiment with other datasets of medical images, with the possibility that
in different contexts, a significant improvement is obtained, since not neces-
sarily when getting a low or high performance in a specific context means
that it must work in the same way in others.
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