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The aim of this paper is to show how we can induce contact structures, contact metric 
structures and Sasaki structures on a null hypersurface from a rigging vector field. We give 
several explicit examples of this construction and some obstructions to its existence. For 
example, contact metric structures can be introduced only on zero null mean curvature null 
hypersurfaces, whereas Sasaki structures can only be introduced in totally geodesic ones. 
In particular we show how we can construct a Kähler halo around an isolated horizon of 
a black hole. We also study the stability of the construction. We prove that close enough 
contact metric (resp. Sasaki) structures can be connected by a one parameter family of 
contact metric (resp. Sasaki) structures.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A contact structure in a 2n + 1-dimensional manifold M is a codimension one distribution which is maximally non-
integrable. This means that there is an open covering of M such that for each open set U in this covering there is a 
one-form ω ∈ �1(U ) such that the distribution is given by the kernel of ω and

ω ∧ (dω)n �= 0 (1)

at every point of U . Contact structures have applications to different fields, as thermodynamic, mechanics and optics, and 
they can be considered as the odd-dimensional analogue to symplectic structures.

We will always consider coorientable contact structures, that is, the codimension one distribution is given by the kernel 
of a globally defined one-form ω, called contact form. As a consequence M is orientable and there is a distinguished vector 
field ξ , called Reeb or characteristic vector field, which is the unique such that ιξ dω = 0 and ω(ξ) = 1. Hereafter, we will 
use the same letter ξ to denote other (a priori) vector fields, but it will turn out that they are always Reeb vector fields.
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If there is a field of endomorphisms φ, a vector field ξ , a one-form ω and a Riemannian metric g on M such that

φ2 = −id + ω ⊗ ξ,

g(φ(U ),φ(V )) = g(U , V ) − ω(U )ω(V )

for all U , V ∈ X(M), then we say that (φ, ξ, ω, g) is an almost contact metric (ACM) structure on M . In this case, it follows 
that φ(ξ) = 0, φ is skew-symmetric and ω is the metrically equivalent one-form to ξ .

A contact manifold (M, ω) always carries an ACM structure (φ, ξ, ω, g) such that ξ is the Reeb vector field of the contact 
form ω and

dω(U , V ) = 2g(U , φ(V )) (2)

for all U , V ∈X(M) [5, Theorem 4.4], where our convention for the exterior derivative is such that

dω(U , V ) = Uω(V ) − V ω(U ) − ω([U , V ]).
An ACM structure (φ, ξ, ω, g) is called a contact metric (CM) structure on M if ω is a contact form and Equation (2)

holds. If moreover it holds

(∇U φ) (V ) = g(U , V )ξ − ω(V )U

for all U , V ∈X(M), then (φ, ξ, ω, g) is called a Sasakian structure on M .
The relationships between contact metric, Sasakian, symplectic and Kählerian manifolds are well-known. Symplectic and 

Kählerian structures have been used in the geometric quantization program. The existence of a Sasaki structure in the 
horizon of a kind of black holes and a Kählerian halo around it, as we will see in the present work, deserves further study 
to understand its significance, if any.

On the other hand, a hypersurface of a Lorentzian manifold is null if the metric tensor is degenerated on it. In some 
sense, null hypersurfaces of a Lorentzian manifold resemble the Lagrangian and Legendrian submanifolds in symplectic and 
contact manifolds: the induced structure from the ambient space is degenerated.

The rigging technique as introduced in [11] tries to overcome the difficulties arisen from this degeneration by inducing 
a screen distribution, a null section and a Riemannian metric on the null hypersurface from a rigging. A rigging for a null 
hypersurface L is a vector field ζ defined in some open neighbourhood of L such that ζp /∈ T p L for all p ∈ L. If ζ is defined 
only over L, then we call it a restricted rigging.

If the rigging exists, then we can take the unique null vector field ξ ∈ X(L) such that g(ζ, ξ) = 1 (called rigged vector 
field) and the screen distribution given by Sp = ζ⊥

p ∩ T p L for all p ∈ L. We can also define the rigged metric as the Rieman-
nian metric on L given by g̃ = g + ω ⊗ ω, where ω = i∗α, α is the g-metrically equivalent one-form to ζ and i : L → M is 
the canonical inclusion. This metric makes ξ a ̃g-unitary vector field orthogonal to S . Moreover, ω is ̃g-metrically equivalent 
to ξ , so it is called the rigged one-form. The rigged data associated to the rigging ζ is the triple (ξ, ω, ̃g).

The rigging technique presents two main advantages. The first one is that all the geometric objects defined above from 
the rigging are tuned together in a way that allows us to link properties of the null hypersurface with properties of the 
ambient space. The second one is the presence of the Riemannian metric g̃ , whose geometry is reasonably well coupled 
with the ambient geometry in most cases and it allows us to use Riemannian tools for the study of the null hypersurface, 
[11].

We can define the following three tensors for a fixed rigging for a null hypersurface.

B(U , V ) = −g(∇U ξ, V ), (3)

τ (U ) = −g(∇U ξ, ζ ), (4)

C(U , V ) = −g(∇U N, P (V )), (5)

for all U , V ∈X(L), where P : T L → S is the canonical projection associated to the decomposition

T L = span{ξ} ⊕ S

and N = ζ − 1
2 g(ζ, ζ )ξ is the unique null vector field defined on L, orthogonal to the screen distribution and such that 

g(N, ξ) = 1.
The tensor B is called the null second fundamental form. It is symmetric and it is related to C by the formula

−2C(U , X) = dω(U , X) + (
Lζ g

)
(U , X) + g(ζ, ζ )B(U , X) (6)

for all U ∈X(L) and X ∈ S . Another important formula relating the second fundamental form and the rigged metric is

(Lξ g̃)(X, Y ) = −2B(X, Y ) (7)
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for all X, Y ∈ S , which in particular leads us to

H = −d̃ivξ, (8)

being H the null mean curvature of L. Moreover, Equations (4) and (5) show that

C(ξ, X) + τ (X) = −dα(ξ, X) = −dω(ξ, X) = −g̃(∇̃ξ ξ, X) (9)

for all X ∈ S .
It is said that L is totally geodesic if B = 0 and totally umbilic if B = ρg for certain ρ ∈ C∞(L). Observe that these 

definitions do not depend on the chosen rigging, although the tensors B , τ and C do depend.
The philosophy of the rigging technique is to select an adapted rigging for each situation in order to endow the associated 

rigged data with appropriate properties which will allow us to unveil properties of the null hypersurface itself.
Following this philosophy, in this paper we construct a contact, contact metric or Sasaki structure on a null hypersurface 

starting from a rigging and using its rigged data. We give some illustrative examples of this construction. In Example 2.4
we show that any contact metric or Sasaki structure in a three-dimensional Riemannian manifold can be realized by our 
construction as the associated structure of a suitable rigging on a null hypersurface.

Some obstructions to get a contact metric or Sasaki structure are also given. For example, if we obtain a contact metric 
structure, then the null mean curvature is zero and if we get a Sasaki structure, then the null hypersurface is totally geodesic. 
Moreover, under a curvature assumption we also get a topological obstruction for the existence of a Sasaki structure in a 
compact null hypersurface.

Finally, we prove that the contact metric structures constructed in this way are stable in the following sense: if a one 
parameter family of riggings connects two riggings each of which have an associated contact metric structure, then each 
element of the family has an associated contact metric structure. In particular, the contact structure induced from a timelike 
contact metric rigging in a compact null hypersurface, if any, is unique up to contactomorphism.

2. Contact metric rigging for null hypersurfaces

Definition 2.1. A rigging for a null hypersurface is a contact rigging if its rigged one-form is a contact form.

Observe that in this case the rigged vector field ξ does not need to be the Reeb vector field of the rigged form ω. 
A necessary and sufficient condition for this to happen is that ξ is g̃-geodesic, since

ιξdω(U ) = g̃(∇̃ξ ξ, U )

for all U ∈X(L).

Example 2.1. Let M = R4 be the Minkowski space with metric g = 2dtdx + dy2 + dz2. The plane L given by t = 0 is a null 
hypersurface and ζ = ∂t + y∂z is a rigging which induces the rigged vector field ξ = ∂x and the rigged one-form ω = dx + ydz. 
Therefore, ζ is a contact rigging for L. The Reeb vector field in this case is just the rigged vector field ξ = ∂x .

If we take the rigging ζ ′ = exζ , the rigged vector field is ξ ′ = e−xξ and the rigged one form is ω′ = exω, which is also a 
contact form. But the Reeb vector field of ω′ is not ξ ′ , since

dω′ = exdx ∧ ω + exdω,

thus ιξ ′dω′ = ydz �= 0.

A contact form ω in a null hypersurface L such that ω(u) �= 0 for all null vector u ∈ T L always comes from a contact 
(restricted) rigging. In fact, we can take a global null section ξ ∈ X(L) with ω(ξ) = 1 which jointly with the screen distri-
bution given by kerω determines a restricted rigging ζ with rigged one-form ω, [8, p. 79]. If moreover L is closed in the 
topological sense, then we can extend ζ to an open set containing L using the differentiable version of the Tietze extension 
theorem, [2, Theorem 6.5.9].

A standard way to get a contact form on a hypersurface in a symplectic manifold is to use a transverse Liouville vector 
field. We can take advantage of this construction in our situation. To be precise, suppose that the Lorentzian manifold is also 
furnished with a symplectic form σ . If ζ̂ is a Liouville vector field transverse to a null hypersurface L and we call α = ι̂ζ σ , 
then ω = i∗(α) is a contact form on L, [9, Lemma 1.4.5]. Take ζ the metrically equivalent vector field to α. If ζ is transverse 
to L, then it is a contact rigging since its rigged one-form is precisely ω. We give an explicit example of this construction.

Example 2.2. Let (F , η) be a contact manifold and 
(
R× F , σ = d(etη)

)
its symplectization. Call ζ̂ = ∂t which is a Liouville 

vector field and α = ι̂ζ σ = etη.

Suppose that gF is a Riemannian metric on F and consider the Lorentzian metric on R × F given by g = −dt2 + f (t)2 gF , 
where f ∈ C∞(R) is a positive function. If h : θ ⊂ F →R is a function with ||∇ F h|| = f ◦ h, then the graph of h given by
3
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L = {(t, x) : t = h(x), x ∈ θ}
is a null hypersurface and ( f ◦ h)2∂t +∇ F h is a null section on L, [10]. Since g(̂ζ , ( f ◦ h)2∂t +∇ F h) = −( f ◦ h)2 �= 0 we have 
that ζ̂ is transverse to L, so ω = i∗(α) is a contact form on L. Moreover, if η(∇ F h) �= 0, then α(( f ◦ h)2∂t + ∇ F h) �= 0. Thus 
the g-metrically equivalent vector field to α is transverse to L, so it is a contact rigging for L.

With the same arguments, we can also ensure directly that a rigging is a contact rigging in the following way.

Lemma 2.1. Let (M, g) be a Lorentzian manifold, L a null hypersurface and ζ a rigging for it with g-equivalent one-form α. Suppose 
that dα is a symplectic form and take ̂ζ the unique vector field such that ι̂ζ dα = α. If ̂ζ is also a rigging for L, then ζ is a contact 
rigging.

Proof. Just use the Cartan Formula to get that ζ̂ is a Liouville vector field, so ω = i∗(α), which is the rigged one-form 
associated to ζ , is a contact form on L. �
Example 2.3. Let (F , gF ) be a (2n +1)-dimensional Riemannian manifold, θ ∈ �1(F ) and f ∈ C∞(F ) a positive function such 
that df ∧ (dθ)n is a volume form on F . Consider the static spacetime (M, g) given by(

R× F ,− f dt2 + θ ⊗ dt + dt ⊗ θ + gF

)
.

The vector field ζ = ∂t is a timelike Killing vector field and α = − f dt + θ is its metrically equivalent one-form. The 
2-form σ = dα = −df ∧ dt + dθ is a symplectic form on M . We want to find a vector field ̂ζ such that ι̂ζ σ = α.

Since df ∧ (dθ)n is a volume form, dθ |ker df is non-degenerate, but dθ is degenerate because dim F is odd. This implies 
that there is a unique vector field R ∈ X(F ) with ιRdθ = 0 normalized by df (R) = f . Using the non degeneracy of dθ |ker df , 
there is also a unique vector field X0 ∈ X(F ) with X0 ∈ ker df and ιX0 dθ |ker df = θ |ker df . In particular, θ(X0) = 0. Using 
ιX0 dθ(R) = 0, it holds

ιX0dθ = θ − θ(R)

f
df .

Now, if we define

ζ̂ = θ(R)

f
∂t + X0 + R,

then we have

ι
ζ̂
σ = −df (̂ζ )dt + θ(R)

f
df + ιX0dθ = − f dt + θ = α.

Observe that ζ̂ and ζ are orthogonal since g(ζ, ̂ζ ) = α(̂ζ ) = ι̂ζ σ (̂ζ ) = 0, so ζ̂ is spacelike because ζ is timelike. Now, 
Lemma 2.1 implies that ζ = ∂t is a contact rigging for any null hypersurface transverse to ̂ζ .

As an example of the above situation, consider the future null cone with vertex p = (0, x0) given by

C+
p = expp

({u ∈ T p M : g(u, u) = 0, g(u, ∂t) < 0}) .

We cannot ensure that it is a hypersurface due to the possible existence of null conjugate points or null crossing points, 
but near the vertex it is a null hypersurface. If we take a null vector u ∈ T p M with g(u, ̂ζp) �= 0, then there is a portion of 
C+

p which contains expp(εu) for some small ε > 0 and it is a null hypersurface transverse to ̂ζ .

We can choose the manifold F to be more explicit. In fact, let F =R2n+1 be the Euclidean space with standard coordi-
nates (x1, y1, . . . , xn, yn, z), f = ez and θ = ∑n

i=1 xidyi . We can check that in this case R = ∂z , X0 = ∑n
i=1 xi∂xi and

ζ̂ = ∂z +
n∑

i=1

xi∂xi .

Martinet theorem ensures that every closed three-dimensional manifold admits a contact structure, so in particular it 
also carries an ACM structure. This is also true for noncompact three-dimensional manifolds as it is shown in [7]. We give 
here an explicit construction adapted to our purpose.

Proposition 2.1. If (L, ̃g) is an oriented three-dimensional Riemannian manifold and ξ ∈ X(L) is a unitary vector field, then there 
exists a unique ACM structure (φ, ξ, ω, ̃g) on L such that every orthonormal positive basis {ξp, Xp, Y p} is a φ-basis for all p ∈ L.
4
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Proof. Given a local positive basis {ξ, X, Y } on L, we define φ(ξ) = 0, φ(X) = Y and φ(Y ) = −X . The endomorphism φ
does not depend on the chosen local positive basis with first vector field ξ , so we can extend it to the whole L and we can 
easily check that φ2 = −id + ω ⊗ ξ , where ω is the metrically equivalent one-form to ξ .

A direct computation leads to g̃(φ(U ), φ(V )) = g̃(U , V ) − ω(U )ω(V ) for all U , V ∈ X(L), thus (φ, ξ, ω, ̃g) is an ACM 
structure. �

In the context of Proposition 2.1, we call

�p = dω(Xp, Y p), (10)

where {ξp, Xp, Y p} is a positive orthonormal basis in T p L. The function � does depend on ξp but not on Xp, Y p , thus �
extends to a differentiable function globally defined on L, once ξ is fixed. By Equation (1), it is immediate that � never 
vanishes if and only if ω is a contact form, so we call it the contact function. It is straightforward to prove the following.

Proposition 2.2. Let (L, ̃g) be an oriented three-dimensional Riemannian manifold. The ACM structure constructed in Proposition 2.1
is a CM structure if and only if � = −2 and ξ is ̃g-geodesic.

Remark 2.1. The natural orientation induced from the contact structure provided in Proposition 2.2 is always the opposite 
of the original orientation of L. It is due to the definition of φ we made. Moreover, observe that the sign of � depends on 
the chosen orientation. Thus, if ξ is g̃-geodesic and � = 2, then we only have to change the orientation to turn the ACM 
structure constructed in Proposition 2.1 into a CM structure.

We can relate � and the divergence of ξ as in [13, Proposition 5.7.2 1a] (see [1] for an approach using the Newman-
Penrose formalism).

Lemma 2.2. If (L, ̃g) is a three-dimensional oriented Riemannian manifold and ξ is a ̃g-geodesic and unitary vector field, then ξ(�) =
−� · d̃ivξ .

Proof. Take an orthonormal positive basis {ξp, e1, e2} in T p L and γ an integral curve of ξ with γ (0) = p. We translate it 
parallelly along γ to obtain an orthonormal basis {ξγ (t), X(t), Y (t)} in Tγ (t)M with X(0) = e1 and Y (0) = e2. Now, at the 
point p we have

ξ(�) = g̃(∇̃ξ ∇̃Xξ, Y ) − g̃(X, ∇̃ξ ∇̃Y ξ)

= g̃(R̃ξ Xξ, Y ) + g̃(∇̃[ξ,X]ξ, Y ) − g̃(R̃ξY ξ, X) − g̃(∇̃[ξ,Y ]ξ, X)

= −g̃(∇̃∇̃X ξ ξ, Y ) + g̃(∇̃∇̃Y ξ ξ, X).

Taking into account that ξ is unitary, we set ∇̃Xξ = A11 X + A12Y and ∇̃Y ξ = A21 X + A22Y , where Aij are the Fourier 
coefficient in the above basis. We have

d̃ivξ = A11 + A22,

� = A12 − A21

and therefore

ξ(�) = −A11 A12 − A12 A22 + A21 A11 + A22 A21 = −� · d̃ivξ. �
If there is a rigging ζ for an orientable null hypersurface L in a four-dimensional Lorentzian manifold, then we can 

apply Proposition 2.1 to (L, ̃g) to determine a unique ACM structure (φ, ξ, ω, ̃g) such that a positive basis is a φ-basis, being 
(ξ, ω, ̃g) the rigged data associated to ζ . We call this structure the rigged ACM structure associated to ζ . This leads us to 
the following definition.

Definition 2.2. Let L be an oriented null hypersurface in a four-dimensional Lorentzian manifold and ζ a rigging for it. If 
the rigged ACM structure associated to ζ is a CM or Sasaki structure, then ζ is called a CM or Sasaki rigging respectively.

Using Proposition 2.2, Lemma 2.2 and Equation (8) we get a first obstruction to the existence of a CM rigging.

Proposition 2.3. Let L be an oriented null hypersurface in a four-dimensional Lorentzian manifold. If there is a CM rigging for L, then 
L has zero null mean curvature.
5
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In [12] it is shown how the fundamental tensors associated to a rigging change under a rigging change. In particular, it 
follows that having zero null mean curvature is independent of the choice of the rigging.

The Weinstein conjecture, which have been proved in dimension 3, see [15], claims that the Reeb vector field of a contact 
form in a compact manifold has a closed orbit. If ζ is a CM rigging, then its rigged vector field ξ is necessarily the Reeb 
vector field due to Proposition 2.2. Thus we have another obstruction (this one from causality theory) to the existence of a 
CM rigging in compact null hypersurfaces.

Proposition 2.4. Let (M, g) be a causal Lorentzian manifold of dimension four. If L is a compact oriented null hypersurface, then it 
does not admit a CM rigging.

Remark 2.2. If we rescale the rigging ζ ′ = f ζ , being f a never vanishing function, then ξ ′ = 1
f ξ and the contact function 

associated to ζ ′ is �′ = | f |�. Observe that the absolute value is due to a possible change in the orientation of the rigged 
vector field. Therefore, if ζ is a contact rigging, then ζ ′ = f ζ is also a contact rigging. In particular, if ζ is a CM rigging, 
then −ζ is also a CM rigging and the identity is a metric contactomorphism, that is, an equivalence between these contacts 
metric structures, see Definition 2.3 below.

Proposition 2.5. Let L be an oriented null hypersurface in a four-dimensional Lorentzian manifold. If there is a rigging ζ such that 
� �= 0 and

dω(ξ, U ) = −d(ln |�|)(U )

for all U ∈ S , then ζ ′ = 2
|�| ζ is a CM rigging. In particular, L has zero null mean curvature.

Proof. From Remark 2.1 we can suppose that � < 0 changing the orientation if necessary. We denote (ξ ′, ω′, ̃g′) and S ′ the 
rigged data and the screen distribution induced by ζ ′ . We have S = S ′ , ω′ = 2

|�|ω and ξ ′ = |�|
2 ξ . Using Equation (9), we get

g̃′(∇̃′
ξ ′ξ ′, U ) = dω′(ξ ′, U ) = 2

�2
(d� ∧ ω)(ξ ′, U ) − 2

�
dω(ξ ′, U )

= d ln |�|(U ) + dω(ξ, U ) = 0

for all U ∈ S . Therefore, ξ ′ is g̃′-geodesic and the contact function induced from ζ ′ is �′ = 2
|�|� = −2. Proposition 2.2 says 

that ζ ′ is a CM rigging. �
Corollary 2.1. Let L be an oriented null hypersurface in a four-dimensional Lorentzian manifold. If there is a rigging ζ such that � is a 
nonzero constant and dω(ξ, U ) = 0 for all U ∈ S , then ζ ′ = 2

|�| ζ is a CM rigging.

We now show stability properties of CM riggings. The most relevant is that they are locally convex.
Let ζt be a one parameter family of rigging vector fields and (φt , ξt , ωt , ̃gt) their associated rigged ACM structures with 

the coincident subindices. Observe that for two contact forms ω0 and ω1 in a three-dimensional manifold, it holds

1 ≤ dim (kerω0 ∩ kerω1) ≤ 2.

We use this fact in the following theorem which is in some sense complementary to the D-deformation of Tanno [14]
for dimension three, but in our case the contact distribution does not remain constant.

Theorem 2.1. Let (M, g) be a four-dimensional Lorentzian manifold and L an oriented null hypersurface in M. Suppose that ζ0 and ζ1
are two CM riggings for L. If ζt = (1 − t)ζ0 + tζ1 is a rigging for L for all t ∈ [0, 1], then ζt is a CM rigging for all t ∈ [0, 1].

Proof. It is immediate that ωt = (1 − t)ω0 + tω1 is the associated rigged one-form to ζt , and g̃t = ωt ⊗ ωt + g is its rigged 
metric.

Fix a point p ∈ L. Since all the rigged vector fields are proportional, there is a function c : [0, 1] →R such that

ξt(p) = c(t)ξ0(p) (11)

for all t ∈ [0, 1]. For simplicity we will omit the point p in the following argument.
If we take a g-unitary vector v0 ∈ kerω0 ∩ kerω1, then we can construct a ̃gt -orthonormal and positive basis {ξt , Xt , Yt}

at T p L with Xt = v0 for all t ∈ [0, 1]. Observe that Yt ∈ span{ξ0, Y0}, so we can write

Yt = a(t)ξ0 + b(t)Y0

for certain functions a, b : [0, 1] →R with a(0) = 0, b(0) = 1 and b never vanishing. It is immediate that
6
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1 = g̃t(Yt, Yt) = b(t)2,

therefore b(t) = 1 by continuity. Hence the expression for Yt simplifies to

Yt = a(t)ξ0 + Y0. (12)

Now we compute the contact function �t . Using equation (10) we have

�t = dωt(Xt , Yt)

= (1 − t)dω0(X0,a(t)ξ0 + Y0) + tdω1(X1,a(t)ξ0 + Y0)

= −2(1 − t) + tdω1(X1, (a(t) − a(1))ξ0 + Y1) = −2,

where we have used Proposition 2.2 to ensure that dω0(X0, Y0) = dω1(X1, Y1) = −2 and ξ0, ξ1 are g̃0, ̃g1-geodesic respec-
tively. Moreover, ξt is g̃t -geodesic since

ιξt dωt = ιξt ((1 − t)dω0 + tdω1) = 0.

Since p ∈ L is arbitrary, using again Proposition 2.2, ζt is a CM rigging for all t ∈ [0, 1]. �
The above theorem says that two close enough contact metric riggings can be connected by a straight segment family of 

contact metric riggings, that is, the set of contact metric riggings is locally convex. Observe that this is not true in general 
for CM structures in a three-dimensional manifold. Indeed, if ω0 and ω1 are contact forms, then (1 − t)ω0 + tω1 does not 
even have to be a contact form.

Moreover, since a timelike vector field is a rigging for any null hypersurface, the set of future (past) timelike contact 
metric riggings in a time orientable four dimensional Lorentzian manifold is convex.

An immediate consequence of Gray’s stability theorem [9, Theorem 2.2.2] and Theorem 2.1 above is the following corol-
lary.

Corollary 2.2. Let (M, g) be a four-dimensional Lorentzian manifold and L an oriented compact null hypersurface in M. Suppose that 
ζ0 and ζ1 are CM riggings for L. If ζt = (1 − t)ζ0 + tζ1 is a rigging for L for all t ∈ [0, 1], then the contact structures associated to ζ0
and ζ1 are contactomorphic.

Taking into account Remark 2.2 we also have the following.

Corollary 2.3. Let (M, g) be a four-dimensional Lorentzian manifold and L an oriented compact null hypersurface in M. The contact 
structures induced by timelike CM rigging vector fields on L, if any, are unique up to contactomorphism.

Compact null hypersurfaces are not frequent. For example, strongly causal Lorentzian manifolds do not admit them, [4]. 
On the other hand, Proposition 2.4 says that compact null hypersurfaces in causal spacetimes do not admit CM riggings. 
Moreover, important null hypersurfaces like black hole horizons are not compact, thus it would be desirable to relax the 
compact assumption in Corollary 2.2. This is done in the following result.

Theorem 2.2. Let (M, g) be a four-dimensional Lorentzian manifold and L an oriented null hypersurface in M. Suppose that ζ0 and ζ1
are CM riggings for L such that ζt = (1 − t)ζ0 + tζ1 is a rigging for L for all t ∈ [0, 1]. If there is a vector field X ∈ X(L) such that:

• X ∈ kerω0 ∩ kerω1 .
• The traces of the integral curves of X is diffeomorphic to S1 .

Then the induced contact structures from ζ0 and ζ1 are contactomorphic.

Proof. As in the proof of Theorem 2.1, we have the family of 1-forms

ωt = (1 − t)ω0 + tω1, (13)

which are in fact contact forms for all t ∈ R. According to the proof of the Gray theorem, see [9], for each t ∈ R we take 
the unique vector field Zt ∈ X(L) such that

ωt(Zt) = 0 (14)

ω̇t + ιZt dωt = μtωt (15)
7
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From it, we construct the vector field Ẑ(t,p) = ∂t + Zt(p) ∈ X(R × L). If Ẑ is a complete vector field, then we can take 
the isotopy ψs : L → L defined by ψs(p) = �(�s(0, p)) for all s ∈ R, where � is the flow of Ẑ and � is the canonical 
projection onto L. This isotopy holds ψ̇s(p) = Zs(ψs(p)), so, according to the Gray construction, ψ∗

s (ωs) = λsω0 for some 
never vanishing family of functions λs . Thus ψ1 is the contactomorphism we are looking for.

Therefore, all that we have to do is to check that the integral curve of Ẑ through (0, p) is defined in the whole R for all 
p ∈ L.

In our particular case ω̇t = ω1 − ω0, so using Equation (15) we have ω0(Zt) = ω1(Zt) and Equations (13) and (14) imply 
Zt ∈ kerω0 ∩ kerω1 for all t ∈R.

It is straightforward to check that for any point p ∈ L such that dim(kerω0 ∩ kerω1)p = 2, it holds Zt(p) = 0. Therefore 
we can write Zt(p) = f (t, p)X(p), where f ∈ C∞(R × L), since for a suitable choice of f the vector field f (t, p)X(p) holds 
equations (14) and (15).

If α :R → L is an integral curve of X with α(0) = p, then γ (s) = (s, α(h(s))) is an integral curve of Ẑ with γ (0) = (0, p)

for a suitable function h(s). Since the trace of α is compact, it follows that γ is defined for all s ∈R. �
It would be interesting to study not only contactomorphisms but metric contactomorphisms in Corollary 2.2, but at the 

present we know about their existence but nothing about their properties, so we have not information enough to study 
them. By the way, we recall the equivalence for contact metric structures and Sasaki structures.

Definition 2.3. Two CM structures on a manifold are metric contactomorphic if there is a contactomorphism which is also 
an isometry.

If (�i, ξi, ωi, ̃gi) for i = 1, 2 are CM structures on L and f : L → L is a contactomorphism (with f ∗(ω2) = λω1), then it 
is an isometry if and only if f∗(ξ1) = λξ2 and �2 ◦ f∗ = λ f∗ ◦ �1 with λ2 = 1. Moreover, if two CM structures are metric 
contactomorphic and one of them is Sasaki, then the other one is also Sasaki, and the equivalence for the Sasaki structures 
is just the metric contactomorphism.

We finish this section with an important observation. Any CM (resp. Sasaki) structure in a three-dimensional Riemann 
manifold can be realized as the associated structure to a timelike CM (resp. Sasaki) rigging for a null hypersurface where 
the rigged metric is the original Riemannian metric. The following example shows the construction.

Example 2.4. Let F be a three-dimensional manifold admitting a CM (resp. Sasaki) structure (φ, ξ, ω, gF ). In M = R × F
define the Lorentzian metric

gL = dt ⊗ ω + ω ⊗ dt − ω ⊗ ω + gF .

We have that gL(ξ, ξ) = gL(∂t , ∂t) = 0 and gL(ξ, ∂t) = 1. Moreover, F is a null hypersurface in (M, gL) and ζ = ∂t − ξ is 
a timelike rigging with induced rigged vector field ξ . The rigged metric constructed from ζ on F is just gF and the rigged 
one-form is ω. Changing the sign of ζ if necessary, φ coincides with the one constructed in Proposition 2.1. Therefore, ζ is 
a timelike CM (resp. Sasaki) rigging for F as a null hypersurface in M which induces the original structure.

3. Sasaki riggings for null hypersurfaces

In this section we will derive a couple of consequences of the existence of a CM or a Sasaki rigging for a null hypersur-
face.

Proposition 3.1. Let (M, g) be a four-dimensional Lorentzian manifold and L an oriented null hypersurface.

1. If L admits a Sasaki rigging ζ , then L is totally geodesic.
2. If L is totally geodesic, then any CM rigging on L is a Sasaki rigging.

Proof. It follows from Equation (7) and the fact that a three-dimensional contact metric structure is a Sasakian structure if 
and only if the Reeb vector field is a Killing vector field, [5, Corollary 6.3, 6.5 and Theorem 6.3]. �

Point 1 above is true in any dimension. This result leads us to give the following corollary of Theorem 2.1 which tell us 
that the family of Sasaki rigging is locally convex and the family of future (past) timelike Sasaki rigging in a time orientable 
four-dimensional Lorentzian manifold is convex.

Corollary 3.1. Let (M, g) be a four-dimensional Lorentzian manifold and L an oriented null hypersurface in M. Suppose that ζ0 is a 
Sasaki rigging and ζ1 is a CM rigging for L. If ζt = (1 − t)ζ0 + tζ1 is a rigging for L for all t ∈ [0, 1], then ζt is a Sasaki rigging for all 
t ∈ [0, 1].
8



C. Atindogbé, M. Gutiérrez, R. Hounnonkpe et al. Journal of Geometry and Physics 178 (2022) 104576
Another consequence of the above proposition is due to the fact that the existence of Sasaki rigging vector fields occurs 
in totally geodesic null hypersurfaces, precisely a property that share isolated horizons of black holes, so it is interesting to 
analyze the existence of Sasaki structures on these kind of horizons.

On the other hand, if L is a totally geodesic null hypersurface which admits a Sasaki rigging, then we can construct a 
Kähler halo around it. Indeed, it exists ε > 0 such that � : (0, ε) × L → M defined by �(s, x) = expx sζx is a diffeomorphism 
(alternatively, we can use the flow of ζ if (0, ε) × L is contained in its domain). We can furnish (0, ε) × L with the cone 
metric ds2 + s2 g̃ which make it a Kähler manifold, see [6], and use � to define a Kähler structure on �((0, ε) × L). We can 
do the same switching (0, ε) with (−ε, 0) and the result is that we have a Kähler halo around L. Kähler manifolds are used 
in the geometric quantization program, so the above construction around a black hole isolated horizon is suggestive.

The following example shows that it exists a Sasaki rigging vector field on an open dense subset of the horizon of a 
black hole in Kruskal spacetime.

Example 3.1. Let Q ⊂R2 be an open subset containing the origin and F ∈ C∞(Q ) a never vanishing function. We consider 
the Lorentzian metric in Q given by 2F (u, v)dudv . Suppose that (S, gS ) is an oriented 2-dimensional Riemannian manifold 
and η ∈ �1(S) such that dη is a symplectic form. We call J the associated almost complex structure.

Consider the warped product (M, g) = (
Q × S,2F (u, v)dudv + h(u, v)2 gS

)
, where h ∈ C∞(Q ) is a positive function, and 

the one-form α = −2eudu + 2eudv + 2η. The g-metrically equivalent vector field to α is

ζ = 2eu

F
∂u − 2eu

F
∂v + 2

h2
E,

where E is the vector field gS -metrically equivalent to η, and

σ = dα = 2eudu ∧ dv + 2dη

is a symplectic form on M . If we call X0 the unique vector field with ιX0 dη = η, then

ζ̂ = ∂u + ∂v + X0

holds ι̂ζ σ = α.

The hypersurface L = {(u, 0, x) : (u, 0) ∈ Q , x ∈ S} is a null hypersurface and both ζ and ̂ζ are rigging for it, so Lemma 2.1
ensures that ζ is a contact rigging.

The rigged vector field is ξ = −e−u

2 ∂u and the rigged one-form is ω = −2eudu + 2η. Therefore, dω = 2dη and ιξ dω = 0, 
which implies that ξ is g̃-geodesic. The second fundamental form of L respect to ξ is given by B = e−uhu

h g . Thus, if we 
suppose that h is constant along L, then L is totally geodesic. Without loss of generality, we can also assume that h(u, 0) = 1
for all (u, 0) ∈ Q .

Let X ∈X(S) be a gS -unitary vector field and call Y = J (X). Then

X̃ = η(X)e−u∂u + X,

Ỹ = η(Y )e−u∂u + Y ,

form a positive orthonormal basis of S . A direct computation gives

� = dω( X̃, Ỹ ) = 2dη(X, Y ) = 2gS(X, J (Y )) = −2.

Using Proposition 2.2 and Proposition 3.1 we have that ζ is a Sasaki rigging for L.
We can try to particularize this example to the Kruskal space (M, g) given by(

Q × S2,2F (r)dudv + r2 g0

)
,

being g0 the standard metric on S2 and h = r is constant on the null hypersurface L. Unfortunately, we cannot apply 
Lemma 2.1 because it does not exist a 1-form η in S2 such that dη is a symplectic form due to Stokes theorem. A solution 
is to take an open dense set in S2. In fact, if we take S = S2 − K where K has cardinal 1 or 2, then it is diffeomorphic to 
a plane or a cylinder, in both cases they have a global 1-form η such that dη is a symplectic form. This 1-form can be used 
to apply the above construction.

We get another interesting case taking spherical coordinates (ϕ, ψ) in S2, where 0 < ϕ < 2π and −π
2 < ψ < π

2 . In this 
case η = ϕ cos2 ψdψ holds the above conditions in the domain U of the spherical chart, which is an open dense set in S2. 
The associated metric is the restriction to U of the standard Euclidean metric on S2 and the almost complex structure is 
given by J (∂ϕ) = −∂ψ and J (∂ψ) = ∂ϕ .

The following theorem gives us a topological property of compact null hypersurfaces with a Sasaki rigging.
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Theorem 3.1. Let (M, g) be a four-dimensional Lorentzian manifold with positive sectional curvature on spacelike planes. If L is an 
oriented compact null hypersurface admitting a Sasaki rigging for it, then the first and second Betti numbers hold b1(L) = b2(L) = 0.

Proof. From [14, Theorem 1] it is sufficient to prove that the sectional curvature of (L, ̃g) is greater than −3. This is trivially 
satisfied for a plane containing ξ , the rigged vector field, since its sectional curvature is 1, [5, Theorem 7.2]. On the other 
hand, if � is a plane orthogonal to ξ , from Propositions 2.2 and 3.1 we know that the contact function � = −2 and the null 
second fundamental form B = 0, so the formula [11, Theorem 4.2] gives K̃ (�) > −3.

Take now an arbitrary tangent plane � to L. We can suppose that � = span{X, U }, where U = Y + aξ , X, Y ∈ kerω and 
g̃(X, Y ) = 0. Moreover, we suppose that X and U are g̃-unitary, thus g̃(Y , Y ) + a2 = 1. The curvature of � is

K̃ (�) = g̃(R̃ XY Y , X) + ag̃(R̃ XY ξ, X) + ag̃(R̃ Xξ Y , X) + a2 g̃(R̃ Xξ ξ, X),

but the second and third terms vanish due to [5, Proposition 7.3]. Therefore

K̃ (�) = K̃ (span{X, Y })̃g(Y , Y ) + a2 > −3̃g(Y , Y ) + a2 = −3 + 4a2 ≥ −3. �
Corollary 3.2. Let (M, g) be a four-dimensional Lorentzian manifold with positive sectional curvature on spacelike planes. If there is a 
closed timelike vector field in M, then it does not exist a Sasaki rigging for any oriented and compact null hypersurface.

Proof. Suppose L is a compact and oriented null hypersurface and there is a Sasaki rigging for it. Since a timelike vector 
field is also a rigging for L, applying Theorem 3.1 and [3, Theorem 3.1] we get a contradiction. �
Acknowledgement

Second, third and fourth authors were funded by Universidad de Málaga-Junta de Andalucía-FEDER grant number 
UMA18-FEDERJA-183 and Ministry of Science and Innovation of Spain (MICINN) I+D+I, grant number PID2020-118452GB-
I00.

References

[1] A.B. Aazami, The Newman-Penrose formalism for Riemannian 3-manifolds, J. Geom. Phys. 94 (2015) 1–7.
[2] R. Abraham, J.E. Marsden, T. Ratiu, Manifolds, Tensor Analysis and Applications, Springer, 2002.
[3] C. Atindogbé, M. Gutiérrez, R. Hounnonkpe, New properties on normalized null hypersurfaces, Mediterr. J. Math. 15 (2018) 166.
[4] C. Atindogbé, M. Gutiérrez, R. Hounnonkpe, Compact null hypersurfaces in Lorentzian manifolds, Adv. Geom. 21 (2021) 251–263.
[5] D. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhäuser, 2010.
[6] C.P. Boyer, K. Galicki, Sasakian Geometry, Oxford University Press, 2008.
[7] J.L. Cabrerizo, M. Fernández, J.S. Gómez, On the existence of contact metric structure and the contact magnetic field, Acta Math. Hung. 125 (2009) 

191–199.
[8] K.L. Duggal, A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publishers, 1996.
[9] H. Geiges, An Introduction to Contact Topology, Cambridge University Press, 2008.

[10] M. Gutiérrez, B. Olea, Totally umbilic null hypersurfaces in generalized Robertson-Walker spaces, Differ. Geom. Appl. 42 (2015) 15–30.
[11] M. Gutiérrez, B. Olea, Induced Riemannian structures on null hypersurfaces, Math. Nachr. 289 (2016) 1219–1236.
[12] F. Ngakeu, H.F. Tetsing, B. Olea, Rigging technique for 1-lightlike submanifolds and preferred rigged, Mediterr. J. Math. 16 (2019) 139.
[13] B. O’Neill, The Geometry of Kerr Black Holes, Wellesley, Massachusetts, 1995.
[14] S. Tanno, The topology of contact Riemannian manifolds, Ill. J. Math. 12 (1968) 700–717.
[15] C.H. Taubes, The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117–2202.
10

http://refhub.elsevier.com/S0393-0440(22)00126-7/bib43C0AABBFB6A4EB413C6273561DF5864s1
http://refhub.elsevier.com/S0393-0440(22)00126-7/bib305659AEB878FED1F53D42A9F198AF49s1
http://refhub.elsevier.com/S0393-0440(22)00126-7/bib2561DD52FE3ECFF0D891844C31A14F58s1
http://refhub.elsevier.com/S0393-0440(22)00126-7/bib03C23A399F8099C5B11E25D45F2D6CC8s1
http://refhub.elsevier.com/S0393-0440(22)00126-7/bib87AA969F0CB06CBFC07A1A545AF90DD0s1
http://refhub.elsevier.com/S0393-0440(22)00126-7/bib5CD116E49ECFC32D16AD80D331E2566Ds1
http://refhub.elsevier.com/S0393-0440(22)00126-7/bib5CD116E49ECFC32D16AD80D331E2566Ds1
http://refhub.elsevier.com/S0393-0440(22)00126-7/bibEF0410DC03CE38A602494DF79E61DB0Es1
http://refhub.elsevier.com/S0393-0440(22)00126-7/bib36FEE37CCF54CE8DA9C862B29CACED1Ds1
http://refhub.elsevier.com/S0393-0440(22)00126-7/bib5169513497252DE3006CF1A58900BDEAs1
http://refhub.elsevier.com/S0393-0440(22)00126-7/bibB41AAA0BE83A6CD75E802E5C81BDB046s1
http://refhub.elsevier.com/S0393-0440(22)00126-7/bib97DE1C982CC9AC942C70AB7553EA8A94s1
http://refhub.elsevier.com/S0393-0440(22)00126-7/bibF3F7C8D456562F66FE424B202C5F3652s1
http://refhub.elsevier.com/S0393-0440(22)00126-7/bib1266B4E6F81E60733EC6C717E0181F60s1
http://refhub.elsevier.com/S0393-0440(22)00126-7/bib31399D8B666A73EA5CE55380F3159D13s1

	Contact structures on null hypersurfaces
	1 Introduction
	2 Contact metric rigging for null hypersurfaces
	3 Sasaki riggings for null hypersurfaces
	Acknowledgement
	References


