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Abstract
Given a family Z = {‖ · ‖ZQ } of norms or quasi-norms with uniformly bounded
triangle inequality constants, where each Q is a cube in R

n , we provide an abstract
estimate of the form

‖ f − fQ,μ‖ZQ ≤ c(μ)ψ(Z)‖ f ‖BMO(dμ)

for every function f ∈ BMO(dμ), where μ is a doubling measure in R
n and c(μ)

and ψ(Z) are positive constants depending on μ and Z , respectively. That abstract
scheme allows us to recover the sharp estimate

‖ f − fQ,μ‖
L p
(
Q,

dμ(x)
μ(Q)

) ≤ c(μ)p‖ f ‖BMO(dμ), p ≥ 1

for every cube Q and every f ∈ BMO(dμ), which is known to be equivalent to
the John–Nirenberg inequality, and also enables us to obtain quantitative counter-
parts when L p is replaced by suitable strong and weak Orlicz spaces and L p(·)
spaces. Besides the aforementioned results we also generalize [(Ombrosi in Isr J Math
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238:571-591, 2020), Theorem 1.2] to the setting of doubling measures and obtain a
new characterization of Muckenhoupt’s A∞ weights.
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1 Introduction

The celebrated John–Nirenberg inequality for BMO functions has been extensively
studied by many authors in different situations since its appearance in the original
work [10] by F. John and L. Nirenberg. In the Euclidean space R

n endowed with a
doubling measure μ (see (1.2)) this inequality reads

μ
({
x ∈ Q : | f (x) − fQ,μ| > t

}) ≤ c1e
−t/(c2‖ f ‖BMO(dμ))μ(Q), t > 0, (1.1)

where fQ,μ := ∫
Q f (x) dμ(x)/μ(Q), and it is satisfied for every cube Q in R

n and
every BMO(dμ) function f with universal constants c1, c2 > 1. Here ‖ f ‖BMO(dμ)

denotes the BMO(dμ) norm of f , which is defined as

‖ f ‖BMO(dμ) := sup
Q∈Q

1

μ(Q)

∫

Q
| f (x) − fQ,μ| dμ(x),

where the supremum is taken over the classQ of all cubes Q in Rn . Finiteness of this
constant defines themembership of f to the classBMO(dμ) of functionswith bounded
mean oscillations. Recall that a measure is said to satisfy the doubling condition, if
there are positive constants cμ and nμ such that, for every pair of cubes Q and Q̃ in
R
n with Q ⊂ Q̃, the inequality

μ(Q̃) ≤ cμ

(
�(Q̃)

�(Q)

)nμ

μ(Q) (1.2)

holds. The constants cμ and nμ are called doubling constant and doubling dimension
of μ, respectively. Note that cμ must be larger than 1.

It is known that a John–Nirenberg inequality

μ
({
x ∈ Q : | f (x) − fQ,μ| > t

}) ≤ Ce−c( f )·tμ(Q), t > 0, Q ∈ Q,(1.3)

with constants c( f ),C > 0, characterizes the belongingness of a function f to the
BMO(dμ) class, and in that case C and c( f ) can be taken to be the constants c1 and
(c2‖ f ‖BMO(dμ))

−1 in (1.1). A John–Nirenberg inequality (1.3) for a locally integrable
function f is in turn equivalent to the validity of a precise estimate (actually, a family
of estimates) of the form
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(
1

μ(Q)

∫

Q
| f (x) − fQ,μ|p dμ(x)

) 1
p ≤ c(μ) · p · C( f ) (1.4)

for all cubes Q ∈ Q and all p > 1, with c(μ) > 0 and C( f ) > 0 independent of
p and Q. Moreover, the constant C( f ) in (1.4) can be replaced by ‖ f ‖BMO(dμ). See
[18] and also [19,p.146] for this.

It turns out then that having inequality (1.4) for every p > 1 becomes a precise
quantitative expression of the John–Nirenberg inequality at all the L p scales and then
we will give (1.4) precisely the name of quantitative John–Nirenberg inequality at
the L p scale. The aim in this work is to get precise inequalities in the spirit of (1.4)
to obtain variants of the quantitative John–Nirenberg inequality by replacing the L p

norms by different norms. To be precise, the main topic of this paper is the search
for a method that allows to get precise inequalities like (1.4) for BMO(dμ) functions
beyond the L p(dw) scale. Here and in the remainder of this work, we denote by dw to
the measure given by w(x)dx , where w is a weight: a non negative locally integrable
function in Rn .

A possible approach to extend (1.4) is to study different functions spaces endowed
with a notion of (at least) a quasi-norm allowing us to define a sort of local average
or pushing the approach even further, replacing the averages in the left hand side by
a family of norms or quasi-norms with uniformly bounded quasi-triangle inequality
constant. The precise definitions will be given in detail in Definition 2.2. Accepting
for a moment that we do have such a notion, our aim will be to find a method giving
estimates of the form

‖ f − fQ,μ‖ZQ ≤ c(μ)ψ(Z)‖ f ‖BMO(dμ) (1.5)

for every cube Q ∈ Q, whereZ = {ZQ}Q∈Q is the aforementioned notion of a family
of norms or quasi norms and ψ(Z) is a constant depending on the family. These ZQ

norms could be given, for instance, in terms of modified averaged measures of the
form dν/Y (Q), where Y : Q → (0,∞) is some functional defined over cubes.

Let us depict a possible and quite natural path for getting results of this type. Take
a function φ and suppose that the local Luxemburg type norm

‖ f ‖
φ(L)

(
Q,

dμ
μ(Q)

) := inf

{
λ > 0 : 1

μ(Q)

∫

Q
φ

( | f (x)|
λ

)
dμ(x) ≤ 1

}
, (1.6)

is well defined for every cube Q in R
n . If φ is an increasing function with φ(0) = 0

which is absolutely continuous on every compact interval of [0,∞), then we know by
Fubini’s theorem that the following so-called layer-cake representation formula holds:

∫

Q
φ [| f (x)|] dμ(x) =

∫ ∞

0
φ′(t)μ ({x ∈ Q : | f (x)| > t}) dt,

for any cube Q of Rn and any measurable function f . Let us suppose that f ∈
BMO(dμ). We know then that f satisfies the John–Nirenberg inequality (1.1) and so,
for any λ > 0,
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1

μ(Q)

∫

Q
φ

( | f (x) − fQ,μ|
λ

)
dμ(x) = 1

μ(Q)

∫ ∞

0
φ′(t)μ

({
x ∈ Q : | f (x) − fQ,μ| > λt

})
dt

≤ c1

∫ ∞

0
φ′(t)e−λt/c2‖ f ‖BMO(dμ) dt

= c1L{φ′} (λ/c2‖ f ‖BMO(dμ)

)
,

where L represents the Laplace transform. If in addition the function φ is convex,
then one has that φ′ is positive, which makes L{φ′} a decreasing function on (0,∞).
Therefore, we can invert it and so, we know that c1L{φ′} (λ/c2‖ f ‖BMO(dμ)

) ≤ 1 if

and only if λ ≥ c2‖ f ‖BMO(dμ)L{φ′}−1
(

1
c1

)
. Hence, for any function f ∈ BMO(dμ),

and for a function φ as the one depicted above, we have that

‖ f − fQ,μ‖
φ(L)

(
Q,

dμ
μ(Q)

) ≤ c2‖ f ‖BMO(dμ)L{φ′}−1
(
1

c1

)
.

Moreover, given any doubling measure μ, there exists a function f̃ ∈ BMO(dμ)

satisfying that

μ
({

x ∈ Q : | f̃ (x) − f̃Q,μ| > t
})

≥ C(μ)e−t/c(μ)μ(Q), t > 0

for any cube Q in Rn , where C(μ) and c(μ) are positive constants depending only on
the underlying measure μ. This proves that the exponential behaviour of the level sets
in the John–Nirenberg inequality (1.1) is the best one can get in general for BMO(dμ)

functions. It also says that the estimate

‖ f − fQ,μ‖
φ(L)

(
Q,

dμ
μ(Q)

) ≤ c2‖ f ‖BMO(dμ)L{φ′}−1
(
1

c1

)

for every cube Q inRn is essentially optimal, since there is a function f̃ ∈ BMO(dμ)

and positive constants C(μ) and c(μ) such that

‖ f̃ − f̃Q,μ‖
φ(L)

(
Q,

dμ
μ(Q)

) ≥ c(μ)‖ f̃ ‖BMO(dμ)L{φ′}−1
(

1

C(μ)

)

for every cube Q in Rn .
This then provides a method for proving quantitative John–Nirenberg inequalities

like (1.5) with an optimal control in the constant ψ(Z) as far as the family of norms
is given by a Luxemburg norm defined by a function φ like the one considered above.
Note that this approach gives an alternative proof of the sharp inequality (1.4), as the L p

norm is a particular case of the Luxemburg norm given above if we choose φp(t) = t p,
and the quantity L{φ′

p}−1
( 1
C

)
behaves aymptotically like p when p → ∞, for any

C > 0. However, although it is easy to compute the inverse of the Laplace transform
of φ′

p, it seems not to be the case for other functions φ. Also, the method is confined to
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the study of norms given by the Luxemburg method in terms of some special functions
φ, and this rules out interesting norms as for instance the ones of variable Lebesgue
spaces. It is our purpose in this paper to give a general procedure which allows to
prove a quantitative John–Nirenberg inequality like (1.5) in a wider context without
computing the inverse of a Laplace transform.

Our method is based in a generalization of the self-improving result [18,Theorem
1.5] in which a very simple method based on the Calderón-Zygmund decomposition
is used (see also [11,pp. 31–32], where the original ideas inspiring the general result
can be found). The special case of [18,Theorem 1.5] which is of interest for us is the
following.

Theorem A Let μ be a doubling measure in R
n. There exists a geometric constant

c(μ) > 0 such that, given any p ≥ 1, the inequality

(
1

μ(Q)

∫

Q
| f (x) − fQ,μ|p dμ(x)

)1/p

≤ c(μ) · p‖ f ‖BMO(dμ)

holds for any cube Q in Rn and any function f ∈ BMO(dμ).

The main contribution of our work is to provide analogous results for more general
objects at the left-hand side of the inequality in Theorem A. To that end, we will
take further some ideas in [18] and will also consider some of the concepts appearing
in [16], thus including in the theory more general BMO spaces defined by different
oscillations.

Now, to be able to present the main result, we need to describe the key concept
for our purposes, the family of norms. We will be relying upon families of norms
‖ · ‖ZQ with Q ∈ Q. These families can have as a particular case local averages as the
one given in (1.6). A possible choice for these families is given by the construction
‖ f ‖ZQ := ‖ f · χQ‖X(Rn ,dν/Y (Q)) where X is given by an integral expression and
Y : Q → (0,∞) is a functional. This is for instance the case of function norms defined
by a Luxemburg norm, and is the approachwe took for our examples. Another possible

choice for the definition of a local average is ‖ f ‖
X
(
Q, dν

ν(Q)

) := ‖ f ·χQ‖X(Rn ,dν)
‖χQ‖X(Rn ,dν)

, which

makes sense for any quasi-normed function space over the measure space (Rn, dν).
This is the choice made for instance in [6].

As we already mentioned, in the case ‖ f ‖ZQ := ‖ f · χQ‖X(Rn ,dν/Y (Q)), we gain
generality in our results by considering the functional Y defined over the family of
cubes in R

n . Trivial examples are Y (Q) = w(Q) or the functional Y (Q) = wr (Q)

defined by

wr (Q) := μ(Q)1/r
′
(∫

Q
w(x)r dμ(x)

)1/r

, r > 1,

for a weight w (see the discussion after (2.5) for more details about this functional
wr ). In this case, the conditions we impose to the family of quasi-norms are actually
conditions on the functional Y .
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We present now our general theorem, that can be seen as a template from which we
can derive a series of particular cases of self-improving results for different classical
function spaces.

Theorem 1.1 1 Let μ be a doubling measure on R
n. Let Z = {ZQ}Q∈Q be a family

of Banach spaces or quasi-Banach spaces with triangle inequality constant uniformly
bounded by K ≥ 1. Assume that Z satisfies the generalized A∞(dμ) condition with
associated increasing bijection � (see Definition 2.3) and that is good (see Defini-
tion 2.4). Then there is a constant C(μ,�) > 0 such that, for any f ∈ BMO(dμ) the
following holds

∥∥( f − fQ,μ)χQ
∥∥
ZQ

≤ C (μ,�) ‖ f ‖BMO(dμ), Q ∈ Q.

Moreover, we can take

C (μ,�) := inf
L>max

{
1,[�((CZ ·K )−1)]−1

} cμ2
nμ

L

1 − CZ · K · �−1
( 1
L

) ,

where CZ is the constant in the A∞(dμ) condition for Z .

In such a generality, it is not easy to grasp the reach of the theorem, but its power
becomes clear in light of the large variety of particular examples that can be treated
in a unified manner.

Two different explicit examples will be given. The first one provides a quantitative
John–Nirenberg inequality like (1.5) for Orlicz type norms ‖ · ‖φ(L)(w) defined by
submultiplicative Young functions. The application of this approach to the specific
norms ‖ · ‖L p logα L(dx), p ≥ 1, α ≥ 0 is investigated. In this case, the following result
is obtained.

Corollary 1.1 Let μ be a doubling measure in R
n and consider p > 1, α ≥ 0. Then

‖ f − fQ,μ‖
L p logα L

(
Q,

dμ
μ(Q)

) ≤ cμ2
nμe2α (p + α + 1) ‖ f ‖BMO(dμ)

for every cube Q in Rn and every function f ∈ BMO(dμ).

Observe that this extends the classical case in Theorem A to a wider collection of
spaces, as the precise estimate for the L p case is obtained by taking α = 0.

The second example which will be presented corresponds to the variable Lebesgue
norms ‖·‖L p(·)(dx), which shows that our method is more flexible than the one based on
the use of the Laplace transform. The precise statement is the following (see Sect. 4.2
for the precise details and definitions).

1 An earlier version of this paper contained an imprecise version of this result. The former statement relied
upon a concept of local generalized average that was not completely clearly defined in the most abstract
setting. Incorporating accurate referee’s remarks we came up with replacing those generalized averages
by a family of norms or suitable quasi-norms. That approach is inspired by [13,Theorem 5.3], an already
published work which first version appeared in ArXiv a few months later than the first version of our
manuscript was uploaded to the same repository. The remainder of the results remain essentially intact.
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Corollary 1.2 Consider an essentially bounded exponent function p : Rn → R with
finite essential upper bound. There exists a constant C(n) > 0 such that

‖ f − fQ‖
L p(·)

(
Q, dx

|Q|
) ≤ C(n)p+‖ f ‖BMO

for every cube Q in Rn and every function f ∈ BMO.

From such an inequality, we deduce the following generalized John–Nirenberg
inequality.

Corollary 1.3 Let p : R
n → R be an essentially bounded exponent function with

finite essential upper bound. There exists a constant C(n, p+) > 0 such that the
John–Nirenberg type inequality

‖χ{x∈Q:| f (x)− fQ |≥t}‖L p(·)
(
Q, dx

|Q|
) ≤ 2e−C(n,p+)t/‖ f ‖BMO

holds for every cube Q in R
n and every function f ∈ BMO.

This John–Nirenberg type inequality is related to that obtained in [6], where a different
L p(·) average is considered. It is a remarkable fact that no further condition has to
be imposed on p to satisfy the above inequalities, in contrast with the result [6]
where besides the essential uniform boundedness, local log-Hölder conditions for the
exponent function p are imposed.

The type of techniques which are studied here are flexible enough to be applicable
in many different situations. An example of this is the fact that new generalized Karag-
ulyan type estimates can be obtained under suitable conditions for these quasi-norms.

Along this work, we will write A � B whenever there is some constant C > 0,
independent of the relevant parameters, such that A ≤ C · B. We will stress the
dependence of some constantC on a certain parameterα by including it in a parenthesis
like this: C(α). The notation A � B will mean that B � A and A 
 B will be used
in case both A � B and A � B hold at the same time.

The rest of the paper is organized as follows: in Sect. 2 we introduce some previous
self-improving results and we discuss their hypotheses. This leads us to consider a
generalization of A∞ weights in relation to L p norms which we later extend to the
context of general quasi-normed spaces. In Sect. 3 use the generalized A∞ condition
to settle Theorem 1.1. Section 4 is devoted to provide corollaries of Theorem 1.1,
among which Corollaries 1.1 and 1.2 are included. We include an appendix with the
proof of Theorem 2.1, which is a generalization to the setting of doubling measures
of [16,Theorem 1.2].

2 The A∞ condition of a functional with respect to a quasi-norm

In this section we provide the fundamental tools and concepts used to prove the main
results of the paper. Some aspects of the previous self-improving result [18,Theorem
1.5] and some results in [16] will be discussed to motivate one of the new concepts
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which will be introduced here, namely, the generalized A∞ type condition adapted to
general quasi-normed function spaces. The basic assumptions on the quasi-norms we
will consider in this work will also be introduced here. The core ideas for the results
in this paper come essentially from [18,Theorem 1.5]. We state this result here for the
convenience of the reader. We first recall that a weight w is an A∞ weight if there
exist some δ,C > 0 such that, given a cube Q in Rn , the inequality

w(E)

w(Q)
≤ C

(
μ(E)

μ(Q)

)δ

(2.1)

holds for any measurable subset E ⊂ Q. We also recall the standard notation 
(Q)

for the family of countable disjoint families of subcubes of a given cube Q.

Theorem B Let μ be a doubling measure in Rn and consider w ∈ A∞(dμ). Suppose
that a functional a : Q → (0,∞) satisfies the SDs

p(w) condition, namely, that there
exist p ≥ 1, s > 1 and ‖a‖ > 0 such that, for every cube Q in Rn, the inequality

⎛
⎝∑

j∈N

(
a(Q j )

a(Q)

)p w(Q j )

w(Q)

⎞
⎠

1/p

≤ ‖a‖
⎛
⎝μ

(⋃
j∈N Q j

)

μ(Q)

⎞
⎠

1/s

(2.2)

holds for any {Q j } j∈N in
(Q). There exists a constant C(μ) > 0 such that, for every
f ∈ L1

loc(R
n, dμ) with

1

μ(Q)

∫

Q
| f (x) − fQ,μ| dμ(x) ≤ a(Q), Q ∈ Q, (2.3)

the estimate

(
1

μ(Q)

∫

Q
| f (x) − fQ,μ|p dμ(x)

)1/p

≤ C(μ) s ‖a‖s a(Q), (2.4)

holds for any cube Q in Rn.

The proof of Theorem B is based in a Calderón-Zygmund decomposition which takes
advantage of the two main hypothesis of the result, the SDs

p(w) condition and the
A∞(dμ) condition on w.

As already observed in [18,Remark 1.6], the A∞(dμ) condition on w seems to
be an artifice of the proof and it may be not needed for getting the general result.
The authors use the A∞ condition as a tool for proving that the auxiliary functional
aε(Q) := a(Q)+ε satisfies a smallness condition like (2.2) provided that the original
functional a satisfies it. More specifically, they deal with the following computation
for any cube Q and any {Q j } j∈N ∈ 
(Q):

⎛
⎝∑

j∈N

aε(Q j )
pw(Q j )

aε(Q)pw(Q)

⎞
⎠

1/p

≤
⎛
⎝∑

j∈N

a(Q j )
pw(Q j )

a(Q)pw(Q)

⎞
⎠

1/p

+
⎛
⎝w

(⋃
j∈N Q j

)

w(Q)

⎞
⎠

1/p

.
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Note that the A∞(dμ) condition (2.1) is what allows to bound the second term in the
sum above to finally get a smallness condition like (2.2) on aε for any ε > 0.

The need of this condition for a self-improving result like Theorem B has been
investigated in [14], where the first author studies alternative arguments avoiding
the A∞(dμ) condition on the weight to get a self-improving like that. Although the
results there are not fully satisfactory in the sense that they do not recover the improve-
ment (2.4) without the A∞(dμ) condition, they are good enough to get a new unified
approach for getting classical and fractional weighted Poincaré-Sobolev inequalities.
The approach taken there consists on replacing the weightw in the SDs

p(w) condition
(2.2) by a slightly more general functional wr defined by

wr (Q) := μ(Q)1/r
′
(∫

Q
w(x)r dμ(x)

)1/r

,

thus getting a modified SDs
p(w) condition which reads as follows

⎛
⎝∑

j∈N

(
a(Q j )

a(Q)

)p wr (Q j )

wr (Q)

⎞
⎠

1/p

≤ ‖a‖
⎛
⎝μ

(⋃
j∈N Q j

)

μ(Q)

⎞
⎠

1/s

(2.5)

for any cube Q and any {Q j } j∈N ∈ 
(Q).
Observe that wr (Q) is the result of applying Jensen’s inequality to the classical

functional defined by w(Q) for any cube Q ∈ Q. This kind of functionals already
appeared in some works as for instance [2, 3, 17], in which the authors study sufficient
conditions for the two-weighted weak and strong-type (respectively) boundedness of
fractional integrals, Calderón-Zygmund operators and commutators. There, one can
find the following straightforward properties of wr :

(1) w(E) ≤ wr (E) for any measurable nonzero measure set E .
(2) If E ⊂ F are two nonzero measure sets, then

wr (E) ≤
(

μ(E)

μ(F)

)1/r ′

wr (F). (2.6)

(3) If E =⋃ j∈N E j for some disjoint family {E j } j∈N, then
∑
j∈N

wr (E j ) ≤ wr (E). (2.7)

(4) If two measurable sets E and F satisfy E ⊂ F , then

wr (E) ≤ wr (F). (2.8)

The above properties are what allow to prove a smallness condition for the perturba-
tions aε of a functional a. Specially, condition (2.6) is what makes possible to work
with these perturbations without assuming the A∞(dμ) condition on the weight.
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Also related with this problem, and more related to the results which will be studied
here is the work [16], where the embedding of BMO(dμ) into certain weighted BMO
spaces is characterized. To be precise, they consider the following weighted BMO
spaces.

Definition 2.1 Let us consider a positive functional Y : Q → (0,∞) defined over
the family Q of all cubes of Rn . Consider a measure μ in R

n and pick a weight
v ∈ L1

loc(R
n, μ). We define the class of functions with bounded (v dμ,Y )-mean

oscillations as

BMOv dμ,Y :=
{
f ∈ L1

loc(R, dμ) : ‖ f ‖BMOv dμ,Y < ∞
}

, (2.9)

where

‖ f ‖BMOv dμ,Y := sup
Q∈Q

1

Y (Q)

∫

Q
| f (x) − fQ,μ|v(x) dμ(x). (2.10)

For the special case v = 1, Y (Q) = μ(Q) the notation BMO(dμ) will be adopted.

It is one of the main results in [16] that the embedding inequality

‖ f ‖BMOv dx,Y ≤ B‖ f ‖BMO(dx)

is valid if and only if the weight v and the functional Y satisfy the Fujii-Wilson type
A∞ condition

[v]A∞,Y := sup
Q∈Q

1

Y (Q)

∫

Q
M(vχQ)(x) dx < ∞, (2.11)

which, in case Y (Q) = |Q|, coincides with the A∞ condition stated in (2.1) (see [5]).
The following theorem generalizes the aforementioned result in [16] to the setting of
doubling measures. A proof of it is provided in Appendix A.

Theorem 2.1 Let μ be a doubling measure in Rn and consider a functional Y : Q →
(0,∞). The following two conditions on a weight w ∈ L1

loc(R
n, dμ) are equivalent:

(1) There is some constant B > 0 such that

1

Y (Q)

∫

Q
| f (x) − fQ,μ| dw(x) ≤ B‖ f ‖BMO(dμ)

for every function f ∈ BMO(dμ) and every cube Q in Rn.
(2) The weight w is an A∞,Y (dμ) weight, i.e.

[w]A∞,Y (dμ) := sup
Q∈Q

1

Y (Q)

∫

Q
Mμ(wχQ)(x) dμ(x) < ∞. (2.12)
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Moreover, there exist positive constants C1 and C2 such that C1B ≤ [w]A∞,Y (dμ) ≤
C2B.

Note that Y (Q) := wr (Q), r > 1 is a possible choice of Y in the above theorem
and thus the particular case of a constant functional in the main theorem [14] proves
that w is an A∞,wr (dμ) weight for any r > 1. Evidently, the Fujii-Wilson A∞(dμ)

weights studied for instance in [8] are A∞,Y (dμ) weights for the functional Y defined
by Y (Q) := w(Q) for every cube Q in R

n . In particular, this answers the question
on the need of the A∞(dμ) condition for Theorem B at least in the case of a constant
functionala. Indeed, on the one hand, asweights satisfying the A∞(dμ) condition (2.1)
are precisely those satisfying the Fujii-Wilson A∞,w(dμ) condition (2.12), TheoremB
ensures that, for any weight satisfying the A∞(dμ) condition (2.1), the self-improving
inequality

1

w(Q)

∫

Q
| f (x) − fQ,μ| dw(x) ≤ B‖ f ‖BMO(dμ), Q ∈ Q

holds. On the other hand, any weight for which the above self-improvement holds
must be an A∞(dμ) weight in virtue of Theorem 2.1 and [5,Theorems 3.1 (b) and 4.2
(b)]. Thus, according to Theorem B, it happens that the SDs

p(w) condition (2.2) for
the constant functionals is equivalent to the A∞(dμ) condition on the weight w, i.e.
w ∈ A∞(dμ) if and only if there are s > 0 and C > 0 such that given a cube Q in
R
n and {Q j } j∈N ∈ 
(Q),

⎛
⎝∑

j∈N

w(Q j )

w(Q)

⎞
⎠

1/p

≤ C

⎛
⎝μ

(⋃
j∈N Q j

)

μ(Q)

⎞
⎠

1/s

(2.13)

for some p ≥ 1 (or equivalently, for every p ≥ 1). In fact, in this case it happens
that [w]A∞(dμ) 
 s/p, where s is the best possible exponent in the above condition.
In general, it is considered in [16] a general condition in the spirit of (2.13) which
generalizes the situation to more general functionals Y (including the case Y (Q) :=
wr (Q), r > 1) and which reads as follows: given p ≥ 1, there is s > 0 such that for
any cube Q in Rn and any {Q j } j∈N ∈ 
(Q),

⎛
⎝∑

j∈N

Y (Q j )

Y (Q)

⎞
⎠

1/p

≤ C

⎛
⎝μ

(⋃
j∈N Q j

)

μ(Q)

⎞
⎠

1/s

. (2.14)

This condition may be regarded as an A∞(dμ) condition at scale p for the functional
Y where, in analogy with the case Y (Q) := w(Q), one could call [Y ]A∞(dμ,p) (or
[Y ]A∞(dμ) in case p = 1) to the best possible s in the above condition. Observe that this
generalizes the usual case, where for an A∞(dμ) weight we have that [w]A∞(dμ,p) 

p[w]A∞(dμ). Also, note that, by taking into account properties (2.7) and (2.6) of wr ,
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∑
j∈N

wr (Q j )

wr (Q)
≤

wr

(⋃
j∈N Q j

)

wr (Q)
≤
⎛
⎝μ

(⋃
j∈N Q j

)

μ(Q)

⎞
⎠

1/r ′

,

sowr ∈ A∞(dμ) and [wr ]A∞(dμ) ≤ r ′ for every r > 1. This is the model example for
the embedding result [16,Theorem 1.6], which is a particular case of [14,Theorem 2].

As we advanced in the Introduction, it is our goal in this paper to get self-improving
inequalities in the spirit of that in Theorem A (which, as already said, is the corollary
of Theorem B we are interested in) replacing the L p norms by different norms or
even quasi-norms. Therefore, a brief reminder of the main concepts on the theory of
quasi-normed spaces of functions is in order.

Definition 2.2 Let X be a vector space. A function ‖ · ‖ : X → [0,∞) is called a
quasi-norm if there is a constant K ≥ 1 such that

(1) ‖x‖ = 0 if and only if x = 0.
(2) ‖λx‖ = |λ|‖x‖ for α ∈ R and x ∈ X .
(3) ‖x1 + x2‖ ≤ K (‖x1‖ + ‖x2‖) for all x1, x2 ∈ X . The constant K will be called

the geometric constant of ‖ · ‖.
A quasi-norm ‖ · ‖ over a vector space X will be denoted by ‖ · ‖X . In case K = 1,
the term “quasi” for the notation will be skipped.

Consider now the measure space (Rn, dν), where ν is a measure on the space. If
L0(Rn, dν) is the vector lattice of all measurable functions modulo ν-null functions,
the positive cone of L0(Rn, dν) will be denoted by L0(Rn, dν)+. If X(dν) is an
order ideal of L0(Rn, dν) (i.e. a vector subspace of L0(Rn, dν) such that f ∈ X(dν)

for any f ∈ L0(Rn, dν) satisfying | f | ≤ |g| ν-a.e. with g ∈ X(dν)), a quasi-norm
‖·‖X(dν) on X(dν) is said to be a lattice quasi-norm if ‖ f ‖X(dν) ≤ ‖g‖X(dν) whenever
f , g ∈ X(dν) satisfy | f | ≤ |g|. In this case, the pair (X(dν), ‖·‖X(dν)) (or, sometimes,
simply X(dν)) is called a quasi-normed function space based on (Rn, dν). For a given
measurable subset E of Rn , the notation ‖ f ‖X(E,dμ) := ‖ f χE‖X(dμ) will be used.
Recall also the discussion on the concept of local average below Theorem A in the
Introduction.

The normed function spaces introduced here coincide with those called normed
Köthe function spaces [20,Ch. 15], which are defined as those for which a function
norm ρ : M+(ν) → [0,∞] is finite, where M+(ν) is the class of nonnegative
measurable functions up to ν-a.e. null functions. See [15,Remark 2.3 (ii)] for more
details about this.

If we want to study self-improving results in the spirit of Theorem A (or, more
in general, in the spirit of [16,Theorem 1.6]) for norms different from the L p ones,
a good strategy would be to try to write the conditions on these theorems in terms
of the L p norm. If the obtained result makes sense for a different norm, it may be
the correct condition for such a generalization. It turns out that this strategy works.
Indeed, consider the general condition (2.14) and pick any family {h j } j∈N of functions
satisfying that

∥∥ h jχQ j

∥∥
L p

(
Q j ,

dw
Y (Q j )

) = 1, where {Q j } j∈N is a family of pairwise

disjoint subcubes of a cube Q. We can make the following computations:
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⎛
⎝∑

j∈N

Y (Q j )

Y (Q)

⎞
⎠

1/p

=
⎛
⎝∑

j∈N

1

Y (Q)

∫

Q j

h j (x)
p dw(x)

⎞
⎠

1/p

=
⎛
⎝ 1

Y (Q)

∫

Q

∑
j∈N

h j (x)
pχQ j (x) dw(x)

⎞
⎠

1/p

=
⎛
⎝ 1

Y (Q)

∫

Q

⎡
⎣∑

j∈N
h j (x)χQ j (x)

⎤
⎦

p

dw(x)

⎞
⎠

1/p

=
∥∥∥∥∥∥
∑
j∈N

h jχQ j

∥∥∥∥∥∥
L p
(
Q, dw

Y (Q)

)
,

This way, we have written the left-hand side of (2.14) in terms of the L p(dw) norm.
This, and the fact that in the self-improving results there is no special reason why this

left-hand side must be controlled by a power function of μ
(⋃

j∈N Q j

)
/μ(Q), leads

us to make the following definition, in a clear paralellism with the comments below
(2.14).

Definition 2.3 Let μ be a measure in R
n . A family of Banach spaces Z = {ZQ}Q∈Q

or quasi-Banach spaces with triangle inequality constant uniformly bounded will be
said to satisfy an A∞(dμ) condition if there exist some constant CZ > 0 and some
increasing bijection � : [0, 1] → [0, 1] such that

∥∥∥∥∥∥
∑
j∈N

h jχQ j

∥∥∥∥∥∥
ZQ

≤ CZ�−1

⎡
⎣μ

(⋃
j∈N Q j

)

μ(Q)

⎤
⎦ (2.15)

for every {Q j } j∈N ∈ 
(Q), Q ∈ Q and every family of functions {h j } j∈N satisfying
‖h j‖ZQ j (dμ) = 1 for every j ∈ N.

This condition generalizes the above A∞(dμ) condition (2.14) for families of Banach
spaces.

With this condition at hand, it is possible to prove a new self-improving result
which generalizes [18,Theorem 1.5], [16,Theorem 1.6] and [14,Theorem 2] in the
case a constant functional a is considered. First some technical lemmas have to be
proved. We will start by imposing some conditions on the family of norms that we
will deal with.

Definition 2.4 A family of Banach spaces Z = {ZQ}Q∈Q or quasi-Banach spaces
with triangle inequality constant uniformly bounded. Let us consider a measure ν in
R
n . The family Z will be said to be good if:

(1) (Fatou’s property) If { fk}k∈N are positive functions in ZQ(dν) with fk ↑ f ν-a.e.
then ‖ fk‖ZQ ↑ ‖ f ‖ZQ .
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(2) ‖χQ‖ZQ ≤ 1 for every cube Q in Rn . This will be called the average property of
Z .

Example 2.1 Note that for L p(Rn, dν), and p ≥ 1 if we choose

‖ f ‖ZQ := ‖ f · χQ‖L p(Rn ,dν/Y (Q))

where Y is any functional satisfying that ν(Q) ≤ Y (Q), for every cube Q in Rn , then
{ZQ}Q∈Q is a good family. Note that this example relies upon localized L p norms.
Analogous examples could be provided localizing weak Lebesgue spaces, which are
defined for 0 < p < ∞ as

L p,∞(Rn, dν) :=
{
f ∈ L0(Rn, dν) : ‖ f ‖L p,∞(Rn ,dν) < ∞

}
,

where ν can be the usual underlying doublingmeasureμ or any other measure depend-
ing or not on μ. Here we use the standard notation ‖ f ‖L p,∞(Rn ,dν) for the weak norm
defined as

‖ f ‖L p,∞(Rn ,dν) := sup
t>0

tν
({x ∈ R

n : | f (x)| > t}) 1p .

3 A new quantitative self-improving theorem for BMO functions

In this section we prove the new general self-improving result in Theorem 1.1. We
start by proving some preliminary lemmas which will allow us to reduce the proof to
the case of bounded functions.

3.1 Lemmata

We first include the following trivial lemma regarding the oscillations of a function.

Lemma 3.1 Let f ∈ L1
loc(R

n, dμ) and let p ≥ 1. If E is a positive finite measure set
of Rn, then

inf
c∈R

(
1

μ(E)

∫

E
| f (x) − c|pdμ(x)

)1/p

≤
(

1

μ(E)

∫

E
| f (x) − fE |pdμ(x)

)1/p

≤ 2 inf
c∈R

(
1

μ(E)

∫

E
| f (x) − c|pdμ(x)

)1/p

.

Recall that, for given L < U , the notation τLU is used for the function τLU : R → R

given by

τLU (a) :=

⎧⎪⎨
⎪⎩

L if a < L,

a if L ≤ a ≤ U

U if a > U .
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These functions allow to define the truncations τLU (g) of a given function g by

τLU g(x) := τLU (g(x)), L < U , x ∈ R
n .

Lemma 3.2 Let ν be any Borel measure in R
n and consider f ∈ L1

loc(R
n, dν). Then,

for every cube Q in Rn,

1

ν(Q)

∫

Q
| f − fQ,ν | dν ≤ sup

L<U

1

ν(Q)

∫

Q
|τLU f − (τLU f )Q,ν | dν

≤ 2

ν(Q)

∫

Q
| f − fQ,ν | dν.

Proof Let Q be a cube in Rn . Observe first that, given L < U one has that |τLU (a) −
τLU (b)| ≤ |a − b| for every a, b ∈ R. This allows to write

1

ν(Q)

∫

Q
|τLU f − (τLU f )Q,ν | dν ≤ 2 inf

c∈R
1

ν(Q)

∫

Q
|τLU f − c| dν

≤ 2

ν(Q)

∫

Q
|τLU f − τLU ( fQ,ν)| dν

≤ 2

ν(Q)

∫

Q
| f − fQ,ν | dν,

for every L < U . Here Lemma 3.1 has been used.
On the other hand, by Fatou’s lemma,

1

ν(Q)

∫

Q
| f − fQ,ν | dν ≤ lim inf

L→−∞,
U→∞

1

ν(Q)

∫

Q
|τLU f − (τLU f )Q,ν | dν

≤ sup
L<U

1

ν(Q)

∫

Q
|τLU f − (τLU f )Q,ν | dν,

and the result will follow. Here the local integrability of f was used to ensure fQ,ν =
limL→−∞,

U→∞
(τLU f )Q,ν by dominated convergence. �

Lemma 3.3 Let μ, ν be Borel measures in Rn and let f ∈ L1
loc(R

n, dμ). Assume that
Z = {ZQ}Q∈Q is a good family. Then, for every cube Q in Q,

‖( f − fQ,μ)χQ‖ZQ ≤ sup
L<U

‖(τLU f − (τLU f )Q,μ)χQ‖ZQ .

Proof Let Q be a cube in Q. By Fatou’s property (1) in Definition 2.4,

‖( f − fQ,μ)χQ‖ZQ ≤ lim inf
L→−∞,
U→∞

‖(τLU f − (τLU f )Q,μ)χQ‖ZQ

≤ sup
L<U

‖(τLU f − (τLU f )Q,μ)χQ‖ZQ ,
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and the result will follow. Here the local integrability of f was used to ensure fQ,μ =
limL→−∞,

U→∞
(τLU f )Q,μ by dominated convergence. �

3.2 Proof of the self-improving theorem

We are already in position to present the proof of our Theorem 1.1.

Proof Lemmas 3.2 and 3.3 allow to work under the assumption that f is a bounded
function. Since f is in BMO(dμ), for every cube P in R

n , the following inequality
holds

1

μ(P)

∫

P

| f (x) − fP,μ|
‖ f ‖BMO(dμ)

dμ(x) ≤ 1. (3.1)

Let L > 1 and let Q be any cube in R
n . Inequality (3.1) allows to apply the local

Calderón-Zygmund decomposition to f (x)− fQ,μ

‖ f ‖BMO(dμ)
on Q at level L . This gives a family

of disjoint subcubes {Q j } j∈N ⊂ D(Q) with the properties

L <
1

μ(Q j )

∫

Q j

| f (x) − fQ,μ|
‖ f ‖BMO(dμ)

dμ(x) ≤ cμ2
nμL. (3.2)

For a simpler presentation, let us introduce the notation

g(x) := f (x) − fQ,μ

‖ f ‖BMO(dμ)

and g j (x) := f (x) − fQ j ,μ

‖ f ‖BMO(dμ)

.

The function gχQ can be decomposed as

g(x)χQ(x) =
∑
j∈N

g(x)χQ j (x) + g(x)χQ\⋃ j∈N Q j (x)

=
∑
j∈N

[
g j (x) + fQ − fQ j ,μ

‖ f ‖BMO(dμ)

]
χQ j (x) + g(x)χQ\⋃ j∈N Q j (x).

On one hand, by Lebesgue differentiation theorem

∣∣∣g(x)χQ\⋃ j∈N Q j (x)
∣∣∣ ≤ L,

for μ-almost every x ∈ Q and, on the other hand, the second term in the sum

∑
j∈N

[
g j (x) + fQ − fQ j ,μ

‖ f ‖BMO(dμ)

]
χQ j (x)
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can be bounded as follows

∣∣∣∣
fQ − fQ j ,μ

‖ f ‖BMO(dμ)

∣∣∣∣ ≤
1

μ(Q j )

∫

Q j

| f (x) − fQ,μ|
‖ f ‖BMO(dμ)

dμ(x) ≤ cμ2
nμL,

for every j ∈ N.
Therefore, the absolute value of g can be bounded by

|g(x)| χQ(x) ≤
∑
j∈N

∣∣g j (x)
∣∣χQ j (x) + (cμ2

nμ + 1)LχQ(x).

Hence, by using the quasi-triangle inequality, the Average property (2) from Defini-
tion 2.4 and the disjointness of the cubes Q j ,

‖g‖ZQ
≤ K

∥∥∥∥∥∥
∑
j∈N

g jχQ j

∥∥∥∥∥∥
ZQ

+ CK ,μL (3.3)

where CK ,μ := K (cμ2nμ + 1).
The key property of the cubes {Q j } j∈N in the Calderón-Zygmund decomposition

at level L of g(x) = f (x)− fQ,μ

‖ f ‖BMO(dμ)
χQ(x) is the fact that, by (3.2),

∑
j∈N

μ(Q j ) ≤
∑
j∈N

1

L

∫

Q j

|g(x)| dμ(x) = 1

L

∫

Q
|g(x)| dμ(x) ≤ μ(Q)

L
, (3.4)

where (3.1) has been used.
A brief remark is in order here to explain the main idea. Note that in (3.3) we have

essentially the same object on both sides of the inequality but at different levels. That
is, we are trying to control the “local average” ‖g‖ZQ

in terms of a local average
of
∑

j g jχQ j . In the classical case of L p weighted norms, the localization of the
functions g jχQ j allows to move the norm into the sum. Here, however, we will appeal
to the generalized A∞ condition for the family Z . To that end, let us define

X := sup
P∈Q

∥∥∥∥
f − fP,μ

‖ f ‖BMO(dμ)

χP

∥∥∥∥
ZP

. (3.5)

This supremum is finite since, by the Average property 2 from Definition 2.4 and
the boundedness of f , for any cube P ∈ Q,

∥∥∥∥
f − fP,μ

‖ f ‖BMO(dμ)

χP

∥∥∥∥
ZP

≤ 2
‖ f ‖L∞(Rn ,dμ)

‖ f ‖BMO(dμ)

< ∞.
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This allows tomake computations withX, which allows to introduce the local averages
of the functions g jχQ j as follows:

‖g‖ZQ
≤ K

∥∥∥∥∥∥
∑
j∈N

g jχQ j

∥∥∥∥∥∥
ZQ

+ CK ,μ · L

= K

∥∥∥∥∥∥
∑
j∈N

∥∥g j
∥∥
ZQ j∥∥g j
∥∥
ZQ j

g jχQ j

∥∥∥∥∥∥
ZQ

+ CK ,μ · L

Using the X defined above, we get

‖g‖ZQ
≤ X · K

∥∥∥∥∥∥
∑
j∈N

g j∥∥g j
∥∥
ZQ j

χQ j

∥∥∥∥∥∥
ZQ

+ CK ,μ · L (3.6)

Here is where the generalized A∞(dμ) condition for Z pops in. In particular, we
get a bound that does not depend on the cube Q (recall that {Q j } j∈N and Q satisfy
the smallness relation (3.4)), and then one can take supremum at the left-hand side to
get

X ≤ X · CZ · K · �−1
(
1

L

)
+ CK ,μ · L,

where CZ is the constant in the definition of the aforementioned generalized A∞
condition. One can now choose L > max

{
1,
[
�
(
(CZ · K )−1

)]−1
}
. Thanks to this,

it is possible to isolate X at the left-hand side as follows

X

[
1 − CZ · K · �−1

(
1

L

)]
≤ CK ,μL.

Equivalently,

X ≤ CK ,μ

L

1 − CZ · K · �−1
( 1
L

)

for every L > max
{
1,
[
�
(
(CZ · K )−1

)]−1
}
. It just remains to optimize the right-

hand side on L > max
{
1,
[
�
(
(CZ · K )−1

)]−1
}
to get the desired result. �

4 Applications of the self-improving theorem

As a first easy consequence of our general self-improving result, we include the fol-
lowing corollary regarding the classical A∞ condition. We show that it suffices to
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check the usual condition replacing the usual power functions by any increasing bijec-
tion. We remit the reader to [5] for the classical definition and a number of equivalent
conditions.

Corollary 4.1 Let w be any weight satisfying, for some increasing bijection � :
[0, 1] → [0, 1], the condition

w
(⋃

j∈N Q j

)

w(Q)
≤ C�−1

⎡
⎣μ

(⋃
j∈N Q j

)

μ(Q)

⎤
⎦

for every cube Q and every {Q j } j∈N ∈ 
(Q). Then w ∈ A∞(dμ).

Proof Considering ‖ · ‖ZQ = ‖ · ‖
L p
(
Q, dw

w(Q)

) for each cube Q, by Theorem 1.1, we

get that the weight w satisfies also that

sup
‖ f ‖BMO(dμ)=1

‖ f − fQ,μ‖
L p
(
Q, dw

w(Q)

) < ∞,

and so, by Theorem 2.1, it happens that w ∈ A∞(dμ). �
In the sequel, we present two particular examples of application of Theorem 1.1.

4.1 BMO-type improvement at the Orlicz spaces scale

The first example has to do with Orlicz norms for submultiplicative Young functions.
The aim is to write a quantitative self-improving result for the control on the mean
oscillations of BMO(dμ) functions to a control on Orlicz mean oscillations.

A special type of convex function is used to define Orlicz norms.

Definition 4.1 A convex function φ : [0,∞) → [0,∞) is said to be a Young function
if φ(0) = 0, and limt→∞ φ(t) = ∞. Througout the remainder of the paper we will
assume that every Young function φ has the additional property φ(1) = 1. We will
say that φ is a quasi-submultiplicative Young function with associated constant c > 0
if, additionally, φ(t1 · t2) ≤ cφ(t1) ·φ(t2) for every t1, t2 ≥ 0. If c = 1 we will simply
say that φ is submultiplicative. If there is k > 2 such that φ(2t) ≤ kφ(t) for every
t ≥ t0 for some t0 ≥ 0, we will say that φ satisfies the 
2 (or doubling) condition.

Example 4.1 As examples of doubling Young functions one can find the power
functions φp(t) := t p. These are clearly doubling functions since they are sub-
multiplicative. In general, every submultiplicative Young function φ is a doubling
Young function but not only submultiplicative functions satisfy this condition, as
this is also fulfilled by quasi-submultiplicative Young functions such as φp,α(t) :=
log(e + 1)−αt p log(e + t)α , p ≥ 1, α > 0.

Given any Young function φ, any Borel measure ν in R
n and any cube Q in R

n

one can define the φ(L)(ν)-mean average of a function f over Q with the Luxemburg
norm
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‖ f ‖
φ(L)

(
Q, dν

ν(Q)

) := inf

{
λ > 0 : 1

ν(Q)

∫

Q
φ

( | f (x)|
λ

)
dν(x) ≤ 1

}
,

which is the localized version of the Luxemburg norm defining the Orlicz space
φ(L)(Rn, dν) given by the finiteness of the norm

‖ f ‖φ(L)(Rn ,dν) := inf

{
λ > 0 :

∫

Rn
φ

( | f (x)|
λ

)
dν(x) ≤ 1

}
.

Note that if φ1, φ2 are Young functions satisfying φ1(t) ≤ φ2(kt) for t > t0, for

some k > 0 and t0 ≥ 0, then φ2(L)
(
Q, dν

ν(Q)

)
⊂ φ1(L)

(
Q, dν

ν(Q)

)
(see [12,Theorem

13.1]). Therefore one can find infinitely many Orlicz spaces different from a Lebesgue

space between any two Lebesgue spaces L p
(
Q, dν

ν(Q)

)
and Lq

(
Q, dν

ν(Q)

)
, p < q.

Orlicz spaces are examples of quasi-normed function spaces with a good quasi-
norm as introduced in the beginning of this section and moreover they are Banach
function spaces, i.e. the quasi-norm ‖ · ‖φ(L)(Rn ,dν) is in fact a norm and the resulting
space is complete.

Let us callZφ the family of norms ‖·‖ZQ
= ‖·‖

φ(L)
(
Q,

dμ
μ(Q)

). The following lemma

shows that for Zφ it suffices to check the A∞(μ) condition in Definition 2.3 just for
characteristic functions instead of considering the arbitrary functions h j .

Lemma 4.1 Let φ be a quasi-submultiplicative Young function with associated quasi-
submultiplicative constant c > 0. The family of norms Zφ satisfies a generalized
A∞(dμ) condition with associated increasing bijection � : [0, 1] → [0, 1] if and
only if there is C > 0 such that

∥∥∥∥∥∥
∑
j∈N

χQ j

∥∥∥∥∥∥
φ(L)

(
Q,

dμ
μ(Q)

)
≤ C�−1

⎡
⎣μ

(⋃
j∈N Q j

)

μ(Q)

⎤
⎦ (4.1)

for every {Q j } j∈N ∈ 
(Q), Q ∈ Q.

Proof Indeed, consider a cube Q, a sequence {Q j } j∈N of disjoint subcubes of Q and
{h j } j∈N a sequence of functions satisfying ‖h j‖

φ(L)

(
Q j ,

dμ
μ(Q j )

) = 1 for every j ∈ N.
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Then,

1

μ(Q)

∫

Q
φ

(∑
j∈N h jχQ j

λ

)
dμ(x) =

∑
j∈N

μ(Q j )

μ(Q)

1

μ(Q j )

∫

Q j

φ

(
h j (x)

λ

)
dμ(x)

≤ c
∑
j∈N

μ(Q j )

μ(Q)
φ

(
1

λ

)
1

μ(Q j )

∫

Q j

φ(h j (x)) dμ(x)

= c
∑
j∈N

1

μ(Q)

∫

Q j

φ

(
1

λ

)
dμ(x)

≤ c
1

μ(Q)

∫

Q
φ

(∑
j∈N χQ j (x)

λ

)
dμ(x).

Hence,

∥∥∥∥∥∥
∑
j∈N

h jχQ j

∥∥∥∥∥∥
φ(L)

(
Q,

dμ
μ(Q)

)
≤ c

∥∥∥∥∥∥
∑
j∈N

χQ j

∥∥∥∥∥∥
φ(L)

(
Q,

dμ
μ(Q)

)
.

The result follows from the above computation and the fact that characteristic functions
have average 1. �

As a consequence, we get that the family Zφ satisfies a A∞(dμ) generalized con-
dition.

Lemma 4.2 Let φ be a quasi-submultiplicative Young function with associated quasi-
submultiplicative constant c > 0. Then the family Zφ satisfies a generalized A∞(dμ)

condition with associated increasing bijection given by �(t) := 1/φ−1(1/t).

Proof By the above lemma, we just have to check the condition for characteristic
functions. Let us then take a cube Q and any family {Q j } j∈N ∈ 
(Q). Then, if one

considers λ0 := 1/φ−1
[
μ(Q)/

∑
j∈N μ(Q j )

]
,

1

μ(Q)

∫

Q
φ

(∑
j∈N χQ j (x)

λ0

)
dμ(x) =

∑
j∈N

1

μ(Q)

∫

Q j

φ

(
χQ j (x)

λ0

)
dμ(x)

=
∑
j∈N

μ(Q j )

μ(Q)
φ

(
1

λ0

)

=
∑
j∈N

μ(Q j )

μ(Q)

μ(Q)∑
j∈N μ(Q j )

= 1.
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This implies that, for any cube Q and any family {Q j } j∈N ∈ 
(Q),

∥∥∥∥∥∥
∑
j∈N

χQ j

∥∥∥∥∥∥
φ(L)

(
Q,

dμ
μ(Q)

)
= inf

{
λ > 0 : 1

μ(Q)

∫

Q
φ

(∑
j∈N χQ j (x)

λ

)
dμ(x)

}

≤ 1

φ−1
[

μ(Q)∑
j∈N μ(Q j )

] .

The smallness condition is then satisfied for the increasing bijection of [0, 1] given by
�−1(t) := 1/φ−1(1/t). �

From the lemma above it can be deduced, through a simple application of Theo-
rem 1.1, the following general result for Orlicz spaces.

Corollary 4.2 Let μ be a doubling measure in R
n. Let φ be a quasi-submultiplicative

Young function with associated quasi-submultiplicative constant c > 0. Let us further
assume that φ is differentiable for t > 1 and let [φ]1 and [φ]2 be the best constants
satisfying [φ]1φ(t) ≤ tφ′(t) ≤ [φ]2φ(t), t > 1. If f ∈ BMO(dμ) then

‖ f − fQ,μ‖
φ(L)

(
Q,

dμ
μ(Q)

) ≤ cμ2
nμφ

[
c

(
1 + 1

[φ]1
)]

([φ]2 + 1) ‖ f ‖BMO(dμ)(4.2)

for every cube Q in Rn.

Proof The inequality follows by a direct application of Theorem 1.1. The only thing
which remains is to prove a bound for the constant C (μ,�). Observe that, as the
constant C in the generalized A∞(dμ) condition of Zφ is clearly less than c, we have
that

C (μ,�) ≤ inf
L>max{1,�(c−1)−1}

cμ2
nμ

L

1 − c�−1
( 1
L

) .

Since by the preceding lemma in this case we have �−1(t) = 1/φ−1(1/t), then we
can write

C (μ,�) = inf
L>max{1,�(c−1)−1}

cμ2
nμ

Lφ−1(L)

φ−1 (L) − c
.

It is a simple real analysis exercise to find that the smallest value for the above
function of L is attained at the smallest L > max{1, �(c−1)−1} satisfying the identity

L = φ

[
c + c

L[φ−1]′(L)

φ−1(L)

]
.

Observe that such an L exists always becauseφ
[
c + c L[φ−1]′(L)

φ−1(L)

]
is a bounded function

of L . Indeed, observe that, as φ is an increasing function, we can make the change of
variables L = φ(s) to get
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φ

[
c + c

L[φ−1]′(L)

φ−1(L)

]
= φ

[
c + c

φ(s)

sφ′(s)

]
≤ φ

[
c + c

1

[φ]1
]

The existence is established then by checking that φ
[
c + c L[φ−1]′(L)

φ−1(L)

]
is greater than

1 or greater than �(c−1)−1, depending on whether max{1, �(c−1)−1} is one quantity
or the other. If max{1, �(c−1)−1} = 1 then it happens that c = 1 (note that c is not
allowed to be below 1 by condition φ(1) = 1) and then

φ

[
c + c

L[φ−1]′(L)

φ−1(L)

]
> 1 ⇐⇒ L[φ−1]′(L)

φ−1(L)
> 0,

which trivially holds. In case max{1, �(c−1)−1} = �(c−1)−1, one just has to check
the existence of L > �(c−1)−1 such that

L = φ

[
c + c

L[φ−1]′(L)

φ−1(L)

]
,

but note that L > �(c−1)−1 ⇐⇒ c−1 > �−1(L−1), which for our choice of �−1

reads φ−1(L) > c. By the continuity properties of the function under consideration,
the desired existence will be proved if

c + c
L[φ−1]′(L)

φ−1(L)
> c,

and this holds trivially because φ−1 is a positive increasing function.
Therefore, by calling Aφ the set of those L > max{1, �(c−1)−1} satisfying the

condition L = φ
[
c + c L[φ−1]′(L)

φ−1(L)

]
,

C (μ,�) = inf
L∈Aφ

cμ2
nμφ

[
c

(
1 + L[φ−1]′(L)

φ−1(L)

)](
φ−1(L)

L[φ−1]′(L)
+ 1

)

≤ inf
φ(s)∈Aφ

cμ2
nμφ

[
c

(
1 + φ(s)

sφ′(s)

)](
sφ′(s)
φ(s)

+ 1

)
,

where the change of variables L = φ(s), s > 1 has been used again. �
Example 4.2 As an application we compute the example

φp,α(t) = t p(1 + log+(t))α, α > 0, p ≥ 1,

which is a submultiplicative Young function defining the Orlicz space L p(log L)α .
First we note that, indeed, φp,α is submultiplicative, i.e.

φp,α(st) ≤ φp,α(s)φp,α(t), s, t > 0.
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We note that if 0 < s < 1 and/or 0 < t < 1 the inequality trivially holds. Hence we
shall assume that s, t > 1. Note that then

φp,α(st) = s pt p(1 + log+(st))α = s pt p(1 + log(st))α

and it suffices to show that

1 + log(st) ≤ (1 + log(s))(1 + log(t))

but

1 + log(st) = 1 + log(s) + log(t)

≤ 1 + log(s) + log(t) + log(s) log(t)

= (1 + log(s)) (1 + log(t))

and hence we are done.
Now observe that

φ′
p,α(t) =

{
pt p−1 if t < 1,

pt p−1 (1 + log(t))α + αt p−1 (1 + log(t))α−1 if t > 1.

If t > 1, then

φp,α(t) = t p(1 + log+(t))α = t p(1 + log(t))α,

and

tφ′
p,α(t) = pt p(1 + log(t))α + αt p(1 + log(t))α−1.

Hence,

tφ′
p,α(t)

φp,α(t)
= p + α

1 + log(t)
, t > 1,

and we then have that

p ≤ tφ′
p,α(t)

φp,α(t)
≤ p + α.

These bounds are optimal for t > 1, and so we have that [φp,α]1 = p and [φp,α]2 =
p + α. By Corollary 4.2,

‖ f − fQ,μ‖
φp,α(L)

(
Q,

dμ
μ(Q)

) ≤ cμ2
nμφp,α

(
1 + 1

[φp,α]1
) ([φp,α]2 + 1

) ‖ f ‖BMO(dμ),
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and observe that, in this particular case,

φp,α

(
1 + 1

[φp,α]1
) ([φp,α]2 + 1

) = φp,α

(
1 + 1

p

)
(p + α + 1) ,

and

φp,α

(
1 + 1

p

)
=
(
1 + 1

p

)p (
1 + log

(
1 + 1

p

))α

≤ e2α.

Consequently,

‖ f − fQ,μ‖
φp,α(L)

(
Q,

dμ
μ(Q)

) ≤ cμ2
nμe2α (p + α + 1) ‖ f ‖BMO(dμ).

This proves Corollary 1.1 in the Introduction.

Remark 4.1 We observe that different choices for defining the same Orlicz norm
may give different quantitative controls when applying our self-improving result.
Indeed, one may check that, for instance, the alternative choice φ̃p,α(t) := [log(e +
1)]−αt p[log(e + t)]α , α ≥ 0, p > 1 for defining the norm ‖ · ‖L p logα L leads to the
following estimate

‖ f − fQ,μ‖
L p(log L)α

(
Q,

dμ
μ(Q)

)

≤ cμ2
nμe

[
log (e + 1)

]α(p−1) [log(e + 2 log(1 + e)α)]α(p + α + 1)‖ f ‖BMO(dμ).

This difference comes mainly from the fact that the Young function φ̃p,α is not sub-
multiplicative but quasi-submultiplicative. Observe that the Young function we chose
in the example above gives a cleaner constant. This difference makes us wonder about
the sharpness of the estimates we get with our method. Nevertheless, observe that, in
any case (that is, by choosingφp,α or φ̃p,α) we recover the sharp estimate in TheoremA
by choosing α = 0.

Remark 4.2 For a Young function φ we can define the weak Orlicz quasi-norm

‖ f ‖Mφ(dμ) := inf

{
λ > 0 : sup

t>0
φ(t)μ

({
x ∈ R

n : | f (x)| > λt
}) ≤ 1

}
.

It is easy to prove that

‖c f ‖Mφ(dμ) = |c|‖ f ‖Mφ(dμ)

for any c ∈ R and also that

‖ f + g‖Mφ(dμ) ≤ 2
(‖ f ‖Mφ(dμ) + ‖g‖Mφ(dμ)

)
.
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This kind of spaces were studied in [9]. This quasi-norm can be localized by defining

‖ f ‖Mφ

(
Q,

dμ
μ(Q)

) := inf

{
λ > 0 : sup

t>0

φ(t)

μ(Q)
μ ({x ∈ Q : | f (x)| > λt}) ≤ 1

}

for every cube Q inRn . Choosing ‖·‖ZQ = ‖·‖Mφ

(
Q,

dμ
μ(Q)

) it is possible to show that,

counterparts of Lemmas 4.1 and 4.2 hold as well in the case of weak-Orlicz spaces.
Hence our approach allows to provide results for this family of spaces as well.

4.2 BMO-type improvement at the variable Lebesgue spaces scale

Wefinish this sectionwith another example of application now to the setting of variable
Lebesgue spaces. Note that in this case the method of the Laplace transform does
not apply. Let p : R

n → [1,∞] be a Lebesgue measurable function and denote
p− := ess inf x∈Rn p(x) and p+ := ess supx∈Rn p(x).Assume p+ < ∞. TheLebesgue
space with variable exponent p(·) is the space of Lebesgue measurable functions f
satisfying that

‖ f ‖L p(·) := inf

{
λ > 0 :

∫

Rn

( | f (x)|
λ

)p(x)

dx ≤ 1

}
< ∞.

One can associate to this space the local averages

‖ f ‖
L p(·)

(
Q, dx

|Q|
) := inf

{
λ > 0 : 1

|Q|
∫

Q

( | f (x)|
λ

)p(x)

dx ≤ 1

}
.

Note that, by choosing λ0 = 1, one has

1

|Q|
∫

Q

( |χQ(x)|
λ0

)p(x)

dx = 1

|Q|
∫

Q

(|χQ(x)|)p(x) dx = 1,

and therefore ‖χQ‖
L p(·)

(
Q, dx

|Q|
) ≤ 1. This in particular means that the family of norms

‖ · ‖ZQ = ‖ · ‖
L p(·)

(
Q, dx

|Q|
), which we callZp(·), satisfies property (2) in Definition 2.4.

Property (1) follows from [1,Theorem 2.59].

Example 4.3 We can show here that the familyZp(·) satisfies the generalized A∞(dμ)

condition in Definition 2.3 for any essentially bounded exponent function p. Indeed,
let Q be a cube inRn and consider a family {Q j } j∈N ∈ 
(Q) and a sequence {h j } j∈N
of functions satisfying ‖h j‖

L p(·)
(
Q j ,

dx
|Q j |

) = 1 for every j ∈ N. Then

1

|Q|
∫

Q

(∑
j∈N h j (x)χQ j (x)

λ

)p(x)

dx =
∑
j∈N

|Q j |
|Q|

1

|Q j |
∫

Q j

(
h j (x)

λ

)p(x)

dx
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and so, by taking λ =
(∑

j∈N |Q j |
|Q|

)1/p+
, one finds that

1

|Q|
∫

Q

(∑
j∈N h j (x)χQ j (x)

λ

)p(x)

dx ≤
∑
j∈N

|Q j |
|Q|

1

|Q j |
∫

Q j

⎛
⎜⎝ h j (x)(∑

j∈N |Q j |
|Q|

)1/p+

⎞
⎟⎠

p(x)

dx

≤
∑
j∈N

|Q j |
|Q|

1∑
j∈N |Q j |
|Q|

1

|Q j |
∫

Q j

h j (x)
p(x) dx

≤ 1,

where [1,Proposition 2.21] has been used. This proves that, for any r ≥ 1,

∥∥∥∥∥∥
∑
j∈N

h jχQ j

∥∥∥∥∥∥
Lrp(·)

(
Q, dx

|Q|
)

≤
(∑

j∈N |Q j |
|Q|

)1/rp+

. (4.3)

An application of this along with Theorem 1.1 proves Corollary 1.2 in the Intro-
duction. Now we will set an application of this corollary to a John–Nirenberg type
inequality. Note first that, for given 1/p− ≤ s < ∞, one has that ‖| f |s‖

L p(·)
(
Q, dx

|Q|
) =

‖ f ‖s
Lsp(·)

(
Q, dx

|Q|
), see [1,Proposition 2.18]. Let t > 0 and take r ≥ 1. Define, for any

cube Q in Rn , the subset E ⊂ Q defined as Et := {x ∈ Q : | f (x) − fQ | ≥ t}. Then,

1

|Q|
∫

Q

⎛
⎜⎝ χEt (x)

1
tr ‖ f − fQ‖r

Lrp(·)
(
Q, dx

|Q|
)

⎞
⎟⎠

p(x)

dx

= 1

|Q|
∫

Et

⎛
⎝ tr

‖| f − fQ |r‖
L p(·)

(
Q, dx

|Q|
)

⎞
⎠

p(x)

dx

≤ 1

|Q|
∫

Q

⎛
⎝ | f (x) − fQ |r

‖| f − fQ |r‖
L p(·)

(
Q, dx

|Q|
)

⎞
⎠

p(x)

dx .

Hence, for any t > 0, one has the following Chebychev type inequality

‖χ{x∈Q:| f (x)− fQ |≥t}‖L p(·)
(
Q, dx

|Q|
) ≤ 1

tr
‖ f − fQ‖r

Lrp(·)
(
Q, dx

|Q|
).
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Then, by Corollary 1.2 applied to the exponent function rp(·),

‖χ{x∈Q:| f (x)− fQ |≥t}‖L p(·)
(
Q, dx

|Q|
) ≤ 1

tr
[
C(n)rp+‖ f ‖BMO

]r
,

for every r ≥ 1. For t ≥ 2C(n)p+‖ f ‖BMO, take r = t/(2C(n)p+‖ f ‖BMO) to find
that

‖χ{x∈Q:| f (x)− fQ |≥t}‖L p(·)
(
Q, dx

|Q|
) ≤ 1/2r = e−C(n,p+)t/‖ f ‖BMO ,

where C(n, p+) = (2C(n)p+)−1 log 2. When t ≤ 2C(n)p+‖ f ‖BMO, we have that
the inequality e−C(n,p+)t/‖ f ‖BMO ≥ 1/2 holds and, therefore, by the Average property
of the norm,

‖χ{x∈Q:| f (x)− fQ |≥t}‖L p(·)
(
Q, dx

|Q|
) ≤ ‖χQ‖

L p(·)
(
Q, dx

|Q|
) ≤ 1 ≤ 2e−C(n,p+)t/‖ f ‖BMO

for these values of t . Hence, for every t > 0 we got that

‖χ{x∈Q:| f (x)− fQ |≥t}‖L p(·)
(
Q, dx

|Q|
) ≤ 2e−C(n,p+)t/‖ f ‖BMO .

This proves Corollary 1.3. The John–Nirenberg type inequality we just got has some-
thing to do with the John–Nirenberg type inequality in [6,Theorem 3.2]. Note that,
although condition p+ < ∞ is used, no further condition is assumed on the exponent
function p. This inequality also proves and generalizes the inequality

1

|Q|
∫

Q
eλ| f (x)− fQ | dx ≤ C

for λ < C(n, p+), as it does the one in [6,Theorem 3.2].
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Appendix A. Proof of Theorem 2.1

To provide the proof of Theorem 2.1 we need the following Lemma.

Lemma A.1 Let b ∈ L1
loc(R

n, dμ) and let Q0 ⊂ R
n be a cube. Then there exists a

collection S(Q0) ⊂ D(Q0) of dyadic cubes such that:

(1) There exists a family {EQ}Q∈S(Q0) of pairwise disjoint sets with EQ ⊂ Q and
μ(Q) ≤ 2μ(EQ) for each Q ∈ S(Q0).

(2) For almost every x ∈ Q0,

| f (x) − fQ0 |χQ0(x) �
∑

Q∈S(Q0)

1

μ(Q)

∫

Q
| f − fQ |dμχQ(x).

We omit the proof since the result follows straightforward adapting arguments in [7].
Before proceeding to the proof of Theorem 2.1 we need to settle another lemma. It

turns out that the proof of the theorem in the Euclidean case with Lebesgue measure
uses the fact that, given any cube Q, there is always a subcube of it with half its
measure. This is not guaranteed in principle for a doubling measure (at least it is not
for the best of our knowledge). Therefore we will provide a geometric lemma which
is enough for our purposes.

Lemma A.2 Let μ be a doubling measure on R
n with doubling dimension nμ and

doubling constant cμ. If μ is not identically zero, then there is, for any cube Q in Rn,
a subcube Q̃ with μ(Q̃) = αμ(Q), where 1

4cμ
≤ min{α, 1 − α}.

Proof Note that a nontrivial doubling measure must satisfy that μ(Q) > 0 for every
cube Q in R

n . Indeed, assume that there exists a cube Q with μ(Q) = 0. Since we
can write Rn =⋃k∈N kQ, we would have that

μ(Rn) = μ

(⋃
k∈N

kQ

)
= lim

k→∞ μ(kQ) ≤ lim
k→∞ cμk

nμμ(Q) = lim
k→∞ cμk

nμ · 0 = 0,

which contradicts the nontriviality of μ.
For any given x ∈ R

n and t ≥ 0 let us denote by Q(x, t) the open cube with center
at x and sidelength t . Fix a cube Q in Rn and let xQ be its center. Taking into account
the preceding observation, we have that μ(Q(xQ, t)) > 0 for every 0 < t ≤ �(Q).
Moreover, since one can fit a cube P inside any annulus Q(xQ, �(Q))\Q(xQ, t) with

123

http://creativecommons.org/licenses/by/4.0/


J. C. Martínez-Perales et al.

0 < t < �(Q), we do know that also μ
[
Q(xQ, �(Q))\Q(xQ, t)

]
> 0. This implies

that the function h : [0, �(Q)] → [0,∞) defined by h(t) = μ[Q(xQ, t)] is strictly
increasing. Note that, as Q(xQ, t) =⋃0<s<t Q(xQ, s), we always have that

lim
ε→0

h(t) − h(t − ε) = 0, (A.1)

and, therefore, the only possibility for a discontinuity of h at a point t is to have

lim
ε→0

h(t + ε) − h(t) > 0, (A.2)

that is, to have

0 < lim
ε→0

μ[Q(xQ, t + ε)] − μ[Q(xQ, t)] = μ[Q(xQ, t)] − μ[Q(xQ, t)]
= μ[∂Q(xQ, t)],

where it has been used that the closure Q(xQ, t) of the cube Q(xQ, t) can be written
as the intersection

⋂
t<s≤�(Q) Q(xQ, s).

In case such a discontinuity happens, note that, by the doubling condition,

μ[Q(xQ, t)] ≤ cμμ[Q(xQ, t)] = cμ

[
μ[Q(xQ, t)] − μ[∂Q(xQ, t)]

]
,

and so we have μ[∂Q(xQ, t)] ≤ cμ−1
cμ

μ[Q(xQ, t)]. We can uniformly bound this
obtaining that

μ[∂Q(xQ, t)] ≤ cμ − 1

cμ

μ(Q), 0 < t < �(Q). (A.3)

Therefore, h must be continuous except for jumps of length at most cμ−1
cμ

μ(Q). These
jumps are gaps of h ([0, �(Q)]) in [0, μ(Q)]. Let G be this set of gaps of h ([0, �(Q)])
in [0, μ(Q)], namely,

G := [0, μ(Q)]\h ([0, �(Q)]) .

Since h is strictly increasing, we know that G is at most the countable union of its
connected components andmoreover, we know that there are points of h ([0, �(Q)]) in
[0, μ(Q)] between any two connected components of G. The goal is to see that there
is always a connected component I ofG for which one can find points in h ([0, �(Q)])
which are close to I and far from the boundary of [0, μ(Q)], that is, we look for some
α ∈ (0, 1) with αμ(Q) close to I and min{α, 1− α} uniformly bounded from below.

We investigate the following two possibilities:

(1) There is t ∈ (0, �(Q)) with h(t) = μ(Q(xQ, t)) = 1
2μ(Q). In this case, we can

choose α = 1/2 and we are done.
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(2) There is not any t ∈ (0, �(Q)) with h(t) = μ(Q(xQ, t)) = 1
2μ(Q), that is,

1
2μ(Q) ∈ G. Let us call I the connected component of G containing 1

2μ(Q).
Note that I must be a nondegenerated interval containing 1

2μ(Q) since the dis-
continuities of h are jump discontinuities. Moreover, by (A.1) and (A.2) we have
that I must be of the form (inf I , sup I ]. Furthermore, in virtue of the bound in
(A.3), its length can be at most cμ−1

cμ
μ(Q). Around this interval I we can find

points of h ([0, �(Q)]). We will choose one of these depending on the closeness
of I to the borders of [0, μ(Q)]. Assume for instance that sup I is closer to μ(Q)

than inf I is to 0. In this case,

inf I = inf I − 0 ≥ μ(Q) − sup I ≥ μ(Q) − (inf I + |I |)
≥ μ(Q) − inf I − cμ − 1

cμ
μ(Q) = 1

cμ

μ(Q) − inf I ,

which implies that inf I ≥ 1
2cμ

μ(Q). Then we can choose any α with αμ(Q) ∈(
inf I − 1

4cμ
μ(Q), inf I

]
∩ h ([0, �(Q)]) �= ∅.

Since inf I ≥ 1
2cμ

μ(Q), we know that

inf I − 1

4cμ

μ(Q) ≥ 1

2cμ

μ(Q) − 1

4cμ

μ(Q) = 1

4cμ

μ(Q),

so α ≥ 1
4cμ

. Since αμ(Q) < inf I ≤ 1
2μ(Q), we know that μ(Q) − αμ(Q) ≥

1
2μ(Q) ≥ 1

4cμ
μ(Q), wherewe used that cμ ≥ 1. This proves that also 1−α ≥ 1

4cμ
.

Note that we could actually have chosen α such that αμ(Q) = inf I , since inf I /∈
I , but we chose to write the argument in this form in order to have a valid argument
also for the case in which inf I is closer to 0 than sup I is to μ(Q). Although in
this other case we do not have sup I /∈ I , we can still apply the argument above
to find an appropriate α and then we are done. �

With these tools at hand, we are prepared for the proof of Theorem 2.1.

Proof of Theorem 2.1 First we observe that by Lemma A.1

1

Y (Q0)

∫

Q0

| f (x) − fQ0 |v(x)dμ(x) � 1

Y (Q0)

∑
Q∈S(Q0)

1

μ(Q)

∫

Q
| f − fQ |dμv(Q)

≤ ‖b‖BMO(dμ)

1

Y (Q0)

∑
Q∈S(Q0)

v(Q)

≤ ‖b‖BMO(dμ)

1

Y (Q0)

∑
Q∈S(Q0)

μ(Q)

μ(Q)
v(Q)

≤ 2‖b‖BMO(dμ)

1

Y (Q0)

∑
Q∈S(Q0)

μ(EQ)

μ(Q)
v(Q)
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≤ 2‖b‖BMO(dμ)

1

Y (Q0)

∑
Q∈S(Q0)

×
∫

EQ

M(χQ0v)dμ

≤ 2‖b‖BMO(dμ)

1

Y (Q0)

∫

Q0

M(χQ0v)dμ

≤ 2‖b‖BMO(dμ)[v]A∞,Y

This yields B � [v]A∞,Y .
For the other implication, recall that, for any weight w ∈ L1

loc(R
n, dμ) it holds

that

1

μ(Q)

∫

Q
Mμ(wχQ)(x) dμ(x) � 1

μ(Q)

∫

Q

[
1 + log+

(
w(x)χQ(x)

wQ,μ

)]

w(x) dμ(x), (A.4)

where log+ t := max{log t, 0}. Assume that there is some constant C > 0 such that

1

w(Q)

∫

Q
| f (x) − fQ,μ| dw(x) ≤ B‖ f ‖BMO(dμ) (A.5)

for every function f ∈ BMO(dμ). The first observation is the fact that w(Q) ≤
8cμB · Y (Q) for every cube Q in Rn . Indeed, by Lemma A.2, given a cube Q in Rn ,
there is a cube Q̃ ⊂ Q of measure μ(Q̃) = αμ(Q) with min{α, 1 − α} ≥ 1

4cμ
. For

these cubes we have

|χQ(x) − (χQ̃)Q,μ| ≥ min{α, 1 − α} ≥ 1

4cμ

.

Since χQ̃ ∈ L∞(Rn, dμ) ⊂ BMO(dμ), one can write

min{α, 1 − α}w(Q)

Y (Q)
≤ 1

Y (Q)

∫

Q
|χQ̃(x) − (χQ̃)Q,μ| dw(x)

≤ ‖χQ̃‖BMOwdμ,Y ≤ B‖χQ̃‖BMO(dμ) ≤ 2B,

which finishes the proof of the claimed inequality w(Q) < 8cμBY (Q).

Define the weight v(x) := Mμ

(
wχQ
wQ,μ

)
(x)1/2, which satisfy that f (x) := log v(x)

is a BMO(dμ) function with ‖ f ‖BMO(dμ) ≤ 4[v]2A1(dμ) ≤ c(μ), where c(μ) is a
constant which just depend on the doubling dimension of μ, but not on the cube Q,
although v does depend on it. This means that, for this function f ,

1

Y (Q)

∫

Q
| f (x) − fQ,μ| dw(x) ≤ B‖ f ‖BMO(dμ) ≤ B · c(μ),
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that is,

1

μ(Q)

∫

Q
| f (x) − fQ,μ| dw(x) ≤ B · c(μ)

Y (Q)

μ(Q)
. (A.6)

There exists some βμ > 1 such that, for any x ∈ LQ := {x ∈ Q : w(x) ≥ β2
μwQ,μ},

| f (x) − fQ,μ| ≥ 1

2
log+

(
w(x)χQ(x)

β2
μwQ,μ

)
. (A.7)

Indeed, note first that, by Jensen’s inequality and Kolmogorov’s inequality (see
[4,Lemma 5.16]),

fQ,μ = 1

μ(Q)

∫

Q
log v(x) dμ(x) = 1

μ(Q)

∫

Q
log

(
Mμ(wχQ)(x)

wQ,μ

)1/2

dμ(x)

≤ log

[
1

μ(Q)

∫

Q

(
Mμ(wχQ)(x)

wQ,μ

)1/2

dμ(x)

]
≤ log

(
2‖Mμ‖1/2

L1→L1,∞
)

.

Then for any x ∈ LQ = {x ∈ Q : w(x) ≥ β2
μwQ,μ},

fQ,μ ≤ log
(
2‖Mμ‖1/2

L1→L1,∞
)

≤ log

(
(w(x)χQ(x))1/2

(wQ,μ)1/2

)

≤ log

(
M(wχQ)(x)1/2

(wQ,μ)1/2

)
= log v(x) = b(x)

if βμ is chosen to be equal to 2‖Mμ‖1/2
L1→L1,∞ . With this choice then one has that, for

any x ∈ LQ ,

| f (x) − fQ,μ| = f (x) − fQ,μ ≥ f (x) − logβμ = log

(
v(x)

βμ

)

= 1

2
log

[
M(wχQ)(x)

β2
μwQ,μ

]
≥ 1

2
log

[
w(x)χQ(x)

β2
μwQ,μ

]
.
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This proves the claimed inequality (A.7). Use now inequality w(Q) < 8cμBY (Q)

and inequality (A.6) together with (A.7) in (A.4) to get

1

μ(Q)

∫

Q
Mμ(wχQ)(x) dμ(x) ≤ C(μ)

1

μ(Q)

∫

Q[
1 + log+

(
w(x)χQ(x)

wQ,μ

)]
w(x) dμ(x)

≤ C(μ)
w(Q)

μ(Q)
(1 + 2 logβμ) + C(μ)

μ(Q)

∫

Q
log+

(
w(x)χQ(x)

β2
μwQ,μ

)
w(x) dμ(x)

≤ C(μ)
Y (Q)

μ(Q)

[
8cμ(1 + 2 logβμ) + 2c(μ)

]
B,

or, equivalently

1

Y (Q)

∫

Q
Mμ(wχQ)(x) dμ(x) ≤ C(μ)

[
8cμ(1 + 2 logβμ) + 2c(μ)

]
B.

Since the above estimate is independent of Q, it has been proved that [w]A∞,Y (dμ) <

C(μ)
[
8cμ(1 + 2 logβμ) + 2c(μ)

]
B, so the desired result follows. �
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