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a b s t r a c t

In the last decades the study of collective phenomena has produced a great interest
in the field of Statistical Physics within the framework of Complex Systems, being a
paradigmatic example flocking, the collective motion of self-propelled organisms. Such
studies have been more recently extended to collective human behavior, where social
interactions are important and concepts such as ’social force’ have arisen. In this work
we want to explore the possible existence of a ’social field’ in a very controlled human
environment: a classroom where the students take an exam. Since the students are
seated in individual tables while working in their corresponding exams, the only possible
interaction occurs when the students finish the exam and deliver it to the teacher. We
conjecture that the existence of social interactions could lead to a contagion effect among
the students, so that a given student who delivers the exam may influence another
close student to do the same, and as a result the exams are not randomly delivered in
the space. In this sense, each classroom can be seen as a complex system, where there
exist interactions between the different elements, the students. To show the existence of
this contagion effect, we use experimental data registered in 10 high-school classrooms
during different exams, and for each student we record the exam delivery time and
the spatial location of the student in the classroom while taking the exam. We use
the distances between students who finish the exam consecutively and compare these
distances with the random expectation in the corresponding classroom using Monte
Carlo simulations. We observe a significant nonrandom behavior of the experimental
data, and show the existence of a clustering effect in space, supporting the existence of
a contagion effect as a consequence of an underlying ’social field’. Finally, to quantify this
contagion effect, we propose a probabilistic distance-driven contagion model, according
to which a given student who delivers the exam may influence another student closer
than a given distance to do the same with certain contagion probability. By comparing
the results of the model with the experimental data, we obtain a global contagion
probability of around 1/6.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In the last decades, collective phenomena have been the subject of Statistical Physics in the realm of Complex Systems.
robably, since the pioneering work of Vicsek and coworkers [1], flocking was one of the first examples considered: the
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ollective and synchronized motion of self-propelled organisms (specially birds [2]), which has become an active area
f research since then (see, for example, the review [3]). More recently, these studies have been extended to collective
uman behavior, leading to the field of Sociophysics, in which the collective behavior emerges from the interactions of
ndividuals as elementary units in social structures (see for example the variety of examples in the review [4]). Within
his context, the motion of pedestrians is probably one of the most active fields [5–9]. One of the models proposed and
eveloped in some of these works to quantitatively describe pedestrian motion is the social force model [5,8,9], which
ontemplates the idea of social interaction. To do so, the social force model considers the individual response to the
ffect of the environment (other pedestrians and walls or borders).
In this work we want to introduce a new example of human interaction: the possible existence of a ‘social field’ in a

lassroom where a group of students take an exam. Our personal (subjective) observations from our teaching along the
ears suggest that the students do not finish the exam and deliver it to the teacher in a randommanner in the space. On the
ontrary, we have the perception that very often (more often than expected by chance) students who deliver consecutively
heir exams are located in neighboring areas of the classroom. This phenomenon, if confirmed, would imply some degree
f underlying self-organization, and would lead to the existence of a ’contagion effect’ among students as a consequence of
social interaction. The contagion effect in social human behavior has been detected in many different contexts, including
rofessional career mobility [10], and interpersonal influence concerning phenomena as diverse as obesity, smoking habits
r cooperation [11]. In this sense, each classroom could be seen as a complex systems with interactions among students
nstead of a collection of non-interacting individuals. By using experimental data registered in several groups of students
hile taking different exams, the aim of this work is to show quantitatively that indeed there exists a spatial contagion
ffect among students.
We note that in an environment as controlled as a classroom with students taking an exam under the supervision

f the teacher, the interaction between them is null meanwhile they work individually in the test. Therefore, the only
ossible influence from a given student to other(s) must take place only when the student finishes the exam and delivers
t to the teacher. This event could act as a possible trigger (a ‘perturbation’) and make other students to do the same.
s mentioned above, this contagion effect would be the consequence of an underlying social interaction, which may be
roduced by different reasons: friendship between some students, gregarious behavior, discomfort to deliver the exam in
n isolated way thus becoming more conspicuous, etc.
We are aware that not all the students will be affected by this ’social field’, and many of them will finish and deliver the

xam freely. But if some of the students are indeed influenced by the social field, this should be detectable by analyzing
he positions in the classroom of students who deliver the exam consecutively. Note that if no social interaction is present,
iven a student who delivers the exam, the next student to do so should be located randomly in the classroom, with the
ame probability of being close or far from the previous one. However, if a social spatial interaction is acting, one should
xpect the second student to be closer to the first than expected by chance. This kind of ‘attraction’ should produce some
egree of spatial clustering for consecutive students. Such spatial clustering has been observed to spontaneously appear
n human collectives provided there exist a visual connection between individuals [12]. Similar clustering behavior has
lso been observed in different types of physical systems, such as for example energy levels for long-range correlated
isordered systems [13,14], and keywords in written texts and amino acids in proteins [15].
Our analysis is carried out by using experimental data registered in ten different classrooms. The students in each

lassroom were taking an exam (of different subjects), and we registered both the spatial location and the exam delivery
ime for each student in all classrooms. We include a full description of the experimental data and the protocol we
ollowed to obtain them in Section 2.

In Section 3 we study the spatial behavior of students who deliver consecutively their exams. Each classroom is viewed
s a n×m grid according to the geometric disposition of the tables in the classroom where the students were seated while
aking the exam, with n the number of rows and m the number of columns. We use the sum of the distances between
students who deliver consecutively their exams as an indicator of the existence of a social interaction, since we expect this
quantity to be significantly smaller than expected by chance if the contagion effect exists. In each classroom, we obtain
the experimental value of this measure and determine the corresponding statistical significance by means of Monte Carlo
simulations. To do so, we generate a large number of random exam deliveries using the geometric configuration of the
corresponding classroom.

Since the results show a clear nonrandom spatial behavior, in Section 4 we propose a probabilistic distance-driven
contagion model between students, according to which a given student who delivers his/her exam may influence with
certain probability other student located closer than a given distance. By comparing the results of the model and the
experimental observations we can obtain a global short-distance contagion probability of around 1/6. Finally, we present
ur conclusions in Section 5.

. Data

We use in our analyses the data corresponding to 10 exams (of several subjects) carried out in different classes totaling
64 students with ages in the range 12–16 years old. The students attended to two different high schools located at
ifferent cities in the south of Spain (Estepona and Córdoba). In each exam, the students were seated in individual tables
rranged as a n×m grid with n the number of rows and m the number of columns, different in general for each classroom.
2
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Table 1
Structure of the registered data in a given classroom. The
number assigned to each student corresponds to the tem-
poral order at which the student finished the exam and
handed it to the teacher, and is linked to the corresponding
delivery time and position in the classroom.
Student Delivery time Position

1 t1 (x1, y1)
2 t2 (x2, y2)
.
.
.

.

.

.
.
.
.

N tN (xN , yN )

Fig. 1. The spatial configuration of a classroom with 26 13-year-old students while taking an exam of Physics and Chemistry. Each small square
epresents an occupied table, and the numbers within each square corresponds to the temporal order at which the student finished the exam and
elivered it to the teacher. The dotted lines with arrows connect students who delivered the exam in consecutive order.

he specific protocol for any of the exams was the following: (i) The teacher calls the student to be seated in individual
ables in alphabetical order, occupying the tables from the front side of the classroom to the rear part. (ii) Once all the
vailable students are seated, the teacher communicates the prescribed time for finishing the exam, and the exam begins.
iii) If some students do not deliver their exam within the allowed time, the teacher makes a final call and the remaining
tudents deliver their exams within a very short period (typically, 2–3 min). We note that not all the tables were occupied
ince empty places could appear if some students do not attend to the exam. The number of students also changes for
ifferent classrooms. In order to record the data, we followed the same procedure in all cases: we provided the teacher
ith a template where he/she annotated sequentially the time (in minutes) at which each student finished the exam and
elivered it to the teacher, as well as the corresponding position in the n × m grid where the student was seated while

taking the exam, with the origin (1, 1) located at the left corner of the front row. The names of the students were not
registered, to preserve the anonymity. In addition, the students were not informed of the experiment in order to prevent
biased results, so that the students were completely free to deliver their exams when they wanted to.

In this way, once a particular exam finished in a classroom with N students, each student was identified with a number
j (j = 1, 2 . . . ,N) corresponding to the temporal order at which the student finished the exam and delivered it to the
teacher, being 1 the first and N the last student. For any j, we also had the information of the corresponding delivery time
tj, with tj ≤ tj+1. In addition, each student j was also linked to his/her corresponding position (xj, yj) in the classroom,
here xj and yj are integers in the range 1, . . . , n and 1, . . . ,m respectively. The final data recorded in a given classroom

follows the structure given in Table 1.
An example of one of the considered classrooms is shown in Fig. 1, where a group with 26 13-years-old students is

depicted. The students are placed in a 7 × 4 grid, with some empty positions. In this figure, each small square represents
3
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n occupied table in the grid, and the number j within each square represents the temporal ordering at which the
orresponding student delivered his/her exam to the teacher. The dotted lines with arrows connect students who delivered
he exam in consecutive order, i.e., students j and j + 1 with j = 1, . . . ,N − 1.

As we have mentioned in the Introduction, we conjecture that there exists a social interaction between students which
ultimately produces a contagion effect leading to a non-random delivery of exams. We expect this interaction or ’social
field’ to act at short distances, i.e. a given student who finishes the exam and hands it to the teacher can influence
neighboring students (close in space) to deliver their exams too. We analyze if this is the case in the next section.

3. Spatial analysis

In this section, we want to study a possible spatial interaction between the students. In particular, if this ’contagion
effect’ exists, given a student who delivers his/her exam, with a higher probability than expected by chance the following
exam delivered to the teacher should correspond to a student located at short distance from the previous one. In order to
quantitatively determine if this is the case, we propose the following approach: Let us consider one of the ten classrooms
with registered data, and let us assume that there are N students in the classroom. First we calculate the spatial distances dj
between students j and j+1, i.e. students who deliver their exams consecutively. To show that the results are independent
of the particular details of the distance considered, we use two different distances to quantify the proximity between these
students:

d(1)j =

√
(xj+1 − xj)2 + (yj+1 − yj)2

d(2)j = max(|xj+1 − xj|, |yj+1 − yj|) (1)

and in both cases, j = 1, . . . ,N − 1. With these definitions, d(1) corresponds to the classical Euclidean distance, and d(2)
easures the separation as the number of rows or columns between the students. In both cases, the unit of distance is

he separation between rows or columns, assumed to be the same. Second, we note that each individual distance value
(i)
j (i = 1, 2) accounts for a possible local interaction between two students, j and j + 1. However, to measure the global
ontagion effect in the whole classroom, we propose to obtain the experimental ‘walk’ Wexp for the classroom as:

W (i)
exp =

N−1∑
j=1

d(i)j (2)

here i can be either 1 or 2, depending of the distance considered according to Eq. (1). For a given classroom, as
or example the one shown in Fig. 1, Wexp measures the total length separating consecutive students in the whole
classroom. We expect that if a social interaction is present the value of Wexp should be small as compared to the
xpectation of a random delivery of exams in the classroom. Note that if a given student influences other close students,
n overrepresentation of small dj values are expected as compared to pure randomness, and this effect should globally
ppear in Wexp.
To check that this is the case, we use Monte Carlo simulations to produce exams delivered randomly in each classroom.

o do so, we proceed as follows: for a given class with N students, each student j is linked to his/her position (xj, yj). The
eal delivery order of the exam is 1, 2, . . . ,N . Therefore, a random delivery of exams in that classroom is given by a
ermutation of the set of integers (1, 2, . . . ,N). Since each integer (student) is linked to a position in the grid, we can
alculate the N −1 distances between consecutive students according to the corresponding permutation and, by using an
xpression similar to Eq. (2), the corresponding random walk W (i)

ran. Finally, we generate a large number of permutations
p in each classroom to determine the statistical behavior of W (i)

ran.
An example of the results of the simulation is shown in Fig. 2, where we plot the probability density of Wran obtained

umerically using the above algorithm for the classroom depicted in Fig. 1 by generating np = 106 permutations. We
how two probability densities, p(W (1)

ran) (Fig. 2a) and p(W (2)
ran) (Fig. 2b), corresponding to the use in Eq. (2) of the distances

(1)
j and d(2)j respectively. We also indicate in both panels the mean, median and standard deviation for each distribution.
he experimental walks obtained in the classroom are given by W (1)

exp = 59.98 and W (2)
exp = 54, and they are also marked in

igs. 2a and 2b. In both cases, the experimentalW (i)
exp values fall well into the left tail of the corresponding distribution, thus

ndicating that there is an overrepresentation of short distances between consecutive students which can be understood
s a signature of social interaction via contagion effect. Indeed, with the results of the simulation we can calculate for each
ase the probability of obtaining an equal or smaller value (p-value) than the experimental one, and we find respectively
prob(W (1)

ran ≤ W (1)
exp = 59.982) = 0.009294 and prob(W (2)

ran ≤ W (2)
exp = 54) = 0.011391. Both results are quite similar,

ndicating first that they do not depend on the specific details of the distance considered (provided it is reasonably
efined), and second, and more important, the existence of a contagion effect or ’social field’ with a probability of around
9% in the corresponding classroom.
We have carried out similar analyses to the one described above in the rest of the classrooms with available data. In all

ases, the resulting probability densities are very similar in shape to the ones shown in Fig. 2: they exhibit a Gaussian-like
rofile, with means and medians almost identical. The statistical results for the 10 classrooms are summarized in Table 2.
4
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Table 2
Summary of the output of the Monte Carlo simulations in the ten classrooms, with np = 106 permutations in each one.
We include the number N of students in each classroom, the experimental values of W (1)

exp and W (2)
exp , the corresponding

p-values obtained numerically from the probability densities p(W (1)
ran) and p(W (2)

ran), and the mean of both distributions,
⟨W (1)

ran⟩ and ⟨W (2)
ran⟩. The classrooms are ordered according to the age of the students (younger—top, older—bottom).

N W (1)
exp ⟨W (1)

ran⟩ p-value W (2)
exp ⟨W (2)

ran⟩ p-value

30 81.412 84.618 0.295 72 75.536 0.227
24 60.056 65.711 0.157 54 59.667 0.169
26 59.982 74.914 0.009 54 68.460 0.011
31 85.176 89.762 0.238 76 80.642 0.245
30 86.247 87.523 0.416 78 78.669 0.484
21 53.678 52.038 0.638 48 46.858 0.647
26 62.376 72.130 0.055 57 65.690 0.081
24 50.327 64.985 0.003 48 58.664 0.022
22 54.708 58.306 0.249 50 53.446 0.279
30 83.319 84.615 0.410 73 75.533 0.350

Fig. 2. Probability densities of the walks W (1)
ran (panel (a)) and W (2)

ran (panel (b)). Both have been obtained by generating 5×106 random permutations
f the ordering of the students in the classroom shown in Fig. 1. In both panels, we also indicate with an arrow the real experimental values W (1)

exp

nd W (2)
exp . We include in each case the values of the mean, median and standard deviation.

e note that in 9 out of 10 classrooms the experimental walks W (1)
exp and W (2)

exp are smaller than the means (and medians)
of the corresponding stochastic variables W (1)

ran and W (2)
ran, thus suggesting that the contagion effect, although stronger in

some classrooms than in others, is a general phenomenon, not depending on the particular classroom considered.
In order to analyze a global statistical significance of the results, we can also define a total walk Wtot,exp given by the

sum of the experimental walks obtained in each classroom:

W (i)
tot,exp =

nc∑
k=1

W (i)
k,exp (3)

where i can be 1 or 2, nc is the number of classrooms considered (nc = 10 in our case), and the index k runs over all the
lassrooms. As we have calculated already W (1)

exp and W (2)
exp in each classroom (Table 2), we finally obtain W (1)

tot,exp = 677.281
and W (2)

tot,exp = 610. These empirical values can be tested statistically by defining the stochastic variable ’total random
walk’, Wtot,ran, as:

W (i)
tot,ran =

nc∑
k=1

W (i)
k,ran (4)

where W (i)
k,ran stands for a random walk in the k−th classroom. By generating a large number of student permutations

np in each classroom (np = 106), we obtain numerically the probability distributions of W (i)
tot,ran, with i = 1, 2. Both

probability densities are shown, respectively, in Figs. 3(a) and 3(b). We include in each panel of Fig. 3 the experimental
values W (1)

tot and W (2)
tot (marked with arrows), which are located at the farthest extreme of the left tail of the distribution in

both cases, at a distance of about 3 standard deviations of the corresponding mean, reinforcing the idea of the existence
of a spatial contagion effect. Indeed, using the two numerically determined probability distributions, we can obtain
5
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Fig. 3. Probability densities obtained by Monte Carlo simulations (np = 106) of the stochastic variables W (1)
tot,ran (panel (a)) and W (2)

tot,ran (panel (b)). We
also include in each panel the mean, median and standard deviation of the corresponding distribution. The respective experimental values W (1)

tot,exp

and W (2)
tot,exp are indicated with arrows.

Fig. 4. Probability densities obtained by Monte Carlo simulations (np = 106) of the stochastic variables W (1)
tot,ran (panel (a)) and W (2)

tot,ran (panel (b)),
ut by considering separately the students who deliver the exam within the allowed time, and those who deliver their exams out of time. The
ertical lines correspond to the experimental value W (j)

tot obtained for each group.

he statistical significance of W (1)
tot,exp and W (2)

tot,exp, and we get prob(W (1)
tot,ran ≤ W (1)

tot,exp = 677.281) = 0.00103 and
prob(W (2)

tot,ran ≤ W (2)
tot,exp = 610) = 0.00123. Remarkably, both p-values are very similar, of around 10−3, so that the

detection of the spatial contagion effect does not depend on the particular distance considered.
This global small p-value supports the existence of a short-range spatial interaction between consecutive students

(contagion effect), which seems to be a general property, not specific of a single classroom: in general, the proximity
between students produces a high probability of consecutive delivery of exams (much higher than expected by chance).
We remark that this result has been obtained by considering the distance between consecutive students, i.e., the possible
influence of a student on the next one in the temporal order.

We note that the global result shown in Fig. 3 has been obtained by considering the positions in the classroom of all
the students, both the ones who deliver the exam before the final time fixed by the teacher and those who deliver the
exam after this final time, forced by the teacher to do so in a very limited time interval. Since we know the positions in
the classroom and the temporal ordering for all the students, we can obtain separately the experimental value of W (j)

tot,exp
for in-time students and for out of time students, and compare these experimental values with the results of Monte Carlo
simulations similar to the ones described above (np = 106 permutations in each classroom) but carried out separately
for both sets of students. Concerning the experimental values, we obtain W (1)

tot,exp = 502.115 and W (2)
tot,exp = 450 for the

set of in-time students in all classrooms, while for the set of out of time students, W (1)
tot,exp = 175.17 and W (2)

tot,exp = 160.
The comparison of these experimental values with the results of the corresponding Monte Carlo simulations are shown in
Fig. 4. We obtain that prob(W (1)

tot,ran ≤ 502.115) = 0.00466 and prob(W (2)
tot,ran ≤ 450) = 0.00396 for in-time students, while

for out of time students we get prob(W (1)
≤ 175.17) = 0.0739 and prob(W (2)

≤ 160) = 0.130. According to these
tot,ran tot,ran

6
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alues, and although the contagion effect is clearly stronger (more significant) for the set of students who deliver their
xams on time than for out of time students, the contagion effect is also present in this second group. This is the reason
hy when both sets are considered together and the sample becomes larger, the corresponding p-value decreases and

the global result becomes more significant (see Fig. 3). For this reason, when we develop a contagion model in Section 4
(see below) we do not separate between both sets of students in each classroom.

We can also investigate the possible interaction between non-consecutive students by calculating experimental values
similar to (2) for individual classrooms and to (3) for a global behavior, but considering the corresponding distance d(i)j
in both expressions as the distance between second temporal neighbors, i.e., between students j and j+ 2. The statistical
ignificance of these experimental values can be then checked by computing the random expectation via Monte Carlo
imulations, in order to obtain the probability distribution of W (i)

ran in each classroom, and of the global variable W (i)
tot,ran

considering in both cases the distances between second temporal neighbors. However, in this case the results indicate
that there is no significant deviation of the experimental values from the random expectation obtained from Monte Carlo
simulations. As an example, using the Euclidean distance d(1)j between second temporal neighbors in Eq. (3), we obtain the
global result W (1)

tot,exp = 712.635. By means of Monte Carlo simulations (np = 106 permutations in each classroom), and
similarly to what we showed in Fig. 3 but for second temporal neighbors, we have calculated the probability distribution
p(W (1)

tot,ran) from where we can obtain prob(W (1)
tot,ran ≤ W (1)

tot,exp = 712.635) = 0.642. This non-significant p-value, obtained
using distances between second temporal neighbors, is in clear contrast with the significant p-value (∼10−3) obtained
for consecutive students. These two antagonistic results suggest that the contagion effect only acts between consecutive
students, and the influence of a student on the nth temporal neighbor can be disregarded for n > 1. For this reason, in
the next section we develop a probabilistic contagion model that works only for consecutive students, and that is able to
reproduce the experimental observations and quantify the contagion probability between such students.

4. Contagion model

The results of the previous section indicate the existence of a spatial clustering for students who deliver consecutively
their exams, since in general we observe a higher proximity between such students than expected by chance. This effect
must be produced by some spatial interaction (contagion) which should act at short distances. Based on this idea, we
propose a probabilistic contagion model depending on the distance between students. In this way, the model has two
input parameters: the contagion probability p and the maximum distance dmax at which the contagion acts. The model
works as follows:

(1) Let us consider a classroom with N students. The first student to deliver the exam, s1, is picked at random from
the N students present in the classroom.

(2) After j students have delivered their exams, the last student to do so is sj. The next student to deliver the exam
sj+1) is chosen in the following way: first, we calculate the distances from sj to the N − j students remaining in the
classroom, and determine the m students for which such distance is less or equal than dmax. Then, with probability p we
choose at random sj+1 among the m students closer than dmax, and with probability 1−p, we choose sj+1 at random from
ll the N − j remaining students. In this way, p quantifies the contagion probability below dmax. An example illustrating
ow the contagion model works is shown in Fig. 5.
We can formalize mathematically the model in the following way: when j students have delivered their exams, the

ast student to do so is sj. At this moment, there are N − j students remaining in the classroom, so that m students are
loser to sj than dmax and N − j − m are farther than dmax. Then, the probability for any of the m close students of being
he next one to deliver the exam is:

Probm =

{ p
m

+
1 − p
N − j

if m ̸= 0

0 if m = 0
(5)

where we have considered the case m = 0, i.e. the situation in which there are no students closer to sj than dmax. In
he more interesting case m ̸= 0, the first term on the RHS of the equation is the contagion term, so that the contagion
robability p is shared by the m close students. The second term accounts for the random expectation, which is the same
or all the N − j students that remain in the classroom. Similarly, the probability for any of the N − j−m students farther
han dmax is then:

ProbN−j−m =

⎧⎪⎨⎪⎩
1 − p
N − j

if m ̸= 0

1
N − j

if m = 0
(6)

Obviously, the normalization condition is fulfilled since for both cases m ̸= 0 and m = 0 it straightforward to check
that:

m · Probm + (N − j − m) · ProbN−j−m = 1 (7)
7
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Fig. 5. A schematic representation of the contagion model. Open circles correspond to empty tables (students who have delivered the exam and
eft the classroom), while solid circles represent students still working in their exams. The last student to deliver the exam is sj (open square). This
tudent may influence other students still remaining in the classroom closer than dmax (solid gray circles). In this case, the number of such students
s m = 6. The probability of being the next one to deliver for any of these m close students is given in Eq. (5). For any of the students that remain
n the classroom which are further than dmax (black circles), the corresponding probability is given in Eq. (6). In this figure, dmax =

√
2 if d(1)j is

used, while dmax = 1 in the d(2)j case.

Fig. 6. Probability densities p(d) of the distances between students who deliver their exams in consecutive order observed experimentally and
btained numerically using Monte Carlo simulations by grouping all the classrooms. Panels (a) and (b) correspond, respectively, to the use of the
istances d(1) and d(2) of Eq. (1).

Once an iteration of the model is run in a given classroom, we obtain a set of ordered students {s1, s2, . . . , sN}, from
hich a particular value of the stochastic variable W (p, dmax) can be obtained as

W (i)(p, dmax) =

N−1∑
j=1

d(i)j (p, dmax) (8)

ith d(i)j (p, dmax) the distance between students sj and sj+1 obtained running the model using parameters p and dmax, and
= 1, 2 depending on the distance considered (see Eq. (1)).
This contagion model depends on two parameters, p and dmax. However, we expect the student interaction to be short-

anged, therefore restricting dmax to small values. Indeed, we can confirm this short-range interaction and estimate a
riori the value of dmax by computing the probability density p(d) of the distances between consecutive students observed
xperimentally and the obtained from Monte Carlo simulations grouping all the classrooms to improve the statistics. The
esults for p(d) are shown in Fig. 4, where we plot the normalized p(d) in both cases obtained by using the Euclidean
panel (a)) and non-Euclidean (panel (b)) distances d(1) and d(2) in Eq. (1).
8
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f

Fig. 7. (a) Expected value of W (p) as a function of the contagion probability p obtained for the same classroom shown in Fig. 1 using the Euclidean
distance d(1)j of Eq. (1). The dashed and dotted lines represent, respectively, the expected value ± the standard deviation σ , which also depends on
p. (b) The same as in panel (a), but using the non-Euclidean distance of Eq. (1). In both panels (a) and (b) the horizontal lines correspond to the
experimental Wexp values obtained in that classroom, and the results have been obtained by running the contagion model nmod = 106 times for each
p value. See the text for a description of p0 , p1 and p2 .

Remarkably, the most relevant characteristic shown in Fig. 6 is a clear increase of the probability of the experimental
d = 1 case as compared to the random expectation. This increase is around 50% of the Monte Carlo result when considering
the Euclidean distance, and around 25% of the random expectation for the non-Euclidean case. This result confirms the
short-range character of the contagion effect, that seems to work only for nearest neighbors (d = 1).

The results shown in Fig. 6 suggest to consider dmax = 1 as an appropriate input value for the contagion model, since
this is the most favored distance when comparing the experimental results and the random expectation obtained via
Monte Carlo simulations for both the d(1) and d(2) distances, so in the following we study the behavior of W (p, dmax =

1) ≡ W (p). In this way, for each individual classroom, we can run the contagion model a large number nmod of times
or any value of p to obtain numerically the probability distribution of W (p), and calculate the expected value ⟨W ⟩(p).
This expected value can be then compared to the experimental Wexp value obtained in the same classroom, so that the
contagion probability in the classroom can be estimated as the p value for which the equality

W (i)
exp = ⟨W (i)

⟩(p) (9)

holds, and where i = 1 or 2, depending on the distance considered according to Eq. (1). From now on, we term p0 the
value of p satisfying (9), and corresponds to the estimated contagion probability in the corresponding classroom. In order
to estimate an error interval for p0, and since we can also determine the standard deviation σ (p) of W (p), we can consider
the solutions of the equation:

W (i)
exp = ⟨W (i)

⟩(p) ± σ (i)(p) (10)

with i = 1 or 2. We term p1 and p2 the p values that are solutions of (10) for the ‘-’ and ‘+ ’ signs, respectively. In this
way, p1 and p2 correspond to the limiting contagion probabilities for which Wexp lies within the interval ⟨W ⟩(p) ± σ (p).
An example of the behavior of ⟨W ⟩ as a function of the contagion probability p and of the obtention of p0, p1 and p2 is
shown in Fig. 7, where we have used the results for the same classroom considered in Figs. 1 and 2. For each p value, we
have run nmod = 106 times the contagion model in the classroom to obtain ⟨W ⟩(p) and σ (p). In this example, we have
obtained an expected contagion probability p0 = 0.411 with an error interval [p1, p2] = [0.222, 0.593] for the Euclidean
d(1) distance, and p0 = 0.416 and [p1, p2] = [0.225, 0.596] for the non-Euclidean d(2) case.

Proceeding similarly as we have done in this latter example, we have run the contagion model nmod = 106 times in
all the available classrooms, and obtained in each case the expected contagion probability p0 and the corresponding error
interval [p1, p2], and the results are summarized in Table 3.

Several conclusions can be drawn from the results in Table 3: First, we observe quite similar values for p0, p1 and p2 for
the two d(1) and d(2) distances, thus indicating that the contagion effect can be detected independently of the used distance,
provided that the distances are able to quantify reasonably the proximity among students. Second, the expected contagion
probability p depends on the particular classroom considered. This is not surprising, since the different classrooms are
0

9
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Table 3
Expected contagion probability p0 and the error interval [p1, p2] for the ten classrooms shown
in Table 2 obtained by using in the contagion model the Euclidean distance d(1) and the non-
Euclidean distance d(2) . In both cases, we have run the model nmod = 106 times in each classroom
for any value of p to solve numerically Eqs. (9) and (10), similarly to the example shown in Fig. 7.
Distance d(1) Distance d(2)

p0 [p1, p2] p0 [p1, p2]

0.0748 [0,0.234] 0.0913 [0,0.249]
0.184 [0.00207,0.386] 0.188 [0.00965,0.381]
0.411 [0.222,0.593] 0.416 [0.225,0.597]
0.102 [0,0.262] 0.109 [0,0.266]
0.0292 [0,0.191] 0.0160 [0,0.173]
0 [0,0.140] 0 [0,0.161]
0.267 [0.0939,0.448] 0.257 [0.0789,0.442]
0.459 [0.272,0.633] 0.372 [0.182,0.558]
0.128 [0.0.335] 0.132 [0,0.342]
0.0304 [0,0.188] 0.0657 [0,0.221]

Table 4
Estimated global contagion probability pg and the cor-
responding error interval [pg1, pg2] obtained by using in
the contagion model the Euclidean distance d(1) and the
non-Euclidean distance d(2) .
Distance pg [pg1, pg2]

d(1) 0.159 [0.105, 0.215]
d(2) 0.158 [0.103, 0.215]

not homogeneous: the possible social links between students change in different classrooms, as well as the number of
individuals with gregarious behavior, etc. And third, the expected contagion probability is directly related to the statistical
significance of the experimental Wexp value for each classroom (see Table 2). Note that a high p0 value implies a strong
contagion between close students, which in turns indicates a low Wexp value (much smaller than expected by chance) and
therefore a very small p-value and high statistical significance. In this sense, the only case where the estimated p0 value
is 0 corresponds to the only classroom where the corresponding Wexp value is larger than the ⟨Wran⟩ value (see Table 2).

Similarly to what we did in Section 3, we can try to obtain a global contagion probability by applying the contagion
model with the same probability p to all the classrooms, and calculate the global stochastic variable Wtot (p) as

W (i)
tot (p) =

nc∑
k=1

W (i)
k (p) (11)

where W (i)
k (p) is the output obtained after running once the contagion model in the kth classroom using probability p,

and nc is the total number of classrooms (nc = 10), with i = 1, 2. By running the contagion model a great number of
times nmod in each classroom, we can obtain a large number of values of W (i)

tot (p), from where the corresponding expected
value ⟨W (i)

tot⟩(p) and standard deviation σ
(i)
tot (p) can be obtained.

In this way, we can compare ⟨Wtot⟩(p) and the global experimental result Wtot,exp of Eq. (3), and estimate the global
contagion probability pg as the value of p for which the equation

W (i)
tot,exp = ⟨W (i)

tot⟩(p) (12)

holds, with i = 1, 2 depending on the distance considered. Similarly to what we did for the results in individual
classrooms, the error interval of pg , which we term [pg1, pg2], can be obtained as the values of p which are solutions
of the equation

W (i)
tot,exp = ⟨W (i)

tot⟩(p) ± σ
(i)
tot (p) (13)

with pg1 the solution with the ‘-’ sign, and pg2 with the ‘+ ’ one. The behavior of ⟨W (i)
tot⟩(p) as a function of p is shown in

Fig. 8, where we also show the graphical solutions of pg and of the error interval [pg1, pg2] for both the Euclidean (panel
(a)) and non-Euclidean (panel (b)) distances. The numerical solutions of Eqs. (12) and (13) are summarized in Table 4.

According to these results, the estimated global contagion probability pg and the error interval [pg1, pg2] are almost
identical for both distances, pg ≃ 1/6, thus supporting the robustness of the result. This coincidence is also in agreement
with the similar p-values (∼10−3) we obtained in Section 3 for the experimental values W (1)

tot,exp and W (2)
tot,exp when tested

against the corresponding random expectations (see Fig. 3).
10
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Fig. 8. Expected value ⟨W (i)
tot ⟩(p) as a function of the contagion probability p. The dashed and dotted lines correspond to ⟨W (i)

tot ⟩(p) + σ
(i)
tot (p) and

⟨W (i)
tot ⟩(p)− σ

(i)
tot (p) respectively, where the i = 1 case (Euclidean) is shown in panel (a), and panel (b) corresponds to the i = 2 (non-Euclidean) case.

We also indicate graphically how to estimate pg , pg1 and pg2 , which are the solutions of Eqs. (12) and (13).

5. Conclusions

In this work we have studied an example of human social interaction in a very controlled environment: a classroom
where the students take an exam. The students are seated in individual tables arranged geometrically in a n × m grid,
nd work individually in their exams. The only possible interaction between them can only occur when a student finishes
he exam and delivers it to the teacher. If no social interaction is present, this event should happen randomly in space.
owever, we have shown that the consecutive exam deliveries of students do not happen randomly in space. We have
btained this result by comparing experimental data of the positions in the classroom of students who deliver the
xam in consecutive order with the corresponding random expectations obtained by means of Monte Carlo simulations.
e observe a general and clear clustering behavior when studying separately individual classrooms, which is also

ery statistically significant when all the classrooms are considered globally, thus supporting the existence of a spatial
ontagion effect between consecutive students as a consequence of the social interactions. In this sense, each classroom
an be seen as a complex system with interactions between students instead of a collection of non-interacting individuals.
o quantify this contagion effect, we have proposed a probabilistic distance-driven contagion model between students,
ccording to which one student who delivers the exam may influence another student closer than a given distance to
o the same with certain contagion probability. By comparing the results of the model with the experimental results,
e can obtain an expected contagion probability both for each individual classroom and for all the classrooms globally
onsidered. Although the contagion probability depends on the classroom considered, we can estimate a global contagion
robability of around 1/6. This spatial contagion effect could also appear in other social human activities where the
nteraction between subjects occurs via single events (similar to an exam delivery), such as for example raised hand
otation procedures in assemblies.
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