
Journal of Object Technology | RESEARCH ARTICLE

Managing Reputation in
Collaborative Social Computing Applications

Nathalie Moreno†, Alejandro Pérez-Vereda∗, and Antonio Vallecillo†

†ITIS Software. Universidad de Málaga, Spain
∗Universidad de Castilla-La Mancha, Spain

ABSTRACT Reputation is a fundamental concept for making decisions about service providers. However, managing reputation
in peer-to-peer distributed applications is not easy due to the lack of a central server that can compute this property from user
opinions. Moreover, users have to marry this information with their individual trust in the service provider, which may be based
on their past experiences, the opinions of their direct contacts, or both. This paper develops a reputation management system
embedded in the Digital Avatars framework for collaborative social computing applications, using subjective logic. We show how
the reputation of a given service provider can be calculated using the users’ opinions about it, and how this reputation can be
explicitly represented, managed and combined with the trust that individual service requesters may have in them, in order to
make better informed decisions.

KEYWORDS Collaborative social computing applications, Trust, Reputation, Subjective Logic.

1. Introduction
Social computing (SC) is the discipline that aims at designing
and operating digital systems that support useful functionality
by making socially produced information available to their users.
The information is not anonymous because it is linked to people,
who are in turn linked to other people (Schuler 1994). SC is
gaining acceptance for developing social applications, since
they allow humans to become the main protagonists of these
applications, not only as beneficiaries but also as active players.

Most social applications, such as those available from
Google, Facebook, Amazon, or any of the big IT players, follow
a server-centric model where the content created by distributed
users is transferred to cloud servers. In these applications, cit-
izens are required to hand over their personal information to
the service providers, hence losing control of their data, which
becomes the property of third parties. Once under their control,
this information can be employed for any purpose, sometimes
different from those it was generated for by the citizens.

JOT reference format:
Nathalie Moreno, Alejandro Pérez-Vereda, and Antonio Vallecillo. Managing
Reputation in: Collaborative Social Computing Applications. Journal of
Object Technology. Vol. 21, No. 3, 2022. Licensed under Attribution 4.0
International (CC BY 4.0) http://dx.doi.org/10.5381/jot.2022.21.3.a1

An alternative approach advocates the adoption of collabora-
tive peer-to-peer models based on mobile devices, e.g., smart-
phones or tablets, as the main components of the system archi-
tecture. This is also known as mobile-based collaborative social
computing (MCSC) applications. This model of collaborative
computing enables the empowerment of users, allowing them to
take control of the information and contents they generate, and
how all that information is accessed and exploited in a secure
manner by third parties.

However, the fully distributed peer-to-peer nature of these
systems introduces some difficulties for dealing with concepts
which are inherently global. In particular, reputation is a fun-
damental concept for making decisions about service providers
(e.g., a restaurant, a hairdresser, or a transportation company)
in social computing applications. Reputation is normally com-
puted by aggregating the opinions of individual users about a
given entity, such as a person or company providing a service.
However, in MCSC applications there is no central authority to
calculate such a reputation, nor is there a central authority for
users to consult it. In addition, combining the global reputation
of a given provider with the users’ individual trust in it is not an
easy task.

This paper develops a reputation management system em-
bedded in the Digital Avatars framework (Bertoa, Moreno, et

An AITO publication

http://dx.doi.org/10.5381/jot.2022.21.3.a1

al. 2020) for collaborative social computing applications. We
show how the reputation of a service provider can be calculated
using the users’ opinions about it, and how this reputation can
be explicitly represented, managed and combined with the trust
that an individual service requester may have in them, in order
to make better informed decisions. More precisely, this paper
aims at answering the following research questions:

Q1. How reputation can be expressed in MCSC applications for
its effective representation, operation and management?

Q2. How the reputation of a given entity of a MCSC application
can be computed and updated in such peer-to-peer and
decentralised contexts?

Q3. When a user is trying to decide on a service, how to marry
the reputation of the service with the individual opinion
(i.e., trust) that the user has about it?

The proposal is specified using high-level models that can
also be simulated and validated, and can be used as a guide
for the corresponding implementations in an existing social
computing application platform.

This paper builds on our previous work on the representa-
tion and management of trust in collaborative social computing
applications (Muñoz et al. 2021), where we extended the ini-
tial Digital Avatar framework (Bertoa, Moreno, et al. 2020)
with trust. The solution presented in this paper incorporates
the concept of reputation, and has been successfully applied
in a collaborative decision-making system where users need to
select a specialist physician from a list of practitioners. That
system will be used in this paper to illustrate our proposal.

The structure of this document is as follows. After this
introduction, Section 2 briefly describes the background of
our work and presents the example that is used to motivate it.
Then, sections 3, 4 and 5 aim at responding the three research
questions posed above, and Section 6 describes our proposal.
Finally, Section 7 relates our work to other similar approaches
and Section 8 concludes with an outline of future work.

2. Context and Definitions
To set the paper terminology, this section briefly describes the
context of the work and the main concepts used in the paper.

2.1. Trust
In our context, trust can refer to the degree of confidence we
have either in people or in things. The first one refers to the
degree of reliability (trustworthiness) we assign to people, ser-
vice providers or, in general terms, to agents, to perform an
action (functional trust) or to report about the reliability of other
people or agent (referral trust) (Gambetta 2000; Jøsang 2016).
Trust in things refers to the level of certainty we assign to them,
for example, the accuracy of information stored in a data record,
the precision of a measurement, or the degree of belief about
the occurrence of an event. We shall call confidence the trust
we have in things (Burgueño et al. 2018)—see Sect. 2.2 below.

When specifying trust in people, we need to identify two
parties. The Truster is the party that states its degree of trust
in the Trustee, a second entity who is supposed to provide

the required service (de Siqueira Braga et al. 2019). Such
a relationship does not necessarily have to be one-to-one, but
could also be one-to-many, and does not need to be either mutual
or symmetric (Grandison & Sloman 2000).

Trust is also context-dependent, which means that a trustee
does not need to be trusted in all situations. For example, Ada
may trust Bob as a reliable driver, but she does not trust Bob’s
ability to cook. Thus, trust is not absolute but must be specified
within a scope (Jøsang 2016; Grandison & Sloman 2000).

Finally, trust in people is subjective, i.e., it depends on the
truster, and is normally conditioned by uncertain factors (McK-
night & Chervany 2001). As stated in (Adams & Webb 2003):
“Trust is a psychological state involving positive confident ex-
pectations about the competence, benevolence, integrity and
predictability of another person and willingness to act on the
basis of these expectations. Issues of trust arise in contexts
that involve risk, vulnerability, uncertainty and interdependence.
Trust expectations are created primarily by the interaction of
the perceived qualities of the trustee and contextual factors in
play when trust decisions are made.”

2.2. Confidence

As mentioned earlier, we need to distinguish between the trust
in people and the trust we place in things, that we shall call
confidence (Burgueño et al. 2018; Griffin & Tversky 1992;
Petrusic & Baranski 2003), and which is caused by uncertainty.
Here, by uncertainty we mean “the quality or state that involves
imperfect and/or unknown information. It applies to predictions
of future events, estimates, physical measurements, or unknown
properties of a system” (JCGM 100:2008 2008).

From a generic decision-making perspective, confidence is
the degree of belief in a given hypothesis (Griffin & Tversky
1992) and this is why we will use the term confidence to refer to
the degree of belief that a person (the truster) has in something.
For example, the confidence that Bob assigns to the readings of
the temperature or humidity sensors of his room.

The treatment of confidence in software models was already
described in some of our previous works (Burgueño et al. 2018;
Bertoa, Burgueño, et al. 2020; Muñoz et al. 2020; Troya et al.
2021; Burgueño et al. 2022), and therefore we will not consider
it further in this paper.

2.3. Reputation

A concept closely related to trust is Reputation, which has been
defined as “the common opinion that people have about some-
one or something: the way in which people think of someone
or something” (Jøsang 2016). Thus, reputation is a quantity
derived from the underlying social network, which is globally
visible to all members of the network. Reputation can be thought
of as a measure of collective trust based on the referrals or rat-
ings from members in a community. Like trust, reputation is
not absolute, but is defined within a scope: I can have a decent
reputation as a cook, but a lousy reputation as a driver.

Note that the collective (global) nature of reputation differs
from the individual nature of trust. Therefore, defining, com-
puting, and managing reputation in SC applications require

2 Moreno et al.

different mechanisms than those used to represent, compute,
and manage individual trusts.

2.4. A motivating example
Trust and reputation are two sides of the same coin. Decision
making in collaborative social computing applications needs
not only the concept of trust, but also that of reputation. To
illustrate this claim, suppose, e.g., that Alberto is a stressed
businessman who wakes up one morning with a suspicious
chest pain and needs to consult a good cardiologist. Alberto
has private insurance and uses an app on his cell phone that
allows him to choose from a number of specialists located in
his area. He has never needed a cardiologist, so he has no direct
references of any of them. So, he consults his app to find out
the reputation of these specialists and, based on that, initially
selects the one with the best reputation. In addition, as any of
us would do, he decides to ask his direct contacts for references
to a good specialist on his list (i.e., their trust in them) and with
all the information gathered (reputation and trust) he can make
a better informed decision.

This is just one of the many cases in which reputation and
trust need to be combined in decision-making. However, such
a combination is not that simple. What happens if some of
Alberto’s contacts have had negative experiences with his first
choice? Normally, Alberto would rank his choices differently
after considering his contacts’ trust. However, how to combine
reputation and trust? How should Alberto weight them in his
final decision?

3. Representing Reputation in MCSC Apps
To represent reputation we will use Subjective Logic (Jøsang
2016), for two main reasons. First, subjective logic extends
probabilistic logic with information concerning the level of ig-
norance we have about a statement, providing richer reasoning
mechanisms to arrive at informed decisions, as they consider
not only the degree of belief and disbelief, but also the degree of
uncertainty. Second, subjective logic provides some useful oper-
ators to combine individual opinions for computing reputation,
and then to marry it with the users’ trust.

To specify, design and develop MCSC applications we
will use the Digital Avatars collaborative framework (Bertoa,
Moreno, et al. 2020). This framework is based on the People-as-
a-Service (PeaaS) model (Guillén et al. 2014), which promotes
the user to become a service provider with her own information.
This model has been presented in previous works and already
used in contexts such as the Internet of Things (IoT) (Miranda
et al. 2015), smart cities (Pérez-Vereda & Canal 2017) or geron-
tology (Bertoa, Moreno, et al. 2020).

This section briefly introduces Subjective Logic (Sect. 3.1),
the Digital Avatars framework (Sect. 3.2) and our proposal for
representing reputation in this context (Sect. 3.3).

3.1. Subjective logic
Traditionally, degrees of trust or confidence have been mod-
eled using probabilities (i.e. numbers between 0 and 1), and
reasoning about trust has been accomplished using probability

theory (Feller 2008; de Finetti 2017). However, this approach
falls short when it comes to representing subjective opinions for
which users cannot easily express their uncertainty, e.g., their
ignorance about the facts they are considering, or their inability
to assign an accurate probability to a fact. For example, when
the user has total ignorance about some statement x, rather than
assigning x a confidence of 0.5, it might be preferable to say “I
don’t know.” In general, forcing users to set probabilities to ex-
press their opinions could lead to unreliable conclusions (Muñoz
et al. 2020). This is when Subjective logic can be of great help.

Subjective logic, introduced by Audun Jøsang (Jøsang 2016),
is an extension of probabilistic logic that explicitly takes uncer-
tainty into account. Subjective opinions express beliefs about
the truth of propositions under degrees of uncertainty. They can
also indicate confidence, or trust, on a given statement and this
is what makes them suitable in our context.

Let x be a Boolean predicate. A binomial opinion about
the truth of x is defined as a quadruple ωx = (bx, dx, ux, ax)
where:

– bx (belief) is the degree of belief that x is true.
– dx (disbelief) is the degree of belief that x is false.
– ux (uncertainty) is the degree of uncertainty about x, i.e.,

the amount of uncommitted belief.
– ax (base rate) is the prior probability of x without any

previous evidence.

These values satisfy the constraints that bx + dx + ux = 1, and
bx, dx, ux, ax ∈ [0, 1].

Intuitively, the base rate of an opinion represents the objec-
tive probability that can be assigned to the statement using a
priori evidences, whilst the other elements of the tuple represent
the subjective degrees of belief, disbelief and uncertainty about
the statement assigned by the expert. Thus, regardless of the
value of the prior probability, different belief agents can express
their subjective opinions about the statement, including their
degree of uncertainty. This is precisely what allows different
experts to simultaneously express their individual opinions on
the same fact, as it happens in our context.

To represent and operate with Subjective logic values in
UML and OCL models, in (Muñoz et al. 2020) we defined an
extension of their primitive datatype Boolean. The extended
datatype, called SBoolean, provides a set of operators that can
be used for logical reasoning with uncertain propositions. A
SBoolean value is defined by the quadruple (b, d, u, a) that
represents the corresponding opinion in Subjective logic. The
embedding of a Probability p representing a confidence into type
SBoolean is achieved by assigning the opinion wx = (p, 1 −
p, 0, p) to x. Analogously, the projection p of an opinion w is a
Real number in the range [0..1] that projects the opinion into a
probability: p = b+ a ∗ u. Examples of the use and application
of Subjective logic in models represented with UML/OCL can
be found in (Muñoz et al. 2020).

In addition to the traditional logical operators (and, or,
implies, etc.) used to combine the opinions of the same expert
about different truth statements, Subjective logic implements
fusion operators for combining the subjective opinions of dif-
ferent users about the same statement. The goal is to produce

Reputation in Collaborative Social Computing Applications 3

Figure 1 Class Diagram of the Doctors application incorporating trust concepts (shaded in blue color).

a single opinion that better reflects the collection of opinions,
or is closer to the truth than each opinion in isolation. This is
essential for permitting collaborative modeling and enabling
cooperative work between users when they need to reach agree-
ments about how to proceed. Specifically, Subjective Logic
provides the following fusion operators:

– The Belief Constraint Fusion (BCF) operator is suitable
in those contexts in which each agent has its own opinion
and is willing to stick to it even if it means not reaching
a consensus agreement. When faced with totally contra-
dictory opinions, this operator returns complete a vacuous
opinion, i.e., (0, 0, 1, 0.5).

– The Consensus & Compromise Fusion (CCF) operator is
similar to BCF, but conflicting opinions are transformed
into vagueness, i.e. uncertain opinions, to allow reaching a
consensus.

– The Cumulative Belief Fusion (CBF) operator is applied
when the opinions collected from different subjects are in-
dependent, i.e., they observed the fact in different moments,
or from different perspectives. There are two variants of
this operator, depending on the nature of the uncertainty:
Aleatory (e.g. decisions based on tossing a coin) or Epis-
temic (due to the lack of knowledge, e.g., the opinions of
different witnesses about who killed Kennedy).

– The Averaging Belief Fusion (ABF) operator is used when
there are dependencies between evidences. Even when

observing the same fact, each subject has formed his own
opinion (e.g., the members of a jury).

– The Weighted Belief Fusion (WBF) is similar to the pre-
vious one, but assigns more weight to those opinions with
less uncertainty, i.e., the more confidence in the opinion,
the stronger the weight.

The fusion operator to use depends on the specific situation
and the personal circumstances of the belief agents.

3.2. Digital Avatars
Having a mechanism that allows us to compute (or derive) the
trust that a subject A can place in a subject B who offers a
service can help us to make important decisions in the domain
of Collaborative Social Computing Applications. In a previous
work we proposed and implemented an architecture for manag-
ing such trust using what we called Digital Avatars (DA), see
Fig. 1. A DA is an entity that resides on a person’s phone or
tablet and stores information about the user and their activities,
while providing services to interact with other users’ DAs.

Applications running locally on the mobile device query and
update the information stored in the DA. In our proposal, these
applications are also capable of handling trust. In the execution
context of trust-managing applications (TrustApplication,
in Fig. 1), the user issues a set of opinions that model the degree
of trust (either functional or referral) that a truster has in a
trustee. Trust is stored in the system as a Subjective opinion,

4 Moreno et al.

associated with an expiration time after which the trust is no
longer valid.

A TrustApplication implements two methods for ob-
taining the direct functional trust or the referral trust that a
truster has on a trustee. To do so, they consult the local opin-
ions in the context of that application stored in the DA, and
return the specific TrustOpinion record, or a null value in
case such information is not available. In addition to these
two methods, a TrustApplication implements a method
called combinedFunctionalTrust() to compute the trust on
a given trustee. It operates as follows: if there is a record that de-
fines the direct trust that the truster has in the trustee, the method
returns that value. If not, the method searches for those contacts
of the truster who have a trust opinion on the trustee, and merges
their opinions. To merge these opinions we use the Epistemic
Cumulative Belief Fusion operator (see previous section) be-
cause the individual opinions representing trust are normally
obtained at different times or from different perspectives, and
are epistemic in nature.

Figure 1 also shows the specification of the aforementioned
application of selecting a good specialist in our DA frame-
work, using the Unified Modelling Language (UML). The
DoctorsApp application (shaded in orange) implements a ser-
vice that, given a speciality, returns a list of doctors of that
speciality, sorted according to the trust that the user has on them.
Listing 1 shows the specification of that operation in OCL. The
UML and OCL specifications in this article have been devel-
oped in USE (UML-based specification environment (Richters
& Gogolla 1998, 2000)). USE is a system for the specifica-
tion of information systems based on a subset of UML and
OCL. In addition, USE provides an executable language called
SOIL (Büttner & Gogolla 2014), which extends OCL to enable
the simulation of UML systems.
selectDoctor (speciality : S t r i n g) : Sequence (Doctor) =

l e t l : Sequence (Doctor) = s e l f .doctor−>
s e l e c t (d | d .speciality−> i n c l u d e s (speciality))

−>asSequence () in
l−> i t e r a t e (d :Doctor ;
acc : Sequence (Tuple (doc :Doctor ,proj : Rea l)) = Sequence { } |
acc−>append (Tuple {doc :d ,
proj :1 − s e l f .combinedFunctionalTrust (d) .projection () })

) −> s o r t e d B y (proj) −> c o l l e c t (doc)

Listing 1 Sorting doctors according to trust.

We can see that it iterates over the list of doctors of the
given speciality and computes, for each one, a real number
that corresponds to 1.0 minus the projection of the subjective
opinion that represents the trust that the DA has in that doc-
tor. Then, we sort the collection according to these values
and return the doctors only, in that order. We have to subtract
the projection from 1.0 because the OCL operation sortedBy
sorts the elements of the collection in ascending order of value,
and we want the doctors with the highest trust first. Opera-
tion combinedFunctionalTrust(trustee) is in charge of
computing the trust of the DA user on the trustee.

3.3. Representing Reputation
As for trust, we will use opinions in Subjective logic to represent
reputation. In this way we will be able to express degrees of
uncertainty about the reputation of an agent, and also to combine

reputation with trust using Subjective logic standard operators.
Thus, in our proposal the reputation of a given agent will be
stored as a pair (rep, exp) where rep is a Subjective opinion
and exp represents the expiration date of that opinion.

To incorporate reputation into our high-level architecture,
Fig. 2 adds a new class to Fig. 1, ReputationOpinion (col-
ored in pink). Thus, reputation is stored as a DA record (it
inherits from class DigitalAvatarRecord), has a scope (the
TrustApplication it is associated with), and an associa-
tion with the reputee, who is the reputation refers to (rep-
resented by a DA record with his or her personal informa-
tion). Moreover, three new operations have been added to class
TrustApplication to manage reputation.

The first one, reputation(person), allows the DA of a
user to consult the reputation of another person by looking it up
in its contacts. This method is specified in OCL in Listing 2.
(s e l f .reputation−> s e l e c t (reputee=person)

−> s e l e c t (ro | ro .expirationDate<= s e l f .da .clock .now)
−>any (true)) .reputation

Listing 2 Obtaining the reputation of a trustee.

We can see that it simply looks for the ReputationOpinion
record whose associated reputee coincides with the corre-
sponding person, and returns the reputation stored in that
record. If no such record exists, or the record has expired,
this operation returns Undefined, i.e., null.

When this operation returns null, the DA can ask its contacts
to check if any of them knows the reputation of that person.
Operation findReputation(person) is in charge of that task.
Its specification in SOIL is shown in Listing 3.
findReputation (person :PersonalInfo)
-- finds a person’s reputation by asking its DA contacts
begin
declare contacts : Sequence (Contact) ,

rep :ReputationOpinion , raux :ReputationOpinion ,
found : Boolean , i : I n t e g e r ;

-- select those contacts who also have the DoctorsApp
contacts := s e l f .da .records−> s e l e c t (oclIsKindOf (Contact))

−>excluding (s e l f .da .me) −> s e l e c t (c | c .ownerDA .localApp−>
s e l e c t (a | a .oclIsKindOf (DoctorsApp))

−>notEmpty ()) −>oclAsType (S e t (Contact)) −>asSequence () ;
-- We iterate over those contacts until we find one
-- with the reputation of the person we are looking for
found :=false ; i : = 1 ;
while (n o t found) and (i <=contacts−> s i z e ()) do

i f ((contacts−>at (i)) .ownerDA .localApp−>
s e l e c t (a | a .oclIsKindOf (DoctorsApp)) −>
any (true)) .oclAsType (TrustApplication) .
reputation (person) <> n u l l then
raux := ((contacts−>at (i)) .ownerDA .localApp−>

s e l e c t (a | a .oclIsKindOf (DoctorsApp)) −>
any (true)) .oclAsType (TrustApplication) .
reputation−> s e l e c t (r | r .reputee=person) −>any (true) ;
rep := new ReputationOpinion () ;
rep .reputation :=raux .reputation ;
rep .expirationDate :=raux .expirationDate ;
insert (rep ,person) into ReputationPerson ;
insert (rep , s e l f) into ReputationScope ;
found :=true ; -- No need to continue

end ;
i :=i+1;

end ;
end

Listing 3 Looking for a reputation by asking the DA contacts.

Roughly speaking, it asks its DA contacts who use the same
application until one of them knows the reputation of the person
we are looking for. If found, it creates a ReputationOpinion

Reputation in Collaborative Social Computing Applications 5

Figure 2 Class Diagram of the DA framework incorporating reputation (shaded in pink).

record for that person; otherwise nothing is done. Note that this
works because the reputation of a person in a community is the
same for all nodes. A different problem is how to compute that
reputation in a P2P environment, which is discussed next.

4. Computing Reputation
To calculate the reputation of an agent in the context of So-
cial Computing applications, we need to address two different
problems. Since reputation is defined as an aggregation of the in-
dividual opinions (trusts) of the members of a community in the
context of an application, we therefore need to first (a) collect
these individual opinions, and then (b) aggregate them in some
way. The next two sections deal with these two issues, in reverse
order. We shall first see in Sect. 4.1 how the individual opinions,
once collected, can be merged. Then, Sect. 4.2 describes how to
collect the opinions of the members of a community to calculate
the reputation of a person.

4.1. Merging individual opinions
Computing reputation means aggregating, in some way, the
individual opinions that users within a community have about
a person, to derive a joint opinion. Assuming that we have col-
lected them (see next Sect. 4.2), Subjective logic provides with
the perfect set of fusion operators to merge opinions (Jøsang
2016). This is an important advantage of using Subjective logic
to represent the users’ individual opinions, i.e., their trusts.

Of these fusion operators, which were introduced in Sect. 3.1,
the one that best calculates reputation is the Epistemic Cumu-

lative Belief Fusion (ECBF), for two main reasons. First, it
assumes independent opinions, as is our case. Second, it is
epistemic (and not aleatory) since the uncertainty involved is
due to lack of knowledge, and not statistical in nature. The way
this fusion operator deals with conflicting opinions also suits
our needs. In case of divergent opinion, the uncertainty of the
resulting opinion grows, adequately balancing the opinions.

4.2. Collecting individual opinions
The process to collect the individual opinions on a given person
is highly dependent on the global architecture of the system:
peer-to-peer or centralized. Although our appproach is clearly
peer-to-peer, in this section we will describe how to proceed
with the trust collection process in both settings.

4.2.1. Collecting opinions in server-centric settings.
Today, a fairly high percentage of social computing is still de-
veloped under a server-centric approach. Applications from
Facebook, Google, Twitter or Amazon follow this approach
by providing services to their users in exchange for reserving
the rights to use the data shared/published by them, which is
stored on cloud servers. This raises serious privacy and content
ownership issues and requires placing a great deal of trust in
the service providers. This is why our proposal delegates the
ownership of this data exclusively to the user, who shares it in a
secure manner with third parties.

Under the server-centric paradigm and keeping the ownership
of the data in the user, our framework allows to calculate the

6 Moreno et al.

computeReputation (person :PersonalInfo)
begin
declare combinedFT : Sequence (SBoolean) ,

ro :ReputationOpinion ;
-- first, we collect all trust opinions
ro :=new ReputationOpinion ;
combinedFT := s e l f .clients−> i t e r a t e (c ;
s : Sequence (SBoolean) = Sequence {} | l e t o : SBoolean=

c .directFunctionalTrust (c .da .me ,person) in
i f o= n u l l then s e l s e s−>append (o) e n d i f) ;

i f combinedFT−>notEmpty () then -- at least one trust
-- we merge them using the ECBF fusion operator
ro .reputation := l e t f : SBoolean=combinedFT−> f i r s t () in

f .epistemicCumulativeBeliefFusion (combinedFT−>
excluding (f)) ;

ro .expirationDate := s e l f .clock .now+ s e l f .expirationTime ;
-- finally, we update all clients with the new info.
for l in s e l f .clients do

l .updateReputation (person ,ro) ;
end

end
end

Listing 4 Assigning reputation to a person in a centralized
environment.

reputation in a centralized way. For this, we suppose that there
is a centralized application (AppManager) that is known to the
Apps running in the Digital Avatar of a user (which are of type
TrustApplication).

Listing 4 shows in detail the OCL specification of the
method that computes the reputation of a person in a cen-
tralized setting, in the context of an application. We assume
that this operation is executed by the AppManager central ap-
plication, and self.clients is the set of local applications
running in the DAs of the app users. It first collects the di-
rect trust opinions of all its clients about the person using
their directFunctionalTrust() methods. Then, it aggre-
gates them using the ECBF fusion operator to compute the
global reputation of the person. Finally, it updates the infor-
mation about the reputation of the person using the clients’
updateReputation() method.

This method uses attribute ExpirationTime of class
AppManager that defines how long it takes for a reputation
to expire, and which is added to the current time to calculate the
expiration date to include in the ReputationOpinion record.

4.2.2. Collecting opinions in peer-to-peer settings. Our
proposal follows the People-as-a-Service (PeaaS) model where
each user is a service provider managing its own information,
and interacting with the rest of the users by exchanging mes-
sages with them. Under this approach, reputation can be cal-
culated in a distributed way by making use of the fact that the
DAs of the users constitute a network of nodes. We assume that
the communication subsystem consists of reliable point-to-point
channels, i.e., the protocol for sending point-to-point messages
between DAs is reliable. We also assume that the distributed
system is, in principle, asynchronous, i.e. there are no known
time limits on message latency, message processing times, or
the duration of operations. This is precisely the environment of
any application in the Digital Avatars framework.

Under these assumptions, there are several circumstances
in which a user may require his local TrustApplication

to update the reputation of a subject by invoking the
recomputeReputation() method: either because new users
have joined the network whose opinions have not yet been
taken into account, or because the current reputation value
in the system has expired. In any of these cases, the
recomputeReputation() method distinguishes three distinct
phases:

– Phase 1: Choice of the leader that is going to manage the
computation of the reputation.

– Phase 2: The computation of the new reputation value.
– Phase 3: Dissemination (broadcast) of the newly calculated

value throughout the network.

Phase 1. Choosing a leader. In the distributed algorithms
literature, the distributed consensus problem is a well-studied
problem for which different solution exists. In our context, the
associativity of the Epistemic Cumulative Belief Fusion (ECBF)
operator that we use for computing the reputation from the trusts
of the individual users depends on the preservation of relative
weights of intermediate results (Jøsang 2016), which means that
no local solutions can be computed to be later aggregated to
independently calculate the final value. This implies that we
will need a leader node that gathers all values, computes the
reputation, and disseminate that value throughout the network.

The PAXOS algorithm proposed by Lamport (Lamport 2006)
and recently, the RAFT algorithm (Fazlali et al. 2019), are
algorithms based on the election of a leader that manages the
process of computing the consensus value. Our proposal adopts
the RAFT algorithm for the election of that leader node.

Figure 3 State diagram of the RAFT Algorithm.

As shown in Figure 3, every local TrustApplication can
be running under three states: follower, candidate or leader state.
Initially all TrustApplications start in the follower state. In
the absence of a leader in the network, any TrustApplication
can request to be the leader that manages the reputation com-
putation. This request (runningForLeader()) is made by a
node to its neighboring nodes and has associated with it the iden-
tifier of the node to be established as leader (contactDA) and a
timestamp. When a node receives this message, if its identifier
does not match that of the request, it broadcasts the received
message so that the message is propagated throughout the net-
work. From the time a node initiates a runningForLeader()
until it enters the candidate state, it waits for a timeout called
election timeout (time required for the message to be broadcast
over the network).

Reputation in Collaborative Social Computing Applications 7

After the election timeout, the follower becomes a candidate
and starts a new election term. It sends out a requestVote()
messages to the other nodes. If the receiving node hasn’t voted
yet in this term then it votes for the candidate (vote()) and
the node resets its election timeout. When the candidate node
receives a sufficient number of votes (half the number of nodes
plus one) it becomes the leader, as shown in Fig. 3.

Phase 2. Computing the reputation. As mentioned above,
the opinions need to be merged using the ECBF operator in
one node, since the associativity of this operator depends on
the preservation of the relative weights of the intermediate re-
sults (Jøsang 2016). This has an important impact on the compu-
tation of reputation, since the intermediate nodes of the network
(those in the follower state) will not be able to perform partial
computations of reputation as it happens with other distributed
problems such as the dynamic average consensus (Mehyar et al.
2005; Kia et al. 2018). Instead, follower nodes should sim-
ply propagate and collect the functional trust opinion from
their neighboring nodes and build with that data a sequence
of FunctionalTrust opinions to deliver to their parent nodes.

This is exactly the purpose of method collectFunctional-
Trust(). When a node receives such a message, it queries
all the contacts in its DA that share the same application. It
forwards the collectFunctionalTrust() message to each
of these nodes so that the collection of information is spread
throughout the network. The response to that message, from
a node, is a Sequence of pairs (person,functionalTrust)
initialised with the FunctionalTrust opinion of the node re-
ceiving the request and its identification. To this Sequence,
the node receiving the request appends the FunctionalTrust
opinions of its contacts as well as their respective identifiers.
Including in this sequence the identifiers of the consulted DAs
aims to avoid duplicity in the collected information since the net-
work may contain cycles, which could cause duplicated records.

Finally, the node leading the reputation update process goes
through these sequences of tuples, excludes possible duplicates
and applies the ECBF operator on the FunctionalTrust opin-
ions collected. This process is graphically described in the
sequence diagram shown in Fig. 4.

Phase 3. Updating the reputation in all nodes. Once the
leader has computed the reputation, this phase consists only
of updating the records stored in the DAs with the new
value. The leader will send a message to its direct contacts
(broadcast(person,newReputation)) for them to broad-
cast the update. When a node receives that message, it stores
the new reputation in its DA and propagates the message to its
neighboring nodes.

Periodically, the DA runs a process that deletes
TrustOpinion and ReputationOpinion records whose va-
lidity has expired. This guarantees the DA only contains those
opinions that we can consider suitable and valid to carry out
computations with them.

Trust Reputation WBF

(0.0, 0.0, 1.0, 0.5) (1.0, 0.0, 0.0, 0.5) (1.0, 0.0, 0.0, 0.5)

(0.0, 0.0, 1.0, 0.5) (0.0, 1.0, 0.0, 0.5) (0.0, 1.0, 0.0, 0.5)

(1.0, 0.0, 0.0, 0.5) (0.0, 0.0, 1.0, 0.5) (1.0, 0.0, 0.0, 0.5)

(0.0, 1.0, 0.0, 0.5) (0.0, 0.0, 1.0, 0.5) (0.0, 1.0, 0.0, 0.5)

(0.9, 0.0, 0.1, 0.5) (0.7, 0.0, 0.3, 0.5) (0.86, 0.0, 0.14, 0.5)

(0.0, 0.9, 0.1, 0.5) (0.0, 0.7, 0.3, 0.5) (0.0, 0.86, 0.14, 0.5)

(0.7, 0.0, 0.3, 0.5) (0.9, 0.0, 0.1, 0.5) (0.86, 0.0, 0.14, 0.5)

(0.0, 0.7, 0.3, 0.5) (0.0, 0.9, 0.1, 0.5) (0.0, 0.86, 0.14, 0.5)

(0.9, 0.0, 0.1, 0.5) (0.0, 0.9, 0.1, 0.5) (0.45, 0.45, 0.1, 0.5)

(0.0, 0.9, 0.1, 0.5) (0.9, 0.0, 0.1, 0.5) (0.45, 0.45, 0.1, 0.5)

Table 1 Combining Trust and Reputation with the WBF oper-
ator.

5. Marrying Reputation with Trust

Returning to the example presented in Sect. 2.4, Alberto needs
to decide which cardiologist he should call. On the one hand,
the app has allowed him to calculate the reputation of the differ-
ent specialists and to select, in principle, the one with the best
reputation. To gain more knowledge about this candidate, he
has consulted his direct contacts about their trust in that doctor,
and has formed an opinion by unifying these opinions using
the combinedFunctionalTrust() operator. At this point, Al-
berto relies on two pieces of information to make a decision:
the overall reputation of the specialist in question, and the confi-
dence in him derived from the experiences of his direct contacts.

To merge reputation and trust, the Weighted Belief Fusion
(WBF) fusion operator from Subjective logic seems to be the
best option. To better understand how this operator works,
Table 1 illustrates with examples how different opinions are
merged. We can see how the more certain opinions (i.e., those
with less uncertainty) have a greater weight in the resulting opin-
ion and, therefore, prevail. In the case of discrepant opinions
with low uncertainty, in the resulting opinion the degrees of be-
lief and disbelief adopt intermediate values keeping uncertainty
low. In this case there is no clear winning opinion.

In real scenarios, personal experience or direct information
by our contacts usually has more weight than the global rep-
utation calculated by the system. It is only in the absence of
knowledge from our contacts, or when the degree of uncertainty
in our contacts’ opinions is high, when our opinion is based
on reputation. Therefore, when the fusion operator does not
provide a clear winning decision, we normally use trust. In
Subjective logic terms, when the projection of the result is close
to 0.5, the combined trust obtained from our contacts’ opinion
should prevail.

Listing 5 shows how the selectDoctor() operation works
now, using the WBF fusion operator to combine trust and repu-
tation when sorting the doctors.

8 Moreno et al.

Figure 4 Sequence Diagram of Phase 2. The leader node sends a message to its followers which simply propagate and collect the
functional trust opinion from their neighboring nodes. Finally, the leader applies the ECBF operator on the collected opinions.

6. Implementation
This section describes how the DoctorsApp application is im-
plemented in Android using the Digital Avatars Framework.

To include all the functionality related with trust manage-
ment, every DA needs to store and manage a set of trust records.
The TrustOpinion records are used to specify the phone own-
ers’ functional and referral trust in their contacts. These records
are scope dependent and therefore they need to be associated to
a specific application — in this case, the DoctorsApp applica-
tion. Another set of TrustOpinion records is needed, which
represent the trust in the doctors of each of the contacts for
whom the user has a referral trust. There are two different ways
of obtaining these records. When the user wants to know her
functional trust in a doctor and such a record does not exist, the
DA sends a message to all the contacts which are trustees of a
referral opinion of that user, asking them for their functional
trust on the doctor. Once the replies are received, the user’s func-
tional trust is computed using the ECBF operator. Alternatively,
we can use a background process that is in charge of maintaining
the trust records of the DA contacts, collecting them from the
DA’s contacts when they are not available or have expired. This
way, the application can assume that all the information needed
for computing the trust of a user is available and updated. This
is the approach chosen to implement the Android application as
it allows more efficient trust management and calculation.

A similar process applies to reputation management. As rep-
utation is a global property, each user will always have the same
reputation value for a given doctor. Such a value is calculated
by adequately combining the functional trust of all users of
the application (see Sect. 4). Therefore, a background process
approach is also suitable for reputation management, which
is responsible for updating the ReputationOpinion records
when they expire or when a new user installs the DoctorsApp
in their DA.

With the trust and reputation information available and up-
dated, the selectDoctor() operation is easily implementable

as specified in Listing 5 below. To list the specialists in order of
confidence, the algorithm considers the direct functional trust of
the user and the reputation of the doctor. The application uses
the Weighted Cumulative Fusion operator to combine these two
SBoolean values, and uses the projection as sorting key.
selectDoctor (speciality : S t r i n g) : Sequence (Doctor) =

l e t l : Sequence (Doctor) = s e l f .doctor−>
s e l e c t (d | d .speciality−> i n c l u d e s (speciality))

−>asSequence () in
l−> i t e r a t e (d :Doctor ;

acc : Sequence (Tuple (doc :Doctor ,proj : Rea l)) = Sequence {} |
acc−>append (Tuple {doc :d ,
proj : l e t r : SBoolean = s e l f .reputation (d) in

l e t t : SBoolean =
s e l f .combinedFunctionalTrust (d) in

1 . 0 − r .weightedBeliefFusion (Sequence {t}) .
projection ()

})
) −> s o r t e d B y (proj) −> c o l l e c t (doc)

Listing 5 Sorting doctors according to trust and reputation
combined.

The complete code of the example application, along with the
current version of the Digital Avatars framework, can be found
on GitHub (Pérez-Vereda 2022). The implementation uses the
Java library with the datatypes extended with uncertainty and in
particular datatype SBoolean, which represents trust opinions
and its operations (Atenea Research Group 2021). DA records
are stored as JSON documents using a CouchBase Lite NoSQL
database.1 Messages among the DA applications are managed
and transmitted as events using the Complex Event Processing
(CEP) engine of the framework. It has been implemented using
Siddhi’s lightweight CEP engine (Suhothayan et al. 2011) and
its extensions for Android devices. It is capable of running
in the background, always ready to receive events from the
smartphone’s sensors. The engine can also perform actions
on the phone, for example, emitting a sound or displaying a
notification, in addition to the typical features of any CEP engine
of receiving, handling events and sending events.

1 https://www.couchbase.com/products/lite

Reputation in Collaborative Social Computing Applications 9

https://www.couchbase.com/products/lite

7. Related Work
Systems based on the reputation computation have attracted
the attention of the scientific community for some years now.
The literature gathers numerous research works in different
areas that affect distributed environments, from peer-to-peer
(P2P) applications, ad-hoc proposals, and systems based on
social networks. These proposals have in common the existence
of entities that offer services to third parties, whose goal is
help deciding the best option to choose among a set of service
providers. In contrast, the existing proposals differ in other
aspects such as the scope of the reputation (whether it is global
or local, depending on whether the calculated value is based
on global information or computed from personal information),
and the reputation estimation algorithm used.

7.1. Reputation computing based on subjective logic
Subjective logic allows to represent and operate with opinions
that have some degree of uncertainty. Subjective logic has
been used by some authors to model trust networks and rep-
utation systems. In (Santini 2019), entities can develop their
opinion taking into account their direct trust and the beliefs of
their contacts through the trust pathways that link them. All
these subjective opinions can be merged into a reputation score
calculated using the Consensus & Compromise Fusion (CCF)
operator. This score represents the degree of credibility that the
community of agents assigns to the entity. Unlike our proposal,
this paper calculates a local reputation and uses a fusion opera-
tor that neutralizes conflicting opinions. From our point of view,
conflicting opinions should not be neutralized but taken into
the same consideration as other opinions for the computation of
reputation.

Despite the advantages of Subjective logic, some authors
consider that some of its operators (in particular, the discount
operator) do not manage evidence in a natural way. They also
point out the high dependence of Subjective logic on the struc-
ture of the network, to the point that a limit on the information
collected to make the calculations should be made. To address
these limitations, in (Skoric et al. 2014) the authors present
a new algebra that allows calculation of reputation that is not
sensitive to the structure of the network, and where no informa-
tion need to be discarded. This proposal brings together two
worlds: flow-based reputation systems and consistent handling
of uncertainties in Subjective logic. The reputation calculated
is global in this case and the algorithm used to calculate the
reputation is based on the use of Markov chains. We find the
proposal extremely interesting although we do not share some
their criticisms about Subjective logic: (1) We do not see as a
limitation that dogmatic opinions are sensitive to the consensus
operator; and (2) the fact that the discount operator is not dis-
tributive with respect to the cumulative fusion operator does not
contradict the intuition from our point of view either.

7.2. Reputation Evaluation in Distributed Mobile Net-
works

Our proposal is also closely related to systems that compute
reputation in distributed mobile network environments. The
nature of these mobile networks is slightly different from that of

any distributed environment and therefore requires algorithms
that are not only distributed but also provide results that are as
competitive as some centralized proposals (Sharma et al. 2020).
In (Turkina & Ihnatiev 2020) the authors propose a method to
evaluate both trust and reputation in mobile networks in the
context of the Internet of Things. The implemented strategy
tries to determine the best object to interact with. Taking into
account the results of such interaction, it adjusts previous trust
estimates on the objects whose recommendations were used
to evaluate trust in the selected object. This proposal differs
with ours in several aspects: (a) trust and reputation values are
calculated in an interval [0..1] without taking uncertainty into
account; (b) the calculation of trust is performed on the basis
of reputation while our proposal adopts the opposite approach.
However, we have found particularly interesting the feedback
they propose for modifying the previous values used in the final
choice based on subsequent experiences with the selected object.
We plan to consider this as part of our future work.

In (Chiejina et al. 2015), a dynamic reputation management
system is proposed to detect and isolate misbehaving nodes in
mobile ad hoc networks. The model uses a direct monitoring
technique to evaluate the reputation of a node in the network,
which ensures that nodes that expend their energy in transmit-
ting data and routing control packets to others can carry out
their activities in the network, while misbehaving nodes are de-
tected and isolated from the network. The proposed reputation
model consists of a monitor, a reputation manager, a punishment
scheme and a routing manager. In particular, we are interested
in the reputation manager which calculates the reputation of
a node based solely on information from its direct neighbors
(local computation). It is also curious in this proposal that the
nodes of the network are initialized to a default reputation and
that this value oscillates in the range [0..2]. After monitoring
the different modes activities for a period of time, the reputation
at that instant is calculated as a combination of the initial repu-
tation and the average reputation value obtained up to that time.
Unlike this proposal, our approach computes the reputation of a
node from the individual direct trusts of the rest of the nodes,
always from scratch because we assume that the direct trust
of users is always kept updated. Moreover, our proposal does
not use a centralized reputation manager, but a peer-to-peer
algorithm to compute reputation.

7.3. Reputation in collaborative applications
There are numerous papers in the literature that address the
calculation of reputation as a determinant variable within their
collaborative system. In (Hoh et al. 2020), for example, the
authors introduce the concept of collaborative on-road repu-
tation (CORR), in which an individual driver’s reputation is
automatically calculated and reviewed by nearby drivers. If the
reputation score goes below a threshold, drivers may experience
limited kinetic vehicle movement or even temporary vehicle
suspension. The proposed system assigns an initial reputation to
all drivers with a maximum value, and adjusts reputation scores
based on the degree of impact of anomalous driving on nearby
drivers. The data collection is performed on all the vehicles
comprising the cluster and it is the cloud-hosted server that is re-

10 Moreno et al.

sponsible for determining the source of the anomaly, its type and
its level of impact, after which it updates the reputation score
accordingly. The reputation thus calculated takes into account
all the incidents that a user may have while driving and must be
constantly evaluated, which introduces unnecessary CPU usage
in the system. In our proposal, the reputation has an expiration
date after which it must be recalculated and distributed.

Although our work deals with the calculation of reputation
applied to individuals, it is true that reputation is a concept ap-
plicable to many other entities present in collaborative contexts.
Proof of this is Wikipedia, one of the best known and most
widespread collaborative applications today, where reputation
is also used. The content published on Wikipedia is predomi-
nantly created by anonymous or pseudonymous authors whose
knowledge and motivations are unknown. As a result, a great
deal of uncertainty arises as to the quality of their contributions.
One way to address this uncertainty and the problem generated
by the dubious quality of content is to implement automatic
reputation systems that calculate, through some kind of metric,
the reputation acquired by a given wikipedia content or article.
These metrics can help us determine how reliable a publication
is. This idea has become a new branch of research in recent
years. In (Wöhner et al. 2011), for example, seven metrics are
compared, some of which come from the literature and some
of which are new proposals by the authors. The metrics pro-
posed for the calculation of reputation are validated through an
analysis of different groups of Wikipedia users.

Reputation systems based on feedback management play
an important role in today’s online cosumer markets. These
opinions, as a feedback mechanism to establish reputation, are
present in well-known applications such as Google, Amazon,
TripAdvisor (Buccafurri et al. 2015; Reyes-Menendez et al.
2019) or eBay (Hayne et al. 2015; Hui et al. 2016; Xie & Lui
2015) among others. Although these works present some sim-
ilarities between them and with our proposal, their reputation
systems diverge in several aspects, such as: whether they model
both positive and negative trust (distrust), whether they model
trust in the resulting trust value or decision, whether they con-
sider the context of the trust decision, and whether they analyze
the credibility of third-party recommendations. The aspect that
interests us most in this comparison is the algorithmic approach
taken. In (Yao et al. 2011) a comparison is made that concludes
that there are five approaches for the computation of reputation
in these systems:

– Counting: Reputation is calculated as the sum or average
of all ratings (eBay case).

– Probabilistic: All systems in this category are based on
the use of the Beta probability density function where
reputation is calculated from a set of both positive and
negative experiences.

– Fuzzy: Systems in this category apply fuzzy logic to ex-
press and reason about uncertainty in reputation informa-
tion.

– Flow: This category includes systems that calculate repu-
tation based on transitive trust flow.

– Other approaches.

Something that none of these approaches take into account
is uncertainty. In our view, it is essential that uncertainty is
considered and included in the reputation calculation. This is
why we advocate the use of Subjective logic as a mechanism
not only for modeling but also for computing reputation.

8. Conclusions
This contribution proposes a reputation management system for
mobile-based collaborative social computing applications. It
builds on the Digital Avatars framework, extending it with the
explicit representation and management of reputation informa-
tion about service providers, and its combination with the users’
individual opinions about these service providers to make better
informed decisions in peer-to-peer environments.

We have specified the proposal using high-level, platform-
independent UML models, and responded to the three research
questions we posed in the introduction. First, we use Subjec-
tive Logic for expressing and reasoning about reputation, and
extended the DA framework for incorporating reputation and
storing it in the DAs of users. Second, we have described
(Sect. 4) the algorithms required to compute reputation from the
users’ individual opinions in a decentralised setting. Finally, we
have also shown how the fusion operators provided by Subjec-
tive logic can be used to merge reputation and trust for making
better informed decisions. As a proof of concept, and to demon-
strate the proposal, we have developed an implementation of a
mobile-based application that takes into account both reputation
and trust.

This work can be continued in several directions. First, the
models presented here have served us to study the practical
feasibility of our proposal by analyzing the expected structure
and behavior of the implementation. We have also simulated
these models with the USE facilities for executing UML mod-
els (Büttner & Gogolla 2014), which has served to initially
validate our proposal. We still need to explore more in depth
how to ensure that the implementation conforms to the UML
and OCL models. Conformance testing (Linington et al. 2011)
can be of help here. Based on these models, we plan to carry
out more exhaustive verification and simulation tests to analyze
the system properties, employing the USE toolkit (Gogolla et al.
2018). Being able to reason about the system from its high-level
models is one of the main benefits of Model-based Software
Engineering.. Second, we plan to evaluate our proposal with
more applications to better understand and appraise its advan-
tages and limitations. Incorporating our trust model to other
social computing application frameworks, such as (Mao et al.
2016; Bajo et al. 2016; Mohan et al. 2013; Tran et al. 2013)
could be an interesting line of research, too. Finally, we would
like to extend this approach with the use of Machine Learning
techniques that can automatically identify trends in the evolu-
tion of the reputation of a service provider, in order to, e.g.,
help them modify their quality of service to improve their users’
experience and thus increase their reputation.

Acknowledgments
This work is funded by the Spanish research projects PGC2018-
094905-B-100 and RTI2018-098780-B-I00.

Reputation in Collaborative Social Computing Applications 11

References

Adams, B., & Webb, R. (2003). Model of trust development in
small teams (Tech. Rep. No. CR 2003-016). Department of
National Defense.

Atenea Research Group. (2021). Uncertain datatypes
– Git repository. https://github.com/atenearesearchgroup/
uncertainty. GitHub.

Bajo, J., Campbell, A. T., & Zhou, X. (2016). Mobile sens-
ing agents for social computing environments. In Proc.
of PAAMS’16 (Vol. 473, pp. 157–167). Springer. doi:
10.1007/978-3-319-40159-1_13

Bertoa, M. F., Burgueño, L., Moreno, N., & Vallecillo,
A. (2020). Incorporating measurement uncertainty into
OCL/UML primitive datatypes. Softw. Syst. Model., 19(5),
1163–1189. doi: 10.1007/s10270-019-00741-0

Bertoa, M. F., Moreno, N., Pérez-Vereda, A., Bandera, D.,
Álvarez-Palomo, J. M., & Canal, C. (2020). Digital avatars:
Promoting independent living for older adults. Wirel. Com-
mun. Mob. Comput., 2020, 8891002:1–8891002:11. doi:
10.1155/2020/8891002

Buccafurri, F., Lax, G., Nicolazzo, S., & Nocera, A. (2015). A
model implementing certified reputation and its application
to tripadvisor. In Proc. of ARES’15 (pp. 218–223). IEEE
Computer Society.

Burgueño, L., Bertoa, M. F., Moreno, N., & Vallecillo, A.
(2018). Expressing confidence in models and in model trans-
formation elements. In Proc. of MODELS’18 (pp. 57–66).
ACM. doi: 10.1145/3239372.3239394

Burgueño, L., Muñoz, P., Clarisó, R., Cabot, J., Gérard, S., &
Vallecillo, A. (2022). Dealing with belief uncertainty in
domain models. ACM Transactions on Software Engineering
and Methodology (TOSEM), To appear..

Büttner, F., & Gogolla, M. (2014). On OCL-based imperative
languages. Sci. Comput. Program., 92, 162–178. doi: 10
.1016/j.scico.2013.10.003

Chiejina, E., Xiao, H., & Christianson, B. (2015). A
Dynamic Reputation Management System for Mobile Ad
Hoc Networks. Comput., 4(2), 87–112. doi: 10.3390/
computers4020087

de Finetti, B. (2017). Theory of probability: A critical in-
troductory treatment. John Wiley & Sons. doi: 10.1002/
9781119286387

de Siqueira Braga, D., Niemann, M., Hellingrath, B., & de
Lima Neto, F. B. (2019). Survey on computational trust and
reputation models. ACM Comput. Surv., 51(5), 101:1–101:40.
doi: 10.1145/3236008

Fazlali, M., Eftekhar, S. M., Dehshibi, M. M., Malazi, H. T., &
Nosrati, M. (2019). Raft Consensus Algorithm: an Effective
Substitute for Paxos in High Throughput P2P-based Systems.
CoRR, abs/1911.01231. http://arxiv.org/abs/1911.01231.

Feller, W. (2008). An introduction to probability theory and its
applications. Wiley.

Gambetta, D. (2000). Can we trust trust? In Trust: Making and
breaking cooperative relations (pp. 213–237). Univ. Oxford.

Gogolla, M., Hilken, F., & Doan, K.-H. (2018, December).
Achieving model quality through model validation, verifi-

cation and exploration. Computer Languages, Systems &
Structures, 54, 474–511. doi: 10.1016/j.cl.2017.10.001

Grandison, T., & Sloman, M. (2000). A survey of trust in
internet applications. IEEE Commun. Surv. Tutorials, 3(4),
2–16. doi: 10.1109/COMST.2000.5340804

Griffin, D., & Tversky, A. (1992). The weighing of evidence
and the determinants of confidence. Cognitive Psychology,
24(3), 411–435.

Guillén, J., Miranda, J., Berrocal, J., García-Alonso, J., Murillo,
J. M., & Canal, C. (2014). People as a service: A mobile-
centric model for providing collective sociological profiles.
IEEE Software, 31(2), 48–53. doi: 10.1109/MS.2013.140

Hayne, S. C., Wang, H., & Wang, L. (2015). Modeling reputa-
tion as a time-series: Evaluating the risk of purchase decisions
on ebay. Decis. Sci., 46(6), 1077–1107.

Hoh, B., Ucar, S., Oza, P., Patnayak, C., & Oguchi, K. (2020).
CORR: collaborative on-road reputation. In Proc. of CAVS’20
(pp. 1–6). IEEE. doi: 10.1109/CAVS51000.2020.9334679

Hui, X., Saeedi, M., Shen, Z., & Sundaresan, N. (2016). Rep-
utation and regulations: Evidence from ebay. Manag. Sci.,
62(12), 3604–3616.

JCGM 100:2008. (2008). Evaluation of measurement data
– Guide to the expression of uncertainty in measurement
(GUM). http://www.bipm.org/utils/common/documents/
jcgm/JCGM_100_2008_E.pdf.

Jøsang, A. (2016). Subjective logic - A formalism for reasoning
under uncertainty. Springer.

Kia, S. S., Scoy, B. V., Cortés, J., Freeman, R. A., Lynch,
K. M., & Martínez, S. (2018). Tutorial on dynamic average
consensus: the problem, its applications, and the algorithms.
CoRR, abs/1803.04628. http://arxiv.org/abs/1803.04628.

Lamport, L. (2006). Fast paxos. Distributed Comput., 19(2),
79–103. doi: 10.1007/s00446-006-0005-x

Linington, P. F., Milosevic, Z., Tanaka, A., & Vallecillo, A.
(2011). Building enterprise systems with odp – an introduc-
tion to open distributed processing. Chapman & Hall/CRC
Press.

Mao, H., Xiao, M., Liu, A., Li, J., & Hu, Y. (2016). OCC:
opportunistic crowd computing in mobile social networks. In
Proc. of DASFAA’16 (Vol. 9645, pp. 254–267). Springer. doi:
10.1007/978-3-319-32055-7_21

McKnight, D. H., & Chervany, N. L. (2001). Conceptualizing
trust: A typology and e-commerce customer relationships
model. In Proc. of HICSS-34. doi: 10.1109/HICSS.2001
.927053

Mehyar, M., Spanos, D., Pongsajapan, J., Low, S. H., & Mur-
ray, R. M. (2005). Distributed averaging on asynchronous
communication networks. In CDC/ECC (pp. 7446–7451).
IEEE.

Miranda, J., Mäkitalo, N., García-Alonso, J., Berrocal, J.,
Mikkonen, T., Canal, C., & Murillo, J. M. (2015). From the
internet of things to the internet of people. IEEE Internet
Computing, 19(2), 40–47. doi: 10.1109/MIC.2015.24

Mohan, S., Agarwal, N., & Al-Doski, L. (2013). Mobile
network-aware social computing applications: a framework,
architecture, and analysis. J. Ambient Intell. Humaniz. Com-
put., 4(1), 43–56. doi: 10.1007/s12652-011-0066-y

12 Moreno et al.

https://github.com/atenearesearchgroup/uncertainty
https://github.com/atenearesearchgroup/uncertainty
http://arxiv.org/abs/1911.01231
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://arxiv.org/abs/1803.04628

Muñoz, P., Burgueño, L., Ortiz, V., & Vallecillo, A. (2020).
Extending OCL with Subjective Logic. Journal of Object
Technology, 19(3), 3:1-15. doi: 10.5381/jot.2020.19.3.a1

Muñoz, P., Pérez-Vereda, A., Moreno, N., Troya, J., & Valle-
cillo, A. (2021). Incorporating trust into collaborative social
computing applications. In Proc. of EDOC’21 (pp. 21–30).
IEEE. doi: 10.1109/EDOC52215.2021.00020

Pérez-Vereda, A., & Canal, C. (2017). A people-oriented
paradigm for smart cities. In Proc. of ICWE’17 (Vol. 10360,
pp. 584–591). Springer. doi: 10.1007/978-3-319-60131-1
_46

Pérez-Vereda, A. (2022). Digital avatars: Doctors’ application
– Git repository. https://github.com/apvereda/Digital-Avatars
-DoctorsApp.

Petrusic, W., & Baranski, J. (2003). Judging confidence influ-
ences decision processing in comparative judgments. Psycho-
nomic Bulletin & Review, 10, 177–183. doi: https://doi.org/
10.3758/BF03196482

Reyes-Menendez, A., Saura, J. R., & Martinez-Navalon, J. G.
(2019). The impact of e-wom on hotels management reputa-
tion: Exploring tripadvisor review credibility with the ELM
model. IEEE Access, 7, 68868–68877.

Richters, M., & Gogolla, M. (1998). On formalizing the UML
object constraint language OCL. In ER (Vol. 1507, pp. 449–
464). Springer.

Richters, M., & Gogolla, M. (2000). Validating UML models
and OCL constraints. In UML (Vol. 1939, pp. 265–277).
Springer.

Santini, F. (2019). From trust among agents to reputation of
abstract arguments by using subjective logic. In Proc. of
AI*IA’19 (Vol. 2528, pp. 65–79). CEUR-WS.org. http://
ceur-ws.org/Vol-2528/6_Santini_AI3_2019.pdf.

Schuler, D. (1994). Social computing - introduction to the
special section. Commun. ACM, 37(1), 28–29. doi: 10.1145/
175222.175223

Sharma, V., You, I., Andersson, K., Palmieri, F., Rehmani,
M. H., & Lim, J. (2020). Security, Privacy and Trust for Smart
Mobile- Internet of Things (M-IoT): A Survey. IEEE Access,
8, 167123–167163. doi: 10.1109/ACCESS.2020.3022661

Skoric, B., de Hoogh, S., & Zannone, N. (2014). Flow-based
reputation with uncertainty: Evidence-based subjective logic.
CoRR, abs/1402.3319. http://arxiv.org/abs/1402.3319.

Suhothayan, S., Gajasinghe, K., Narangoda, I. L., Chaturanga,
S., Perera, S., & Nanayakkara, V. (2011). Siddhi: a second
look at complex event processing architectures. In Proc. of
SC@GCE’11 (pp. 43–50). ACM. doi: 10.1145/2110486
.2110493

Tran, H. M., Huynh, K. V., Vo, K. D., & Le, S. T. (2013).
Mobile peer-to-peer approach for social computing services
in distributed environment. In Proc. of soict’13 (pp. 227–233).
ACM. doi: 10.1145/2542050.2542064

Troya, J., Moreno, N., Bertoa, M. F., & Vallecillo, A. (2021).
Uncertainty representation in software models: A survey.
Software and Systems Modeling, 20(4), 1183—1213. doi:
10.1007/s10270-020-00842-1

Turkina, V., & Ihnatiev, D. (2020). Approach to sustainable trust
and reputation evaluation in distributed mobile networks of

the internet of things. In Proc. of DESSERT’20 (pp. 117–121).
IEEE. doi: 10.1109/DESSERT50317.2020.9125015

Wöhner, T., Köhler, S., & Peters, R. (2011). Automatic reputa-
tion assessment in wikipedia. In Proc. of ICIS’11. Associa-
tion for Information Systems. http://aisel.aisnet.org/icis2011/
proceedings/onlinecommunity/5.

Xie, H., & Lui, J. C. S. (2015). Modeling ebay-like reputation
systems: Analysis, characterization and insurance mechanism
design. Perform. Evaluation, 91, 132–149.

Yao, W., Chu, C., & Li, Z. (2011). Leveraging complex event
processing for smart hospitals using RFID. Journal of Net-
work and Computer Applications, 34(3), 799–810.

About the authors
Nathalie Moreno is Lecturer at the University of Málaga. Her re-
search interests include Model-based Engineering, Uncertainty
modeling and propagation, and Trust & Reputation Systems.
You can contact the author at nmv@uma.es.

Alejandro Pérez-Vereda is a PhD candidate at the University of
Castilla-La Mancha. His research interests include Mobile Com-
puting, Context-Awareness, Pervasive Systems and CrowdSens-
ing. You can contact the author at alejandro.pvereda@uclm.es.

Antonio Vallecillo is full Professor at the University of Málaga,
where he leads the Atenea Research Group on Software and
Systems Modeling. His main research interests include Open
Distributed Processing, Model-based Engineering and Software
Quality. You can contact the author at av@uma.es or visit
http://www.lcc.uma.es/~av/.

Reputation in Collaborative Social Computing Applications 13

https://github.com/apvereda/Digital-Avatars-DoctorsApp
https://github.com/apvereda/Digital-Avatars-DoctorsApp
http://ceur-ws.org/Vol-2528/6_Santini_AI3_2019.pdf
http://ceur-ws.org/Vol-2528/6_Santini_AI3_2019.pdf
http://arxiv.org/abs/1402.3319
http://aisel.aisnet.org/icis2011/proceedings/onlinecommunity/5
http://aisel.aisnet.org/icis2011/proceedings/onlinecommunity/5
mailto:nmv@uma.es?subject=Your paper "Managing Reputation in\ Collaborative Social Computing Applications"
mailto:alejandro.pvereda@uclm.es?subject=Your paper "Managing Reputation in\ Collaborative Social Computing Applications"
mailto:av@uma.es?subject=Your paper "Managing Reputation in\ Collaborative Social Computing Applications"
http://www.lcc.uma.es/~av/

