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Abstract—Neural rendering is a relatively new field of research
that aims to produce high quality perspectives of a 3D scene from
a reduced set of sample images. This is done with the help of
deep artificial neural networks that model the geometry and color
characteristics of the scene. The NeX model relies on neural basis
expansion to yield accurate results with a lower computational
load than the previous NeRF model. In this work, a procedure
is proposed to further enhance the quality of the perspectives
generated by NeX. Our proposal is based on the combination of
the outputs of several NeX models by a consensus mechanism.
The approach is compared to the original NeX for a wide range of
scenes. It is found that our method significantly outperforms the
original procedure, both in quantitative and qualitative terms.

Index Terms—deep learning, convolutional neural networks,
neural rendering, consensus model
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I. INTRODUCTION

Computer vision applications such as virtual reality and
augmented reality have been increasingly used due to the
technological development of devices such as smartphones and
tablet computers, which have at least a built-in single or dual
camera. In these types of applications it is essential to address
the problem of photorealistic view synthesis in real time,
which involves a procedure to build a visual representation
of the scene from a finite set of input sparse images and a
method to generate new images that correspond to views of
the scene different from those with which the images of the
original set were taken.

Novel view synthesis is not an easy task that has to cope
with object occlusion, thin structures and complex surface
reflectance properties such as the rainbow reflections on a CD
and the refraction through glass objects. Most of the works
presented in recent years make use of deep neural networks
that contribute to implicitly represent the scene once they are
properly trained. In [1] a multi-layer perceptron learns the
scene 3D properties for each spatial location. On the other
hand, Neural Radiance Fields (NeRF) [2] and its extensions
[3] [4] train a fully connected neural network so that it
receives the spatial location and the viewing direction of each
pixel and returns the corresponding RGB color and volume
density. Although they are able to model view-dependent
effects, the number of input images needed for training and the
computational cost required for optimizing their neural model
parameters make them not suitable for applications that require
real time performance.



Another very common approach to the task is based on
Multiplane Images (MPI), where a set of parallel semi-
transparent planes placed at different depths from the same
reference viewpoint is used to represent the scene. The length
of the set of input data ranges from a single image [5], where
the main challenge is the lack of information to infer 3D
geometrical properties, especially those of occluded regions,
to multiple input photos [6] [7] [8]. In [8] the new scene
poses are produced by blending the MPIs generated by a
Convolutional Neural Network (CNN) for each input view.
DeepView [6] builds a MPI in a few iterations thanks to a
CNN that learns the gradient updates, which allows the method
to avoid the overfitting that would occur when predicting the
gradient directly. Finally, [7][17] combines several MPIs to
model scenes whose appearance varies over time. However, the
approach of modeling the view-dependent effects as a blend
of multiple view-independent MPIs is limited and it does not
always work appropriately.

One of the most recent approaches is NeX [9], which
attempts to overcome the MPI-based model difficulty in
representing non-Lambertian surfaces. For that purpose, the
color of each pixel is considered to be dependent on the
viewing direction and is approximated as a linear combination
of a fixed number of spherical basis functions learned from
neural networks. Furthermore, since implicit representation
of the scene by means of only neural networks tends to
blur the images and may lose fine details, NeX proposes a
hybrid parameter modeling strategy in which some reflectance
parameters such as the one corresponding to the base color are
optimized separately and saved explicitly for each one of the
MPI planes. The performance of NeX, as well as other view
synthesis methods which are based on scene implicit neural
network representation, relies on the features learned by its
core neural system after training. If the neural network is not
able to adequately learn the scene features, specially of those
regions that are not present in the input images, then flickering
effects or even artifacts may appear in the rendered output.

Neural network ensemble is a learning paradigm where
several neural networks are trained for the same task. The
combination of predictions of the distinct neural networks is
expected to improve the overall generalization ability of the
neural network system [10]. It has already been effectively
applied to areas as diverse as face recognition [11], medical
diagnosis [12] [13], and seismic signals classification [14] and
fault detection [15].

The proposal that is presented in this paper consists in
ensembling a set of NeX neural networks with the aim of
achieving better rendered images. A moderate number of
NeX networks are trained on the same input images but with
different pseudorandom seeds. When an image from a new
pose is generated, the color and transparency of each one of
its pixels are obtained by consensus. As a result of that, the
artifacts and other undesired visual effects in the output image
that would be produced by individual NeX networks are less
likely to appear due to the compensation and correction made
by the other ensemble components.

The rest of the paper is organized as follows: Section
II describes the methodology. Section III is devoted to the
experiments that have been carried out and the analysis of
their results, Finally, the main conclusions are summarized in
Section IV.

II. METHODOLOGY

Let us note T = {(x1,Y1) , ..., (xM ,YM )} a training set
with M patterns, each composed by an input pose x and an
output image (perspective) Y. Then we may note FT ,i the
NeX network trained with the set T using a pseudorandom
seed i ∈ N. It must be noted that, even though the training set
is the same, we obtain different networks FT ,i by varying i.

We propose to build an ensemble of N NeX networks FT ,i,
for i ∈ {1, ..., N}. After the networks are trained, given a test
input pose x, a consensus output perspective can be obtained
as follows:

Y = φG,N (x) = G ({FT ,1 (x) , ..., FT ,N (x)}) (1)

where G is a suitable aggregation function. In this work, we
have considered two alternatives: G = mean and G = median.

In the case of G = mean, by the law of large numbers we
know that:

lim
N→∞

φmean,N (x) = Ei∈N [FT ,i (x)] (2)

where E stands for the mathematical expectation operator.
Moreover,

var [φmean,N (x)] =
1

N
vari∈N [FT ,i (x)] (3)

where var stands for variance, computed separately for each
RGB color component of each pixel of the perspective. Also,
for G = median, it is known that the distribution of the sample
median is asymptotically normal with variance proportional to
1
N [16], [17].

The above results imply that, provided that the variance of
FT ,i (x) is low, we can expect that the value of φG,N (x) will
converge for relatively small values of N . This reduces the
computational load of implementing (1).

III. EXPERIMENTS

This work evaluated quantitatively and qualitatively the pro-
posed method using an arrangement similar to the described
by NeX paper [9], targeting the achievement of experimental
results that could prove the robustness of our strategy.

A. Test setup

The Shiny dataset was chosen so that the same scenes
used in the NeX article could be analyzed in our work. This
dataset is composed of 8 scenes that were conceived to test
the network under challenging view-dependent effects such
as reflections, thin-film interference, refraction through non-
planar glassware and magnifying glass [9].

The setup was arranged so that for each scene, ensembles
from N = 2 up to N = 20 were computed where both



scenarios with G = mean and G = median were considered.
It was accomplished firstly by calculating the consensuses of
validation images for each ensemble using both aggregation
functions and secondly by measuring the metrics PSNR, SSIM
[18] and LPIPS [19] of the consensus images. This process
was repeated for each 25 epochs during the training of CD and
Lab scenes and for each 10 epochs for the remaining scenes.
The results of our approach was compared to the original NeX
model, which has been noted N = 1 as it consists of a single
NeX network with no consensus.

When training several NeX networks for a given scene, the
resulting performance will not be exactly the same, but a given
degree of variability is expected. In our case, the variability
is originated from two main sources: the sequence of pseudo-
random numbers used internally in the training process, and
the differences between training and validation datasets. For
the purposes of building our consensuses, we want to allow the
former while suppressing the latter. Accordingly, modifications
were done to the NeX source code to ensure a different and
repeatable pseudo-random sequence for each different training
(specifying the seed to the sequence), while also having a
consistent 50%-50% split of the scene images into training
and validation subsets across all trainings. While it is usual
in deep learning for the validation dataset to be substantially
smaller than the training one, we committed to a 50%-50%
split because most NeX scenes have just a few tens of images,
and we are measuring relatively small differences across very
similar images, so having a relatively large validation subset
helps to strengthen the case for our proposed technique.

Our experiments were conducted at lower resolutions than
the NeX article, with the images of each scene resized to a
common width of 400 pixels, modifying the image height to
keep the aspect ratio of the images. To be more specific, the
images of the Tools, Crest, Seasoning, Food, Giants and Pasta
scenes were resized to 400x300 pixels, while the images of
the Lab and CD scenes were resized to 400x225 pixels.

B. Quantitative results

Each of the scenes from Shiny dataset was trained with 20
different seeds for 200 epochs and it was possible to observe
that in general there was a clear improvement by using our
strategy over the original NeX model. In Fig. 1 and Fig. 2, we
show an example of the performance of the ensembles in CD
scene from N = 2 up to N = 20 for respectively G = mean
and G = median. In both figures the performance of the met-
rics of the ensembles were plot alongside with the 20 networks
trained with individual seeds (FTCD,1, FTCD,2, ..., FTCD,20). All
the metrics present a consistent improvement of the con-
sensuses over the individual networks for both aggregation
functions specially for consensuses of higher N , although in
some cases for specific seeds the individual networks show
better performance in some isolated epochs.

It is also noticeable that the performance improves for when
N increases while the rate of improvement decreases. This
statement is more clear when looking to Fig. 3, where the
improvement of the metrics in relation to the original NeX

(a) PSNR, G = mean

(b) SSIM, G = mean

(c) LPIPS, G = mean

Fig. 1: Evolution of the metrics in CD scene with G = mean:
(a) PSNR; (b) SSIM; (c) LPIPS



(a) PSNR, G = median

(b) SSIM, G = median

(c) LPIPS, G = median

Fig. 2: Evolution of the metrics in CD scene with G = median:
(a) PSNR; (b) SSIM; (c) LPIPS

TABLE I: N at which the best performance was achieved in
epoch 200

Mean Median
PSNR SSIM LPIPS PSNR SSIM LPIPS

CD 20 20 19 20 20 20

Crest 16 20 6 16 20 18

Food 20 20 5 20 20 8

Giants 16 16 20 16 19 20

Lab 20 15 14 20 20 14

Pasta 20 20 20 20 20 20

Seasoning 20 20 4 20 20 5

Tools 17 17 6 17 17 10

TABLE II: Best metric achieved by training until epoch 200

Mean Median
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

CD 26.174 0.883 0.179 26.143 0.882 0.179
Crest 24.895 0.837 0.161 24.867 0.837 0.160
Food 22.328 0.789 0.217 22.299 0.788 0.216
Giants 27.984 0.934 0.111 27.954 0.933 0.110
Lab 27.233 0.914 0.141 27.195 0.913 0.140
Pasta 23.655 0.899 0.125 23.619 0.898 0.125
Seasoning 30.216 0.961 0.151 30.184 0.960 0.150
Tools 25.413 0.925 0.103 25.346 0.924 0.101

Mean 25.987 0.893 0.149 25.951 0.892 0.147

model (N = 1) is presented in percentage according to the
following:

RMETRIC =
METRIC

METRICN=1
(4)

Where R is the relative measurement of a given metric in re-
lation to the original NeX model trained until the same epoch.
Thus, R > 100% means improvement over the original NeX
model for PSNR and SSIM, while for LPIPS improvement is
achieved when R < 100%.

Figure 3 and Table I show that in epoch 200 all the
consensuses behave better when N > 1, were it is possible
to see a clear tendency of improvement as N increases for
PSNR and SSIM, while in some cases for LPIPS the optimum
performance is achieved at a lower value of N .

Regarding the aggregation functions, a more detailed com-
parison can be accomplished by analyzing Table II, where
G = mean achieves a better performance for PSNR and SSIM
in all cases. In opposition, G = median is more efficient when
considering LPIPS as a metric of reference.

C. Qualitative results

In addition to the metrics, other comparisons might be done
using some of the images outputted by the original NeX
network and the ensembles with different values of N so
that the visual impact of our strategy become more clear.
The first effect our strategy produced was the attenuation of
erroneous renderizations generated in some scenes, specially in
some corners and regions close to the borders of the images.



(a) RPSNR

(b) RSSIM

(c) RLPIPS

Fig. 3: Improvement of the metrics in relation to the original
NeX model (N = 1): (a) PSNR; (b) SSIM; (c) LPIPS.

However, in spite of the improvement, in most cases these
visual artifacts were not completely fixed by our strategy.
An example of this behavior is shown in Fig. 4, where
the imperfections of the renderization of the table cloth are
improved by the consensuses with the cost of adding some
blur to that region of the image.

Another impact the consensus has over the original NeX
model was observed in metallic surfaces, where it could
improve the sharpness of contours of objects. This effect is
visible in the spoon on Fig. 4, where it is also noticeable
an improvement in the detail of the frame present along the
middle of the cable of the spoon. This frame is almost not
perceptible in FTFood,1 image.

A third characteristic was noted in some scenes, where both
mean and median strategies were able to reduce the noise on
some surfaces. Fig. 5 shows an example of such effect, where
a reduction of the perceived noise may be observed as N
increases. A similar effect is noted in the magnifying glass
present in Fig. 6. Although, in this case, neither the original
NeX nor any of the consensuses were able to accurately
reproduce the optical behavior of the lens.

Nevertheless, the visual effects caused by our strategy were
not always effortlessly perceived by naked eye. In some
scenes, even though there was a clear improvement in the
metrics, they were difficult to be detected.

D. Other experiments

After investigating the effect of our strategy in all scenes
until epoch 200, the Food scene was chosen to be trained
further to check if the usage of NeX ensembles would be
beneficial even when the training does not improve anymore.
For this experiment, the number of epochs was chosen to be
4000, the same number used in NeX original work. Fig. 7 and
Fig. 8 show the results of this analysis, where it is possible
to see that around epoch 1400 the networks achieved the best
performance and kept it almost constant until epoch 4000.
The abrupt modification in the performance of the networks
in epoch 1400 happens because in epoch 1333 the learning
rate is multiplied by a factor of 0.1 [9] and as our resolution
is 100 epochs, it is only perceptible in epoch 1400. In the end
the consensuses proved to outperform the individual networks
during the entire training.

The comparison of epochs 200 and 4000 of Food scene
in Fig. 3 provides a deeper understanding of the effect of
N in this experiment. For PSNR and SSIM the best choice
continued to be N = 20 in epoch 4000. On the other hand, the
best number of networks in the consensus when considering
LPIPS showed to be different than for 200 epochs, passing
from N = 5 to N = 12 for G = mean and from N = 8 to
N = 11 for G = median.

IV. CONCLUSIONS

In this work, a procedure to enhance the quality of the
perspectives generated by the NeX neural rendering model
has been proposed. The procedure is based on the training of



(a) FTFood,1 (b) YTFood, mean, N=20 (c) YTFood, median, N=20 (d) Ground truth

Fig. 4: Effect of our strategy in Food scene where the consensus improved the details of the spoon and the texture of the table
cloth: (a) Original NeX output; (b) Mean consensus of 20 networks; (c) Median consensus of 20 networks; (d) Ground truth
image.

several NeX models, whose outputs are subsequently com-
bined by a suitable consensus mechanism. Two consensus
mechanisms have been developed, namely the mean and the
median consensus. Computational experiments have been con-
ducted on a variety of 3D scenes to compare the perspective
generation performance of our proposal, as compared to the
application of a single NeX model. Our approach yields a
consistently better quality, both in quantitative and qualitative
terms, in all experiments. Erroneous renderizations produced
by the NeX network are attenuated, in particular in specific
corners and regions close to the borders of the generated im-
ages. Noise is reduced, and the sharpness of metallic surfaces
is also improved. These results prove the relevance and utility
of our proposal.
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(a) Ground truth (b) YTCD, mean, N=5 (c) YTCD, mean, N=10 (d) YTCD, mean, N=20

(e) FTCD,1 (f) YTCD, median, N=5 (g) YTCD, median, N=10 (h) YTCD, median, N=20

Fig. 5: Comparison of details in CD scene where the noise reduction is emphasized in yellow and in red an improvement of
the shape of the CD is noted for G = median as N increases: (a) Ground truth image; (b) Mean consensus of 5 networks;
(c) Mean consensus of 10 networks; (d) Mean consensus of 20 networks; (e) Original NeX output; (f) Median consensus of
5 networks; (g) Median consensus of 10 networks; (h) Median consensus of 20 networks.

(a) Ground truth (b) YTTools, mean, N=5 (c) YTTools, mean, N=10 (d) YTTools, mean, N=20

(e) FTTools ,1 (f) YTTools, median, N=5 (g) YTTools, median, N=10 (h) YTTools, median, N=20

Fig. 6: Zoom in the improvement of the magnifying glass with higher N in Tools scene. Even though the image noise is
reduced, the ground truth remains different from all the images presented. (a) Ground truth image; (b) Mean consensus of
5 networks; (c) Mean consensus of 10 networks; (d) Mean consensus of 20 networks; (e) Original NeX output; (f) Median
consensus of 5 networks; (g) Median consensus of 10 networks; (h) Median consensus of 20 networks.



(a) PSNR, G = mean

(b) SSIM, G = mean

(c) LPIPS, G = mean

Fig. 7: Evolution of the metrics in Food scene until epoch
4000 with G = mean: (a) PSNR; (b) PSNR; (c) SSIM.

(a) PSNR, G = median

(b) SSIM, G = median

(c) LPIPS, G = median

Fig. 8: Evolution of the metrics in Food scene until epoch
4000 with G = median: (a) PSNR; (b) PSNR; (c) SSIM.


