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Abstract
We characterize the minimal Hilbert basis of the Hammond order cone, and present
several novel applications of the resulting basis. From the basis,we extract an invertible
matrix, that provides a numerical representation of the Hammond order relation. The
basis also enables the construction of a space—that we call the Hammond order
lattice—where order-extensions of the Hammond order (i.e. more complete relations)
may be derived. Finally, we introduce a class of maximal linearly independent Hilbert
bases, in which the specific results derived in relation to the Hammond order cone,
are shown to hold more generally.

Keywords Measurement of social welfare · Order relations induced by convex
cones · Hammond order · Hilbert bases

1 Introduction

The last decade has witnessed an increased interest among social scientists in the
distributional analysis of ordered response data, such as self-assessed health and hap-
piness. One major methodological contribution in the field is the work of Gravel et al.
(2021), who introduce a social welfare ordering founded on Hammond’s equity con-
cept (Hammond 1976).1

We owe to Magdalou (2021) the first study of integral Hilbert bases of cones asso-
ciated with abstract inequality or social welfare order relations defined on univariate
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or multivariate discrete distributions. An important contribution of Magdalou (2021)
is to demonstrate the fundamental role Hilbert bases perform in characterizing the set
of order-preserving functions of the underlying relation of interest. Specifically, the
general equivalence theorem of Magdalou requires that the set of welfare improving
transformations of the distribution of interest (the so-called set of transfers) contains
an integral Hilbert basis of the underlying cone ordering.

When we set out to derive the minimal Hilbert basis of the Hammond order cone
(that is, the cone associated with the welfare order relation introduced by Gravel et al.
2021), we find that when the variable of interest is defined on k ordered socioeconomic
states, theminimal basis consists of k−1 vectors, that are linearly independent. In turn,
the derivation of this result enables us to extend Gravel et al. (2021) and Magdalou
(2021) in several directions. Specifically, the linear independence property enables us
to introduce several novel applications of the minimal Hilbert basis of the Hammond
order cone, and more generally, of a class of minimal Hilbert bases that share the same
linear independence properties.

Firstly, we show that the minimal Hilbert basis can be directly used to identify the
numerical implementation criterion (the so-called partial sums) that enable a researcher
to conclude that a pair of distribution are ordered. This result is of practical relevance:
to date, there is no simple method of deriving these partial sums. The method pro-
posed here is simple, in that it consists of deriving the partial sums by inverting a
matrix extracted from the minimal Hilbert basis. The same inversion method is used
to illustrate how the well known partial sums associated with the first order stochastic
dominance relation, are readily obtained from the minimal Hilbert basis associated
with this cone ordering. Likewise, the inversion method is used to obtain the par-
tial sums of the Hammond order, previously derived by Gravel et al. (2021) from an
entirely different perspective.

A second area of application of the minimal Hilbert basis that is proposed in the
paper is to introduce a new space—that we call the Hammond order lattice—where
order-extensions of the Hammond order (i.e. more complete relations) may be derived.
Defining this space is useful, as it enables the researcher to better understand how var-
ious order relations compare pairs of distributions in the context of socioeconomic
surveys. The Hammond order lattice then provides a straightforward method of deriv-
ing relations that may be more, or less, complete than the Hammond order. This
lattice is founded on the linear independence property of the vectors that constitute
the minimal Hilbert basis, and is thus easily generalizable in other contexts.

Finally, in deriving the minimal Hilbert basis of the Hammond order cone, we
present a result due to Giles and Pulleyblank (1979) that enables the construction of
an integral Hilbert basis of a general pointed rational cone. The resulting Hilbert basis
is the set of integral vectors2 contained in a set, called the parallelotope associated
with the cone. We note that having a method of constructing an integral Hilbert basis
of a rational cone is important, in that it enables a wider application of the equivalence
theorem of Magdalou (2021) in various contexts.

More generally, because minimal Hilbert bases provide parsimonious represen-
tations of the set of integral vectors that belong to a cone, they are important to

2 An integral vector is a vector whose components are all integers.
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characterize in a variety of contexts. In the context of distributional analysis, a min-
imal Hilbert basis enables the researcher to identify the smallest set of vectors that
generate the order relation (the so-called irreducible transfers) in contrast with the
set of composite transfers (vectors constructed using positive integer combinations of
the irreducible transfers). In integer programming for instance, minimal Hilbert bases
may be used to identify sequences of vectors that are feasible, given the constraints of
the underlying problem, and that improve the value of the objective function. Consider
statistical inference for order relations defined on convex cones. When undertaking
Monte Carlo simulation (drawing random vectors inside a cone), there is in this con-
text a substantial computational gain from working with a minimal Hilbert basis: any
randomly generated integral vector can be constructed in a parsimonious fashion by
taking a weighted positive integer sum of the vectors of the basis. As such, mini-
mal Hilbert bases may well take on a prominent role in the exploration of statistical
properties of tests for order relations defined on convex cones.

A word of clarification is due regarding the terminology of minimal Hilbert bases.
The resulting integral Hilbert basis constructed from the parallelotopemethod of Giles
and Pulleyblank (1979) is in general a superset of the Hilbert basis concept discussed
in Magdalou (2021). For this reason, the present paper follows a well-established
literature in the mathematical sciences (e.g. Gruber 2007) of distinguishing between a
general integral Hilbert basis of a convex cone, and aminimal Hilbert basis—the basis
concept that underlies the fundamental equivalence theorem of Magdalou (2021).

After reviewing key concepts and definitions in Sect. 2, we turn in Sect. 3 to the
characterization of the minimal Hilbert basis of the Hammond order cone. We then
introduce in Sect. 4 a class of maximal linearly independent Hilbert bases. There,
we discuss the method of extracting the partial sums, the numerical implementation
criterion, from the specific minimal Hilbert basis. The results of this section, together
with their limitations, are then illustrated in the context of the Hammond order cone,
together with two other order relations introduced in Gravel et al. (2021). Section 5
discusses the Hammond order lattice and Sect. 6 concludes. An appendix gathers
proofs of various results.

2 The Hammond order cone

The approach we will pursue in this section is to define a general relation � on a
convex cone C, the associated parallelotope, and Hilbert basis of the set of integral
points of this cone. Subsequently, we shall specialize the relation to a rational cone3

associated with the Hammond order, and each integral vector of the rational cone will
take the form of a difference between two distributions pertaining to a variable defined
on k ordered socioeconomic states. The purpose of starting from a general perspective
is to enable a distinction between properties that are specific to any convex cone, and
those that are specific to the cone associated with the Hammond order.

3 A cone is said to be a rational cone if it is positively spanned by a set of rational vectors. See Definition 1
below.
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In what follows the sets Z, Q and R respectively denote the integers, rationals and
real numbers. We let Z+ := {0, 1, 2, . . .} denote the non-negative integers, and we
likewise define the sets Q+ and R+. We begin this section by recalling a few concepts
pertaining to order relations. A relation � on R

d is called a preorder if it is transitive
and reflexive, and a partial ordering if it is transitive, reflexive and antisymmetric4. A
relation � is additive if for all x, y, z ∈ R

d , x � y implies x + z � y + z. Finally, the
relation � is scale invariant if for all x, y ∈ R

d , and for all λ > 0, there holds x � y
implies λx � λy. Following Marshall et al. (1967), an additive and scale invariant
partial order relation � may be associated with a pointed convex cone5 C ⊆ R

d ,
whereby x � y if and only if x − y is a vector that belongs to the convex cone C.

Under such circumstances, we more simply refer to the relation� as an order induced
by a convex cone, or a cone ordering.

In this paper, we shall characterize a minimal Hilbert basis of a rational cone C in
relation to a positive spanning set :

Definition 1 Let V := {
v1, . . . , vq

}
denote a finite set of rational vectors in d -

dimensional space Q
d . Then,

(i) The positive span of V is the set of all positive linear combinations of v1, . . . , vq :

pos(V) :=
{
λ1v

1 + · · · + λqv
q : λ1, . . . , λq ∈ R+

}
(2.1)

(ii) The set V is said to positively span a rational cone C if pos(V) = C.
Note in particular from (i) that any finite set of rational vectors V is associated with

a rational cone pos(V).
For the purpose of characterizing those integral vectors that belong to the rational

cone C, we introduce the following notions of a Hilbert basis.

Definition 2 A Hilbert basis of a finitely generated cone C ⊆ R
d is a set of vectors{

h1, . . . , hm
} ⊆ C such that each vector z ∈ C ∩ Z

d is expressible in the form of
a positive integer combination z = θ1h1 + · · · + θmhm , with θ1, . . . , θm ∈ Z+. A
Hilbert basis

{
h1, . . . , hm

}
is said to be integral if

{
h1, . . . , hm

} ⊆ Z
d . A Hilbert

basis
{
h1, . . . , hm

}
is minimal if it is not a superset of any other Hilbert basis of the

cone C.
Let 0d denote a vector of zeroes in R

d . The following result provides the link
between the concepts of integral Hilbert basis and positive spanning set of a rational
cone (Giles and Pulleyblank 1979; Gruber 2007 p. 349–350).

Lemma 1 Let C ⊆ R
d be a pointed rational cone, and let V := {

v1, . . . , vq
}
be a set

of vectors such that pos(V) = C. Associate with V a bounded set

P :=
{
λ1v

1 + · · · + λqv
q : 0 ≤ λ1, . . . , λq ≤ 1

}
(2.2)

4 A relation � on R
d is called transitive if x � y and y � z imply x � z for all x, y, z ∈ R

d , reflexive if
x � x for all x ∈ R

d , and antisymmetric if x � y and y � x imply x = y for all x, y ∈ R
d .

5 Let 0d ∈ R
d denote a vector of zeroes. A cone C in R

d is said to be pointed if for all x ∈ C such that
x,−x ∈ C there holds x = 0d .
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(i) Define
{
h1, . . . , hm

}
as follows:

{
h1, . . . , hm

}
:= P ∩ Z

d ,

then the set
{
h1, . . . , hm

}
is an integral Hilbert basis of the cone C.

(ii) The set

{
h ∈ C ∩ Z

d \ {0d} : h is not a sum of integral vectors from C ∩ Z
d \ {0d}

}

is the unique minimal Hilbert basis of the cone C.

The set P is often referred to as a parallelotope. The result outlined in Lemma 1
thus constructs the integral Hilbert basis of the rational cone C as the set of integral
vectors contained in the associated parallelotope. Because P is bounded, it contains a
finite set of integral vectors, and accordingly, every pointed rational cone is associated
with a (finite) Hilbert basis. Vectors h in part (ii) of the lemma, that are not sums of
non-zero integral vectors, will be referred to as irreducible. The minimal Hilbert basis
can thus be interpreted as the smallest set of integral vectors that is required in order
to positively span the entire set C ∩ Z

d .
To give a simple example in two dimensional space, consider a cone C :=

pos
({

v1, v2
})
, where v1 := (1, 0)′ and v2 := (0, 2)′. ThenP := {λ1v1+λ2v

2 : 0 ≤
λ1, λ2 ≤ 1} is the parallelotope associated with C, and the integral Hilbert basis of this
cone, P ∩ Z

2, is given by the set of integral vectors
{
02, h1, h2, h3, h4, h5

}
, where

h1 := v1, h2 := 1
2v

2, h3 := v2, h4 := v1 + 1
2v

2 and h5 := v1 + v2. The irreducible
vectors associated with this basis are h1 and h2, and accordingly the minimal Hilbert
basis of C is given by the subset

{
h1, h2

}
.

We now turn our attention to the comparison of certain types of integral vectors in
R
k , that we shall refer to as distributions . Let D

k
n denote the set of distributions of

counts pertaining to n data points, defined on k ordered socioeconomic states:

D
k
n :=

{
x ∈ Z

k+ : x1 + · · · + xk = n
}

, (2.3)

where i = 1 denotes the worst socioeconomic state, and i = k indexes the highest
state. For instance, the European statistical agency EUROSTAT collects data on self-
assessed health, asking respondents in each participating country to choose one of five
possible assessments: very bad, bad, average, good, or very good. The state i = 1
then corresponds to a very bad health, while i = k pertains to a state of being in very
good health. For example, y = (1, 2, 0, 0, 97) is an element of D

k
n , where k = 5,

n = 100, one person rates herself to be in very bad health, two rate themselves to be
in bad health, and 97 respondents rate their health as very good.

Consider the following subspace of R
k :

S
k :=

{
s ∈ R

k : sk = −(s1 + · · · + sk−1)
}

(2.4)
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As it is the case that for eachpair of distributions x and y inD
k
n , x−y is an integral vector

in the space S
k , this space will play a prominent role in our discussion. It is important

to observe for results to follow that the maximum size of a linearly independent set in
S
k is equal to k − 1; that is, the dimension of S

k is equal to k − 1.
Consider a social plannerwhose preferences are definedby a relation�G , associated

with a cone CG ⊆ R
k . A social welfare function W : R

k → R is order-preserving
for the relation �G . Specifically, when used to compare pairs of distributions x, y ∈
D
k
n , x �G y implies that social welfare is higher under the dominant distribution:

W (x) ≥ W (y). At an abstract level, the set of transformations of a distribution y ∈ D
k
n

that a social planner considers to improve social welfare, defines the set of transfers.
Following Magdalou (2021), a finite set of vectors TG := {

g1, . . . , gq
}
is a set of

transfers if for all g ∈ TG ,

[T1] g can be written as the difference between two distributions in D
k
n , and

[T2] g ∈ TG implies −g /∈ TG .

Observe from [T1] that each g ∈ TG is a rational vector, and from [T2] that the
cone CG := pos(TG) is pointed. It follows therefore from [T1] and [T2] that the set
of transfers TG positively spans a pointed rational cone CG := pos(TG), associated
with the relation �G . Finally, let x and y be two distributions in D

k
n , such that for

λ1, . . . , λq ∈ Z+ and vectors g1, . . . , gq ∈ TG, we can write x − y = ∑q
s=1 λsgs .

Then it is the case that x − y is an integral point of the rational cone CG , and that
x �G y.

We nowdescribe the set of transfers associatedwith theHammondorder, introduced
by Gravel et al. (2021)6. In the context of this specific relation, k ≥ 3 and there are
two types of transformations of the distribution of counts x = (x1, . . . , xk)′ that may
be taken to improve social welfare: increments capture the Paretian property, and
Hammond transfers capture the egalitarian property of the social welfare function
(see also Hammond 1976). Let x, y be two distributions in D

k
n . We say that x =

(x1, . . . , xk)′ is obtained from y = (y1, . . . , yk)′ via an increment if for some index
i ∈ {1, . . . , k − 1}, there holds xi = yi − 1, xi+1 = yi+1 + 1 and x j = y j for all
j 
= i, i + 1. We say that x is obtained from y via an egalitarian Hammond transfer
if for indices h < i ≤ j < l in the index set {1, . . . , k} there holds xh = yh − 1,
xi = yi +1, x j = y j +1, xl = yl −1 and xm = ym for allm 
= h, i, j, l. When i = j,
this definition specializes a Hammond transfer to the form xh = yh − 1, xi = yi + 2,
xl = yl − 1 and xm = ym for all m 
= h, i, l.

For example, if y = (1, 2, 0, 0, 97)′ and x = y + (−1, 1, 0, 0, 0)′ =
(0, 3, 0, 0, 97)′, then x is obtained from y via a single increment. On the other hand,
if x = y + (−1, 1, 0, 0, 0)′ + (0,−1, 0, 2,−1)′, that is, x = (0, 2, 0, 2, 96)′, we say
that x is obtained from y via an increment and a progressive Hammond transfer.

Let TI denote the set of increments and TE the set of Hammond progressive
transfers. We define the set of transfers TH associated with the Hammond order as
TH := TI ∪ TE .

6 Two further relations founded on Hammond’s equity principle, that are introduced in Gravel et al. (2021),
are discussed more briefly in Sect. 4.2 of this paper.

123



The minimal Hilbert basis of the Hammond order cone

Example 1 (the set of welfare improving transfers) We describe the set of welfare
improving transfers, that is all vectors in TH = TI ∪ TE , in the context of k = 4
socioeconomic states.

The set of increments is given by the following three vectors:

TI =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

−1
1
0
0

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

0
−1
1
0

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

0
0

−1
1

⎞

⎟⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
.

The set of egalitarian Hammond transfers is given by the following five vectors:

TE =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

−1
1
1

−1

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

−1
2
0

−1

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

−1
0
2

−1

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

−1
2

−1
0

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

0
−1
2

−1

⎞

⎟⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
.

We shall return to this example in Sect. 3. ♦
We may now define the Hammond order cone as the positive span of the set of

transfers TH :

CH :=
{ q∑

s=1

θsτ
s : θ1, . . . , θq ∈ R+, τ 1, . . . , τ q ∈ TH

}

(2.5)

Because the set of transfers TH satisfies the defining properties [T1] and [T2], there
results that the Hammond order cone is a pointed rational cone. Let x and y be two
distributions inD

k
n , such that x �H y. Then following Gravel et al. (2021), we define x

to be the dominant distribution, and the statement x �H y is definitionally equivalent
to x being obtained from y via a number of incremental and egalitarian transfers; that
is all transformations in TH = TI ∪ TE .

Because each transfer vector τ ∈ TH is an integral vector in S
k , we furthermore

have that
TH ⊆ S

k ∩ Z
k . (2.6)

An important question that arises when the spanning vectors in TG are integral, is
whether TG contains an integral Hilbert basis of the cone CG . For the purpose of
investigating this property, we borrow from Magdalou (2021, Definition 3) the fol-
lowing concept of a minimal set of transfers:

Definition 3 Let the set of vectors TG := {
g1, . . . , gq

}
positively span the cone CG .

We shall say that the set of vectors TG is minimal if TG contains an integral Hilbert
basis of CG .

FollowingGruber (2007),we shall call the set of pointsCH∩Z
k , the integral points of

the Hammond order cone. Amongst establishing other properties, the characterization
of the minimal Hilbert basis of the Hammond order cone will enable us to study the
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relation between the set of integral points CH ∩ Z
k on the one hand, and between

the set of pairs of distributions x, y ∈ D
k
n such that x = y + ∑q

s=1 μsτ
s , where

μ1, . . . , μq ∈ Z+, and τ 1, . . . , τ q ∈ TH .7 We shall see in the next section of the
paper that the minimality of TH is fundamental in clarifying the relation between
these two sets.

3 Minimal Hilbert basis

From Definition 2, it follows that the integral points of the Hammond order cone
are expressible using various positive integer combinations of the set of vectors that
constitute the Hilbert basis. It is possible, therefore, to define every such point a ∈
CH ∩Z

k as the image of amap from a set of positive integers into the set of distributions
D
k
n .
For non-negative integers γ1, . . . , γk−1, consider then the mapping zH : Z

k−1+ →
S
k ∩ Z

k defined as follows:

zH (γ1, . . . , γk−1) := (−γ1, 2γ1 − γ2, . . . , 2γk−2 − γk−1, γk−1 − (γ1 + · · · + γk−2))

(3.1)
Consider furthermore the family of vectors

ZH := {zH (γ1, . . . , γk−1) : γ1, . . . , γk−1 ∈ Z+} . (3.2)

In Lemma 2 below, we shall show that every vector τ in the set of transfers TH , can be
written as the image of some point (γ1, . . . , γk−1) by the map zH (). In Proposition 3,
we shall show that the minimal Hilbert basis of the Hammond order cone is given by
k − 1 such vectors zH (γ1, . . . , γk−1) in the set ZH . We begin the task of constructing
the minimal Hilbert basis by studying some properties of the map zH () of (3.1).

It is readily verified that for any integer α ∈ Z+ and for any vectors μ, θ ∈ Z
k−1+ ,

the following two properties hold:

zH (αμ1, . . . , αμk−1) = αzH (μ1, . . . , μk−1) (L1)

zH (μ1 + θ1, . . . , μk−1 + θk−1) = zH (μ1, . . . , μk−1) + zH (θ1, . . . , θk−1). (L2)

From these, it follows in turn that the set ZH is generated by k − 1 elements, namely
zH (1, 0, . . . , 0), zH (0, 1, 0, . . . , 0), . . . , and zH (0, . . . , 0, 1). The family of vectors
ZH will simplify our task of constructing the minimal Hilbert basis of the Hammond
order cone.

Lemma 2 For each vector τ in the set of transfers TH , there exist positive integers
μ1, . . . , μk−1 such that τ = zH (μ1, . . . , μk−1) ∈ ZH .

7 SeeMagdalou (2021) for a thorough discussion of the relation between these two sets in a general abstract
setting.
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That is, for example, we can construct the egalitarian transfer vector τ =
(−1, 1, 0, 1,−1)′ of TH ⊆ S

5 ∩ Z
5 as follows: τ = zH (μ1, . . . , μ4), where

(μ1, . . . , μ4) = (1, 1, 2, 3). We next characterize the minimal Hilbert basis of the
Hammond order cone.

Proposition 3 Let CH denote the Hammond order cone (2.5) and ZH the family of
vectors (3.2).

(i) The minimal Hilbert basis of the Hammond order cone consists of the set of k − 1
vectors BH = {

t1, . . . , tk−1
} ⊆ S

k ∩ Z
k , where

t1 := zH (1, 0, . . . , 0),
t2 := zH (0, 1, 0, . . . , 0),

...

tk−1 := zH (0, . . . , 0, 1).

(3.3)

(ii) The set of integral vectors in the Hammond order cone is the family of vectorsZH .

The proof of (i) of this proposition consists in first constructing an integral Hilbert
basis of the Hammond order cone by identifying the integral vectors of the associated
parallelotope, and secondly in associating the minimal Hilbert basis with the subset of
non-zero irreducible vectors. Statement (ii) of the proposition is then shown to follow
from (i).

More generally, consider a set of transfers TG ⊆ S
k ∩Z

k and the associated convex
cone CG := pos(TG). In this general context, the minimal Hilbert basis and mapping
zG() may be obtained by proceeding as follows. First, characterize the set of integral
points {a1, . . . , am} in the parallelotope PG associated with the set of transfers TG .
From Lemma 1, the set of points {a1, . . . , am} is an integral Hilbert basis of the cone
ordering CG . Next, characterize the subset {b1, . . . , bl} of irreducible elements from
the integral Hilbert basis {a1, . . . , am}. Again, from Lemma 1, the vectors b1, . . . , bl

jointly constitute the minimal Hilbert basis of the cone ordering CG . Then it is possible
to construct a mapping zG : Z

l+ −→ S
k ∩ Z

k as

zG(θ1, . . . , θl) := θ1b
1 + · · · + θlb

l , (3.4)

and to equate the set of integral points of the cone CG with the set of points
ZG := {zG(θ1, . . . , θl) : θ1, . . . , θl ∈ Z+} . The set ZG is generated by the l vec-
tors zG(1, 0, . . . , 0), . . . , zG(0, . . . , 0, 1) that define the minimal Hilbert basis of the
cone CG .

One property that emerges from Proposition 3, is that the minimal Hilbert basis of
the Hammond order cone takes the form of a set of k − 1 linearly independent vectors
(see the illustrative example that follows for further detail). The linear independence
property will be put to good use in extending the results of this paper to a general class
of cone orderings (see Sect. 4). This independence property will further prove useful
in Sect. 5, where we introduce a space that we call the Hammond order lattice.
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Example 1 (continued) Returning to the context k = 4 of Example 1, we may illus-
trate the result of Proposition 3 as follows. First define the three spanning vectors
zH (1, 0, 0) = (−1, 2, 0,−1)′ := t1, zH (0, 1, 0) = (0,−1, 2,−1)′ := t2, and
zH (0, 0, 1) = (0, 0,−1, 1)′ := t3.

It is routinely verified that these three vectors are linearly independent, and therefore
irreducible. For the remaining five vectors of the set of transfers associated with the
Hammond order cone, we obtain:

(−1, 1, 0, 0)′ = t1 + t2 + 2t3

(0,−1, 1, 0)′ = t2 + t3

(−1, 1, 1,−1)′ = t1 + t2 + t3

(−1, 2,−1, 0)′ = t1 + t3

(−1, 0, 2,−1)′ = t1 + 2t2 + 2t3

(3.5)

Thus, while the eight vectors in the set TH jointly characterize an integral Hilbert basis
of the Hammond order cone of Example 1, the unique minimal Hilbert basis is given
by the set BH = {

t1, t2, t3
}
. ♦

One immediate application of the minimal Hilbert basis of the Hammond order
relation is to enable a distinction between the irreducible transfers (the vectors of
the minimal Hilbert basis) and those other transfers that arise as positive integer
combinations of vectors of the minimal Hilbert basis. Returning to Example 1,
t1 = (−1, 2, 0 − 1)′ and t2 = (0,−1, 2,−1)′ are examples of irreducible trans-
fers. On the other hand, τ = (−1, 1, 1,−1) ∈ TH is a combination of irreducible
transfers, in the sense that τ = t1 + t2 + t3. We call τ , and other positive integer
combinations of irreducible transfers, composite transfers.

FromProposition 3, it emerges that theminimalHilbert basis of theHammond order
cone arises as a subset of the set of transfers. That is, the set of transfers TH isminimal
in the sense of Magdalou (2021) and Definition 3. In turn, it is therefore possible to
express the integral vectors of the Hammond order cone as integer combinations of
the elements of the set of transfers:

CH ∩ Z
k =

{ q∑

s=1

μsτ
s : μ1, . . . , μq ∈ Z+, τ 1, . . . , τ q ∈ TH

}

(3.6)

The minimality of the set of transfers TH then enables us to equate the integral points
of the Hammond order cone CH with pairs of distributions (x, y) such that x has higher
social welfare than y.

4 The partial sums of the Hammond order relation

To render a cone ordering implementable on survey data, a criterion is needed to enable
the data analyst to deduce which (if any) of two distributions x and y exhibits higher
social welfare. Such an implementable criterion has been derived in Theorem 3 of
Gravel et al. (2021), where the authors show that x dominates y if and only if k − 1
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partial sums inequalities are satisfied:

x �H y ⇐⇒
j∑

i=1

2 j−i (xi − yi ) ≤ 0 for all j = 1, . . . , k − 1. (4.1)

Proposition 4 below shows that this numerical representation of the Hammond order
relation is readily available from the minimal Hilbert basis. The result linking the
minimal Hilbert basis to the implementation criterion, is further generalized in Propo-
sition 5 in the context of a family of cone orderings.

For any vector a ∈ Z
k , associate a with a vector â = (a1, . . . , ak−1)

′ ∈ Z
k−1.

Via this transformation, it will be meant that â is the projection of a on its first k − 1
coordinates.

Proposition 4 Let x and y be two distributions in D
k
n, and let x̂ , ŷ, respectively denote

the projection of x and y on their first k − 1 coordinates. For each vector t i in the
minimal Hilbert basis BH , likewise define t̂ i as the projection of t i on its first k − 1
coordinates, and construct the matrix B ∈ Z

(k−1)×(k−1) as B := (
t̂1, · · · , t̂ k−1

)
.

Then, there holds x �H y if and only if −B−1(̂x − ŷ) ≤ 0k−1.

Proof Let x and y denote two distributions in D
k
n , such that

x − y =
q∑

s=1

θsτ
s

with θ1, . . . , θq ∈ Z+ and such that τ 1, . . . , τ q ∈ TH . From Proposition 3, the vectors
t1, . . . , tk−1 constitute a minimal Hilbert basis for the Hammond order cone CH , so
that it is also the case that for someμ1, . . . , μk−1 ∈ Z+ we have x − y = ∑k−1

j=1 μ j t j .
Observe from Lemma 2 and Proposition 3 that the elements bi j of the matrix B all

take values in the set {−1, 0, 2}. Therefore, B of the form

B =

⎛

⎜⎜⎜⎜⎜
⎝

−1
2 −1
0 2 −1
...

. . .
. . .

. . .

0 · · · 0 2 −1

⎞

⎟⎟⎟⎟⎟
⎠

, (4.2)

where the above diagonal blank entries of the matrix are all zero elements, so that B is
lower-triangular. It is readily verified that the matrix B is invertible, and furthermore
that B−1 = −A, where A is the matrix of the form

A =

⎛

⎜⎜⎜⎜⎜
⎝

1
2 1
4 2 1
...

. . .
. . .

. . .

2k−2 · · · 4 2 1

⎞

⎟⎟⎟⎟⎟
⎠

(4.3)
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Gathering the positive integers in a vector μ := (μ1, . . . , μk−1)
′, we obtain the fol-

lowing equivalent statements:

x − y =
k−1∑

j=1

μ j t
j �

x̂ − ŷ = Bμ �
B−1(̂x − ŷ) ≥ 0k−1 �

A(̂x − ŷ) ≤ 0k−1 �
j∑

i=1

2 j−i (xi − yi ) ≤ 0 for all j = 1, . . . , k − 1 ⇐⇒ x �H y.

where the last equivalence is the result (4.1) from Gravel et al. (2021), Theorem 3,
(a)⇐⇒ (c). ��

4.1 A class of maximal linearly independent Hilbert bases

In order to better understand the specific properties of the Hammond cone that underlie
the above result relating the partial sums to the vectors of the minimal Hilbert basis,
we first take a closer look at a simple example: the order �I induced by the set of
increments TI , otherwise known as first order stochastic dominance in the context of a
variable defined on k ordered socioeconomic states. We then generalize the discussion
to a more general class of cone orderings.

Returning to Example 1, denote the three vectors defining the set TI of increments
as follows: p1 := (−1, 1, 0, 0)′, p2 := (0,−1, 1, 0)′, and p3 := (0, 0,−1, 1)′. We
then associate the relation �I with a pointed rational cone CI := pos(TI ). It is readily
verified in this simple case that the minimal Hilbert basis of the set of discrete points
CI ∩ Z

4 coincides with the set of transfers: BI = {
p1, p2, p3

}
. As in Proposition 4,

we let the vector p̂ denote the first k − 1 components of p, and proceed to construct
the 3× 3 integral matrix PI := (

p̂1 p̂2 p̂3
)
. We thus deduce that PI is invertible, and

that QI = −P−1
I is of the form

QI =
⎛

⎝
1
1 1
1 1 1

⎞

⎠ . (4.4)

In the context of discrete first order stochastic dominance, it is a well known result that
for two distributions x and y inD

k
n , there holds x �I y if and only if QI (̂x− ŷ) ≤ 0k−1

where QI takes the form of a (k − 1)-dimensional lower triangular matrix of ones,
or equivalently, in this example, if and only if x1 ≤ y1, x1 + x2 ≤ y1 + y2 and
x1 + x2 + x3 ≤ y1 + y2 + y3. That is, in the case of the cone ordering �I , as is the
case in the context of the Hammond ordering, inversion of a matrix easily extracted
from the minimal Hilbert basis also produces the desired numerical representation of
the order relation.

123



The minimal Hilbert basis of the Hammond order cone

The common property the two minimal Hilbert bases BI and BH share, is that
they belong to a class of bases constructed from sets of maximal linearly independent
vectors. We define this class as follows:

Definition 4 Aminimal Hilbert basis B is said to belong to the set of maximal linearly
independent Hilbert bases of S

k ∩ Z
k if B belongs to the set

M :=
{{

b1, . . . , bk−1
}
is a minimal Hilbert basis in S

k ∩ Z
k :

b1, . . . , bk−1 are linearly independent.
}

(4.5)

The set of bases we consider therefore has three defining properties: (i) each vector bi

of the basis is an integral vector of the (k − 1) -dimensional subspace S
k , (ii) the basis

B consists of k−1 vectors, and (iii) the vectors of the basisB are linearly independent.
Proposition 4 is generalized below in relation to a minimal Hilbert basis that belongs
to the set M, but is otherwise not explicitly specified.

Proposition 5 Let �M be a cone ordering associated with a pointed rational cone
CM ⊆ R

k . Assume that the set of integral vectors CM ∩ Z
k is associated with a

minimal Hilbert basis BM = {
p1, . . . , pk−1

} ⊆ Sk ∩ Z
k , such that BM is an element

of the setM of maximal linearly independent Hilbert bases. Then, defining the matrix
P := (

p̂1 · · · p̂k−1
) ∈ Z

(k−1)×(k−1),

(i) the matrix P is invertible, and
(ii) for all distributions x and y in D

k
n, there holds x �M y if and only if −P−1(̂x −

ŷ) ≤ 0k−1.

4.2 Hammond order trilogy

In order to better understand the crucial role played by the linear independence property
of the class M of Hilbert bases of S

k ∩ Z
k , we examine two further cone orderings

that were introduced in Gravel et al. (2021) together with the Hammond order �H
8.

Let x, y be two distributions in D
k
n . We say that x = (x1, . . . , xk)′ is obtained

from y = (y1, . . . , yk)′ via a decrement if for some index i ∈ {2, . . . , k}, there holds
xi = yi−1, xi−1 = yi−1+1 and x j = y j for all j 
= i, i−1.LetTD ⊆ S

k ∩ Z
k denote

the set of decrements. Together with the Hammond order cone CH =pos(TI ∪ TE ),

we consider two further cones

CE := pos(TE ) (4.6)

CF := pos(TD ∪ TE ). (4.7)

CE is the cone spanned by the set of egalitarian Hammond transfers. The cone CF ,
spanned by the union of the set of decrements and Hammond transfers, has a structure
that is very similar to that of the Hammond order cone, as we shall see in Example 2

8 I thank a reviewer for suggesting the discussion around these two order relations, as well as Example 2
below.
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below. Associate with each of CE and CF , order relations �E and �F on R
k . Observe

then, as discussed in Gravel et al. (2021), that the cone ordering �E is the intersection
of the relations �H and �F .

One application of the classM of Hilbert bases (4.5) consists in deriving the partial
sums associated with the order relation �F , a result obtained in Theorem 4 of Gravel
et al. (2021). Specifically, let x and y denote two distributions in D

k
n . The authors

show that x dominates y if and only if the following k − 1 partial sums inequalities
are satisfied:

x �F y ⇐⇒
k∑

i= j

2i− j (xi − yi ) ≤ 0 for all j = 2, . . . , k. (4.8)

We propose a different derivation of this result, that arises as an application of Propo-
sition 5. First, we derive the minimal Hilbert bases of the cones CE and CF , via the
parallelotope method outlined in Lemma 1.

Proposition 6 (a) Let CE = pos (TE ) denote the cone of egalitarian Hammond trans-
fers. The minimal Hilbert basis BE of the cone CE consists of the set of vectors of
the form

e := (0 j−1,−1, 0h−1, 2, 0l−1,−1, 0k−( j+h+l))
′ (4.9)

where j, h and l are strictly positive integers, such that j + h + l ≤ k. For k ≥ 3,
there are k(k − 1)(k − 2)/6 such vectors in the minimal Hilbert basis.

(b) Let CF = pos (TD ∪TE ) denote the cone of decrements and egalitarian Hammond
transfers. The minimal Hilbert basis BF of the cone CF consists of the following
k − 1 linearly independent vectors:

f 1 := (1,−1, 0, . . . , 0)′

f 2 := (−1, 2,−1, 0, . . . , 0)′

f 3 := (−1, 0, 2,−1, 0, . . . , 0)′ (4.10)

...

f k−1 := (−1, 0, . . . , 0, 2,−1)′.

Let l := k(k − 1)(k − 2)/6 (l is the number of vectors in the minimal Hilbert basis
of the cone CE ). It is then possible to construct a mapping zE : Z

l+ −→ S
k ∩ Z

k as

zE (θ1, . . . , θl) := θ1e
1 + · · · + θl e

l , (4.11)

and to equate the set of integral points of the cone CE with the set of points
ZE := {zE (θ1, . . . , θl) : θ1, . . . , θl ∈ Z+}. The set ZE is generated by the l
vectors zE (1, 0, . . . , 0) = e1, . . . , zE (0, . . . , 0, 1) = el that define the mini-
mal Hilbert basis of the cone CE . For the cone CF , we likewise construct the
mapping zF : Z

k−1+ −→ S
k ∩ Z

k and the associated set of integral vectors
ZF := {zF (θ1, . . . , θk−1) : θ1, . . . , θk−1 ∈ Z+} generated by the k − 1 vectors
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zF (1, 0, . . . , 0) = f 1, . . . , zF (0, . . . , 0, 1) = f k−1. We illustrate these results with
the help of the following example.

Example 2 Return to the context of k = 4 socioeconomic states, discussed in Exam-
ple 1. Then in the context of the order relation �F , the set of welfare improving
transfers is the set TF = TD ∪ TE . The following three vectors constitute the set of
decrements:

TD =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

1
−1
0
0

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

0
1

−1
0

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

0
0
1

−1

⎞

⎟⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
. (4.12)

The set of egalitarian Hammond transfers is the set of five vectors TE given in Exam-
ple 1. The same five vectors of TE define the entire set of transfers underlying the
order relation �E .

The set of vectors that constitute theminimalHilbert basis of the coneCF specializes
(4.10) to the following three vectors:

f 1 = (1,−1, 0, 0)′

f 2 = (−1, 2,−1, 0)′

f 3 = (−1, 0, 2 − 1)′. (4.13)

and themap zF () specializes to zF (θ1, θ2, θ3) = (θ1−(θ2+θ3),−θ1+2θ2,−θ2+2θ3,
−θ3). The remaining five vectors of the set of transfers TF = TD ∪ TE are composite
transfers in the sense that they arise as positive integer combinations of f 1, f 2, and
f 3:

(0, 0, 1,−1)′ = 2 f 1 + f 2 + f 3

(0, 1,−1, 0)′ = f 1 + f 2

(−1, 1, 1,−1)′ = f 1 + f 2 + f 3

(−1, 2, 0,−1)′ = 2 f 1 + 2 f 2 + f 3

(0,−1, 2,−1)′ = f 1 + f 3

(4.14)

In the context of k = 4 socioeconomic states, the minimal Hilbert basisBE of the cone
of egalitarian Hammond transfers specializes to the following set of four vectors:

e1 := (−1, 2,−1, 0)′ = f 2

e2 := (−1, 2, 0,−1)′ = t1

e3 := (−1, 0, 2,−1)′ = f 3

e4 := (0,−1, 2,−1)′ = t2. (4.15)

The map zE () specializes to zE (θ1, θ2, θ3, θ4) = (−θ1 − θ2 − θ3, 2θ1 + 2θ2 − θ4,
−θ1 + 2θ3 + 2θ4, −θ2 − θ3 − θ4) and we observe that the vector (−1, 1, 1,−1) of the
set of transfers TE is composite, in the sense that (−1, 1, 1,−1) = e1 + e4. ♦

Because the minimal Hilbert basis BF = (
f 1, . . . , f k−1

)
consists of k−1 linearly

independent integral vectors of the subspace S
k , BF belongs to the class of minimal
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Hilbert bases of Definition 4. As such, it is possible to apply Proposition 5 in order to
derive the partial sums associated with the relation �F .

Note that the set of partial sums of Gravel et al. (2021), in the context of the order
relation�F , is expressed in terms of variables x2, . . . , xk . Consider first the following
(k − 1) × (k − 1) upper triangular matrix:

PF =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

−1 2 0 · · · 0

−1 2
. . .

...

−1
. . . 0
. . . 2

−1

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

. (4.16)

Observe that PF is a matrix extracted from the associated minimal Hilbert basis BF ,
in the sense that column j of the matrix PF is of the form f̃ j := ( f j

2 , . . . , f j
k )′.

That is, f̃ j the projection of the irreducible vector f j of the minimal Hilbert basis on
its second, to k-th, components9. If we invert PF , and multiply by −1 the resulting
matrix, we obtain a matrix QF := −P−1

F , of the form

QF =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 2 22 · · · 2k−2

1 2 · · · 2k−3

1
...

. . .

1

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (4.17)

The resulting partial sums, for x, y ∈ D
k
n are then of the form QF (x̃ − ỹ) ≤ 0k−1,

that is the expression (4.8) of Gravel et al. (2021).
On the other hand, as illustrated in Example 2, the minimal Hilbert basis BE of

the cone of egalitarian Hammond transfers is not made of k − 1 linearly independent
vectors. As such BE is not an element of the class M of minimal Hilbert bases, and
it is not possible to extract an invertible matrix from BE that produces a set of partial
sums for the order relation �E .

It is shown in Theorem 5 of Gravel et al. (2021) that for a pair of distributions x, y
in D

k
n , x �E y if and only if the two sets of partial sum inequalities (4.1) and (4.8)

are satisfied. This result arises because x �E y implies that both x can be constructed
from y via a sequence of Hammond transfers and increments (that is x �H y) and that
x can be constructed from y via a sequence of Hammond transfers and decrements
(that is x �F y). As such, it must be possible to express any vector e ∈ CE using either
the k − 1 vectors t1, . . . , tk−1 or f 1, . . . , f k−1 that define respectively the minimal

9 We note that it is also possible to obtain an alternative set of partial sums by constructing PF using the

vectors f̂ 1, . . . , f̂ k−1, where f̂ j := ( f j1 , . . . , f jk−1). When comparing a pair of distributions x, y ∈ D
k
n ,

this latter construction would entail a set of k − 1 partial sums to be applied to the vector (̂x − ŷ) =
(x1 − y1, . . . , xk−1 − yk−1). We have opted instead for the construction based on f̃ j := ( f j2 , . . . , f jk ) in
order to obtain the partial sums of Gravel et al. (2021).
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Hilbert basis associated with the cones CH or CF . In the appendix, we further explore
this point in an extension of Example 2.

5 Hammond order lattice

Our final application of the minimal Hilbert basis of the Hammond order cone is to
introduce a space in which more complete relations (order extensions, in technical
jargon) of the Hammond order �H may be defined. Formally, a partial ordering �G

onR
k is an order extension of�H , if it is the case that for all x and y such that x �H y,

there also holds x �G y10.
A geometric lattice L in R

k is the set of all integer (positive or negative) combi-
nations of k linearly independent vectors b1, . . . , bk ∈ R

k .11 Because the maximum
size of a linearly independent set in S

k is equal to k − 1, we may define a lattice in
association with the minimal Hilbert basis of the Hammond order cone as follows:

Definition 5 The Hammond order lattice LH ⊆ R
k is the set of all integer (positive

and negative) combinations of the k − 1 linearly independent vectors of the minimal
Hilbert basis BH :

LH :=
{
γ1t

1 + · · · + γk−1t
k−1 : γ1, . . . , γk−1 ∈ Z, t1, . . . , tk−1 ∈ BH

}
(5.1)

A square matrix U is said to be unimodular if it is integral, and det(U ) ∈ {−1, 1}. If
(BH ) is the matrix whose columns are the k − 1 vectors defining the minimal Hilbert
basis of the Hammond order lattice, then every other basisDH of the Hammond order
lattice relates to BH via the equality (DH ) = (BH )U , for some unimodular matrix
U ∈ Z

(k−1)×(k−1). That is, all bases of the Hammond order lattice are unique up to
multiplication by a unimodular matrix.

It is clear from Proposition 3 that the set of integral points of the Hammond order
cone, CH ∩ Z

k , is a subset of the Hammond order lattice. The study of the lattice
however is particularly useful, since all order extensions of the Hammond order cone
are subsets of LH . Let TG ⊆ S

k ∩ Z
k denote a set of transfers, and associate with TG

a cone CG := pos(TG) as well as an order relation �G on R
k .

Proposition 7 Let the cone ordering�G onR
k be an order extension of the Hammond

order relation �H . Then,

(i) the set of integral points of the cone CH ∩Z
k is a subset of CG ∩Z

k . Furthermore,
(ii) the set of integral points CG ∩ Z

k is a subset of the Hammond order lattice LH .

As an illustrative example, consider the Hammond order �H in the simple case
where k = 3. Then, from Proposition 3, we can use the definition of the Hilbert basis
towrite CH = pos

{
t1, t2

}
,where t1 := (−1, 2,−1)′ and t2 := (0,−1, 1)′. A pointed

10 For example, both relations �H and �F are order extensions of the relation �E associated with the set
of egalitarian Hammond transfers TE .
11 See chapter 21 of Gruber (2007) for a general discussion of geometric lattices and their bases.
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cone CG associated with an order relation �G may be defined as CG := pos
{
g1, g2

}
,

where g1 := (−1, 3,−2)′ and g2 := t2. That is, a social planner with preferences
given by �G views a movement of one person from the bottom socioeconomic class
toward the middle class, together with a movement of two individuals from the top
class toward the middle, as welfare improving. By observing that t1 = g1 + g2, it
may be readily verified that CH ⊆ CG, and that the relation �G is an order extension
of the Hammond order relation.

For example, take a pair of distributions x1 and y1 in D
3
n such that x1 − y1 =

(−1, 1, 0)′. Then we have x1 − y1 = t1 + t2, and furthermore x1 − y1 = g1 + 2g2;
hence it is the case that x1 �H y1 and x1 �G y1. Next consider a pair of distributions
x2 and y2 such that x2 − y2 = (−1, 3,−2)′. Then, there holds x2 − y2 = g1, but
x2 − y2 = t1 − t2. In this second example, we then have x2 �G y2, while x2 and y2

are not comparable according to the relation �H , in accordance with statement (i) of
Proposition 7. Observe finally that because the minimal Hilbert basis of CG is given
by the vectors g1 = t1 − t2 and g2 = t2, any vector a ∈ CG ∩ Z

3 may be written in
the form a = γ1g1 +γ2g2 = γ1t1 + (γ2 −γ1)t2 where γ1, γ2 ∈ Z+. That is, the set of
integral points CG ∩Z

3 are contained in the Hammond order latticeLH , in accordance
with (ii) of Proposition 7.

6 Conclusions

In this paper we have characterized the minimal Hilbert basis of the Hammond cone,
and we have discussed several novel applications of this basis. We have shown how
to derive the implementation criterion of the Hammond order relation, the k − 1
partial sums derived by Gravel et al. (2021), via the inversion of a matrix that is
extracted from the Hilbert basis. We have furthermore introduced a class of maximal
linearly independent Hilbert bases, from which it is similarly possible to derive the
implementation criterion from the minimal Hilbert basis. The basis also enabled us
to introduce a new space—that we have called the Hammond order lattice—where
order-extensions of the Hammond order may be derived.

We conclude by mentioning some limitations of cone orderings and their associ-
ated Hilbert bases. One criticism that may be formulated, is that defining the set of
transfers in the form of a minimal Hilbert basis is lacking in transparency. Returning to
Example 1, while three vectors span the entire set of integral vectors, there is certainly
some work required in reconstructing the entire set of transfers (three increments and
five progressive Hammond transfers) from this basis. When one considers it a pri-
ority to clarify the value judgements underlying a particular relation used to order
distributions, the set of transfers provides clarity that the minimal Hilbert basis does
not possess. More importantly, one must note that order relations induced by cones
are additive. As such, the results obtained in this paper do not apply in the context
of several important contributions in the field, for instance Chateauneuf and Moyes
(2006).
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Appendix

Proof of Lemma 2 We divide the proof in three parts. Firstly, letting 0n denote an
n-dimensional zero vector, we show that each increment vector of the form τ 1 =
(0 j−1,−1, 1, 0k−( j+1)) ∈ TH is an element of the family ZH . Then, we con-
sider Hammond transfers of the form τ 2 = (0 j−1,−1, 0h−1, 1, 0l−1, 1, 0m−1,−1,
0k−( j+h+l+m)), where j, h, k, l and m are arbitrary non-negative integers. Finally we
considerHammond transfers of the form τ 3=(0 j−1,−1, 0h−1, 2, 0l−1, 1, 0k−( j+h+l)).

(i) Let τ 1 = (0 j−1,−1, 1, 0k−( j+1)). Then τ 1 = zH (μ1, . . . , μk−1) ∈ ZH where,

μi =
⎧
⎨

⎩

0, i = 1, . . . , j − 1
1, i = j
2i−( j+1), i = j + 1, . . . , k − 1

(6.1)

(ii) Consider next a generic Hammond transfer of the form τ 2. Define the following
positive constants:

ω1 = 2h − 1
ω2 = 2lω1 − 1
ω3 = 2mω2 + 1

(6.2)

Then τ 2 = zH (μ1, . . . , μk−1) ∈ ZH where,

μi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, i = 1, . . . , j − 1
2i− j , i = j, . . . , j + h − 1
2i−( j+h)ω1, i = j + h, . . . , j + h + l − 1
2i−( j+h+l)ω2, i = j + h + l, . . . , j + h + l + m − 1
2i−( j+h+l+m)ω3, i = j + h + l + m, . . . , k − 1

(6.3)

(iii) Finally, consider a generic Hammond transfer of the form τ 3. Define the following
positive constants:

κ1 = 2h − 2
κ2 = 2lκ1 + 1

(6.4)
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Then τ 3 = zH (μ1, . . . , μk−1) ∈ ZH where,

μi =

⎧
⎪⎪⎨

⎪⎪⎩

0, i = 1, . . . , j − 1
2i− j , i = j, . . . , j + h − 1
2i−( j+h)κ1, i = j + h, . . . , j + h + l − 1
2i−( j+h+l)κ2, i = j + h + l, . . . , k − 1

(6.5)

��

Proof of Proposition 3 (i) Since CH = pos(TH ), it follows from (i) of Lemma 1 that
a Hilbert basis of the Hammond order cone is given by the set of integral vectors{
h1, . . . , hm

}
contained in the parallelotope

PH :=
{
λ1τ

1 + · · · + λqτ
q : 0 ≤ λ1, . . . , λq ≤ 1

}
(6.6)

where τ 1, . . . , τ q ∈ TH . That is,
{
h1, . . . , hm

} = PH ∩ Z
k .

In particular, because each transfer vector is integral, it follows that each vector τ ∈
TH is an element of the Hilbert basis, and furthermore, for each vector (λ1, . . . , λq) ∈
{0, 1}q , the vector f := λ1τ

1 + · · · + λqτ
q is also an element of the Hilbert basis.

We next characterize a vector of the general form

a := λ1τ
1 + · · · + λqτ

q 0 ≤ λ1, . . . , λq ≤ 1. (6.7)

such that a is an integral vector of the parallelotope PH . Let {i1, . . . , ih} and
{ j1, . . . , jl} denote two subsets from the index set {1, . . . , q} ,with i1 < i2 < · · · < ih
and, likewise, j1 < j2 < · · · < jl . On the basis of Lemma 2, there are integral vectors
(θ1, . . . , θk−1) and (γ1, . . . , γk−1) in Z

k−1+ , such that
∑ih

s=i1
τ s = zH (θ1, . . . , θk−1)

and
∑ jl

s= j1
τ s = zH (γ1, . . . , γk−1). Let N denote a set of positive integers, and

gcd(N ) denote the greatest common divisor of N . Define the greatest common divi-
sors θ̄ := gcd ({θ1, . . . , θk−1}) and γ̄ := gcd ({γ1, . . . , γk−1}) . If θ̄ > 1, then the
vector

g1 := 1

θ̄

(
τ i1 + · · · + τ ih

)
(6.8)

is a vector of the form (6.7), and accordingly g1 is an element of the Hilbert basis.
If {i1, . . . , ih} ∩ { j1, . . . , jl} = ∅ (i.e. the sets of indices are non-overlapping) and
γ̄ > 1, then both

g2 := 1

γ̄

(
τ j1 + · · · + τ jl

)

g3 := g1 + g2 (6.9)
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are likewise vectors of the form (6.7) and belong to the Hilbert basis12. Sums of three
or more vectors of the form (6.7) can likewise be constructed in a similar fashion.

We next characterize the subset of PH ∩ Z
k that constitutes the minimal Hilbert

basis. From (ii) of Lemma 1, the minimal Hilbert basis is the subset of irreducible
elements from the set

{
h1, . . . , hm

}
� {0k}. Observe that

t1 = (−1, 2, 0, . . . , 0,−1)′,
t2 = (0,−1, 2, 0, . . . , 0,−1)′,

...

tk−1 = (0, . . . , 0,−1, 1)′;
(6.10)

that is, t1, . . . , tk−1 are all elements of the set of transfers TH . It is readily verified
that the vectors t1, . . . , tk−1 are linearly independent, and therefore irreducible. To
show that these vectors are the only non-zero irreducible elements of the Hilbert
basis, we recall from (3.3) that, by construction, t1 = zH (1, 0, . . . , 0), t2 =
zH (0, 1, 0, . . . , 0), . . . , tk−1 = zH (0, . . . , 0, 1). From Lemma 2, each integral vec-
tor in the Hammond order cone is a vector of the form zH (μ1, . . . , μk−1) with
μ1, . . . , μk−1 ∈ Z+. From the properties [L1] and [L2], it therefore follows that
t1, . . . , tk−1 jointly generate the set of vectors zH (μ1, . . . , μk−1), and accordingly
constitute the entire set of non-zero irreducible elements of the Hilbert basis.

(ii) We must show that CH ∩ Z
k = ZH . Let ζ be an integral vector in the Ham-

mond order cone. Then from statement (i) of the proposition, ζ can be expressed as
a positive integer combination of the vectors in the minimal Hilbert basis. Therefore,
ζ ∈ CH ∩ Z

k ⇔ ζ = μ1t1 + · · · + μk−1tk−1 with μ1, . . . , μk−1 ∈ Z+ ⇔ ζ =
μ1zH (1, 0, . . . , 0)+· · ·+μk−1zH (0, . . . , 0, 1) ⇔[L1] ζ = zH (μ1, 0, . . . , 0)+· · ·+
zH (0, . . . , 0, μk−1) ⇐⇒ [L2]ζ = zH (μ1, . . . , μk−1) ∈ ZH . That is, we have shown
that CH ∩ Z

k = ZH , as was required. ��
Proof of Proposition 5 (i) Assume to the contrary that p1, . . . , pk−1 are linearly inde-
pendent yet P is not an invertible matrix. Then it must be that the columns of P are
linearly dependent, and (say) that for scalars (α2, . . . , αk−1) 
= (0, . . . , 0)

p̂1 = α2 p̂
2 + · · · + αk−1 p̂

k−1

For l = 1, . . . , k−1, let
(
pl1, . . . , p

l
k

)
denote the elements of the vector pl , and define

the scalar−q := α2
(
p21 + · · · + p2k−1

)+· · ·+αk−1

(
pk−1
1 + · · · + pk−1

k−1

)
. Then, we

would have that the k-dimensional vector

(
p̂1

q

)
is a linear combination of the vectors

p2, . . . , pk−1. But, by construction,

(
p̂1

q

)
= p1, and from the assumption that the

12 In Example 1 for instance,

a := 1

2
(−1 0 2 − 1)′ + 1

2
(−1 2 0 − 1)′

is an element of the Hilbert basis.

123



R. H. Abul Naga

set of vectors p1, . . . , pk−1 in the minimal Hilbert basis are linearly independent, p1

cannot be linearly spanned by p2, . . . , pk−1. Therefore, we conclude that P is a full
rank matrix, so that P−1 exists.

(ii) Given from (i) that the matrix P is invertible, the proof proceeds using the same
steps outlined in the proof of Proposition 4. ��
Proof of Proposition 6 (a) Since CE = pos(TE ), it follows from (i) of Lemma 1 that
an integral Hilbert basis of the cone of Hammond egalitarian transfers is given by the
set of integral vectors

{
h1, . . . , hm

}
contained in the parallelotope

PE :=
{
λ1σ

1 + · · · + λsσ
s : 0 ≤ λ1, . . . , λs ≤ 1

}
(6.11)

where σ 1, . . . , σ s ∈ TE . That is,
{
h1, . . . , hm

} = PE ∩ Z
k .

We follow the steps of the proof of Proposition 3, and obtain an integral Hilbert
basis of CE . The basis

{
h1, . . . , hm

}
is made of the set of transfers TE together with

sums of elements from TE .
We complete the proof of (a) by proving the three statements (i), (ii) and (iii) below.
(i) Vectors (4.9), i.e. vectors of the form e = (0 j−1, −1, 0h−1, 2, 0l−1, 1,

0k−( j+h+l))
′, are irreducible elements of the integral Hilbert basis of CE .

(ii) Let j, h, l and r be arbitrary non-negative integers such that j + h + l + r ≤ k.
Vectors of the form

τ = (0 j−1,−1, 0h−1, 1, 0l−1, 1, 0r−1,−1, 0k−( j+h+l+r))
′ (6.12)

are composite transfers of the integral Hilbert basis of CE .
(iii) There are k(k − 1)(k − 2)/6 irreducible vectors in the minimal Hilbert basis

BE .
To establish (i), we show on the basis of Lemma 1, that if e = a + b, where

a, b ∈ PE ∩ Z
k , then either a = e and b = 0k , or b = e and a = 0k .

Let a = (a1, . . . , ak)′ and b = (b1, . . . , bk)′. Observe first that ei = 0, for indices
i = 1, . . . , j−1. It then follows from (4.9) and the equality e = a+b that ai = bi = 0.
For i = j , there holds a j + b j = −1. Given that a and b are integral vectors in
CE , it follows that one of two cases can hold, that we denote Case I and Case II
respectively. Under Case I, we have (a j , b j ) = (−1, 0). Similarly, in Case II we
obtain that (a j , b j ) = (0,−1).

Consider Case I. Then given that ei = 0 for all indices i = j + 1, . . . , j + h − 1,
it follows that ai = bi = 0 for all i = j + 1, . . . , j + h − 1. For i = j + h,
there holds ai + bi = 2. Under Case I, it follows that a j+h ∈ {0, 2} while b j+h ∈
{−1, 0}. We conclude that a j+h = 2 and b j+h = 0. Then given that ei = 0 for
all indices i = j + h + 1, . . . , j + h + l − 1, it follows that ai = bi = 0 for all
i = j + h + 1, . . . , j + h + l − 1.

For i = j+h+l, we have that ai +bi = −1.Under Case I, it follows that a j+h+l ∈
{−1, 0} and b j+h+l ∈ {−1, 0}. We show that b j+h+l = 0. Assume to the contrary that
b j+h+l = −1 and a j+h+l = 0. Then, given that ei = 0 for all i = j+h+l+1, . . . , k,
it follows similarly that ai = bi = 0 for all i = j + h + l + 1, . . . , k. But then this

123



The minimal Hilbert basis of the Hammond order cone

implies that a1+· · ·+ak = 1 and b1+· · ·+bk = −1.This contradicts the assumption
that a and b are integral vectors of the cone CE , since for all u ∈ CE , we require that
u1 + · · · + uk = 0.

We conclude that under Case I, a = e and b = 0k . Under Case II, we arrive, using
the same argument, to the conclusion that b = e and a = 0k . This concludes the proof
of statement (i), namely that the vector e of (4.9) is irreducible.

Consider statement (ii). We show that there are two integral vectors a and b in the
cone CE�{0k} such that τ = a + b, where τ is the vector (6.12).

Construct a = (a1, . . . , ak)′ as follows:

ai =
⎧
⎨

⎩

−1, i = j, j + h + l
2 i = j + h
0 otherwise

(6.13)

and construct b = (b1, . . . , bk)′ as follows:

bi =
⎧
⎨

⎩

−1, i = j + h, j + h + l + r
2 i = j + h + l
0 otherwise.

(6.14)

Then it follows that τ = a + b, and accordingly τ is a composite transfer. This
concludes the proof of (ii).

To show statement (iii), we observe from (i) and (ii) that the minimal Hilbert basis
consists only of vectors of the form (4.9). For k ≥ 3, these vectors are constructed by
inserting k − 3 zeroes to the vector (−1, 2,−1) in order to construct a k -dimensional

vector. There are
k!

(k − 3)!3! = k(k − 1)(k − 2)/6 such ways to insert k − 3 zero

elements in k cells (think of the different ways k − 3 students can occupy a classroom
containing k seats).

We conclude that the minimal Hilbert basis of the cone of egalitarian Hammond
transfers consists of vectors of the form (4.9), and that BE contains k(k − 1)(k − 2)/6
such vectors. This completes the proof of part (a) of the proposition.

(b) The derivation of this result follows the same steps as the proof of Proposition 3,
and accordingly the details are omitted. ��

Proof of Proposition 7 (i) Let the partial order �G be an order extension of the Ham-
mond order relation�H . Then for every pair of distributions x and y such that x �H y
, there also holds, by definition, x �G y . Define the vector ε := x − y. Then ε is
a vector in the set CH ∩ Z

k , and therefore from the assumption that �G is an order
extension of �H , it also follows that ε is an element of the discrete cone CG ∩ Z

k .
Hence we have that CH ∩ Z

k ⊆ CG ∩ Z
k as required.
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(ii) Observe that a basis for the space S
k is given by the following set of k − 1

vectors:

BSk :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎜
⎝

1
0
...

0
−1

⎞

⎟⎟⎟⎟⎟
⎠

,

⎛

⎜⎜⎜⎜⎜
⎝

0
1
0
...

−1

⎞

⎟⎟⎟⎟⎟
⎠

, . . . ,

⎛

⎜⎜⎜⎜⎜
⎝

0
...

0
1

−1

⎞

⎟⎟⎟⎟⎟
⎠

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(6.15)

It is clear that CG ∩ Z
k ⊆ S

k ∩ Z
k . To show that the set of integral points CG ∩ Z

k is
contained in the geometric latticeLH ,we shall show thatLH = S

k ∩ Z
k .Equivalently,

we shall show that the bases matrices
(
BSk

)
and (BH ) are equal up to multiplication

by a unimodular matrix. It is readily verified that
(
BSk

) = − (BH ) A, where A is the
lower triangular matrix defined in (4.3). As A is a unimodular matrix, and

(
BSk

)
is a

basis for the lattice S
k ∩ Z

k we conclude that LH = S
k ∩ Z

k . Since the discrete cone
CG ∩ Z

k is a set of points in S
k ∩ Z

k , we have therefore shown that CG ∩ Z
k is a

subset of the Hammond Hilbert lattice LH , as required. ��
Example 2 (continued from Sect. 4.2) We explore the possibility of expressing any
integral vector e ∈ CE using the k − 1 vectors t1, . . . , tk−1 that define the minimal
Hilbert basis associated with the cone CH . The important point to observe, is that
while CE is a subset of CH , one cannot use the three generators t1, t2, and t3 of CH to
generate any vector in CE , without imposing restrictions on the integer combinations
of t1, t2, and t3. Note first, on the basis of Proposition 6, that any integral vector in
the cone CE is a subset of the set of vectors in the Hammond order cone, the subset
being defined as follows:

CE ∩ Z
4+ = {a ∈ CH , θ1, . . . , θ4 ∈ Z+ : a = θ1e

1 + · · · + θ4e
4} (6.16)

Because the Hammond order cone is generated by the three vectors t1, t2, and t3, it is
certainly the case that for any integral vector a in the cone CE , we have that there also
exist three positive integers μ1, μ2, and μ3 such that

μ1t
1 + μ2t

2 + μ3t
3 = a = θ1e

1 + · · · + θ4e
4. (6.17)

It is then possible to solve for each ofμ1,μ2, andμ3 as functions of (θ1, . . . , θ4) ∈ Z
4+.

This produces the desired restrictions any vector a constructed as a combination of
Hammond transfers must satisfy:

μ1(θ1, . . . , θ4) = θ1 + θ3 + θ4

μ2(θ1, . . . , θ4) = θ2 + 2θ4
μ3(θ1, . . . , θ4) = θ3 + 2θ4. (6.18)

Observe for instance that unlike vectors of the Hammond order cone, it is not possible
for an integral vector a ∈ CE to have the form a = t313.

13 That is, if θ = (0, 0, 1, 0) then both μ3(θ1, . . . , θ4) = 1 and μ1(θ1, . . . , θ4) = 1. Likewise, if θ =
(0, 0, 0, 1) then μ3(θ1, . . . , θ4) = 2, μ2(θ1, . . . , θ4) = 2 and μ1(θ1, . . . , θ4) = 1, etc.
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Similarly, it is possible to express any integral vector a in the cone of egalitarian
Hammond transfers using positive integer combinations of the vectors of the minimal
Hilbert basis of the cone CF . ♦
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