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A B S T R A C T

Time series analysis (TSA) comprises methods for extracting information in domains as diverse as medicine,
seismology, speech recognition and economics. Matrix Profile (MP) is the state-of-the-art TSA technique, which
provides the most similar neighbor to each subsequence of the time series. However, this computation requires
a huge amount of floating-point (FP) operations, which are a major contributor (≈ 50%) to the energy
consumption in modern computing platforms. In this sense, Transprecision Computing has recently emerged
as a promising approach to improve energy efficiency and performance by using fewer bits in FP operations
while providing accurate results.

In this work, we present TraTSA, the first transprecision framework for efficient time series analysis based
on MP. TraTSA allows the user to deploy a high-performance and energy-efficient computing solution with
the exact precision required by the TSA application. To this end, we first propose implementations of TraTSA
for both commodity CPU and FPGA platforms. Second, we propose an accuracy metric to compare the results
with the double-precision MP. Third, we study MP’s accuracy when using a transprecision approach. Finally,
our evaluation shows that, while obtaining results accurate enough, the FPGA transprecision MP (i) is 22.75×
faster than a 72-core server, and (ii) the energy consumption is up to 3.3× lower than the double-precision
executions.
1. Introduction

A time series is an ordered set of samples of a variable collected
over time. It can contain millions of observations, often real-valued.
Time series analysis seeks to extract information in a large variety of
domains such as epidemiology [1], DNA analysis [2], economics [3],
speech recognition [4], traffic prediction [5], energy conservation [6],
seismology [7], medicine [8] and many more [9]. To do so, a common
problem to solve is the all-pairs-similarity-search problem (also known
as similarity join). That is, given a time series sliced in subsequences,
retrieving the most similar and dissimilar subsequences. Particularly,
motif [10] (similarity) and discord [11] (anomaly) discovery are two of
the most frequently used primitives in time series data mining [12–18].

The state-of-the-art method for motif and discord discovery isMatrix
Profile [19]. This method solves the similarity join problem and allows
time-manageable computation of very large time series datasets. The
similarity join has many applications [20] such as community discov-
ery, duplicate text detection, collaborative filtering for social networks,
clustering, and query refinement for web search.

In this work, we focus on this technique, which provides full joins
without the need to specify a similarity threshold, a very challenging
task in this domain. When analyzing a time series, the matrix profile is
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another time series representing the minimum distance subsequence for
each subsequence (motifs). In contrast, maximum values of the profile
highlight the most dissimilar subsequences (discords).

We evaluate the latest Euclidean-based implementations of matrix
profile (SCRIMP [21] and SCAMP [22]) and find that a huge number of
floating-point (FP) arithmetic operations are needed in order to analyze
even short time series. In this sense, transprecision computing [23]
has recently emerged as a promising approach to (i) improve energy
efficiency, (ii) provide better performance, (iii) reduce area footprint,
and (iv) reduce memory bandwidth by tolerating some loss of accuracy
in computed results. This paradigm reduces the number of bits for
the exponent and the mantissa in FP operations in a flexible way,
depending on the requirements of the application. It is well known
that FP operations are a major contributor (≈50%) [24] to the energy
consumption in modern computing platforms. Thus, transprecision has
the potential to provide an efficient design with the required precision
by the application.

Our goal in this work is to provide a set of tools to jumpstart
the research niche of transprecision time series analysis, to achieve
high-performance and energy-efficient computing for a wide range of
applications. This way, new platforms can be designed that benefit from
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Fig. 1. Example of two subsequences, 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚, of a given time series. When
computing the matrix profile 𝑃 , subsequences starting in the exclusion zone of 𝑇𝑖,𝑚 are
ignored for their high similarity.

reduced-bit-count FP operations tailored to each application (e.g., using
a transprecision Floating-Point-Unit (FPU), like FPNew [25]). This
opens up the opportunity to detect important events on mobile and
embedded devices, where energy is a critical concern. Those devices
can be used, for example, to prevent ecological disasters or medical
issues (e.g., for early earthquake detection [26] or to predict a heart
attack [27]).

To this end, we introduce TraTSA, the first transprecision frame-
work for time series analysis. TraTSA, which is open-source and freely
available to the community [28], provides fast and user-friendly trans-
precision matrix profile computing thanks to its CPU and FPGA im-
plementations. We evaluate TraTSA with use cases of real datasets
from different domains and sizes, analyzing the trade-offs between
arithmetic precision and result accuracy using a proposed metric. Ad-
ditionally, we present the energy savings of a real transprecision FPU.

The contributions of this work are the following:

• We develop TraTSA, the first framework for flexible transpreci-
sion matrix profile computation, which includes three transpreci-
sion implementations (TranSCRIMP, TranSCAMP and Tran-
SCAMPfpga) based on FlexFloat [29] and cpfp-FPGA [30] li-
braries. We integrate those implementations using a Python wrap-
per that provides a user-friendly interface.

• We propose a new metric, called Top-K Accuracy, to measure the
accuracy in the discovery of motifs and discords of a transformed
time series (e.g., lower precision) with respect to the original time
series.

• We provide a detailed accuracy analysis of TranSCRIMP, Tran-
SCAMP and TranSCAMPfpga using the Top-K Accuracy metric
while varying exponent and mantissa bit count combinations.

• We evaluate the potential benefits of using a transprecision FPU
for matrix profile, finding that energy efficiency can be improved
up to 3.3× compared with double precision with proper precision
adjustments, while providing results accurate enough.

2. Background

In this section, we provide a background on time series analysis
based on matrix profile, transprecision computing and FPGA acceler-
ation.

2.1. Time series analysis. The matrix profile

A time series 𝑇 is a sequence of 𝑛 consecutive data points 𝑡𝑖, 1 ≤ 𝑖 ≤ 𝑛,
collected over time. Time series data is typically stored using a floating-
point representation. Let 𝑇𝑖,𝑚 be a subsequence of 𝑇 , where 𝑖 is the
index of its first data point, 𝑇𝑖, and 𝑚 is the number of data points in
the subset, with 1 ≤ 𝑖, and 𝑚 ≤ 𝑛. In the literature, 𝑇𝑖,𝑚 is also called a
window of length 𝑚. Fig. 1 shows an example of a sinusoidal time series
with two subsequences highlighted, 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚.

One way to measure the similarity between two time series subse-
quences is to use the z-normalized Euclidean distance [21], 𝑑𝑖,𝑗 , which is
calculated as follows:

𝑑𝑖,𝑗 =

√

2 𝑚
(

1 −
𝑄𝑖,𝑗 − 𝑚𝜇𝑖𝜇𝑗

)

(1)
2

𝑚𝜎𝑖𝜎𝑗
Fig. 2. Computation of the matrix profile 𝑃 and the profile index 𝐼 from the distance
matrix 𝐷. 𝑃𝑖 is the minimum distance of each row (or column) 𝐷𝑖. 𝐼𝑖 is the index of
the subsequence providing the minimum.

where 𝑄𝑖,𝑗 is the dot product of subsequences 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚. 𝜇𝑥 and 𝜎𝑥
are the mean and the standard deviation of the data points in 𝑇𝑥,𝑚,
respectively.

Now we can use this distance measure to find the most similar
subsequences out of all subsequences of a time series 𝑇 . There are three
steps to this procedure. First, building a symmetric (𝑛−𝑚+1)×(𝑛−𝑚+1)
matrix 𝐷, called distance matrix, with a window size 𝑚 and a time
series of length 𝑛. Each 𝐷 cell, 𝑑𝑖,𝑗 , stores the distance between two
subsequences, 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚. Thus each row (or column) of 𝐷 stores
the distances between a subsequence of 𝑇 and every subsequence of
𝑇 . Second, finding the two subsequences whose distance is minimum
(i.e., most similar sequences) in each row (or column) of 𝐷. This can
be computed by building the matrix profile, 𝑃 , which is a vector of
size 𝑛 − 𝑚 + 1. Each cell 𝑃𝑖 in 𝑃 stores the minimum value found
in the 𝑖th row (or column) of 𝐷. Third, finding the indices of the
most similar subsequences of the matrix profile. This requires building
another vector 𝐼 , called matrix profile index, of the same size as that
of 𝑃 , where 𝐼𝑖 = 𝑗 if 𝑑𝑖,𝑗 = 𝑃𝑖. This way, 𝑃 contains the minimum
distances between subsequences of 𝑇 while 𝐼 is the vector of ‘‘pointers’’
to the location of these subsequences. Fig. 2 depicts an example of the
distance matrix (𝐷), the matrix profile (𝑃 ), and the matrix profile index
(𝐼) for the time series in Fig. 1.

Notice that the 𝐷 matrix is symmetric and the neighboring sub-
sequences of 𝑇𝑖,𝑚 are highly similar to it (i.e., 𝑑𝑖,𝑖+1 ≈ 0) due to the
overlaps. Thus, we can exclude these subsequences from computing
𝐷 to find similar subsequences other than the neighboring ones. This
is done by defining an exclusion zone (red cells in Fig. 2) for each
subsequence. In general, the exclusion zone for 𝑇𝑖,𝑚 is 𝑚

4 [21].
From the complexity point of view, matrix profile algorithms

present two main challenges: memory footprint and a huge number
of floating-point operations.

Memory footprint. The size of the distance matrix 𝐷 can be huge
for large time series, so it is not convenient to store it in memory.
For example, an earthquake sequence from a seismograph, consisting
of 24 000 elements [31], needs approximately 1.3 GB of memory us-
ing double-precision floating-point representation. However, a 650 000
electrocardiogram (ECG) time series from the MIT-BIH arrhythmia
database [32] requires about 850 GB of memory. Furthermore, we need
to maintain the matrix profile 𝑃 , the matrix profile index 𝐼 and the time
series 𝑇 . With the aim to overcome this issue, matrix profile algorithms
are designed to store only the matrix profile and the matrix profile
index arrays, computing the minimum distances 𝑑𝑖,𝑗 on the fly.

Number of floating-point operations. The number of operations
required even for short time series is the dominant part of the algorithm
and increases quadratically with the time series length (≈1.5 × (𝑛)2).
Table 1 depicts the number of operations performed for a time series
of 180k elements. As an example for this particular case, matrix profile
needs to perform more than 64 billion multiplications. Thus, efficient
floating-point units need to be designed to reduce the energy consump-
tion and improve performance by increasing SIMD parallelism. Matrix
profile implementations are usually based on double (64-bit) or single
(32-bit) precision. The use of lower bit counts has not yet been well
studied and is the main scope of this paper.
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Table 1
Number of arithmetic floating-point operations performed in a time series of 180 000
elements and a window size of 512 elements.

Operation Number Operation Number

Additions 16 084 915 120 Subtractions 183 664 640
Multiplications 64 340 019 200 FMAs 91 832 320
Inversions 16 084 915 120 Comparisons 32 170 906 916

Fig. 3. Overview of the floating-point types used for energy evaluation.

Table 2
Floating-point bit counts, ranges and smallest numbers.

Type Exp Man Range (≈) Smallest (≈)

bin64 11 52 {−1.8 ⋅ 10308 , 1.8 ⋅ 10308} 2.2 ⋅ 10−308

bin32 8 23 {−3.4 ⋅ 1038 , 3.4 ⋅ 1038} 1.2 ⋅ 10−38

bin16 5 10 {−65 504, 65 504} 6.1 ⋅ 10−5

bfloat16 8 7 {−3.4 ⋅ 1038 , 3.4 ⋅ 1038} 1.2 ⋅ 10−38

bin8 5 2 {−57 344, 57 344} 6.1 ⋅ 10−5

2.2. Transprecision computing

Transprecision Computing aims to boost energy efficiency and per-
formance by exploiting numeric truncation in both hardware and soft-
ware. It enables fine control over the precision of floating-point arith-
metic in space and time (where and when to use it). The key difference
with approximate computing is that transprecision guarantees the error
(as the numeric precision and range are known for a given config-
uration) while approximation provides uncertainty. One example of
this uncertainty occurs when reducing the refresh interval of RAM to
improve performance [33], since process variation makes the exact
error to be unknown. Based on that, transprecision leads to signifi-
cant energy savings and performance improvements without sacrificing
overall quality of results.

Transprecision computing can be applied to the entire algorithm
by setting fixed exponent and mantissa widths for every floating-point
operation. However, it is possible to change the precision to different
parts of the code to find a trade-off between the accuracy of the results
and energy efficiency. Mixed precision of double and single floating-
point operations has been successfully used in the past [34,35] with a
significant gain in performance.

Besides the IEEE-754 standard, transprecision computing allows the
use of arbitrary exponent and mantissa bit combinations. However,
the design of arbitrary precision floating-point units (FPUs) can be
challenging and presents difficulties when integrating in computing
platforms. Because of this reason, already designed FPUs typically
support a fixed number of exponent and mantissa combinations. As an
example, Fig. 3 shows the types [24] that we use in this work for the
energy evaluation.

Table 2 summarizes the bit count for each floating-point datatype,
along with the approximate range and smallest number that can be rep-
resented. Notice that, while binary32 and binary16 have approximately
he same range, the first one provides narrower steps between numbers
nd more precision.

We find transprecision Floating-Point Units (FPU) already proposed
n the literature, which aim to take advantage of transprecision com-
uting in terms of energy, performance and area. The first silicon
mplementation of a 64-bit transprecision FPU can be found in [36],
sing 22 nm technology node. This FPU supports the floating-point
ypes depicted in Fig. 3, and the key idea behind it is to operate in
3

Table 3
Xilinx Alveo U50 Specifications.

Parameter Alveo U50

Look-up Tables (LUTs) 872k
Registers 1743k
DSP Slices 5952
Memory 8 GB (HBM)
HBM Bandwidth 316 GB/s (theoretical)
Internal SRAM 28 MB
Int. SRAM Bandwidth 24 TB/s
Max. Power 75 W

scalars (64-bit) or in SIMD vectors of 2 elements (32-bit), 4 elements
(16-bit) or 8 elements (8-bit). The authors of such FPU evaluate it
integrated into a RISC-V core via simulation (but can be used in FPGAs
or ASICs) and obtain speedups up to 7.3× while reducing energy up to
7.94× with respect to double precision approaches. The source code of
this FPU (known as FPnew) can be found in [25].

In contrast, transprecision libraries aim to enable transprecision
software emulation in commodity architectures. An example of CPU-
based transprecision emulation is FlexFloat [29], which is written in
C. The main advantage of this library is that it can be executed in
almost any commodity platform, but it presents a main drawback:
the significant overhead introduced by the software emulation. In this
sense, we observe that the FlexFloat execution time increases the native
IEEE double execution time by 200× for a given computing platform.
One way to overcome this issue is the use of an FPGA architecture,
including custom-precision units from cpfp-FPGA [30] library, which
is intended for High-Level Synthesis (HLS). While not being a pure
transprecision implementation from the architectural point of view
(e.g., data is stored using 32 bits in memory and then converted to
the desired width), it allows time-manageable evaluation of large time
series (millions of elements). The key motivation to consider the FPGA
acceleration is to avoid the emulation cost of the software-based one
with the use of dedicated transprecision hardware.

2.3. FPGA acceleration

Field Programmable Gate Arrays (FPGAs) [37] are programmable
devices comprising logic blocks which connection and behavior can
be defined by the user. This kind of devices can be programmed to
implement a wide variety of algorithms and even full-fledged systems,
such as a complex RISC-V core [38].

The main advantage of using an FPGA to accelerate a given al-
gorithm, compared with implementing a full system, is that more
FPGA resources are available for the implementation of the required
functionality. For instance, resources devoted to branch prediction or
instruction decoding in the implementation of a general-purpose core
can be used to place more floating-point units for the algorithm instead.

One example of an HPC FPGA board is the Xilinx Alveo U50. This
PCIe board, which includes 3D-stacked High-Bandwidth Memory [39]
HBM, is a good candidate to accelerate memory-bound applications
such as time series analysis [40]. Concretely, the HBM cube in this
board exposes 30 pseudochannels that enable memory-level paral-
lelism. Applications can exploit this parallelism by (i) spanning multiple
compute units (CUs) and (ii) allocating data structures in different
pseudochannels. Because of that, we use it in the evaluation of this
work. Table 3 shows the specifications of the U50.

3. TraTSA framework

In this section we present an overview of the TraTSA framework
and then describe its main components.
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Fig. 4. TraTSA overview and its components. The user provides a time series file
(.txt) and a configuration file (.cfg) to the wrapper. Then, the wrapper invokes matrix
profile either in the CPU or in the FPGA. Finally, the wrapper provides the user the
transprecision matrix profile (.csv) and some statistics (.stats).

Fig. 5. Example of TraTSA’s cfg file.

.1. Overview of TraTSA

TraTSA is a Transprecision Framework for T ime Series Analysis
eveloped as a tool (i) to perform design exploration of accelerators
nd (ii) to tune current implementations. This way, computer architects
an define the exact number of floating-point bits for exponent and
antissa, which potentially saves area and improves performance while

educing energy consumption. We build TraTSA framework based on
atrix profile and using (i) the FlexFloat library to implement transpre-

ision CPU versions of SCRIMP and SCAMP, (ii) the cpfp-FPGA library
o implement a transprecision FPGA implementation of SCAMP1 and
iii) Python to create a user-friendly wrapper.

We present TraTSA’s overview in Fig. 4. The INPUT and OUTPUT
blocks in the figure represent TraTSA’s wrapper.

This wrapper is in charge of (i) interpreting the configuration file
(i.e., exponent and mantissa widths, selected CPU or FPGA backend,
window size, among others) and obtaining the time series file provided
by the user; (ii) invoking the corresponding execution backend, and
(iii) collecting the results providing them to the user after proper
formatting. We present a simple example of TraTSA’s configuration file
in Fig. 5, which is based on a custom format. The stats file follows a
similar format to that provided by the FlexFloat [29] library.

TraTSA, being easily extensible to support additional algorithms,
includes the following backends.

1 We do not consider implementing a transprecision FPGA version of
CRIMP since SCAMP provides better numeric stability and, as a consequence,
ore robustness to reduced precision (see Section 5.2.1), being more amenable

o transprecision approaches. However, due to the high-similar computation
chemes of both algorithms, it is feasible to implement TranSCRIMPfpga
4

ith modest effort. a
• TranSCRIMP. TranSCRIMP is a CPU C++ parallel transpreci-
sion implementation of SCRIMP algorithm. This implementation
provides configurable precision arithmetic which is emulated via
software using the FlexFloat library.

• TranSCAMP. TranSCAMP is a CPU C++ parallel transprecision
implementation of SCAMP algorithm. This implementation pro-
vides configurable precision arithmetic which is emulated via
software using the FlexFloat library.

• TranSCAMPfpga. TranSCAMPfpga is an FPGA HLS-based im-
plementation of SCAMP algorithm. This implementation provides
configurable precision arithmetic which is implemented via hard-
ware using the cpfp-FPGA library. As we evaluate TranSCAMPf-
pga using a Xilinx Alveo U50 FPGA board, it is trivial to port it
to other Alveo models.

The key benefit of TraTSA is to provide a transprecision frame-
ork being (i) portable enough to be executed in different execution
nvironments according to the analysis requirements (i.e., length of
he time series or if the user has access to an FPGA or not), and (ii)
lexible enough to allow the possibility of exploring a wide range of
xponent and mantissa combinations for any dataset. In this sense,
oth TranSCRIMP and TranSCAMP are designed to be used with
ime series of modest sizes (below 200k elements) and executed in
ommodity CPUs (desktops or high-end servers) due to the overheads of
ustom-precision types in those platforms. In contrast, TranSCAMPf-
ga is able to compute series of up to several million elements in
anageable time thanks to the transprecision hardware support, at the

ost of requiring an FPGA. Both CPU and FPGA backends can work
imultaneously and join compute power.

.2. Transprecision SCRIMP-CPU (TranSCRIMP )

TranSCRIMP is a CPU transprecision implementation of SCRIMP
ased on FlexFloat library. The key idea of SCRIMP [21] is to minimize
he computation by exploiting the fact that the dot product can be
pdated incrementally for subsequences in the diagonal of the distance
atrix, 𝐷 (see Fig. 2). Consequently, the dot product can be expressed

s follows:

𝑖,𝑗 = 𝑄𝑖−1,𝑗−1 − 𝑇𝑖−1𝑇𝑗−1 + 𝑇𝑖+𝑚−1𝑇𝑗+𝑚−1 (2)

The baseline implementation for our transprecision SCRIMP algo-
ithm, TranSCRIMP in Fig. 6, is a vectorized-parallel version pre-
ented in [40]. It first precomputes the mean and standard deviation of
ach time series subsequence (line 1), and initializes the matrix profile
rray (line 3). Then, the distances between pairs of subsequences are
alculated following the diagonals of the distance matrix (lines 4–26).
he for loop is fully parallelized, with each thread computing a random
ubset of diagonals provided by their indices in the 𝑑𝑖𝑎𝑔 array in line
.

For the first element of the diagonal, we need to compute the dot
roduct of the first pair of subsequences (line 6) in parallel. The rest
re updated following Eq. (2). For the proper vectorization of the dot
roduct update, the algorithm separates the calculation of the diagonal
n several steps: (i) the products in Eq. (2) are calculated in parallel
or 𝑣𝑒𝑐𝑡𝐹𝑎𝑐𝑡 elements of the diagonal (lines 14–15); (ii) the previous
ot product, 𝑞, is added to the element calculated in step (i) (line 16);
iii) the subsequent dot products are updated sequentially using the
revious ones (lines 17–18) saving the last one in 𝑞 for the next iteration
f the diagonal (line 19); (iv) distances are calculated in parallel (lines
0–21); and (v) the profile is updated in parallel as well (lines 22–25).

The vectorization factor, 𝑣𝑒𝑐𝑡𝐹𝑎𝑐𝑡, is given by the transprecision
atatype width with respect to that of double precision (line 2). We
ighlight the lines of code which are to be executed using the transpre-
ision approach. The algorithm is able to work in either one precision
onfiguration or a mixed-precision one, thus the green (lower precision)

nd red (higher precision) marks.
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Fig. 6. Transprecision SCRIMP (TranSCRIMP) algorithm (transprecision operations highlighted).
d
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Rather than using only double and single precision, we define a
igh and a low precision that can be set to any possible exponent
nd mantissa configuration, which provides further accuracy analysis
pportunities. For the algorithms involved in this study, we store the
ime series codified with high precision and both the matrix profile and
he precalculated statistics with low precision. For TranSCRIMP, Fig. 6
hows the lines of code that works with high precision highlighted in
ed, and those which work with low precision highlighted in green. The
ot product calculations use high precision as they may require a larger
umeric range. Distance calculation as well as calculations with means
nd standard deviations are performed with less precision.

.3. Transprecision SCAMP-CPU (TranSCAMP )

TranSCAMP is a CPU transprecision implementation of SCAMP
based on FlexFloat library. Whereas following a similar computation
scheme to TranSCRIMP, TranSCAMP replaces the sliding dot product
with a mean-centered-sum-of-products in order to reduce the floating-
point rounding errors and the number of operations required [22]. The
following equations can be precomputed in 𝑂(𝑛 − 𝑚 + 1) time, with
𝑛 − 𝑚 + 1 = 𝑙 being the length of 𝑃 :

𝑑𝑓𝑖 =
𝑇𝑖+𝑚−1 − 𝑇𝑖−1

2
, 0 < 𝑖 < 𝑙 (3)

𝑑𝑔𝑖 = 𝑇𝑖+𝑚−1 − 𝜇𝑖 + 𝑇𝑖−1 − 𝜇𝑖−1, 0 < 𝑖 < 𝑙 (4)

𝑠𝑠𝑞𝑖 =

⎧

⎪

⎨

⎪

⎩

∑𝑚−1
𝑘=0 (𝑇𝑘 − 𝜇0)2, 𝑖 = 0

𝑠𝑠𝑞𝑖−1 + (𝑇𝑖+𝑚−1 − 𝜇𝑖+
+ 𝑇𝑖−1 − 𝜇𝑖−1)(𝑇𝑖+𝑚−1 − 𝑇𝑖−1) 0 < 𝑖 < 𝑙

(5)

𝜎𝑖 =
√

𝑠𝑠𝑞𝑖, 0 ≤ 𝑖 < 𝑙 (6)

Eqs. (3) and (4) are terms used in the covariance update of Eq. (7),
nd the standard deviation (L2-norm of subsequence 𝑇𝑖,𝑚−𝜇𝑖) calculated
n Eqs. (5) and (6) is used for the Pearson correlation coefficient
5

epicted by Eq. (8). Notice the exclusion zone in the limits of Eq. (7)
iven by 𝑚

4 .

𝜎𝑖,𝑗 =

{

∑𝑚−1
𝑘=0 (𝑇𝑘 − 𝜇0)(𝑇𝑘+𝑗 − 𝜇𝑗 ), 𝑖 = 0, 𝑚4 < 𝑗 < 𝑙

𝜎𝑖−1,𝑗−1 + 𝑑𝑓𝑖𝑑𝑔𝑗 + 𝑑𝑓𝑗𝑑𝑔𝑖, 𝑖 > 0, 𝑚+44 < 𝑗 < 𝑙
(7)

𝑃𝑖,𝑗 =
𝜎𝑖,𝑗
𝜎𝑖𝜎𝑗

(8)

𝐷𝑖,𝑗 =
√

2𝑚(1 − 𝑃𝑖,𝑗 ) (9)

The matrix profile can be derived incrementally for each diagonal
of the distance matrix, Eq. (7), from the calculation of the covariance
of two subsequences of the first row (first piece in Eq. (7)). The Pearson
correlation coefficient in Eq. (8) can be computed in fewer operations
and it is more robust than the Euclidean Distance used by SCRIMP [22].
Eq. (9) calculates the distance from the Pearson coefficient in 𝑂(1). For
TranSCAMP, we compute the covariance in Eq. (7) at high precision,
which may have a large numeric range depending on the series. The
correlation in Eq. (8), which varies between −1 and 1, is computed at
low precision.

3.4. Transprecision SCAMP-FPGA (TranSCAMPfpga)

TranSCAMPfpga is an FPGA transprecision implementation of
SCAMP based on the cpfp-FPGA library. We include TranSCAMPfpga
as part of TraTSA’s backend to speed up the evaluation of transprecision
time series analysis in those research environments where FPGAs are
available. TranSCAMPfpga is tuned for a Xilinx Alveo U50 FPGA
board, which includes High-Bandwidth-Memory (HBM) [41]. However,
thanks to the C++-based HLS implementation, it is easy to port to
higher-end Alveo boards or, with modest effort, to other FPGA plat-
forms, as Intel Altera. We present an overview of TranSCAMPfpga in
Fig. 7, including the kernels inside the two SLRs (Super Logic Regions)
of the FPGA and the HBM memory.

We develop TranSCAMPfpga using Xilinx Vitis 2020.2 and a C++

HLS approach. Our implementation consists of (i) a host side code,
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Fig. 7. FPGA implementation overview. TranSCAMPfpga is composed of six kernels
ptimized for a Xilinx Alveo U50 FPGA that compute transprecision SCAMP algorithm
sing the data in the HBM.

nd (ii) an FPGA side code (kernels), that compute matrix profile
n a parallel-vectorized manner. To avoid the use of synchronization
rimitives, each kernel has exclusive access to its private matrix profile.

On the one hand, the host code, which is executed in the host CPU,
s in charge of (i) allocating the corresponding data structures in the
PGA and transferring the input vectors (i.e., time series and statistic
ata) from the host to the HBM cubes of the FPGA via PCI-Express, (ii)
efining the parallel scheduling partitioning, (iii) invoking the FPGA,
iv) transferring the output vectors (i.e., matrix profiles) from the HBM
ubes of the FPGA to the host via PCI-Express, and (v) performing the
inal matrix profile reduction.

On the other hand, the FPGA code is an HLS-based implemen-
ation that performs the transprecision computation of SCAMP. This
PGA implementation, intended for the evaluation of large time se-
ies (i.e., millions of elements), includes the possibility of defining a
ecalculation interval to reduce the accumulated errors across diago-
als due to lower precision arithmetic. Concretely, instead of reusing
he previous covariance to calculate the current one, it performs the
omplete centered-sum-of-products at certain interval. Regarding to
erformance, we tune this FPGA implementation to benefit as much
s possible from the available resources of the FPGA, exploiting the
ollowing techniques:

• Parallelization across kernels. Instead of having a huge kernel
that computes the whole matrix profile of the given time series,
we create several kernels (six in the case of the Alveo U50)
which allows performing diagonal-level parallelization. Addition-
ally, the use of six kernels efficiently exploits the HBM memory
as accesses can be overlapped.

• Vectorization inside kernels. Instead of calculating one diag-
onal at a time, each kernel computes a set of diagonals (512)
which allows exploiting loop unrolling techniques via arithmetic
operator replication, and reusing data via systolic arrays. Fig. 8
illustrates an example of the main advantage of vectorization
using five diagonals. We notice that for the first elements of all
diagonals, values of data structures need to be brought from the
HBM memory. However, for the rest of the rows of all diagonals
(as all diagonals increase i index at the same time), we only need
to bring from memory one data value (the last one), regardless
of the vectorization width. This can be achieved thanks to the
systolic array approach, where previously fetched data are pushed
forward to the next row while the new data value is read from
memory at the same time. This operation is performed in parallel
and takes only one step for all elements of the systolic array.

• Wide memory accesses. We pack data that is requested from
memory to improve the efficiency of the bus (i.e., bringing 512
bits in each request) while performing burst accesses at the same
time.
6

Fig. 8. TranSCAMPfpga systolic array example.

Fig. 9. FPGA implementation diagram.

Table 4
TranSCAMPfpga kernel resource utilization.

Param Avail. Used Param Avail. Used

LUT 752 672 308 184 (41%) URAM 640 0 (0%)
REG 1 586 939 494 199 (31%) BRAM 1164 714 (61%)
LUTm 389 324 5802 (1.5%) DSP 5936 828 (14%)

We present TranSCAMPfpga’s execution flowchart in Fig. 9, which
comprises an external loop that iterates over diagonals in batches of
512, and an inner loop to go over those diagonals following a SIMD
approach. Notice that the calculate_covariances module is shared among
two steps of the execution, which allows to save hardware resources as
it is not used in all iterations of the diag_calculation loop.

Finally, Table 4 shows the total resource utilization numbers by
TranSCAMPfpga kernels in the Alveo U50 board. According to our
observations using Vitis Profiler, the main bottleneck for the perfor-
mance of this implementation is data movement. This means that
increasing the number of arithmetic operations does not improve per-
formance because (i) global clock frequency is reduced to enable proper
functionality, and (ii) those additional arithmetic operations require
increasing the number of memory ports, which leads to routing errors

due to network congestion.



Journal of Computational Science 63 (2022) 101784I. Fernandez et al.

i

D
p
p

𝐷

t

𝐷

b

{
t
w

D
t
c
a

𝐴

𝐴

d
t
o
t
t
m

5

5

S

s
p
n
o
w
S
u
e
F
a
w
s
a
t
w
i
e
A
r
b
i

D
o
s
C
t
s
a
s
f
i
t
a
t
t
o
t
p
t
m
e
r
f

5

5

p
e
a

t
a
o

b
r
m
t
p
o
o

4. Top-K accuracy metric

Time series motifs [10] and discords [11] have been used for more
than 15 years in the field of data mining for their capacity to find
time series subsequences with special significance. In this section we
define these special subsequences and propose a metric to measure the
accuracy in the detection of motifs and discords from two time series.

The definitions of the motif and the Top-K motifs of a time series
are presented in the remainder of this section.

Definition 1. The motif 𝑀1 of a time series 𝑇 is the unordered pair of
subsequences {𝑇𝑖,𝑚, 𝑇𝑗,𝑚} which is the most similar among all possible
pairs:

𝑀1 = {𝑇𝑖,𝑚, 𝑇𝑗,𝑚} ⇔ 𝑑𝑖𝑠𝑡(𝑇𝑖,𝑚, 𝑇𝑗,𝑚) ≤ 𝑑𝑖𝑠𝑡(𝑇𝑢,𝑚, 𝑇𝑣,𝑚)

∀𝑖, 𝑗, 𝑢, 𝑣; 𝑖 ≠ 𝑗, 𝑢 ≠ 𝑣.

Definition 2. The Top-K motifs 𝑀1,𝐾 of a time series 𝑇 is the set of
the first 𝐾 motifs:

𝑀1,𝐾 =

{

𝑀𝐾 ∪𝑀1,𝐾−1, 𝐾 > 1
𝑀1, 𝐾 = 1

being 𝑀𝐾 the motif (𝑀1) of the time series 𝑇 ⧵𝑀1,𝐾−1,∀𝐾 > 1.

We can define the discord and the Top-K discords of a time series
n a similar way:

efinition 3. The discord 𝐷1 of a time series 𝑇 is the unordered
air of subsequences {𝑇𝑖,𝑚, 𝑇𝑗,𝑚} which is the most dissimilar among all
ossible pairs:

1 = {𝑇𝑖,𝑚, 𝑇𝑗,𝑚} ⇔ 𝑑𝑖𝑠𝑡(𝑇𝑖,𝑚, 𝑇𝑗,𝑚) ≥ 𝑑𝑖𝑠𝑡(𝑇𝑢,𝑚, 𝑇𝑣,𝑚)

∀𝑖, 𝑗, 𝑢, 𝑣; 𝑖 ≠ 𝑗, 𝑢 ≠ 𝑣.

Definition 4. The Top-K discords 𝐷1,𝐾 of a time series 𝑇 is the set of
he first 𝐾 discords:

1,𝐾 =

{

𝐷𝐾 ∪𝐷1,𝐾−1, 𝐾 > 1
𝐷1, 𝐾 = 1

eing 𝐷𝐾 the discord (𝐷1) of the series 𝑇 ⧵𝐷1,𝐾−1,∀𝐾 > 1.

Being 𝑀𝐼1,𝐾 and 𝐷𝐼1,𝐾 the Top-K sets of unordered pair of indices
𝑖, 𝑗} of the unordered pair of subsequences in 𝑀1,𝐾 and 𝐷1,𝐾 , respec-
ively, we define the Top-K Motif/Discord Accuracy in the following
ay:

efinition 5. The Top-K Motif (Discord) Accuracy AM (AD) of a
ime series 𝑇 with respect to another time series 𝑇𝑇 is the number of
oincidences among the unordered pairs in 𝑀𝐼𝑇1,𝐾 and 𝑀𝐼𝑇𝑇1,𝐾 (𝐷𝐼𝑇1,𝐾
nd 𝐷𝐼𝑇𝑇1,𝐾 ):

𝑀𝑇→𝑇𝑇
1,𝐾 = |𝑀𝐼𝑇1,𝐾 ∩𝑀𝐼𝑇𝑇1,𝐾 |

𝐷𝑇→𝑇𝑇
1,𝐾 = |𝐷𝐼𝑇1,𝐾 ∩𝐷𝐼𝑇𝑇1,𝐾 |

Definition 5 is pointless when 𝑇 and 𝑇𝑇 are time series from
ifferent applications. However, it can be useful when we want to know
he degree of coincidence of the matrix profile of a time series and that
f the same time series codified with less precision or affected by a
ransform operator. We can get to know if, after a transformation of
he original time series, the matrix profile ends up unveiling the same
otifs and discords, or a significant subset of them.

. Experimental evaluation

.1. Methodology

We evaluate TraTSA’s TranSCRIMP, TranSCAMP and Tran-
7

CAMPfpga backends in terms of accuracy, performance and energy T
avings. First, we compute the reference SCRIMP and SCAMP matrix
rofiles with double and single floating-point precisions using the
ative C++ implementations. Second, we use the FlexFloat [29] library
n an Intel Xeon Phi 7210 ‘‘Knights Landing’’ manycore processor [42]
ith 64 cores and 256 threads to evaluate TranSCRIMP and Tran-
CAMP on relatively short2 time series (<200k elements). Third, we
se the cpfp-FPGA library on a Xilinx Alveo U50 FPGA board to
valuate TranSCAMPfpga for larger time series (>200k elements).
ourth, we present performance comparisons between TranSCAMP
nd TranSCAMPfpga using different computing platforms. Finally,
e compare the energy consumption in two ways. On the one hand, we

tudy the benefits of the hardware-based solution (TranSCAMPfpga)
gainst the software emulation one (TranSCAMP). To do so, we obtain
he Joules consumed by the FPGA using Xilinx’s xbutil [43] tool, and
e use rapl-tools [44] to obtain the Joules consumed by the CPU

mplementations. On the other hand, we use a transprecision FPU [36],
valuated as part of RISC-V processors and suitable for FPGAs and
SICs, to estimate the potential benefits of a transprecision FPU with
espect to a double-precision FPU, which are based on the operation
reakdown statistics and the energy per operation numbers given
n [36].

We use real-data time series and the Top-K Accuracy metric of
efinition 5 to evaluate TraTSA. Table 5 summarizes the parameters
f the time series we use for the experiments. Song corresponds to the
ong London Bridge is Falling Down [45] converted into Mel-frequency
epstral Coefficients, which are commonly used in speech recogni-
ion [46]. ECG_short and ECG are extracted from an electrocardiogram
ignal from the European ST-T Database [47]. We select the 180 000
nd 1 800 000 first samples of the V4 electrode from ECG 0103, re-
pectively. Power_short and Power are two time series extracted from
ridge-freezer power consumption numbers collected over a whole year
n a set of UK households [45]. Seismology_short and Seismology are two
ime series of seismic data collected by a seismograph in a geologically
ctive region of the Long Valley Caldera, California [45]. We analyze
he first 180 000 and 1 727 990 samples of the original series, respec-
ively. Human Activity comprises a time series with information of the
ptical flow of an actor performing activities, from picking up an object
o talking on a mobile phone [45]. Penguin Behavior is a time series of
enguin magnetometer telemetry [48]. Speech is an speech recorded
ime series where the first author of the paper reads a fragment (2
ins) of El Quijote book sampled at 16 KHz. IMU is a time series

xtracted from the calibration of an Inertial-Measurement-Unit used in
obotics [49]. Finally, EPG is insect electrical penetration graph data
rom [50].

.2. Results

.2.1. Short time series accuracy
We use the Top-K Accuracy metric of Definition 5 to evaluate our

roposals. The value of K will depend on the number of significant
vents of a given time series, which will be eventually determined by
domain expert.

One way of setting K is defining a profile threshold for both mo-
ifs and discords. Figs. 10 and 11 present the Top-100 motif/discord
ccuracy with respect to double for a wide range of configurations
f exponent and mantissa in TranSCRIMP, respectively. In contrast,

2 Notice that both SCRIMP and SCAMP perform profile calculations (𝑃𝑖)
ased on a previous result along the diagonals (dot product and covariance,
espectively). In such scenarios, it is possible that accumulated errors provide
ismatching results for large time series. However, as production implemen-

ations of SCRIMP and SCAMP are based on a tiled approach where the dot
roduct or covariance is calculated from scratch for each 128k-512k elements
f the diagonal, our evaluation and conclusions are also valid for time series
f larger sizes. This is the main reason we include a recalculation factor in
ranSCAMPfpga.
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Table 5
Time series dataset parameterization.

Time series n m Max Min Scale

Song 20 234 200 6.69 −56.48 1.00
ECG_short 180 000 500 2.60 0.32 1.00
Power_short 180 000 1 325 14.0 0.00 0.10
Seismology_short 180 000 50 6.96 −1.86 0.01
Human activity 7 997 120 2.51 −1.90 1.00
Penguin behavior 109 842 800 0.52 −0.21 1.00
Speech 1 933 944 16 384 0.98 −1.00 1.00
ECG 1 800 000 512 3.39 −1.64 1.00
Power 1 754 985 1 536 14.00 0.00 0.10
Seismology 1 727 990 64 23.29 −23.34 0.10
IMU 1 756 230 256 1.65 −2.87 1.00
EPG 2 000 000 16 384 72.26 −61.30 10.00

Fig. 10. TranSCRIMP Top-100 motif accuracy with respect to double.

igs. 12 and 13 present the same metrics in TranSCAMP, respectively.
In most cases, single precision (8,23) provides 100% accuracy with
respect to double precision. As can be noticed, most of the plots follow
a square-like shape where the accuracy decreases dramatically after a
given combination of exponent and mantissa. This may occur whether
one or both of the following scenarios appear: (i) the range of the
exponent has been exceeded; (ii) the precision provided by the mantissa
is not enough for the calculations.

Comparing both algorithms, we can observe that SCAMP is more
robust and presents a better numeric stability than SCRIMP for all the
datasets. This fact can be noticed for Penguin Behavior, where a slight
ecrease in the length of the mantissa makes SCRIMP fail in detecting
vents, while SCAMP provides more margin in this reduction. We find
n outlier scenario for the time series Power_short in Fig. 12, where
8

1

Fig. 11. TranSCRIMP Top-100 discord accuracy with respect to double.

accuracy seems to decrease when the number of mantissa bits increases
from 20 to 23. The reason behind it is that, for this time series, there
are several motifs with exactly the same profile value. Because of that,
our sorting algorithm induces some order differences when comparing
the transprecision version with respect to the reference one. However,
from the practical point of view, the accuracy of the mantissa 23 is as
good as the mantissa 20 since all motifs are present in both of them. We
conclude that SCAMP is a better candidate for transprecision computing
since it provides similar accuracy with lower bit count requirements for
the exponent and mantissa.

We also evaluate how the profile is affected when reducing the
exponent/mantissa bit count using TranSCAMP. Fig. 14 presents the
transprecision profile for the Song dataset and several exponent/
mantissa combinations (i.e., (7,13), (7,10), (5,13), (5,7) in the fig-
ures) with respect to a double-precision profile. We observe that for
combinations of (5,13), (7,13) and (7,10) the profile is well-preserved
(i.e., both curves overlap). We need to reduce the FP bit count to a
lower value (e.g., (5,7)) to find mismatching results. We notice that,
while in this (5,7) scenario the profile is somehow conserved with an
offset, the profile index is not providing the exact matches with respect
to the reference (double) solution. This fact is explained because there
are potentially many values very close to each other along the profile,
which can lead to high chances of profile index interchanging even if
profile values slightly differ from the double-precision reference.

Fig. 15 shows the transprecision profile with respect to double for
the ECG_short dataset. We observe that in this case the value of the

antissa plays a crucial role, since reducing it to a value lower than
3 bits leads to mismatching results (i.e., the transprecision curve is
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Fig. 12. TranSCAMP Top-100 motif accuracy with respect to double.

ot shown at all since it contains NaN values). This fact is explained
ecause the ECG_short dataset is a very regular and monotonic time
eries, where profile values are smaller and mantissa becomes more
elevant than exponent.

Fig. 16 shows the transprecision profile with respect to double for
he Power_short dataset. We notice that the profile is well conserved
or the (7,13), (7,10) and (5,13) exponent and mantissa combinations.
owever, the transprecision profile diverges from the oracle solution
sing lower bit counts, as shown in the (5,7) scenario. This dataset also
enefits from larger mantissas since it follows a regular pattern, this
xplains why the (5,13) combination provides better results (i.e., the
ransprecision profile is better preserved) than the (7,10) one.

Fig. 17 shows the transprecision profile with respect to double for
he Seismology_short dataset. We observe a similar behavior to that in
he Song dataset. While (7,13), (7,10) and (5,13) transprecision profiles
re well-conserved with respect to double, lower mantissa bit count
e.g., 7 bits) leads to mismatching results and divergence.

Fig. 18 shows the transprecision profile with respect to double for
he Human Activity dataset. We notice that this dataset presents a higher
ensitivity to mantissa bit count, since even with 13 bits the profile does
ot match perfectly. However, as evaluated with the Top-K metric, the
verall accuracy of the results is not affected in a higher degree than
he other datasets, since peaks in the profile are distinguishable among
hem.

Fig. 19 shows the transprecision profile with respect to double for
9

he Penguin Behavior dataset. This dataset presents a similar behavior n
Fig. 13. TranSCAMP Top-100 discord accuracy with respect to double.

to the Power_short one, as they have similar numeric ranges (i.e., ex-
ponent/mantissa of (7,13), (7,10) and (5,13) provide well-conserved
profiles while (5,7) fails).

We also evaluate a mixed-precision approach for TranSCRIMP
and TranSCAMP to further tune the bit counts required in different
parts of those algorithms. In this set of experiments, we restrict the
exponent/mantissa configurations to the ones available in FPnew due
to space limitations. Table 6 shows the results using mixed-precision
for TranSCRIMP and TranSCAMP. We obtain better results with
TranSCAMP for most datasets, as expected. It is worth noting the case
of Penguin Behavior, where TranSCRIMP is not able to detect any of
the events while TranSCAMP finds near 100% of them with the (8/23,
5/10) configuration.

Overall, our evaluation shows that the mixed-precision configu-
rations provide better accuracy results than using only one reduced
precision configuration throughout the code. The experiments suggest
that a mixed configuration of (8/23, 5/10) can be used for the ma-
jority of the applications analyzed in this work. In this sense, we can
observe that SCAMP results for Song present 70% accuracy for a 5/10
onfiguration (see Figs. 12 and 13), whereas the accuracy increases to
5% using (8/23, 5/10) mixed precision (see Table 6). The rest of the
eries present a similar behavior with SCAMP: 0% accuracy for ECG
ith the 5/10 configuration, while up to 99% discord accuracy with the

8/23, 5/10)-mixed-precision configuration; 0% motif and 7% discord
ccuracy for Power with the 5/10 configuration, whereas 81% motif
nd 65% discord accuracy with mixed precision; and so on. SCRIMP
resents a similar pattern as well.

We observe that the (8/23, 5/2)-mixed-precision configuration does

ot yield meaningful results for any of the analyzed datasets, since
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Fig. 14. TranSCAMP Song profile with respect to double. The horizontal axis repre-
sents the index of the datapoints within the complete time series and the vertical axis
represents the amplitude of the signal.

Fig. 15. TranSCAMP ECG_short profile with respect to double. The horizontal axis
represents the index of the datapoints within the complete time series and the vertical
axis represents the amplitude of the signal.

Fig. 16. TranSCAMP Power_short profile with respect to double. The horizontal axis
represents the index of the datapoints within the complete time series and the vertical
axis represents the amplitude of the signal.

the low bit count for the mantissa (only two bits) does not provide
enough resolution for the correlation calculations. It can be noticed
10
Fig. 17. TranSCAMP Seismology_short profile with respect to double. The horizontal
axis represents the index of the datapoints within the complete time series and the
vertical axis represents the amplitude of the signal.

Fig. 18. TranSCAMP Human Activity profile with respect to double. The horizontal
axis represents the index of the datapoints within the complete time series and the
vertical axis represents the amplitude of the signal.

Fig. 19. TranSCAMP Penguin Behavior profile with respect to double. The horizontal
axis represents the index of the datapoints within the complete time series and the
vertical axis represents the amplitude of the signal.

that detecting discords (anomalies) is more accurate than detecting
motifs (similarities). This can be due to the fact that similarities are
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Table 6
Mixed precision Top-100 accuracy results.

T High Low TranSCRIMP TranSCAMP

E/M E/M Accuracy Accu. ±10 Accuracy Accu. ±10
Mot/Disc Mot/Disc Mot/Disc Mot/Disc

Song
8/23 8/7 14/9 16/31 54/86 100/97
’’ 5/10 38/0 99/0 95/99 100/100
’’ 5/2 0/0 0/0 1/0 1/0

ECG
8/23 8/7 0/1 0/1 0/51 0/56
’’ 5/10 10/57 10/60 25/99 30/100
’’ 5/2 0/0 0/0 0/0 0/0

Power
8/23 8/7 47/31 67/95 39/25 78/99
’’ 5/10 68/92 96/100 81/65 100/100
’’ 5/2 0/0 0/0 0/0 0/0

Seis.
8/23 8/7 3/17 55/21 0/3 0/6
’’ 5/10 7/68 86/70 12/40 15/45
’’ 5/2 0/0 0/0 0/0 0/0

Hum.
8/23 8/7 72/24 80/63 91/84 99/92
’’ 5/10 100/85 100/97 100/98 100/99
’’ 5/2 0/3 0/4 0/0 0/1

Peng.
8/23 8/7 0/0 0/0 15/89 85/98
’’ 5/10 0/0 0/0 81/99 100/99
’’ 5/2 0/0 0/0 0/0 0/0

low values of the profile which require more precision than discords,
that typically are higher ones. This fact takes more relevance in very
monotonic time series, where most of the subsequences are similar to
each other (e.g., the beats in an electrocardiogram – ECG).

The number of detected events and its significance must be eventu-
lly determined by a domain expert. Thus, we can think that presenting
time series subsequence to an expert, in its context, and moved

lightly to the left/right might end up with the expert coming to the
ame conclusion as if the subsequence did not move. For that reason
e introduce the concept of Accuracy ±10 (see Table 6), which is

he accuracy calculated for the motif/discord indices ranging in a ±10
nterval. Using this metric the accuracy peaks 100% for most of the
atasets.

Mixed precision configurations are aimed at balancing the trade-
ff between accuracy and performance (time/energy) of the matrix
rofile algorithms. We can reach high peaks of accuracy with the (8/23,
/10) configuration while reducing time and energy consumption as
escribed in Section 5.2.4.

.2.2. Large time series accuracy
We evaluate the accuracy of the larger time series using Tran-

CAMPfpga. To this end, we run the larger time series (between 1M
nd 2M elements) using the Alveo U50 FPGA, and evaluate the results
sing the Top-1000 accuracy metric (i.e., increasing K proportionally
o time series length). We calculate time series statistics using double
recision in the host side, which increases accuracy while it does
ot significantly affect the total execution time (statistics only take
1 s using 1 thread in a Xeon Gold for 2M data points). This fact is
articularly important in large time series, since statistics are calculated
n an accumulative manner and single precision is not enough to avoid
rrors.

From the algorithmic point of view, TranSCAMPfpga differs from
ranSCAMP in that (i) TranSCAMPfpga includes the possibility to

recalculate the covariance value from scratch after certain number
of elements of a diagonal, and (ii) TranSCAMP allows us to define
mixed-precision configurations. The first feature resets the accumulated
error due to calculation reuse across the diagonal, which increases
accuracy in most datasets and allows to potentially evaluate time
series of arbitrary length. We leave the mixed-precision evaluation of
TranSCAMPfpga for future work.

Figs. 20 and 21 show the accuracy results obtained for motifs and
11

discords, respectively. We observe that TranSCAMPfpga follows a
Fig. 20. TranSCAMPfpga Top-1000 motif accuracy results with respect to double
precision using a recalculation factor of 64k elements.

similar behavior than the results obtained for its CPU counterpart
implementation (TranSCAMP in Figs. 12 and 13). We make several
observations here. First, analyzing the larger time series, we observe
that single precision still provides almost 100% accuracy for all datasets
when helped by covariance recalculation. Moreover, there is still mar-
gin to reduce the exponent and mantissa bit count below single pre-
cision depending on the application. Second, we find that the top
part of the cubes are smaller in those series where the window size
is larger (e.g., Speech or EPG). This fact is explained because larger
window sizes have to deal with larger numbers, which may be out
of the range of representation during calculations. And third, those
datasets that present a randomness component (e.g., IMU) benefit from
lower exponent and mantissa combinations, since the average distance
is higher and there is no need for high precision to distinguish them.

We also evaluate the effect of changing the recalculation on the
accuracy. Fig. 22 shows the % of Top-1000 accuracy for the ana-
lyzed datasets with different exponent and mantissa combinations. We
analyze recalculation factors of every 64k and 256k elements of the
diagonal against turning this feature off. We observe that 64k elements
is the sweet-spot since it provides even better results than lower ones
(e.g., 16k) without having great impact on performance. Lower recal-
culation factors imply significant impact on performance as dot product
has to be calculated more frequently. In contrast, turning this feature
off for series of ≈2M elements leads to mismatching results. We note
that a recalculation factor of 16k for the Seismology time series leads
to a counterintuitive result. The explanation behind it relies on the fact
that the seismology time series is a very periodic and regular time series
without significant complexity (and, as a consequence, many motifs and
discords are highly similar). This scenario, previously observed in [51],
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Fig. 21. TranSCAMPfpga Top-1000 discord accuracy results with respect to double
recision using a recalculation factor of 64k elements.

Fig. 22. TranSCAMPfpga Top-1000 accuracy results with respect to double precision
when varying the recalculation factor.

induces a random component when generating the Top-K comparison
that takes special relevance when using the lower recalculation factor
for this type of time series.

We show an example of modifying the recalculation factor in
Fig. 23, where we present the matrix profile of the EPG dataset with
respect to the double-precision one. Notice that while recalculation fac-
12

tors of 16k and 64k provide accurate results (i.e., the curves overlap),
Fig. 23. EPG matrix profile when varying the recalculation factor using TranSCAMPf-
pga for a given mantissa and exponent combination.

Fig. 24. Execution time for different platforms when computing Seismology_short, using
window size of 512 elements (exp. 7 man. 10).

factor of 256k makes the profile always be close to 0 while turning
his feature off leads to a NaN scenario.

.2.3. TraTSA performance
We evaluate the performance of TraTSA when running in different

omputing platforms. We focus our attention on comparing Tran-
SCAMP versus TranSCAMPfpga, since according to sections 5.2.1 and
5.2.2, SCAMP provides more accurate results than SCRIMP for a wider
range of datasets.

Fig. 24 presents the execution times obtained when computing
the Seismology_short series using a window of 512 elements and an
exponent/mantissa combination of 7/10. Our FPGA execution times
also include the memory transfers from and to the FPGA. As can be
noticed, TranSCAMPfpga in an Alveo U50 integrated in the Xeon
Gold 6154 platform outperforms TranSCAMP in commodity servers
by 22.75× when using a 72-core Xeon Gold, and by 52.65× when
using a 64-core Intel Xeon Phi KNL. Compared to desktop computers,
TranSCAMPfpga outperforms an Intel i7-8700 by 126× and by 313×
an Intel i5-4570.

5.2.4. Energy savings
Emulated vs Hardware Transprecision. First, we show an energy

consumption comparison in Table 7 for the platforms in Fig. 24. As
expected, the FPGA solution not only provides benefits in terms of
performance but also reduced energy consumption. According to our
measurements, the Alveo U50 consumes 0.47 kJ when running Tran-
SCAMPfpga, taking into account the memory transfers and idle time
of the host CPU. This is way less than the CPU evaluated platforms,
where, for example, the most efficient one, which is the Xeon Gold
server, takes 82 kJ (174× more than the FPGA). This fact demonstrates
that hardware-based solutions are way more efficient than the emulated

ones.
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Table 7
Energy consumption for different platforms when computing Seismology_short, using a
window size of 512 elements (exp. 7 man. 10).

i5 i7 XeonPhi XeonGold Alveo

Platform 4570 8700 7210 6154 U50
Energy 180 KJ 127 KJ 132 KJ 82 KJ 0.47 KJ

Fig. 25. Normalized FPU energy using FPNew.

Transprecision FPU. Second, we present in Fig. 25 the normalized
energy consumption of (a) TranSCRIMP with respect to SCRIMP
double, (b) TranSCAMP with respect to SCAMP double and (c) Tran-
SCAMP with respect to TranSCRIMP with different precisions, respec-
tively. As the energy is calculated with respect to the number of FPU
operations performed by the algorithms, the proportion holds inde-
pendently of the time series. We can observe a 60% energy reduction
when using single precision instead of double for both algorithms.
Furthermore, we can not only expect a reduction in time for this
configuration due to an improved use of the memory hierarchy, but also
because of SIMD capabilities, allowing two single precision elements
computed at a time. We observe that single precision provides the same
accuracy than double in the majority of cases (see Figs. 10, 11, 12, 13,
20 and 21).

It is possible to reduce the energy consumption even further using
mixed precision. Our TransSCRIMP and TranSCAMP mixed precision
configurations can yield up to 50% and 25% energy reduction over the
single precision approach respectively. The savings for TranSCRIMP
are more pronounced since there are more operations computed in
low precision. The dot product is computed in high precision but the
distance in Eq. (1) is calculated in low precision. However, the distance
in TranSCAMP is given by the Pearson correlation coefficient in Eq. (8)
which entails fewer operations. We confirm this fact when comparing
TranSCAMP with respect to TranSCRIMP in plot (c) of Fig. 25, where
TranSCAMP reduces the energy consumption between 18% and 40%
for the same given precision. There are also a significant number of
comparisons computed in low precision in both algorithms, although
the energy cost of this operation is not as high as that of multiplica-
tions or sums, so the savings are not so high either. In contrast, the
SIMD support of the FPU yields roughly the same energy numbers but
opens the opportunity to improve the performance even more (up to 4
operations at a time).
13
6. Related work

Time series analysis. Multiple techniques for time series motif
and discord discovery can be found in the literature: [10,52–57],
including probabilistic solutions [10], spatio-temporal models [12], in-
dexing [58], symbolic representation [59] or Euclidean distances [19].
A survey of time series motif discovery can be found in [16]. Re-
garding matrix profile [19], we find multiple efforts to increase time
series analysis efficiency and performance based on commodity CPU
architectures, high-performance GPUs, heterogeneous systems and even
Processing-Near-Memory [60] in [22,40,61–63].
Transprecision computing. We can find the project of this paradigm
in [23], a CPU transprecision library for emulation in [29], FPGA trans-
precision libraries in [30,64] and also hardware implementations [24,
36,65–67].
Time series analysis using transprecision computing. The authors
of matrix profile provide a precision evaluation in [22]. They explain
how constant regions are a source of numerical instability due to zero
standard deviation. Additionally, they provide a comparison between
STOMP [62] and SCAMP, reporting maximum absolute error for each
execution. However, this work (i) does not compare SCRIMP vs SCAMP,
although they compare against GPU-STOMPopt which is based on the
same diagonal approach as SCRIMP but without the anytime property;
(ii) only considers standard IEEE floating-point representations, and
(iii) does not discuss whether motifs and discords are conserved in a
measurable manner.

To the best of our knowledge, there are no previous transprecision
time series analysis works, and particularly for matrix profile. In this
paper, we extend the work in [68].

7. Conclusions and future work

This work studies how time series analysis benefits from a trans-
precision approach, and introduces TraTSA, a framework that allows
defining the exact needed precision according to the requirements of
the specific application. The proposed TranSCRIMP, TranSCAMP and
TranSCAMPfpga implementations will help the community to design
energy-efficient time series analysis solutions based on transprecision
RISC-V processors, FPGAs or ASICs while minimizing area and power
requirements. Our FPGA-based solution is 22.75× faster than a 72-core
Xeon server thanks to the hardware transprecision support and the use
of optimization techniques. Additionally, we study how matrix profile
algorithms can benefit from an already presented transprecision FPU.
In this sense, our analysis reveals that, for a variety of applications, the
energy consumption of the matrix profile algorithms is reduced up to
3.3× compared with double precision while obtaining accurate results.

Future work comprises the evaluation of the transprecision analysis
of time series in complete implementations of RISC-V processors and
ASIC devices, analyzing how both performance and energy are affected
by this approach in a complete system environment (e.g., evaluating the
benefits in terms of data movement using the reduced datatypes).
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