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Abstract— Visual Place Recognition (VPR), the task of iden-
tifying the place where an image has been taken from, is at
the core of important robotic problems as relocalization, loop-
closure detection or topological navigation. Even for indoors,
the focus of this work, VPR is challenging for a number of
reasons, including real-time performance when dealing with
large image databases (∼ 104) (probably captured by different
robots), or the avoidance of Perceptual Aliasing in environments
with repetitive structures and scenes.

In this paper, we tackle these issues by proposing an off-
line mapping technique that abstracts a dense database of
georeferenced images without particular order into a Multi-
variate Gaussian Mixture Model, by creating soft clusters in
terms of their similarity in both pose and appearance. This
abstract representation is obtained through an Expectation-
Maximization algorithm and plays the role of a simplified map.
Since querying this map yields a probability of being in a
cluster, we exploit this ”belief” within a Bayesian filter that
regards previous query images and a topological map between
clusters to perform more robust VPR.

We evaluate our proposal in two different indoor datasets,
demonstrating comparable VPR precision to querying the full
database while incurring in shorter query times and handling
Perceptual Aliasing for sequential navigation.

Index Terms— Place Recognition, Map Abstraction,
Appearance-based localization

I. INTRODUCTION

Visual Place Recognition (VPR) [1], [2] aims to detect the
most similar place to a certain query image, given a map con-
sisting of a generally large database of georeferenced images.
This task has received increasing attention during the last
decades in the robotic community, due to its involvement in
important areas as loop-closure detection, re-localization, or
topological navigation. For such tasks, the VPR database is
built from geo-tagged images collected during several robot
navigations that are encoded with some global descriptor [3],
[4], either as a sequence [5], or as a set of unordered elements
[6]. This database is treated as an Appearance Map (AM)
of the environment. In the case of indoors, where the robot
may revisit multiple times some parts of the environment, the
AM will typically include repeated views. Not only does this
not contribute any meaningful information to the map, but it
increases its size to typically tens of thousands of images.

This work has been funded by the Government of Spain in part un-
der grant FPU17/04512, in part under the research project ARPEGGIO
(PID2020-117057GB-I00), funded by the European H2020 program. We
gratefully acknowledge the support of NVIDIA Corporation with the
donation of the Titan X Pascal used for this research.

The authors are members of the Machine Perception and Intelligent
Robotics Group (MAPIR-UMA), within the Malaga Institute for
Mechatronics Engineering & Cyber-Physical Systems (IMECH.UMA),
University of Malaga, Spain. {ajaenal, famoreno,
javiergonzalez}@uma.es

Fig. 1: Our work aims to abstract unordered georrefer-
enced images (black triangles) into clusters Cj defined as
multivariate Gaussian distributions (colored ellipses). These
distributions represent spatial regions with visual appearance
resemblance that can be interpreted as places.

Commonly, VPR is addressed on such AMs as an Image
Retrieval (IR) problem that searches the Nearest Neighbors
(NNs) of the query image according to a certain appearance
similarity measure (e.g. Euclidean distance between descrip-
tors). Then, the procedure yields an estimated location from
the k most similar elements in the database.

This IR approach presents the following limitations:
• It usually follows a similarity criteria for categorization

using only the appearance, disregarding the spatial
aspect of VPR, hence not being able to deal with
Perceptual Aliasing (i.e. places distant in pose but
sharing similar appearance). This subsequently leads
to incorrect pose estimations. In traditional VPR, this
issue is typically solved by using additional topology
from sequential databases [7], [8], [9], unavailable for
unordered maps.

• The selection of the NNs follows a hard classification
approach, as no information about their confidence is
provided. This makes IR more difficult to recover from
incorrect query results, as well as unable to be included
in probabilistic frameworks.

• Querying large databases becomes highly time-
consuming, often hindering real-time operation as re-
quired by mobile robotics applications.

• The result is a set of discrete, unrelated candidates
where reliable pose interpolation is not possible, so
post-processing [10], [11], [12] is commonly required
to obtain a refined estimation for the image pose.

Focusing on performing robust VPR in indoors with
mobile robots, we propose in this work to off-line abstract the
information stored at large databases of geo-tagged images



without any established order into a set of clusters with
associated probabilistic information (as depicted in Fig. 1).
Our proposal represents the map as a Multivariate Gaussian
Mixture Model (MGMM), grouping images that are both
similar in appearance and pose over a new, joint pose-
appearance space. The parameters of each distribution are un-
supervisedly estimated through an Expectation-Maximization
(EM) formulation. Thus, each cluster represents a place that
can be identified by a VPR system.

This approach presents a series of advantages to cope with
the aforementioned IR limitations:

• Creating clusters by taking into account not only the im-
age appearance but also their poses allows us to robustly
handle Perceptual Aliasing during the clusterization.

• Our approach eliminates redundant information from
the map, since each group of images is represented by
the probability distribution that simultaneously best fits
their pose and appearance (see Fig. 1). This way, given a
query image, our proposal yields a probability value for
each cluster, avoiding hard classification and allowing
for multi-hypothesis instead.

• Since the number of clusters is significantly lower
than that of elements in the original database, we can
maintain adequate VPR precision while incurring in
much shorter query times.

• Despite working with unordered image databases1, we
propose a topological model based on the pose informa-
tion of the images to generate transitions between the
clusters. This can be further exploited as topology to im-
prove VPR and to avoid PA effects during localization.
On the contrary, typical VPR approaches would require
sequential databases to obtain such improvement.

To demonstrate this, we validate our proposal in two
different indoor datasets employing three different state-of-
the-art image global descriptors, in order to, first, create
an abstracted map with an associated topology, and then
perform probabilistic VPR within it for a sequence of query
images. The results show that our approach naturally deals
with PA and manages multiple-hypothesis in the pose esti-
mation, effectively converging to the actual cluster in short
time. The performance of our VPR proposal, in terms of
precision-recall, is comparable to querying the full database
with a threshold of (5.0m, 10◦) while incurring in a fraction
of the computational cost, and achieves similar performance
than other state-of-the-art VPR methods. Our code for map
abstraction is available2, as well as a demonstration video3 .

II. RELATED WORKS

Map simplification aims to retain the most representative
subset of samples from a large map, removing elements
that do not contribute to the localization because of their
redundancy or lack of distinctiveness. The topic has been

1Our proposal does not rely on any pre-established order of the input
data, i.e. sequences.

2https://github.com/AlbertoJaenal/
MapAbstractionVPR

3https://youtu.be/i6oXaAKcEII

thoroughly studied in Visual Localization and SLAM, where
matching 2D local features against large 3D models becomes
expensive and inefficient [13], proposing some solutions as
3D model compression [14], [15], prioritized searches [16],
matching constraints [17] or feature temporal modeling [18].

On the other hand, while geo-tagged image databases for
VPR typically represent large environments, the main efforts
during the last years for better VPR scalability have focused
on optimizing the search either (i) by reducing the size of
the descriptor through appearance-aware representations as
quantization [19], [20] and binarization [21], [22]; or (ii)
by replacing NNs approaches with more efficient querying
techniques such as hashing [8], [9]. In this work, we propose
to improve VPR scalability on large databases through map
abstraction, that is, modelling the pose and appearance of
the map elements so that redundancies can be removed.
Furthermore, the probabilistic nature of such abstraction
allows us to provide additional information to the map.

Commonly, sparse appearance representations are obtained
by applying uniform sampling to single-sequence databases
according to thresholds in pose [7], [23], [24], which pro-
duces an ordered set of key-samples. Aiming to improve
such selection, [23] takes into account both appearance
and position in a network flow formulation, while SeqNet
[25] introduces descriptors for short subsequences that are
employed in a hierarchical VPR framework. Some authors
have studied the abstraction of multi-sequence databases: in
[26] coresets are employed for an hierarchical summarization
of the environment; Vysotka et al. [27] employ an association
graph to deal with retrieval and relocalization and [28]
propose smooth interpolation areas for accurate localization.

In contrast, our approach is able to handle unordered
databases without requiring prior topology and produces a
map abstraction in the form of distributions in pose and
appearance representing places in the original map.

III. APPEARANCE MAP ABSTRACTION AND VISUAL
PLACE RECOGNITION

In this section, we first provide a description of the
proposed off-line map abstraction approach, grounded on
the MGMM parameter estimation through the Expectation-
Maximization (EM) algorithm. Then, we describe a prob-
abilistic Visual Place Recognition pipeline that builds upon
the set of clusters estimated by the EM algorithm to improve
its robustness against Perceptual Aliasing

A. Appearance map and combined space

Let us first formally define an Appearance Map (AM)

M = {(pi,di)}Ni=1, (1)

as an unordered set of N pairs, each one formed by a D-
dimensional global image descriptor di ∈ RD and the 2D
pose pi ∈ SE(2) from where the image was taken.

Since our key motivation is to simultaneously exploit
the pose and appearance coherence, we build a joint pose-
descriptor space E = SE(2) ⊕ RD whose elements X =
{xi}Ni=1 result from the concatenation of the map samples



components: xi =
[
pi di

]⊺ ∈ E . Our proposal performs
EM-based clustering in this combined space.

B. Expectation Maximization

The Expectation-Maximization (EM) algorithm [29] aims
to estimate the parameters of a distribution for some known
input data, applying Maximum Likelihood Estimation over
a given likelihood function.

Specifically, for a given input AM M, our EM formulation
finds the parameters of a set of M clusters C = {Cj}Mj=1.
Each cluster Cj =

(
N (µj ,Σj), P (Cj)

)
represents a place

in M and is composed of: the mean µj ∈ E and covariance
matrix Σj ∈ E × E of a multivariate Gaussian distribution
lying in the joint space E , and its prior probability P (Cj).

The EM algorithm iteratively applies two steps: (i) Ex-
pectation, where the posterior probabilities of the clusters
are estimated for the given data samples:

P
(
Cj

∣∣xi
)
=

P
(
Cj

)
P
(
xi
∣∣Cj

)
∑N

j=1 P
(
Cj

)
P
(
xi
∣∣Cj

) , (2)

and (ii) Maximization, where the cluster parameters (i.e.
P
(
Cj

)
, µj , and Σj) are updated to maximize the probability

of the data. These steps are repeated until convergence to
obtain an abstracted map, that is, the optimal set of clusters
that best represents the data:

C∗ = argmax
C

P
(
X
∣∣C). (3)

In (2), the likelihood of a sample pair xi belonging to the
cluster Cj is defined as a Gaussian density function on E :

P
(
xi
∣∣Cj

)
∼ N

(
xi|µj ,Σj

)
. (4)

However, the high dimensionality of state-of-the-art image
descriptors (typically D > 1000) causes E to become an
highly undersampled space, i.e. the number of input samples
|X | for the EM is significantly scarce at such dimensions.

To alleviate this situation, we propose to approximate (4)
adopting the next assumptions about the covariance matrix:

• The pose and descriptor of an image are conditionally
independent given a certain cluster (pi ⊥⊥ di | Cj).

• All the components of the descriptor are independent
between them and share the same variance value σ2

d.
Thus, we can rewrite (4) as:

P
(
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)
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pi,di
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j
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]
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j 0
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d
j

)
,

(5)

being (µd
j ,Σ

d
j = σd

j
2 · ID) the mean and simplified co-

variance matrix of the descriptor distribution and (µp
j ∈

SE(2),Σp
j ∈ se(2) × se(2)) the distribution parameters for

the pose. Note that, to consistently handle rotations, the pose
distribution is defined on the tangent space se(2). Thus, the
pose probability of a sample at such distribution is given by:

N
(
pi|µp

j ,Σ
p
j

)
=

=
1√

(2π)3
∣∣Σp

j

∣∣ exp
(
−1

2
ξij
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Σp

j

)−1
ξij

)
, (6)

where the pose twist [30] from the distribution mean to the
sample is denoted by ξij = log(µp

j ⊖ pi) ∈ se(2).
However, the appearance term in (5) still suffers from

the impact of its high dimensionality in the normalization
factor of the Gaussian density function. To mitigate this, we
approximate it as the following univariate distribution:
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(7)

The appearance variance for each cluster σd
j
2 is estimated

in the maximization step as:

σd
j

2
=

1∑
i P

(
Cj

∣∣xi
) ∑

i

P
(
Cj

∣∣xi
)
||di − µd

j ||22. (8)

C. Topological model

The topological model of the abstracted map C∗ refers
to the probability of the robot moving between two clusters
P (Cj |Ck). Such probability is computed according to the
pose term of each cluster:

P (Cj |Ck) ∝

{
N

(
µp

j |µ
p
k,Σ

p
k

)
+N

(
µp

k|µ
p
j ,Σ

p
j

)
if j ̸= k

maxk P (Cj |Ck) otherwise
(9)

The transition probabilities are subsequently normalized
for each cluster.

D. Probabilistic Visual Place Recognition

Once the abstracted map C∗ is built, performing proba-
bilistic VPR (pVPR) within it translates into estimating the
probability P (Cj |dq) of each cluster to contain a particular
query descriptor dq . The pVPR output probabilities corre-
spond to places, i.e. pose distributions N

(
µp

j ,Σ
p
j

)
of the

most probable clusters. Note that this implies using only
appearance information as input, leaving the pose component
of the joint space E unobservable. Consequently, only the
cluster information related to the appearance can be taken
into account for querying. In fact, this may incur in Percep-
tual Aliasing when querying the map. This issue is handled
by defining a topology over the abstracted map, which, along
with the probabilistic nature of C∗, allow us to disambiguate
the place estimation through recurrence.

Commonly, robots navigate indoors equipped with a cam-
era while gathering a sequence of images taken at T time-
steps, which in turn are transformed into appearance descrip-
tors: dq,T = [dq

1,d
q
2, ...,d

q
T ]. We assume that the robot never

leaves the space covered by any of the clusters in C∗.



In this situation, the probability of the robot being in Cj

at a time t is expressed with the topological filter:

P (Cj |dq,t) = P (dq
t |Cj)

∑
k

P (Cj |Ck)P (Ck|dq,t−1) (10)

IV. EXPERIMENTAL EVALUATION

This section describes the experiments conducted to assess
the outcome of our proposal for map abstraction and VPR.

A. Datasets

We employed two publicly available datasets captured
at indoor environments by a robot as unordered sets of
descriptor-pose pairs, with available revisits under different
appearance conditions:

• The COLD database [5] consists of images from a
real-world office (Freiburg, part A) gathered at 5 Hz.
The input database for the map abstraction includes all
available images from cloudy days (Cloudy-database),
totalling ∼ 13k unordered images from six different
sequences (each one visiting different parts of the envi-
ronment). The evaluation comprehends Seq2 night1, a
full navigation of the environment under artificial illu-
mination (Artificial lights), and Seq1 sunny1, a partial
visitation on a sunny day (Sunny-partial), with more
challenging appearance changes.

• The Robot at Virtual Home (R@VH) dataset [31]
provides images within a simulated house (Home11) at
30 Hz. In this case, the database consists of ∼ 30k
images from a random navigation with artificial illumi-
nation at night that contains multiple revisits. The eval-
uation sequences includes a single navigation through
the whole house under three different settings for the
artificial illumination: completely on (Artificial lights),
with similar appearance; randomly activated (Random
lights), which is more challenging; and completely off
at dusk (Dark), really challenging.

Based on [24], we extracted from each evaluation se-
quence 100 subsequences composed of 200 images gathered
every 0.15m.

Regarding the appearance representation, we employ three
global image descriptors: (i) 4096-sized NetVLAD descriptor
[4]4; (ii) 2048-sized Resnet-101 Generalized Mean (GeM)
descriptor from [33]; and (iii) a Bag of Words (BoW)
descriptor [3] built from ORB features, with vocabulary
trained in [34] accumulated into 1024 bins.

B. Map abstraction setup

One of the key aspects for the EM algorithm to converge
is the selection of the initial set of clusters.

This initialization is accomplished by applying the K-
Means (KM) clusterization method to the SE(2) poses of the
input samples, represented as points in the form (x, y, θ) ∈
R3. The decision on the number of clusters M , however,
required a careful study that consisted on the evaluation of

4Whose implementation is available at [32].

several KM outputs with varying M according to the Davies-
Bouldin (DB) index [35]. This index rewards clusterizations
with dense and separate clusters, being optimal when mini-
mizing:

DB =
1

M

M∑
i=1

max
j ̸=i

{
d̄i + d̄j
di,j

}
, (11)

with the average pose radius of the i-th cluster to its centroid
µp

i denoted by d̄j =
√

1
Ti

∑Ti

k=1 dSE(2)(xk,µp
i )

2; and
di,j = dSE(2)(µ

p
i ,µ

p
j ) the distance between the centroids

of the i-th and j-th clusters. The metric dSE(2)(x1,x2) =
||t1− t2||2+ | log(R⊺

1R2)|) ensures a consistent distance on
SE(2). The results of this study can be seen in Fig. 2, which
led us to select the M values with lowest DB index: 35, 65
and 90 for COLD and 38, 74 and 98 for R@VH.

Afterwards, the EM cluster means (µj) were initialized
using the nearest database samples in terms of pose to the
centroids of the resulting KM clusters. The initial EM covari-
ances for poses and descriptors (Σp

j and Σd
j ) were obtained

from the samples forming each resulting KM cluster.
Finally, and regarding the map topology, we found that

the clusters tended to group samples with different posi-
tions while keeping similar rotations, hence yielding small
covariance values for the orientation (Fig. 2). This happens
especially in long corridors, where the robot movement is
mostly linear. When using this covariance into the transition
model in (6), the orientation term becomes excessively large,
only connecting clusters with similar rotations. In order to
avoid such situations, we have added to the rotational part of
the covariance matrix Σp

k in (6) an additional value σ∗2
θ = 1.

C. Map abstraction validation

This section evaluates the representativeness of the created
map with respect to the environment, measured as the mean
appearance distance between a sample and the samples
nearby within a given threshold.

For an abstracted map, we consider that a sample q falls
within a cluster c if its pose lies in the cluster pose distri-
bution with a 99.9% confidence. In the SE(2) 3-dimensional
space, this equals to remain in a region within µp ± 4Σp

[36]. Thus, the Mahalanobis distance Dc,q between the query
and the cluster must be less than 4.

Dc,q =

√
ξpc,q

⊺
(Σp

c)
−1

ξpc,q , (12)

with ξpc,q = log(µp
c ⊖ pq).

Table I compares, for the COLD database, the repre-
sentativeness for three common pose thresholds in IR and
the described confidence interval for three abstracted maps
with different M values. In the case of the IR databases,
we computed (12) for all the database samples within the
specified threshold, while in the case of the abstracted map
is only computed for each cluster. The results show that our
proposal groups samples with an appearance similarity as
good as that for the two most restrictive IR pose thresholds.



Fig. 2: First row: preliminar study of the Davies-Bouldin (DB) Index (11) for K-Means maps with varying number of
clusters. Second row: example of two abstracted maps with minimum DB in R2 (M = 35 for COLD and M = 38 for
R@VH), depicting the means (arrows), covariances (color blobs) and topology (black lines) for both datasets

TABLE I: MEAN DESCRIPTOR DISTANCE FOR COLD

Database NetVLAD ImRet ORB+BoW
Full database 0.25m, 2◦ 0.6408 0.3649 0.8245
Full database 0.50m, 5◦ 0.8454 0.5140 0.9891
Full database 5.0m, 10◦ 1.1497 0.8727 1.1457

EM M = 35 0.7903 0.5751 0.7921
EM M = 65 0.7510 0.5312 0.7803
EM M = 90 0.7459 0.5067 0.7725

D. Visual Place Recognition

In this section, we discuss the VPR outcome for our
proposal, compared to conducting IR on the full database.
This evaluation is provided in terms of (i) precision, (ii)
query time, (iii) robustness against Perceptual Aliasing (PA)
and (iv) precision in single sequence databases. However,
we need to clarify that, due to the probabilistic nature of our
abstracted map, it cannot be directly compared with standard
IR methods when assessing VPR performance.

Typical VPR evaluation on geo-referenced databases [2],
[37] relies on the pose error between the retrieved image
and the query [8], [23], [24]. Thus, a query is considered
to be correctly localized if such error falls below a certain
tolerance. In contrast, our pVPR proposal defines an ab-
stracted map as a collection of pose-appeaeance probability
distributions that span across the sampled joint space of the
original database, represented by their means and covari-
ances. Consequently, the pose error between the query image
and the mean of the selected distribution does not properly
represent the precision of our system, as the clusters will
represent spatial regions of varying sizes. In that manner,
we consider a query to be correctly localized if its pose falls
under the 99.9% confidence interval for the retrieved cluster.

1) Precision comparative: First, we have validated the
VPR precision performance by means of the precision-recall
metric for an evaluation sequence. Table II depicts the Area
Under the Curve (AUC) for the precision-recall metric of

both approaches for each dataset and descriptor, including
three different numbers of clusters for each abstracted map.
The results seem to show consistency between the DB index
for each M and the AUC value, especially for the COLD
database. For the R@VH dataset, though, the drop in pre-
cision for high M values might be caused for the excessive
number of clusters in a relatively small environment, hence
leading to excessive PA. In any case, the results show
comparable precision for both datasets between our approach
with M ≈ 35 and a standard IR procedure on the full dataset
with the threshold of (5m, 10◦).

TABLE II: PLACE RECOGNITION PRECISION (AUC).

Database NetVLAD ImRet ORB+BoW

COLD

Full database 0.25m, 2◦ 0.2940 0.2635 0.0938
Full database 0.50m, 5◦ 0.6396 0.6585 0.3158
Full database 5.0m, 10◦ 0.9297 0.9329 0.5646

pVPR (EM) M = 35 0.9340 0.8302 0.5702
pVPR (EM) M = 65 0.6432 0.6175 0.5325
pVPR (EM) M = 90 0.8682 0.7404 0.5227

R@VH

Full database 0.25m, 2◦ 0.2406 0.2764 0.0665
Full database 0.50m, 5◦ 0.6730 0.7709 0.2579
Full database 5.0m, 10◦ 0.7916 0.9435 0.3121

pVPR (EM) M = 38 1.0000 1.0000 0.8152
pVPR (EM) M = 74 0.9638 0.5473 0.4235
pVPR (EM) M = 98 0.5762 0.3400 0.3470

2) Time performance: We have measured the computa-
tional time spent for a single query by each of the previously
assessed methods. The experimental evaluation is carried out
with an Intel Core i7-6700K desktop computer with 16-GB
RAM, employing the NumPy library. Note that the compu-
tational time does not include the descriptor extraction.

Table III compares the average time per step for the pVPR
and for one IR query. Due to the sparsity of our abstracted
map, pVPR query times becomes more than two orders of
magnitude smaller for all the evaluated maps, proving its
capacity for real time operation within unordered databases.



Fig. 3: Perceptual Aliasing (% of incorrectly localized queries) incurred during the localization for the different evaluation
sequences on maps with M ≈ 35, fixed for single-image IR. Note that the sampling frequency is different for each dataset.

TABLE III: MEAN QUERY TIME PER STEP (ms)

Database NetVLAD ImRet ORB+BoW

COLD

Full database 160.0659 80.6049 40.6822
pVPR (EM) M = 35 0.1476 0.0946 0.0708
pVPR (EM) M = 65 0.2282 0.1297 0.0896
pVPR (EM) M = 90 0.3773 0.1766 0.1100

R@VH

Full database 525.2183 255.3932 129.8930
pVPR (EM) M = 38 0.1408 0.0908 0.0658
pVPR (EM) M = 74 0.2562 0.1452 0.0988
pVPR (EM) M = 98 0.9914 0.5202 0.4077

3) Perceptual Aliasing: As stated before, PA is one of the
main challenges of VPR, where similar images but far in pose
cause incorrect localization estimates. We aim to evaluate
the robustness of our proposal against such circumstance
compared to performing IR over the full original database.

For that purpose, we must first define the effect of Per-
ceptual Aliasing over localization, i.e. when an estimate is
incorrect. For that, we define the next thresholds: in the
case of IR, we define a pose error of (2.5m, 60◦) while
for our approach we keep the same threshold (out of the
99.9% confidence). Then, we measure, for all the sampled
subsequences, the total percentage of incorrect estimations
when applying IR and our pVPR filter on the maps of
M ≈ 35 with topology as described in Section III-D.

Fig. 3 depicts the time spent until convergence between
both approaches for each dataset, descriptor and evaluation
sequence. Note that, as IR is a single-shot method, the
percentage of PA is constant over time. Besides, as the
full database is dense in both datasets (see Section IV-A),
the high sampling of the environment produces generally
low PA percentage for the IR, although not zero. In this
scenario, our proposal initial estimation is worse but, thanks
to the constructed topology and the recursive estimation, it
is able to quickly eliminate the effects of PA, eventually
leading the pVPR localization to converge to the real cluster.
It is important to remark here that the topology has been
built from an initial set of unordered images, and no other
sequential information has been employed during the map
abstraction and topology construction.

Finally, in terms of time efficiency, and relying on the re-
sults shown in Section IV-D.2, our proposal requires smaller
convergence time than a single IR query on the full database.

4) VPR on sequential databases: Typical VPR ap-
proaches localize on single-sequence databases, exploiting
sequential topology to provide accurate estimates. In order
to enable comparison, we abstracted a database composed
only of the Seq2 cloudy2 from the COLD Database. We
compare the mean localization performance on both COLD
evaluation sequences employing NetVLAD, using our pVPR
localization on a map with M = 35 against IR and two
online available state-of-the-art methods: the topological
filter from [24] with NetVLAD descriptors and SeqSLAM[7]
with images subsampled to 48×64. As a final note, take into
account that the two later approaches exploit the sequentiality
between the database elements, while our approach considers
them as unconnected during the map abstraction.

TABLE IV: PLACE RECOGNITION PRECISION (AUC)
(COLD DATASET & NETVLAD DESCRIPTOR)

Model 0.25m, 2◦ 0.50m, 5◦ 5.0m, 10◦ P=99.9%
Single IR 0.0202 0.2828 0.7246 -

Top. Filt. [24] 0.1748 0.4032 0.8385 -
SeqSLAM [7] 0.0194 0.0269 0.0913 -

pVPR M = 35 - - - 0.5849

Table IV depicts the AUC score for each method, demon-
strating that SeqSLAM is not able to perform in this
database, while our approach obtains comparable or im-
proved performance than the remaining methods with pose
error thresholds of (0.5m, 5◦) and (5.0m, 10◦).

V. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a method that abstract
dense, unordered image databases of indoor environments,
by grouping similar images in both pose and appearance
into soft clusters with associated probabilistic information
in an off-line process. These clusters can be topologically
connected and represent places in the map, defined as a Mul-
tivariate Gaussian Mixture Model in a joint pose-appearance



space. This unsupervised clusterization process is based on
the Expectation-Maximization algorithm.

Our method addresses Perceptual Aliasing during the
map abstraction thanks to performing clusterization in the
combined pose-appearance space. Besides, its effects in VPR
are avoided by exploiting the probabilistic nature of the
abstracted map and the created topology between clusters
within a Bayesian localization filter for sequential queries.

We have determined the optimal number of clusters for
each dataset, and have evaluated how the abstracted maps
represent their environment in terms of appearance, com-
pared with typical pose error thresholds. The probabilistic
VPR filter has been evaluated in two indoor datasets, demon-
strating comparable precision to IR over the full database
in considerably shorter times. The filter also demonstrates
to address Perceptual Aliasing for sequential data on the
abstracted maps, besides achieving comparable performance
to state-of-the-art methods on single sequence databases.

Future work includes: (i) to extend the applicability of
this approach to outdoor environments, regarding more chal-
lenging conditions as SE(3) poses and lack of structure; (ii)
studying different topological models, more suited to the
abstracted representation; and (iii) a hierarchical localization
model build upon the abstracted maps able to provide accu-
rate geometrical pose estimations for the queries.
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