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Abstract: Service robotics involves the design of robots that work in a dynamic and very open
environment, usually shared with people. In this scenario, it is very difficult for decision-making
processes to be completely closed at design time, and it is necessary to define a certain variability
that will be closed at runtime. MAPE-K (Monitor–Analyze–Plan–Execute over a shared Knowledge)
loops are a very popular scheme to address this real-time self-adaptation. As stated in their own
definition, they include monitoring, analysis, planning, and execution modules, which interact
through a knowledge model. As the problems to be solved by the robot can be very complex, it may
be necessary for several MAPE loops to coexist simultaneously in the robotic software architecture
endowed in the robot. The loops will then need to be coordinated, for which they can use the
knowledge model, a representation that will include information about the environment and the
robot, but also about the actions being executed. This paper describes the use of a graph-based
representation, the Deep State Representation (DSR), as the knowledge component of the MAPE-K
scheme applied in robotics. The DSR manages perceptions and actions, and allows for inter- and
intra-coordination of MAPE-K loops. The graph is updated at runtime, representing symbolic and
geometric information. The scheme has been successfully applied in a retail intralogistics scenario,
where a pallet truck robot has to manage roll containers for satisfying requests from human pickers
working in the warehouse.

Keywords: knowledge representation; MAPE-K loop; runtime model

1. Introduction

Robotics technology is currently spreading from the highly structured environments
with well-defined use cases of large-scale mass manufacturing to a wider range of market
domains. In contrast to the somewhat standard mechatronic systems used in industrial
robotics, these new application areas demand robots to adopt many different mechanical
forms and be equipped with specific sensors and actuators. They should also interact with
different unstructured and dynamic environments, often sharing space and tasks with
people. Furthermore, robots must be endowed with the particular functionalities required
to accomplish the very specific use cases that each application area requires, but also fulfill
non-functional properties such as safety or security. For deployment in these challenging
scenarios, robots must be autonomous, but this autonomous capability must be revisited in
order to have an effective impact on the adoption of robots.

Among the core technologies involved in increasing autonomy in robotic systems, one
relevant topic is self-adaptation. If an autonomous robot is to be able to operate in a real
world setting without any form of external control for extended periods of time, we can
assume that, in the previously described scenario, it is mandatory that an autonomous
robot can monitor the context, self-adapting its behaviour to perceived changes. A key
concept behind adaptability is that of variability: robotic platforms heterogeneous in
hardware, software, and capabilities; applications with different quality requirements
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and particularities, and several ways of adapting a robot for a given use case. In some
sense, deploying robots in one of these new scenarios can be seen as a work of tuning the
variability to end up with a final configuration (hardware/software/behaviour/safety-
security-performance attributes) that suits the use case. Variability can be partly set at
design-time by the manufacturers, engineers or users. But there is also a part of the
variability that should be closed at runtime. This part will be resolved by self-adaptation
and autonomous decision making. This approach implies the deployment of a strategy to
discover this unconstrained variability, the runtime mechanisms to monitor the internal
and external context information, and optimisation procedures to close, also at runtime,
this remaining variability. The MAPE-K feedback loop [1] is a well-adopted model for
managing autonomous decision-making and self-adaptation.

The MAPE-K loop is a classic control structure in autonomic computing. After dividing
up the system into a managed system and an adaptation engine, it defines a loop consisting
of four steps; Monitoring, Analysis, Planning, and Execution. All these steps operate on
the basis of a common knowledge base, which guides the behaviour of the robot at each
step of the loop. The first step of the MAPE loop is the monitoring of the controlled system.
The aim is to collect data about the state of the managed system. It is relevant to note
that, for executing a task, the system will require in-depth knowledge to understand when,
where, what, and how to do it. Captured data can be enriched to become a reusable piece
of knowledge. In any case, the existence of a knowledge gap between the internalised
concepts and those needed to solve the task may result in the task not being correctly solved.
Cognition can be used to bridge this gap by modelling, applying, and learning domain-
dependent contextual knowledge [2]. In the Analysis step, the representation of the world
is processed to determine the conditions required to trigger specific adaptation actions.
The Planning step uses the inferred symptoms, as well as the policies defined at design-time,
to define the intermediate actions to be implemented on the system. The Execution step is
in charge of implementing the planned actions using the available resources.

A single MAPE loop is not always a sufficient solution for managing complex adapta-
tions [3]. In the software architecture controlling the robot’s behaviour, several loops will
run in parallel in order to satisfy several goals (e.g., detecting and locating a roll container,
meanwhile approaching in order to pick it up), all of them necessary for completing a task.
In these scenarios, the scheme must be extended for supporting intra-loop and inter-loop co-
ordination. Intra-loop coordination will enable MAPE computations within one loop to be
coordinated. Inter-loop coordination will enable MAPE computations across multiple loops
to coordinate with one another. This will allow the MAPE computations of different loops
to coordinate the various phases of adaptations. On the other hand, as it was pointed out
by Giese et al. [4], the MAPE scheme must be slightly extended when runtime models are
considered. A runtime model is a dynamic knowledge base that, in our case, can abstract
useful information about the robot and its operational context. Thus, the runtime model
augments the information available at design-time with information captured at runtime.
This allows a system to successfully operate in a dynamic context [4]. This paper proposes
to deal with both initiatives by implementing a runtime model as an internal representation
including symbolic and metric information. The Deep State Representation (DSR) [5,6]
is a multi-labelled directed graph that holds symbolic and geometric information within
the same structure. Symbolic tokens are defined as logic attributes related by predicates
that are stored within the graph in nodes and edges. Geometric information is stored as
predefined object types linked by 4 × 4 homogeneous matrices. This information is also
stored as nodes and edges of the graph. In our proposal, the DSR is a unique representation
shared and updated by all software agents in the architecture. Synchronisation in the
representation is addressed by means of messages that are annotated in the DSR [6]. At
the perceptive level, nodes/edges are only updated by specific agents—this mapping is
established at design time: for instance, only the PersonDetection agent can annotate in
the DSR that the robot is detecting or not detecting a person or group of people. At the
deliberative level, the decision-making agents annotate messages in the DSR that allow the
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other decision-making agents to know what the current running action and its execution
state are.

Thus, we can affirm that all steps from the MAPE loop are simultaneously running.
The software agents in charge of detecting obstacles or people or updating the battery value
are always updating the model (by modifying the values on nodes or edges or by adding
new items to the graph). Using this (internal and external) contextual information, other
software agents will estimate non-functional properties, such as safety or performance.
Estimated as Quality-of-Service metrics, their values will be also annotated in the DSR. Thus,
raw context values and estimated QoS metrics will be available to all task-based agents
present in the architecture and, together with information about subgoals and actions,
they constitute the basis for allowing intra- and inter-loop coordination. The Plan step
will monitor the evolution of the context for suggesting modifications to the deliberative
course of action, but this evolution will also modulate the behaviour of more reactive
agents. The goal is to synchronize the activity of all agents in the architecture through the
annotations on the DSR.

The rest of the paper is organized as follows: Section 2 discusses related work on
knowledge representation for robotics that can help their self-adaptation, focusing on
those graph-based representations combining semantics and geometric concepts. Section 3
presents the DSR as a runtime model. Moreover, we will show how the DSR supports
coordination of MAPE loops. The whole MAPE-K framework is described in Section 4.
This section introduces the definition and interaction of the MAPE loops through the DSR.
Section 5 provides details about our instantiation in the intralogistics domain. Experimental
results are presented in Section 6. Finally, conclusions and future work are drawn in
Section 7.

2. Related Work

When designing an autonomous robot, ideally it should be directed by our commands,
planning its actions and executing a sequence of tasks whose aim is to achieve the desired
result [7]. To achieve this, we must endow the robot with some kind of knowledge, which
allows it to perform these steps. If the knowledge representation is not able to cope
with a relevant part of the variability that the context can introduce (something difficult
to complete when people must be considered as part of this context), the robot will be
strongly tied to a single view of the reality, and will not be able to respond appropriately
to events not considered in a nominal course of action. Defining at development-time a
representation that will be able to continuously exhibit good performance at runtime is
practically impossible. It is then highly desirable that the representation will be able to
abstract useful information about the outer environment and about the robot itself, and that
this can be continuously updated during execution.

A self-adaptive system is the one that, when a change in the system itself or in the en-
vironment occurs, is able of changing its behaviour, structure, and/or internal parameters
autonomously. To help a robot to unfold this behaviour, the knowledge representation must
be able not only to manage information about the robot’s actions and environment, but also
to relate the semantics of these concepts to its internal components for decision making.
For bridging the gap between the knowledge descriptions and the knowledge specifica-
tions about the implementation of the software solving tasks, Hochgeschwender et al. [8]
proposed a graph-based knowledge representation. This graph is the basic tool for storing,
composing, and querying domain models.

Graphs are a very popular tool for representing knowledge in robotics due to its
simplicity for managing the information and its powerful capability to display us this
information [7]. They can easily tie together high-level knowledge and low-level features or
attributes. This is specifically true for semantic graphs, whose nodes and edges describing
semantic concepts and details can be also related with spatial or geometrical information.
For instance, in the proposal by Dang and Allen [9], semantic grasps and semantic af-
fordance maps are introduced. Semantic grasps are generated using an example-based
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planning framework. These stable grasps are functionally suitable for specific object manip-
ulation tasks. Then, semantic affordance maps relate local geometry to a set of predefined
semantic grasps, appropriate to different tasks. The aim is to estimate the pose of a robotic
hand with respect to the object for achieving the ideal approach direction required by a
particular task.

The idea of extending the spatial information with semantic knowledge in the domain
of robot navigation was present in the proposal by Galindo et al. [10]. In this work, the au-
thors define a semantic map that integrates hierarchical spatial information and semantic
knowledge. These semantic maps allow the planner to extend its capabilities by adding
semantic information to the reasoning procedure. Similarly, semantic object maps [11]
integrate semantic and geometric data for determining whether an action can be executed
given the current state of the environment. Singh Chaplot et al. [12] propose topological
representations for space where nodes store semantic features and edges provides coarse
geometric information. Chen et al. [13] describe the environment as a graph of audio-visual
waypoints (nodes). In the Topological Scene Map (TSM) [14], a behavioral topological
map and a scene graph are combined. The behavioral topological map defines the spatial
connection relationships, and semantically describes the navigation behavior between
adjacent topological nodes. On the other hand, the scene graph promotes the TSM to record
the objects detected in the scene and the relations between objects. Armeni et al. [15] view
the 3D Scene Graph as a layered graph, with each level representing a different entity:
building, room, object, and camera. The graph is created offline, using object detection
over RGB images. The representation has been extended for managing dynamic entities.
Thus, the 3D Dynamic Scene Graph (DSG) [16] is a spatial representation that integrates
geometry and semantics of a scene at different levels of abstraction. The DSG models
objects, places, structures, and agents and their relations, and is organized into a layered,
directed graph. In this graph, nodes represent spatial concepts (e.g., a room or an object)
and edges represent pairwise spatio-temporal relations (e.g., “person A is in room B at time
t”). The graph is also created in an offline fashion, i.e., without satisfying real-time require-
ments, a requisite that is fundamental for real-world applications. Wu et al. [17] propose
SceneGraphFusion, an approach to incrementally build up a semantic scene graph from a
3D environment given a sequence of RGB-D frames. An attention mechanism is considered
for dealing with partial and missing graph data. Hydra is a real-time Spatial Perception
System, able to build a 3D scene graph from sensor data in real-time [18]. The framework
includes approaches for (i) capturing a local Euclidean Signed Distance Function (ESDF)
around the current robot location, (ii) extracting a topological map of places from the ESDF,
and (iii) segmenting the places into rooms. The framework also considers loop closure de-
tection and optimization in 3D scene graphs. With the aim of effectively endowing a mobile
robot with the ability to create 3D scene graphs, Bavle et al. [19] propose the Situational
Graph (S-Graph), which combines in a single optimizable graph, the representation of the
environment together with the robot pose. The S-Graph is online built in real-time, and it
includes a robot tracking layer where the robot poses are registered, a metric-semantic layer
with features such as planar walls, and a topological layer constraining the planar walls
using higher-level features such as corridors and rooms.

In the recent literature, many proposals use CNNs (Convolutional Neural Networks)
to recognize semantic properties in images and combine these results with topological
maps [20–23]. We also use this scheme for adding and updating the information related
with the outer world in the DSR. Specifically, and as in other previous work [24], we employ
a pre-trained CNN and customize it through transfer learning to recognize people and roll
containers in the video stream provided by an RGBD camera. However, our graphs also
store information about the internal context (e.g., battery level) and about the collection
of actions that the robot can perform. Section 5 provides more details about the objects of
interest in our scenario and the information stored in our graphs.
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3. Extending the MAPE Scheme: The DSR
3.1. The Deep State Representation

The Deep State Representation (DSR) is a multi-labelled directed graph that holds sym-
bolic and geometric information within the same structure. Figure 1 shows one simplified
example. The robot and the roll container are geometrical entities, linked to the world node
(a specific anchor providing the origin of coordinates) by a rigid transformation. At the
same time that we can compute the metric relationship between robot and roll container
(RT−1 × RT′′), this roll container can be located close to the robot, and hence, the robot can
launch the procedure for picking it up. In parallel, an agent can annotate that people are
not_detected close to the robot. Features, such as the level of the battery, are annotated as
properties of the specific node linked to the robot. Context features, or more elaborated
perceptions obtained from them, are updated at runtime.

Figure 1. Unified representation as a multi-labelled directed graph. For instance, edges labelled as
close or is_not denote logic predicates between nodes. On the other hand, edges starting at world
and ending at robot and roll container are geometric and they encode a rigid transformation (RT and
RT′′ respectively) between them. Geometric transformations can be chained or inverted to compute
changes in coordinate systems (see text).

This simple example shows that all agents in the software architecture (navigation,
person-related perception...) use the DSR for sharing information about specific parts
of the context, creating a whole view of the current state. Furthermore, it also stores a
complete view of the activities being performed by the robot, joining perceptions and
actions within a shared structure. Details are annotated in nodes and arcs. For instance,
a battery node has an internal level value, which will be updated by a specific agent in the
software architecture.

In addition to the update of the DSR, the agents in the software architecture will
read the DSR to search for those changes that trigger their specific task-solving skills.
This mapping between changes in the DSR and actions is encoded within each agent.
For instance, when a goal pose is set, the Navigation agent traces a route and moves the
robot to this pose. In the internal grammar of each agent, rules are encoded as triplets with
the states of the DSR after, during, and before the agent executes a specific action. For more
details about the DSR, please see the work by [5,6]. Next, we extend the idea of using the
DSR as a runtime model or as a mechanism for synchronizing running MAPE loops.
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3.2. The DSR as a Runtime Model

In our software architecture, the DSR is the core item, storing all the information
shared among the agents in the architecture. Thus, events, such as the detection of a person
or the roll container, the presence of close obstacles, or the evolution of the battery level,
are annotated in this graph. Moreover, we can also see in the DSR if the robot launched
the picking up of the roll container, and is now approaching the roll container. There will
be information annotated from the beginning (design-time), but also updates provided at
runtime. Following the work by [4], we can state that the described DSR is a runtime model.

Definition 1. A model is characterized by three elements: an original the model refers to, a purpose
that defines what the model should be used for, and an abstraction function that maps only purposeful
and relevant characteristics of the original to the model.

In our case, the original to which the model refers to is a real robot working in a retail
scenario. At design-time, we can have at our disposal a grid-based map of the environment,
a distribution of picking areas, or the features of the robot. The original also includes a
mission manager that, in this case, collects the needs from the human pickers (requiring
an empty roll container or asking for a loaded roll container to be moved to a different
position). The purpose of our model is to allow the robot to satisfy these missions, but also
to take into consideration the fulfilment of certain non-functional properties. For instance,
unsafe situations must be proactively avoided. As described in [6], the DSR manages
perceptions and actions within the same representation. Thus, the model covers physical
properties of the robot and the environment, but also the current behaviour of the robot
with respect to the current goals and the context. The purpose of the model is then to
centralize all the information the robot needs to achieve a mission, including that related to
the synchronization of the decision making modules running in the system. Details will be
provided in next Sections.

With respect to the abstraction of the context, relevant information about the robot
(battery level, payload, etc.) is annotated by different perception modules in the DSR. In a
robot-centric view, its maximum speed or the algorithm employed for localization are
autonomously chosen according to parameters such as the presence of close obstacles or
people, or to the uncertainty on its pose. Non-functional properties are encoded as QoS
metrics and also annotated and updated in the model, and then considered for tuning
these parameters. The representation of the environment includes the location of static
entities but also the presence of dynamic ones, such as people or roll containers. The model
also describes the current behaviour of the robot with respect to the current goals and the
context. Significantly, and contrary to the example in [4], we maintain an unique runtime
model storing all the information related to structural context and behaviour.

Definition 2. A runtime model is a model that complies with Definition 1 and, in addition, part of
its purpose is to be employed at runtime and its encoding enables its processing at runtime.

Being updated by all agents in the software architecture, the DSR is a runtime model
that describes the as is situation on the whole running system [25]. Thus, it is a descriptive
model of the system and environment. Figure 2 shows how the DSR evolves in a real trial.
For the sake of clarity, we have further simplified the DSR representation with respect to
Figure 1, leaving only the nodes that we consider most significant for the presentation of
this example. The DSR, at time t in the figure, illustrates when the robot arrives to the
picking area 1 where the human picker has left a roll container to be picked up and moved
to a new delivering area. The request from the picker is managed as a goals set for the
navigation agent, and also for the fork (lifting or lowering the container). Thus, the robot
initially arrives at the observation pose #1 (in picking area 1). When the robot arrives at
the desired picking area, the decision maker wakes up the agent in charge of detecting
the roll container (the robot is detecting). This agent gives an ACK message by changing
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the link from starts to is (time t) and, if the container is detected, an internal result value
in the detecting node is set to OK (time t + 1). A roll container node is then added to
the representation, and its position on the map is annotated in the DSR (see time t + 1).
The detection procedure finishes and the robot approaches to an estimated roll container
pose (the new goal is set in the navigating node). Then (time t + 2), the detection procedure
performs one last check, just to be sure that the roll container has not been moved. At time
t + 3 the robot starts conducting the picking up task. As is shown in Figure 5, the robot
has the fork placed in its backside, so the pickingUp agent rotates the robot 180 degrees
(rotating) and checks the position of the wheels of the roll container (time t + 4) in order
to estimate again the goal position. Then, the new action to be conducted for addressing
the picking up task is to approach to the roll container (approaching, see time t + 5). A new
pose is annotated as goal for the navigation agent, and the decision maker asks the robot
to start navigating, moving backwards. Finally (time t + 6 and t + 7), the robot forks up the
roll container and is ready to deliver it. As will be detailed in Section 4, this scheme does
not imply that agents must be necessarily awakened by the deliberative module. Reactive
agents in the architecture are always active. Thus, topics such as the level of the battery or
the presence of people are always updated by specific agents in the architecture. As it is
described in Section 4, the modules involved in the estimation of alternative actions to the
current running one are also always updating the DSR (the tentative actions node in the
figure). Specifically, in our use case, four actions are evaluated: to pick up the container,
to return to the starting pose, to move to the charging station, and to deliver the container
to the delivery pose set in the store. All these actions are weighted and these weight values
are available in the DSR. As it is shown in Figure 3, these values allow the system to modify
the course of action by itself when required.

3.3. The DSR as the Place for Coordinating MAPE Loops

Figure 2 exemplifies how the DSR is employed by the software architecture for coordi-
nating the activity of their agents. The internal coordination of the MAPE loop involving
the high-level deliberative module is achieved by annotating in the arcs linking the robot
with tasks such as navigating, detecting, or picking up. In the example, all launched tasks
were successfully reached. But this is not necessarily true for all trials. In Figure 3, the robot
detects the roll container but, then, the agent in charge of detecting people modifies the
DSR as several people surround the container. The situation is unsafe, and one analyzer
agent annotates as tentative action to abort the picking up task. The procedure describing
how this recommendation is generated is detailed in Section 6. But what is relevant here
is that the decision maker reacts to this new reality by changing the course of action and
aborting the task.

Figure 2 also illustrates how two loops interacts using the DSR. The picking up task
involves several agents as they need to check the roll container position and approach
it before picking it up. Checking the roll container position and approaching activities
are coordinated using the information in the DSR, and the internal state of this task is
also informed to the MAPE loop involving the high-level deliberative module. Thus, if a
problem forces the picking up task to be aborted, the information is also managed by the
deliberative module for adapting the course of action and, for instance, asks the robot to
navigate to a new picking area for picking up a different roll container. Being one of the
major novelties of this paper, Section 4 provides more information about how our MAPE
loops interact using the information stored in the DSR. In this Section 4, we describe how
the MAPE-K framework is organized and how the decision makers synchronize their plans
or modify them according to changes in the context.
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Figure 2. Evolution of the DSR for starting a picking up task. The robot at time t has just reaching the
picking area 1 and the decision maker finishes navigating and starts the detection of the roll container.
Different agents interact using the information stored in the DSR for launching and stopping their
activities. The DSR at time t + 5 includes the roll container and shows that the robot starts navigating
for approaching to the container (see text). In the graphs, dark blue and bold text are used to highlight
changes from one step to the next.
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Figure 3. Modification of the nominal course of action: the detection of people close to the robot
causes the robot to abort the pickingUp task (see text).

4. The Proposed MAPE-K Architecture

Figure 4 provides an overview of the implemented MAPE-K architecture. The system
orbits around the DSR, a reflection model [25] where all the descriptive information needed
to carry out the correct execution of the missions is stored. Part of this information is
perceptive information coming from the sensors and preprocessed by different agents.
They provide the Monitor step of our proposal. Sometimes this information is raw data
(e.g., battery level or the lower distance to obstacles), sometimes it is symbolic data, usually
obtained from binary observations or from the simple evaluation of geometric data (e.g.,
a roll container has been detected and is close to the robot). In all cases, this information
is descriptive.

Figure 4. The proposed MAPE-K framework.

The Analyze step aims to monitor the DSR for recommending alternative actions to
the decision making module. The scheme encodes non-functional properties (e.g., safety or
punctuality) into Quality-of-Service metrics. Using context information and these metrics as
inputs, a recommender quantifies what the best next action to be launched by the high-level
decision maker should be. These recommendations are filtered by considering temporal
causality and for avoiding erratic behaviours (e.g., cyclically categorizing a situation as safe
or unsafe because the robot senses, sometimes yes and sometimes no, a person moving
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in front of it). Once filtered, the tentative actions are annotated in the DSR (we can see
the node associated to these actions in the simplified views of the DSR in Figures 2 and 3).
The deliberative module will take into consideration these recommendations, modifying
the course of action when necessary. Both the process of estimating QoS metrics and
obtaining recommendations are based on fuzzy logic.

As the figure shows, several decision-making modules can coexist in our architecture.
They use the information stored by the previous Monitor and Analyze steps for self-
adapting the behaviour of the robot to the internal and external context. In our case, we
have encoded the use cases into Behaviour Trees (BT) and these decision makers are the
software modules in charge of managing their execution. These BTs can be extended with
alternative branches for dealing with variability [26]. As illustrated in Figures 2 and 3, these
BT Executors need to coordinate their activities, and they do that by sharing information in
the DSR. Section 5 provides more details about our implementation and instantiation in the
intralogistic domain.

5. Implementation
5.1. The CARY Robot

In the real deployment of the proposal, we have employed the CARY robot from
Metralabs GmbH. This robot can manage the typical roll containers, moving them from one
picking position to another if this is required by a human operator. Roll containers will be
moved to a general delivery pose set in the store if there is not a new request or when the
roll container is full. Figure 5 shows the robot approaching to a roll container, picking it up,
and moving in a real scenario. The robot detects the container using a camera placed in its
frontside. When it rotates for picking up the container, fine grained detection is conducted
using a laser range finder placed in its backside (at the front of the fork). For navigating in
narrow corridors, it uses the four laser range finders in the frontside.

Figure 5. The CARY robot approaches to a roll container, picks it up, and moves the container towards
a new destination.

5.2. Software Architecture

The instantiation of our system architecture in the intralogistics scenario is shown in
Figure 6. In the Monitor step we have three major modules involved. The NavigationA-
gent is responsible for annotating in the DSR information related to the navigation and
localisation framework. In this step, the information is related with the battery level and
also with the presence of close obstacles, reaching a goal, or bumping with an obstacle.
The PersonDetectionAgent and the ContainerDetectionAgent are in charge of annotating in the
DSR the presence and location of people and roll containers, respectively. The framework
was built using “You Only Look Once” (YOLO v3) and included within a Neural Compute
Stick 2 (VPU from Intel), using the OpenVINO framework. For dealing with both tasks,
images were captured using the Intel Realsense camera mounted in the robot.
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Figure 6. Software architecture for managing the CARY robot.

The Analyze step consists of three relevant modules. The ContextProviderAgent is
the responsible of collecting information about the context from the DSR, fuzzying it,
and providing these topics to a first fuzzy inference engine implemented in the FuzzyEngine.
This engine generates high-level metrics related with non-functional properties (safety,
mission_completion or power_autonomy), and has been designed using the FuzzyLite
Libraries for Fuzzy Logic Control [27]. In the FuzzyEngine, a second inference engine uses
these metrics, and the temporal evolution of the state of the world, for quantifying the
relevance of the collection of tentative actions that the robot can perform (e.g., abort the
mission and move to the Charging station). The weights associated to each tentative action
is updated in the DSR by the RecommenderAgent.

Having taken the temporal evolution of these weights into consideration, the Adapta-
tionAgent is the responsible for triggering a change in the course of action. To achieve this,
this agent is linked to the decision makers. When the current action is stopped for executing
a new one, it is the responsibility of the DSR update to maintaining the coordination among
agents. At the Planning step, the course of action is mainly encoded in the CARY robot
using the Global Management BT, responsible for the robot behaviour at a mission-level,
and the PickUp Management BT, which allows the system to monitor the detection of the
roll container and to autonomously move the robot to an alternative pose if the initial pro-
cedure fails. The Goal Management BT manages the requests of the human pickers, but it
is possible, for instance, to abort a mission if the power autonomy is quickly decreasing or
if the situation is unsafe. The modules in charge of executing these BTs are endowed within
the BehaviourTreeAgent and the PickingBehaviourTreeAgent, respectively. These BTs are
designed using the BehaviourTree.CPP library by Davide Faconti [28]. Both BTs implement
a nominal course of action (i.e., the set of actions sequentially performed by the robot in a
normal execution) as their main branch. These nominal behaviours are then extended with
alternative ones (identified at design-time), appearing as additional branches in the BT (see
Figure 7). At runtime, the course of action is modified when required in response to the
commands provided by the AdaptationAgent [26].
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Figure 7. The main root of the Global Management BT. The nominal branch is the PickDeliverStart
one. This branch commands the robot to pick up a roll container and move it to a delivery position
within a certain picking area. Then, it returns to the Starting position. The alternative branches force
the robot to (1) move the roll container directly to the Delivery position; (2) move the robot to the
Starting position; or (3) move the robot to the Charging station.

In our case, the actuation of the robot is restricted to navigation commands (move to),
pallet truck commands (raising and lowering the pallet truck), and interaction commands
(warning messages that a mission has been completed or aborted). As shown in Figure 6,
in addition to the interaction through the PickerWebInterface, the Execution part considers
three modules. The aforementioned NavigationAgent is also responsible for managing the
commands related to robot’s motion. It includes a path planner, which is integrated within a
complete navigation stack, and manages maps and obstacles for deciding new routes when
a problem appears in the originally chosen one. It does not interact with the other decision
making modules in the architecture. The DeliverAgent and PickUpAgent manage the motors
on the fork of the robot for allowing it to deliver or pick up the roll container. All these
modules interact with the robot’s motors through the MIRA/CogniDrive framework [29]
from Metralabs, a framework that also provides our architecture with the navigation and
localisation skills.

6. Experimental Results

We tested the ability of the CARY robot to move roll containers in a real retail store
(Eroski) sited in Casarabonela (Malaga, Spain). The shop is approximately 300 square
metres in size, it has narrow corridors (close to 2 metres), and the robot shared the space
with shop workers and consumers. Figure 5 provides some snapshots of the robot moving
in the store.

The store was divided up into picking areas. When a worker asks for the robot to
collect a roll container in a picking area, the robot will move to a specific pose within this
area, and, from here, it will look for the container. If the search fails, it will move to a second
observation pose within the area. If the robot is not able to find the roll container (or if it
is not able to determine the pose of the container), it will inform the base station and will
return to the starting pose. If the request of the worker is for a roll container, the robot
will provide one in the delivery pose set in each picking area. Figure 8 summarizes the
distribution of key poses in two picking areas.



Appl. Sci. 2022, 12, 8583 13 of 18

Figure 8. Key poses set in two picking areas in the store.

The robot showed its ability for autonomously detecting roll containers and people,
being able to work under different lighting conditions with no appreciable change in
performance. For detecting people or roll containers, the robot uses the depth image
from a D435i camera from Intel. The Vision Processor D4 hardware component inside
this camera takes care of lighting adjustments with auto-exposure mode enabled, and the
depth estimation was accurately estimated in all cases. On the other hand, for navigating,
the robot uses the laser range finders in its frontside, and, for picking up, the laser range
finder placed in the front of the fork. The robot also showed its ability to correctly pick up or
deliver roll containers. Next, we describe some situations where the DSR was employed for
synchronizing the activities of the BT Executors or for self-adapting the robot’s behaviour.

In this first situation, the robot is initially asked to provide one roll container to a
picking area. The command is correctly managed, and, while the human picker is loading
the roll container, a new order asks the robot to move the container to a second picking
area. This new command is correctly received and the new delivery pose is annotated.
The BehaviourTreeAgent maintains as current plan the nominal one (encoded in the first
branch of the BT, see Figure 7). However, when the picker ends, s/he uses the tablet interface
for setting that the roll container is FULL. This situation makes the FuzzyEngine to give a
large weight to the action DefaultDeliver. The AdaptationAgent asks the BehaviourTreeAgent to
abort the current course of action, and to chose the second branch in the Global Management
BT (see Figure 7). Figure 9 shows some snapshots of the evolution of the DSR during this
example. The robot correctly aborts the delivery of the roll container in the second picking
area, and delivers the roll container in the general Delivery pose set in the store.
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Figure 9. Modification of the nominal course of action: the roll container is FULL and the robot aborts
the delivering of this container to a second picking area for continuing its load (see text).

The robot can move the roll container through the corridors in the store despite the
presence of people. However, for the picking up action, the robot needs to rotate, and it was
considered that the presence of people made the situation unsafe. As was shown in Figure 3,
the final result is to abort the pickingUp action. Figure 10 shows some snapshots of the
detection of a person crossing in front of the roll container. In the FuzzyEngine, the context
forces the safety metric to decrease, and the option start (aborting the mission and returning
to the starting pose) to be the best valuated. As aforementioned, the FuzzyEngine includes
two consecutive engines. In the first one, fuzzified context variables are employed for
obtaining the QoS metrics. In the second one, context variables and QoS metrics are used
for weighting the tentative actions encoded in the Global Management BT (pick, deliver,
start, and dock). Figures 11 and 12 show the outputs of both inference engines (QoS metrics
and tentative actions) in this situation. The safety metric provides a low value (0.5) due to
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the presence of people close to the roll container (and although the container is empty).
The start action gets greater values than the other possible actions.

Figure 10. The system detects the presence of a person walking close to the roll container. Images
show that the system detects people and roll containers, but also the wheels of the roll container.
Wheels are used for determining the pose of the container.

Figure 11. QoS metrics provided by the FuzzyEngine when a person is detected close to the roll
container (see text).

Finally, we describe the evolution of the DSR when the robot arrives to a picking area,
but it is not able to detect the roll container from the observation pose #1. Figure 13 shows
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how the PickingBehaviourTreeAgent manages the situation, using the DSR for allowing the
BehaviourTreeAgent to be aware of the problem. The example shows that all agents interact
to unfold the correct behaviour by maintaining a inner dialogue in the DSR.

Figure 12. Tentative actions provided by the FuzzyEngine when a person is detected close to the roll
container (see text).

Figure 13. Modification of the nominal course of action: The robot arrives to a picking area but it
does not detect the roll container from the observation pose #1 and then navigates to the observation
pose #2 to relaunch the search.
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7. Conclusions and Future Work

The existence of a knowledge representation is a crucial item of most robotic appli-
cations. In this contribution, we describe the use of the Deep State Representation (DSR)
for assuming this role in a framework where several MAPE-K loops coexist managing the
robot’s behaviour. This short-term memory is able to organize the information coming from
a collection of software agents. The internalized entities can have geometric significance or
be symbolic items. And they can be related by semantically or geometrically annotated
links. All the representation is updated in runtime. Moreover, the semantic representation
of the state, including perceptive items and also action-related ones, allows the robot to
interpret the DSR as a source for inner dialogue [30]. This dialogue is used by the agents in
the architecture for coordinating their activities. The deliberative decision making modules
can determine what the action being executed is and modifying their behaviour. And the
reactive modules can also quickly react to changes in the context and, updating the DSR,
can also modulate the behaviour of the deliberative modules.

The proposal has been successfully instantiated in the intralogistic domain. In this
example, two BT Executors are employed for providing the deliberative behaviour. Their
outcomes are synchronized by considering the information annotated in the DSR. Moreover,
the DSR also maintains the weights that the whole framework associate to the collection of
actions that the robot can address. This allows the system to change the course of action
according to the changes in the external and internal context. The approach has been
successfully tested in a real environment.

Future work should focus on extending the evaluation in this domain and consider a
global manager that can deal with a fleet of robots. Decisions at fleet- and robot-level must
then be synchronized. A global DSR should integrate information coming from the local
representations endowed in the robots of the fleet.
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