A Jordan Canonical Form for nilpotent elements in arbitrary ring.

Miguel Gómez Lozano, Esther García, Guillermo Vera de Salas and Rubén Muñoz Alcázar

Abstract:
In this paper we give an inductive new proof of the Jordan canonical form of a nilpotent element in an arbitrary ring. If $a \in R$ is a nilpotent element of index $n+1$ with von Neumann regular a^n, we decompose $a=a_1+a_2(1-a_1)$ with $a_1 e R e A_n$, a Jordan block of size $n+1$ over a corner S of R, and $(1-a_1)a^k$ nilpotent of index $\leq n+1$ for an idempotent e of R commuting with a. This result makes it possible to characterize prime rings of bounded index n with a nilpotent element $a \in R$ of index n and von Neumann regular a^{n-1} as a matrix ring over a unital domain.

Introduction:

Von Neumann regular elements: An element $a \in R$ is said to be von Neumann regular if there exists $b \in R$ such that $aba=a$.

Nilpotent last regular element: A nilpotent element $a \in R$ of index $n+1$ is said to be last regular if a^n is von Neumann regular.

Rus-inverse: Given a nilpotent last regular element $a \in R$ of index $n+1$, we said that $b \in R$ is a Rus-inverse of a if

$$a^n b a^n = a^n, \quad b a^n b = b, \quad \text{and} \quad b a^n b = 0$$

for every $0 \leq k \leq n-1$.

Lemma[1]: Let R be a ring and let $a \in R$ be a nilpotent last regular element of index $n+1$. Then there exists $b \in R$ a Rus-inverse of a.

Theorem[2]: Let R be a ring and let $a \in R$ be a nilpotent last regular element of index $n+1$. Then b is a Rus-inverse of a.

Definition[3]: A nilpotent element a of index n is called a last regular element if a^n is von Neumann regular.

Remark: In general, neither the Rus-inverse nor the associated idempotent in [1] and [2] are unique: if $M_n(F)$, and $a=e_{1,2}$ the element $b=e_{2,1}$ is a Rus-inverse for a and a is a block-element with associated idempotent $e=a_{1,1}, e_{2,2}$ the element $b'=e_{1,2}, e_{2,1}$ is another Rus-inverse for a and aS is a block-element with associated idempotent $e'=e_{1,1}, e_{2,2}+e_{1,2}$.

Definition: We say that a nilpotent last regular element $a \in R$ of index $n+1$ is block-maximal if one of its associated block-idempotents belongs to the center of R, i.e., if there exists a Rus-inverse of such a that the idempotent block constructed in [1] is central.

Proposition: If $a \in R$ has maximal index of nilpotence, then it is block-maximal.

References:

OTHER NOTIONS

Von Neumann regular: A ring R is said to be von Neumann regular if every element of R is von Neumann regular.

Abelian Regular: A ring R is said to be an abelian regular ring if R is von Neumann regular and every idempotent of R is contained in the center of R.